ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions
Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence th...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 19; pp. E1807 - E1816 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.05.2013
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)–dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE’s regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis. |
---|---|
AbstractList | Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)–dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE’s regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis. It has been proposed that differential physical interactions of apolipoprotein E (apoE) isoforms with soluble amyloid-β (Aβ) in brain fluids influence the metabolism of Aβ, providing a major mechanism to account for how APOE influences Alzheimer’s disease risk. The current study challenges this proposal and clearly shows that lipoproteins containing apoE isoforms are unlikely to play a significant role in Aβ metabolism by binding directly to Aβ in physiological fluids such as cerebrospinal fluid or interstitial fluid. Our in vitro and in vivo results suggest that apoE isoforms influence Aβ metabolism by competing for the same clearance pathways within the brain. Apolipoprotein E gene ( APOE ) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)–dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE’s regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis. Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer's disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE's regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis.Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer's disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE's regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis. |
Author | Yinong Wang Joseph M. Castellano Kanchan Garai Aarti Shah David M. Holtzman Philip B. Verghese Hong Jiang Guojun Bu Carl Frieden |
Author_xml | – sequence: 1 givenname: Philip B. surname: Verghese fullname: Verghese, Philip B. organization: Departments of aNeurology,, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and – sequence: 2 givenname: Joseph M. surname: Castellano fullname: Castellano, Joseph M. organization: Departments of aNeurology,, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and – sequence: 3 givenname: Kanchan surname: Garai fullname: Garai, Kanchan organization: Biochemistry and Molecular Biophysics, and, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and – sequence: 4 givenname: Yinong surname: Wang fullname: Wang, Yinong organization: Biomedical Engineering,, Hope Center for Neurological Disorders, and – sequence: 5 givenname: Hong surname: Jiang fullname: Jiang, Hong organization: Departments of aNeurology,, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and – sequence: 6 givenname: Aarti surname: Shah fullname: Shah, Aarti organization: Departments of aNeurology,, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and – sequence: 7 givenname: Guojun surname: Bu fullname: Bu, Guojun organization: Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 – sequence: 8 givenname: Carl surname: Frieden fullname: Frieden, Carl organization: Biochemistry and Molecular Biophysics, and, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and – sequence: 9 givenname: David M. surname: Holtzman fullname: Holtzman, David M. organization: Departments of aNeurology,, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23620513$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAYxC1URLeFMzfwsRzS_fwvcS5Iq2opSJU4lJ4tr-NsDY4d4izSvlYfpM-E0122hQM9Rdb8ZjKf5gQdhRgsQm8JnBOo2LwPOp0TSoFLTgi8QDMCNSlKXsMRmgHQqpCc8mN0ktJ3AKiFhFfomLKSgiBshn4s-rjELrR-Y4OxCetu66Nrivs7fLa4v_uAjbd60FnDjU29Gy3uXHCd9lhn6zwzWKcUjdOjiyFH4f52m1z0ce1MpkwMjZuk9Bq9bLVP9s3-e4puPi2_XXwurr5efrlYXBWGV2Is2kbAdI9tGANJqAHQpgXSSNvmlxHlSnNTgQXZWEqllqvKmhUFCg1IXrJT9HGX229WnW2MDeOgveqH3HrYqqid-lsJ7lat4y_FSkE4ZzngbB8wxJ8bm0bVuWSs9zrYuEmKSGCEcsHJ8yjjdQWCC5HRd09rHfr8GSMD8x1ghpjSYNsDQkBNc6tpbvU4d3aIfxzGjQ875Luc_48P76tMwuEvE16rZT6vysj7HdLqqPR6cEndXFMgJQBhFac1-w3crMWf |
CitedBy_id | crossref_primary_10_1007_s12031_016_0839_z crossref_primary_10_2217_clp_14_64 crossref_primary_10_1002_1873_3468_14858 crossref_primary_10_1002_mds_27196 crossref_primary_10_3390_ijms21124371 crossref_primary_10_1517_13543776_2014_880692 crossref_primary_10_1016_j_neurobiolaging_2019_02_017 crossref_primary_10_1042_BCJ20180068 crossref_primary_10_1007_s00702_020_02152_8 crossref_primary_10_1111_tra_12451 crossref_primary_10_3390_ijms23169356 crossref_primary_10_7554_eLife_54822 crossref_primary_10_3390_app13020853 crossref_primary_10_1002_pro_3396 crossref_primary_10_1038_ncomms9876 crossref_primary_10_3233_JAD_221042 crossref_primary_10_3109_13506129_2013_879643 crossref_primary_10_1016_j_ebiom_2019_07_014 crossref_primary_10_1186_s12916_019_1299_4 crossref_primary_10_1016_j_cell_2016_12_044 crossref_primary_10_1016_S1474_4422_20_30412_9 crossref_primary_10_1186_s13024_015_0002_2 crossref_primary_10_1038_srep13842 crossref_primary_10_3233_JAD_190464 crossref_primary_10_3389_fpsyt_2024_1435394 crossref_primary_10_1186_s13024_016_0138_8 crossref_primary_10_1002_1873_3468_13428 crossref_primary_10_1371_journal_pone_0193867 crossref_primary_10_3390_ijms22189689 crossref_primary_10_1523_JNEUROSCI_1054_16_2016 crossref_primary_10_37376_ljst_v14i2_7205 crossref_primary_10_1016_j_neuint_2021_105073 crossref_primary_10_1007_s00395_020_00829_5 crossref_primary_10_1373_jalm_2019_030023 crossref_primary_10_3390_ijms17030338 crossref_primary_10_1016_j_nbd_2014_08_025 crossref_primary_10_1038_s41593_024_01757_6 crossref_primary_10_1016_j_bbadis_2015_08_025 crossref_primary_10_1038_s41467_021_23762_0 crossref_primary_10_1080_15548627_2016_1159375 crossref_primary_10_1016_j_nbd_2016_04_005 crossref_primary_10_1089_neu_2018_6334 crossref_primary_10_3390_antiox11112116 crossref_primary_10_1523_JNEUROSCI_2521_21_2022 crossref_primary_10_1016_j_biopsych_2017_03_003 crossref_primary_10_56082_annalsarscibio_2020_1_65 crossref_primary_10_1016_j_jns_2022_120435 crossref_primary_10_1016_j_biopsych_2014_05_006 crossref_primary_10_1007_s12035_020_01873_x crossref_primary_10_1371_journal_pone_0089970 crossref_primary_10_1002_advs_202303402 crossref_primary_10_3389_fnins_2017_00119 crossref_primary_10_1111_febs_16344 crossref_primary_10_1194_jlr_R075796 crossref_primary_10_3389_fnagi_2021_765252 crossref_primary_10_1007_s40263_016_0361_4 crossref_primary_10_3233_JAD_142184 crossref_primary_10_1007_s12035_015_9674_4 crossref_primary_10_1186_s13195_023_01209_6 crossref_primary_10_3233_JAD_221016 crossref_primary_10_1016_j_bbadis_2023_166729 crossref_primary_10_1016_j_ajpath_2019_04_010 crossref_primary_10_1016_j_arr_2020_101126 crossref_primary_10_1194_jlr_R075481 crossref_primary_10_3390_ijms21061989 crossref_primary_10_1038_s41467_024_49028_z crossref_primary_10_1194_jlr_R076331 crossref_primary_10_1021_acschembio_6b00195 crossref_primary_10_3390_cells10030540 crossref_primary_10_1016_j_neurobiolaging_2020_12_011 crossref_primary_10_1074_jbc_M115_679043 crossref_primary_10_1111_jnc_12637 crossref_primary_10_1016_j_neurobiolaging_2019_01_001 crossref_primary_10_1089_rej_2014_1605 crossref_primary_10_1016_j_neulet_2015_03_032 crossref_primary_10_1371_journal_pone_0188191 crossref_primary_10_1016_j_tem_2013_10_003 crossref_primary_10_1038_s41598_023_33677_z crossref_primary_10_1152_ajpheart_00592_2023 crossref_primary_10_1007_s00702_023_02723_5 crossref_primary_10_1016_j_pneurobio_2017_08_001 crossref_primary_10_1080_14737175_2019_1621750 crossref_primary_10_3390_biom12040499 crossref_primary_10_2217_nmt_14_43 crossref_primary_10_1001_jamaneurol_2018_0821 crossref_primary_10_3390_ijerph16111995 crossref_primary_10_3390_ijms252212311 crossref_primary_10_3390_toxics2020327 crossref_primary_10_1002_pro_2379 crossref_primary_10_1016_j_nicl_2024_103660 crossref_primary_10_1016_j_ejphar_2021_173873 crossref_primary_10_1016_j_neuron_2014_08_005 crossref_primary_10_1242_jcs_258687 crossref_primary_10_1007_s00018_023_05026_w crossref_primary_10_1177_1533317517707288 crossref_primary_10_3389_fnagi_2021_727590 crossref_primary_10_1002_ctd2_287 crossref_primary_10_1186_s13195_021_00778_8 crossref_primary_10_1038_s41598_019_40438_4 crossref_primary_10_2174_1567205018666211105140732 crossref_primary_10_1074_jbc_RA118_002025 crossref_primary_10_1186_s13024_018_0298_9 crossref_primary_10_3389_fnins_2015_00345 crossref_primary_10_1016_j_plefa_2014_10_003 crossref_primary_10_3389_fnmol_2017_00232 crossref_primary_10_1074_jbc_M113_526095 crossref_primary_10_1007_s00018_016_2295_x crossref_primary_10_1016_j_nbd_2020_104788 crossref_primary_10_1073_pnas_2112095118 crossref_primary_10_1242_bio_058990 crossref_primary_10_1016_j_exger_2017_10_020 crossref_primary_10_3390_jcm10143009 crossref_primary_10_1016_j_nbd_2020_104784 crossref_primary_10_1021_acschemneuro_1c00209 crossref_primary_10_1038_s41582_019_0281_2 crossref_primary_10_1093_gerona_glab169 crossref_primary_10_1002_med_21947 crossref_primary_10_1016_j_cell_2015_12_056 crossref_primary_10_1021_acschemneuro_4c00048 crossref_primary_10_1016_j_addr_2020_04_013 crossref_primary_10_1088_1742_6596_1168_3_032120 crossref_primary_10_1136_jnnp_2016_314697 crossref_primary_10_3389_fncel_2022_875138 crossref_primary_10_1126_scitranslmed_aad1904 crossref_primary_10_2174_1567205017666200528162046 crossref_primary_10_1007_s11064_018_2629_1 crossref_primary_10_1002_bies_201700062 crossref_primary_10_1089_hum_2024_112 crossref_primary_10_3390_ijms232012092 crossref_primary_10_1016_j_dadm_2018_10_004 crossref_primary_10_3389_fnmol_2017_00319 crossref_primary_10_1016_j_mcn_2015_02_016 crossref_primary_10_1002_glia_24469 crossref_primary_10_1007_s12035_023_03541_2 crossref_primary_10_1016_j_neurobiolaging_2017_03_002 crossref_primary_10_3389_fphys_2021_700847 crossref_primary_10_1016_j_nbd_2014_05_007 crossref_primary_10_1523_JNEUROSCI_3788_13_2014 crossref_primary_10_1016_j_neuron_2014_05_041 crossref_primary_10_1111_jnc_15030 crossref_primary_10_1242_dmm_037218 crossref_primary_10_1146_annurev_cellbio_100617_062636 crossref_primary_10_1080_1028415X_2020_1831262 crossref_primary_10_3389_fnagi_2023_1096206 crossref_primary_10_1038_s41582_019_0228_7 crossref_primary_10_3389_fnagi_2014_00093 crossref_primary_10_1007_s00018_023_04784_x crossref_primary_10_3390_ijms251910797 crossref_primary_10_1016_j_arr_2020_101212 crossref_primary_10_1186_s13024_022_00574_4 crossref_primary_10_1186_s12974_022_02565_0 crossref_primary_10_3389_fnins_2025_1515374 crossref_primary_10_1016_j_parkreldis_2023_105884 crossref_primary_10_1093_cvr_cvu148 crossref_primary_10_1523_JNEUROSCI_3442_16_2017 crossref_primary_10_3389_fnagi_2015_00199 crossref_primary_10_1098_rstb_2022_0378 crossref_primary_10_1038_nn_4018 crossref_primary_10_1038_s41580_023_00647_2 crossref_primary_10_3390_ijms140714908 crossref_primary_10_1016_j_jconrel_2019_01_008 crossref_primary_10_1186_s13024_022_00566_4 crossref_primary_10_1186_s13024_020_00413_4 crossref_primary_10_1016_j_nbd_2015_08_007 crossref_primary_10_1038_ncomms15137 crossref_primary_10_3390_ijms241814177 crossref_primary_10_3390_ijms222111883 crossref_primary_10_1021_acs_analchem_0c03542 crossref_primary_10_1186_s13195_023_01340_4 crossref_primary_10_1134_S000629791513012X crossref_primary_10_1016_j_neubiorev_2019_02_014 crossref_primary_10_2174_0929867329666220620162018 crossref_primary_10_3389_fnagi_2016_00160 crossref_primary_10_3389_fnmol_2021_620090 crossref_primary_10_1021_acs_jproteome_2c00143 crossref_primary_10_1097_NEN_0000000000000207 crossref_primary_10_1002_hbm_22740 crossref_primary_10_1073_pnas_1707544114 crossref_primary_10_1016_j_jprot_2014_07_028 crossref_primary_10_1016_j_pneurobio_2020_101904 crossref_primary_10_1001_jamaneurol_2018_3139 crossref_primary_10_1007_s00401_014_1266_2 crossref_primary_10_1038_s41380_021_01076_3 crossref_primary_10_1016_S1474_4422_16_00065_X crossref_primary_10_1177_0271678X20968032 crossref_primary_10_1186_s40035_024_00434_9 crossref_primary_10_1016_j_mcp_2016_09_001 crossref_primary_10_1016_j_nbd_2014_07_015 crossref_primary_10_3389_fnsyn_2023_1129036 crossref_primary_10_1016_j_brainres_2019_05_031 crossref_primary_10_1038_s41435_020_00113_5 crossref_primary_10_1007_s10571_016_0357_0 crossref_primary_10_1038_srep35514 crossref_primary_10_1038_nrneurol_2013_90 crossref_primary_10_1016_j_brainres_2016_09_022 crossref_primary_10_1007_s00018_018_2825_9 crossref_primary_10_1371_journal_pone_0139574 crossref_primary_10_1002_jnr_24922 crossref_primary_10_1016_j_nbd_2017_03_014 crossref_primary_10_1038_nature20412 crossref_primary_10_3389_fnagi_2020_00150 crossref_primary_10_3233_JAD_240042 crossref_primary_10_1016_j_jmb_2019_12_005 crossref_primary_10_1177_1177271920964108 crossref_primary_10_1007_s13365_014_0263_5 crossref_primary_10_1038_s41386_020_00840_3 crossref_primary_10_1093_procel_pwae026 crossref_primary_10_1007_s00018_017_2463_7 crossref_primary_10_1074_jbc_M116_721779 crossref_primary_10_3390_ijms24087258 crossref_primary_10_3390_diseases12060110 crossref_primary_10_1523_JNEUROSCI_1135_17_2017 crossref_primary_10_1016_j_neuroscience_2016_12_017 crossref_primary_10_1038_mp_2014_123 crossref_primary_10_1002_alz_12173 crossref_primary_10_1016_j_neurobiolaging_2017_02_017 crossref_primary_10_1038_s41419_017_0236_8 crossref_primary_10_3233_JAD_170062 crossref_primary_10_3233_JAD_150797 crossref_primary_10_1186_s40478_014_0075_0 crossref_primary_10_1002_med_21440 crossref_primary_10_1016_j_pneurobio_2018_05_001 crossref_primary_10_1007_s12031_014_0465_6 crossref_primary_10_1111_febs_14988 crossref_primary_10_15252_embr_201540614 crossref_primary_10_3389_fnagi_2022_919712 crossref_primary_10_1007_s12551_017_0271_9 crossref_primary_10_3389_fnagi_2019_00120 crossref_primary_10_1186_s13195_017_0313_3 crossref_primary_10_1016_j_physbeh_2017_09_021 crossref_primary_10_26508_lsa_202201542 crossref_primary_10_1194_jlr_M049940 crossref_primary_10_1016_j_stemcr_2021_11_007 crossref_primary_10_1152_ajpendo_00429_2015 crossref_primary_10_3389_fnagi_2019_00014 crossref_primary_10_1007_s10534_018_0134_2 crossref_primary_10_1002_wnan_1696 crossref_primary_10_1021_acs_jproteome_9b00136 crossref_primary_10_1016_j_jbc_2022_102062 crossref_primary_10_1016_j_nbd_2022_105824 crossref_primary_10_3389_fnagi_2021_658605 crossref_primary_10_1016_j_bioelechem_2019_107447 crossref_primary_10_1016_j_pneurobio_2016_01_001 crossref_primary_10_3390_ijms22083869 crossref_primary_10_1038_s41598_024_59013_7 crossref_primary_10_3233_JAD_220643 crossref_primary_10_1155_2020_5086250 crossref_primary_10_1007_s00401_013_1190_x crossref_primary_10_1042_NS20180203 crossref_primary_10_1073_pnas_1516779112 crossref_primary_10_1073_pnas_1314145110 crossref_primary_10_1186_1750_1326_8_34 crossref_primary_10_1146_annurev_neuro_071013_014300 crossref_primary_10_3233_ADR_220075 crossref_primary_10_3233_JAD_179909 crossref_primary_10_3233_JAD_160169 crossref_primary_10_3233_JAD_161259 crossref_primary_10_1097_MCO_0000000000000069 crossref_primary_10_1007_s12017_014_8318_6 crossref_primary_10_15252_embr_202256467 crossref_primary_10_1016_j_neuron_2016_06_015 crossref_primary_10_1038_s41380_024_02691_6 crossref_primary_10_1155_2017_1892612 crossref_primary_10_1021_bi5008172 crossref_primary_10_3233_JAD_230658 crossref_primary_10_1007_s00109_016_1427_y crossref_primary_10_3389_fnins_2021_666958 crossref_primary_10_1186_s13195_016_0231_9 crossref_primary_10_3233_ADR_210027 crossref_primary_10_3389_fncel_2023_1264402 crossref_primary_10_1038_srep13489 crossref_primary_10_1186_s12979_018_0142_7 crossref_primary_10_3389_fphar_2014_00097 crossref_primary_10_1016_j_immuni_2022_10_016 crossref_primary_10_1111_nan_12476 crossref_primary_10_3389_fnins_2023_1217451 crossref_primary_10_1007_s13365_019_00761_y crossref_primary_10_1016_j_bbalip_2021_158980 crossref_primary_10_1016_j_jalz_2018_04_008 crossref_primary_10_1016_j_neurobiolaging_2015_07_015 crossref_primary_10_3389_fncel_2020_544612 crossref_primary_10_1093_gerona_glaa054 crossref_primary_10_12677_SA_2023_126174 crossref_primary_10_1002_alz_14376 crossref_primary_10_1016_j_pneurobio_2025_102744 crossref_primary_10_1080_14728222_2017_1267142 crossref_primary_10_1016_j_bbapap_2014_08_016 crossref_primary_10_1007_s12035_017_0547_x crossref_primary_10_3171_2018_1_JNS172938 crossref_primary_10_1186_1750_1326_9_2 crossref_primary_10_3390_antiox9121224 crossref_primary_10_1016_j_bios_2015_05_017 crossref_primary_10_1002_path_4468 crossref_primary_10_1515_revneuro_2017_0063 crossref_primary_10_1038_s41380_021_01351_3 crossref_primary_10_31083_j_fbl2810258 crossref_primary_10_1007_s12035_018_1396_y crossref_primary_10_1172_JCI127578 crossref_primary_10_1016_j_neuron_2020_10_008 crossref_primary_10_1096_fj_202402725RR crossref_primary_10_3390_ijms252413637 crossref_primary_10_3390_genes16030331 crossref_primary_10_1016_j_nbd_2022_105631 crossref_primary_10_1073_pnas_1609896113 crossref_primary_10_1002_pro_2597 crossref_primary_10_1186_s13024_022_00590_4 crossref_primary_10_1016_j_neuron_2017_11_014 crossref_primary_10_3389_fnagi_2021_735524 crossref_primary_10_3390_ijms25115754 crossref_primary_10_1172_JCI124853 crossref_primary_10_1016_j_jgg_2014_04_003 crossref_primary_10_1073_pnas_1707151114 crossref_primary_10_1186_s13578_019_0354_3 crossref_primary_10_1074_jbc_M114_600833 crossref_primary_10_1002_glia_22619 crossref_primary_10_1126_sciadv_abh2307 crossref_primary_10_1038_s41598_022_05862_z crossref_primary_10_3390_ijms26031130 crossref_primary_10_3233_JAD_240899 crossref_primary_10_1186_s40478_015_0250_y crossref_primary_10_1186_s40035_022_00315_z crossref_primary_10_3390_proteomes11040033 crossref_primary_10_1016_j_expneurol_2024_114702 crossref_primary_10_1186_alzrt187 crossref_primary_10_3233_JAD_230700 crossref_primary_10_1016_j_nbd_2021_105373 crossref_primary_10_1089_neur_2024_0048 crossref_primary_10_1186_s13024_016_0099_y crossref_primary_10_3389_fnagi_2023_1201982 crossref_primary_10_1186_s13024_017_0165_0 crossref_primary_10_1186_s13195_023_01170_4 crossref_primary_10_1038_s41598_018_37149_7 crossref_primary_10_1016_j_brainresbull_2025_111198 crossref_primary_10_3390_ijms21145149 crossref_primary_10_1016_j_bbapap_2015_04_028 crossref_primary_10_3389_fgene_2024_1417262 crossref_primary_10_1002_psp4_12876 crossref_primary_10_1016_j_neurobiolaging_2014_03_036 crossref_primary_10_1186_s13024_023_00620_9 crossref_primary_10_1016_j_yexcr_2018_05_025 crossref_primary_10_1124_molpharm_123_000670 crossref_primary_10_1093_jnen_nlab085 crossref_primary_10_1073_pnas_1801612115 crossref_primary_10_1016_j_jacc_2019_12_033 crossref_primary_10_1038_s43587_023_00491_1 crossref_primary_10_1038_nrneurol_2015_119 crossref_primary_10_2139_ssrn_4163140 crossref_primary_10_1016_j_neuron_2023_12_018 crossref_primary_10_1016_j_pharmr_2025_100053 crossref_primary_10_1016_j_pharmr_2025_100052 crossref_primary_10_1038_s41598_017_08604_8 crossref_primary_10_1021_acschemneuro_3c00830 crossref_primary_10_1038_s44321_024_00162_7 crossref_primary_10_1186_s13195_022_01108_2 crossref_primary_10_3390_ijms23115885 crossref_primary_10_15406_mojgg_2024_09_00319 crossref_primary_10_3389_fnins_2020_611393 crossref_primary_10_1016_j_neuron_2014_01_045 crossref_primary_10_1186_s40035_022_00290_5 crossref_primary_10_1080_17460441_2020_1793755 crossref_primary_10_1111_cns_14440 crossref_primary_10_1002_celc_201800985 crossref_primary_10_1016_j_cell_2019_09_001 crossref_primary_10_1002_ibra_12155 crossref_primary_10_3389_fnins_2021_633576 crossref_primary_10_3390_antiox10121890 crossref_primary_10_3390_ijms25042114 crossref_primary_10_1016_j_neuron_2019_01_056 crossref_primary_10_3389_fnagi_2024_1482947 crossref_primary_10_3233_JAD_161097 crossref_primary_10_1016_j_celrep_2014_08_065 crossref_primary_10_1016_j_arr_2021_101496 crossref_primary_10_1016_j_mcn_2018_03_015 crossref_primary_10_1093_discim_kyad015 crossref_primary_10_1007_s00018_024_05225_z crossref_primary_10_1007_s12035_024_04672_w crossref_primary_10_1016_j_apsb_2021_10_002 crossref_primary_10_1016_j_bbagen_2016_01_003 crossref_primary_10_1038_s41422_022_00759_y crossref_primary_10_1111_jnc_13443 crossref_primary_10_1016_j_exger_2014_02_004 crossref_primary_10_1038_srep04383 crossref_primary_10_1016_j_freeradbiomed_2020_10_007 crossref_primary_10_1074_jbc_RA117_001388 crossref_primary_10_3390_ph17040491 crossref_primary_10_1016_j_bcp_2024_116643 crossref_primary_10_1007_s12035_017_0757_2 crossref_primary_10_1016_j_jocn_2017_06_074 crossref_primary_10_1042_NS20220086 crossref_primary_10_1002_anbr_202100097 crossref_primary_10_1074_jbc_RA117_001278 crossref_primary_10_3390_ijms252212029 crossref_primary_10_1016_j_cmet_2014_01_003 crossref_primary_10_1007_s12035_023_03437_1 crossref_primary_10_1111_bph_14668 crossref_primary_10_1016_j_ymthe_2024_11_003 crossref_primary_10_1111_jnc_14554 |
Cites_doi | 10.1038/372092a0 10.1126/science.1074069 10.1038/ng1197-263 10.1074/jbc.M409324200 10.1002/1531-8249(200008)48:2<201::AID-ANA10>3.0.CO;2-X 10.1074/jbc.M111.288746 10.1212/WNL.49.3_Suppl_3.S7 10.1016/j.bbalip.2011.11.005 10.1172/JCI117407 10.1006/bbrc.1996.0940 10.1016/j.nbd.2004.11.005 10.1038/nm1058 10.1523/JNEUROSCI.3773-11.2011 10.1126/scitranslmed.3002369 10.1042/bj3060599 10.1038/nrn2620 10.1016/S0021-9258(17)31529-6 10.1021/bi992294a 10.1016/j.neuron.2009.06.026 10.1073/pnas.96.26.15233 10.1042/bj3480359 10.1042/bj20020207 10.1073/pnas.90.20.9649 10.1523/JNEUROSCI.5491-10.2011 10.1002/bip.1974.360130103 10.1074/jbc.M109.014464 10.1038/nm838 10.1016/S0022-2275(20)32449-4 10.1021/bi702097s 10.1126/scitranslmed.3002156 10.1016/S1474-4422(10)70325-2 10.1016/j.bbalip.2008.02.001 10.1146/annurev.genom.1.1.507 10.1371/journal.pone.0021880 10.1126/scitranslmed.3003748 10.1002/prot.22891 10.1007/978-1-60761-744-0_3 10.1016/j.neuron.2004.07.017 10.1038/ncb1819 10.1038/nrd3505 10.1126/science.8346443 10.1016/0896-6273(93)90070-8 10.1002/jnr.22615 10.1016/0006-8993(91)91092-F 10.1523/JNEUROSCI.3987-12.2012 10.1073/pnas.90.17.8098 10.1006/bbrc.1994.2775 10.1046/j.1471-4159.1997.68020721.x 10.1016/0014-5793(96)00206-2 10.1126/science.1072994 10.1523/JNEUROSCI.23-26-08844.2003 10.1038/nm1438 10.1073/pnas.90.5.1977 10.1074/jbc.M112.377549 10.1074/jbc.271.51.32916 10.1021/bi952852v 10.1172/JCI36663 10.1093/hmg/dds296 10.1038/sj.jcbfm.9600419 10.1016/S0197-0186(01)00049-3 10.1016/0304-3940(92)90444-C 10.1073/pnas.050004797 10.2174/138161208784705487 10.1073/pnas.1206446109 10.1002/ana.21559 10.1016/j.cell.2005.02.008 10.1016/0140-6736(93)91709-U 10.1523/JNEUROSCI.0033-12.2012 10.1007/BF03401614 10.1038/sj.embor.7400897 10.1073/pnas.0914984107 10.1073/pnas.151261398 10.1126/science.1197623 10.1097/00041433-200104000-00003 10.2174/156720506779025189 10.1038/nm1635 |
ContentType | Journal Article |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1220484110 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | ApoE/Aβ direct interaction and Aβ clearance |
EISSN | 1091-6490 |
EndPage | E1816 |
ExternalDocumentID | PMC3651443 23620513 10_1073_pnas_1220484110 110_19_E1807 US201600137429 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: AG027924 – fundername: NIA NIH HHS grantid: R37 AG013956 – fundername: NIA NIH HHS grantid: R01 AG035355 – fundername: NIA NIH HHS grantid: P01 AG003991 – fundername: NIA NIH HHS grantid: R01 AG046205 – fundername: NIA NIH HHS grantid: P01 AG030128 – fundername: NIA NIH HHS grantid: AG03991 – fundername: NIA NIH HHS grantid: AG056810 – fundername: NINDS NIH HHS grantid: NS074969 – fundername: NIA NIH HHS grantid: R01 AG013956 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC AAYXX ABXSQ ACHIC ADQXQ ADXHL AQVQM CITATION IPSME CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c475t-fd500484ed330812c00acf01d8ef12cc56ba4c70e08de228a8b7ecb2020d08463 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:08:59 EDT 2025 Fri Jul 11 11:06:24 EDT 2025 Fri Jul 11 16:30:52 EDT 2025 Mon Jul 21 06:02:47 EDT 2025 Tue Jul 01 03:39:42 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Wed Nov 11 00:30:35 EST 2020 Wed Dec 27 19:20:32 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | neurodegeneration cholesterol efflux |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c475t-fd500484ed330812c00acf01d8ef12cc56ba4c70e08de228a8b7ecb2020d08463 |
Notes | http://dx.doi.org/10.1073/pnas.1220484110 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved April 3, 2013 (received for review November 26, 2012) Author contributions: P.B.V., J.M.C., K.G., C.F., and D.M.H. designed research; P.B.V., J.M.C., K.G., Y.W., H.J., and A.S. performed research; G.B. contributed new reagents/analytic tools; P.B.V., J.M.C., K.G., Y.W., H.J., C.F., and D.M.H. analyzed data; and P.B.V. and D.M.H. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/110/19/E1807.full.pdf |
PMID | 23620513 |
PQID | 1349705455 |
PQPubID | 23479 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1220484110 fao_agris_US201600137429 proquest_miscellaneous_1349705455 pubmed_primary_23620513 pnas_primary_110_19_E1807 crossref_primary_10_1073_pnas_1220484110 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3651443 proquest_miscellaneous_1803124541 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-07 |
PublicationDateYYYYMMDD | 2013-05-07 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 10769131 - Biochemistry. 2000 Apr 25;39(16):4746-54 20967581 - Methods Mol Biol. 2011;670:33-44 18673201 - Curr Pharm Des. 2008;14(16):1601-5 2029618 - Brain Res. 1991 Feb 8;541(1):163-6 15485881 - J Biol Chem. 2004 Dec 31;279(53):55483-92 22492035 - J Neurosci. 2012 Apr 4;32(14):4803-11 17077814 - J Cereb Blood Flow Metab. 2007 May;27(5):909-18 8955133 - J Biol Chem. 1996 Dec 20;271(51):32916-22 12399581 - Science. 2002 Oct 25;298(5594):789-91 11264981 - Curr Opin Lipidol. 2001 Apr;12(2):105-12 8446617 - Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1977-81 8089103 - J Biol Chem. 1994 Sep 23;269(38):23403-6 7802634 - Biochem Biophys Res Commun. 1994 Dec 15;205(2):1072-8 20547867 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):12011-6 8103823 - Lancet. 1993 Sep 18;342(8873):710-1 10939571 - Ann Neurol. 2000 Aug;48(2):201-10 9003062 - J Neurochem. 1997 Feb;68(2):721-5 4818131 - Biopolymers. 1974 Jan;13(1):29-61 14523085 - J Neurosci. 2003 Oct 1;23(26):8844-53 21755005 - PLoS One. 2011;6(7):e21880 22821396 - Hum Mol Genet. 2012 Oct 15;21(20):4558-71 19679070 - Neuron. 2009 Aug 13;63(3):287-303 22159114 - J Neurosci. 2011 Dec 7;31(49):18007-12 15837562 - Neurobiol Dis. 2005 Jun-Jul;19(1-2):66-76 12130773 - Science. 2002 Jul 19;297(5580):353-6 9310506 - Neurology. 1997 Sep;49(3 Suppl 3):S7-10 18359298 - Biochim Biophys Acta. 2008 May;1781(5):232-8 11438712 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8850-5 8612800 - FEBS Lett. 1996 Mar 25;383(1-2):9-12 21715678 - Sci Transl Med. 2011 Jun 29;3(89):89ra57 19098903 - Nat Cell Biol. 2009 Feb;11(2):143-53 8726460 - Mol Med. 1996 Mar;2(2):175-80 8679539 - Biochemistry. 1996 Jun 4;35(22):7123-30 21471435 - Sci Transl Med. 2011 Apr 6;3(77):77sr1 21394760 - J Neurosci Res. 2011 Jun;89(6):815-21 11701639 - Annu Rev Genomics Hum Genet. 2000;1:507-37 21349439 - Lancet Neurol. 2011 Mar;10(3):241-52 22730380 - J Biol Chem. 2012 Aug 10;287(33):27876-84 9354781 - Nat Genet. 1997 Nov;17(3):263-4 8398148 - Neuron. 1993 Oct;11(4):575-80 19260027 - Ann Neurol. 2009 Feb;65(2):176-83 15294142 - Neuron. 2004 Aug 5;43(3):333-44 10611368 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15233-8 12612547 - Nat Med. 2003 Apr;9(4):453-7 19666463 - J Biol Chem. 2009 Oct 2;284(40):27273-80 21148344 - Science. 2010 Dec 24;330(6012):1774 8346443 - Science. 1993 Aug 13;261(5123):921-3 10694577 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2892-7 8687441 - Biochem Biophys Res Commun. 1996 Jun 25;223(3):592-7 10064733 - J Lipid Res. 1999 Mar;40(3):447-55 8040342 - J Clin Invest. 1994 Aug;94(2):860-9 7969426 - Nature. 1994 Nov 3;372(6501):92-4 22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111 17694066 - Nat Med. 2007 Sep;13(9):1029-31 19339974 - Nat Rev Neurosci. 2009 May;10(5):333-44 21069870 - Proteins. 2011 Feb;79(2):402-16 12015813 - Biochem J. 2002 Aug 15;366(Pt 1):273-9 8367470 - Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8098-102 16799555 - Nat Med. 2006 Jul;12(7):856-61 22927427 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15502-7 21852788 - Nat Rev Drug Discov. 2011 Sep;10(9):698-712 19033669 - J Clin Invest. 2008 Dec;118(12):4002-13 22138302 - Biochim Biophys Acta. 2012 Feb;1821(2):295-302 23152628 - J Neurosci. 2012 Nov 14;32(46):16458-65 15734686 - Cell. 2005 Feb 25;120(4):545-55 11578777 - Neurochem Int. 2001 Nov-Dec;39(5-6):415-25 17168641 - Curr Alzheimer Res. 2006 Dec;3(5):421-30 1625800 - Neurosci Lett. 1992 Feb 3;135(2):235-8 22383525 - J Biol Chem. 2012 Apr 20;287(17):13959-71 8415756 - Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9649-53 10816430 - Biochem J. 2000 Jun 1;348 Pt 2:359-65 7534068 - Biochem J. 1995 Mar 1;306 ( Pt 2):599-604 15195085 - Nat Med. 2004 Jul;10(7):719-26 21289173 - J Neurosci. 2011 Feb 2;31(5):1644-51 18407659 - Biochemistry. 2008 May 6;47(18):5225-34 17268505 - EMBO Rep. 2007 Feb;8(2):141-6 |
References_xml | – ident: e_1_3_3_14_2 doi: 10.1038/372092a0 – ident: e_1_3_3_2_2 doi: 10.1126/science.1074069 – ident: e_1_3_3_16_2 doi: 10.1038/ng1197-263 – ident: e_1_3_3_71_2 doi: 10.1074/jbc.M409324200 – ident: e_1_3_3_41_2 doi: 10.1002/1531-8249(200008)48:2<201::AID-ANA10>3.0.CO;2-X – ident: e_1_3_3_47_2 doi: 10.1074/jbc.M111.288746 – ident: e_1_3_3_1_2 doi: 10.1212/WNL.49.3_Suppl_3.S7 – ident: e_1_3_3_26_2 doi: 10.1016/j.bbalip.2011.11.005 – ident: e_1_3_3_30_2 doi: 10.1172/JCI117407 – ident: e_1_3_3_27_2 doi: 10.1006/bbrc.1996.0940 – ident: e_1_3_3_39_2 doi: 10.1016/j.nbd.2004.11.005 – ident: e_1_3_3_49_2 doi: 10.1038/nm1058 – ident: e_1_3_3_66_2 doi: 10.1523/JNEUROSCI.3773-11.2011 – ident: e_1_3_3_3_2 doi: 10.1126/scitranslmed.3002369 – ident: e_1_3_3_15_2 doi: 10.1042/bj3060599 – ident: e_1_3_3_72_2 doi: 10.1038/nrn2620 – ident: e_1_3_3_25_2 doi: 10.1016/S0021-9258(17)31529-6 – ident: e_1_3_3_69_2 doi: 10.1021/bi992294a – ident: e_1_3_3_13_2 doi: 10.1016/j.neuron.2009.06.026 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.96.26.15233 – ident: e_1_3_3_34_2 doi: 10.1042/bj3480359 – ident: e_1_3_3_31_2 doi: 10.1042/bj20020207 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.90.20.9649 – ident: e_1_3_3_50_2 doi: 10.1523/JNEUROSCI.5491-10.2011 – ident: e_1_3_3_46_2 doi: 10.1002/bip.1974.360130103 – ident: e_1_3_3_55_2 doi: 10.1074/jbc.M109.014464 – ident: e_1_3_3_48_2 doi: 10.1038/nm838 – ident: e_1_3_3_68_2 doi: 10.1016/S0022-2275(20)32449-4 – ident: e_1_3_3_45_2 doi: 10.1021/bi702097s – ident: e_1_3_3_21_2 doi: 10.1126/scitranslmed.3002156 – ident: e_1_3_3_12_2 doi: 10.1016/S1474-4422(10)70325-2 – ident: e_1_3_3_42_2 doi: 10.1016/j.bbalip.2008.02.001 – ident: e_1_3_3_8_2 doi: 10.1146/annurev.genom.1.1.507 – ident: e_1_3_3_54_2 doi: 10.1371/journal.pone.0021880 – ident: e_1_3_3_65_2 doi: 10.1126/scitranslmed.3003748 – ident: e_1_3_3_28_2 doi: 10.1002/prot.22891 – ident: e_1_3_3_44_2 doi: 10.1007/978-1-60761-744-0_3 – ident: e_1_3_3_73_2 doi: 10.1016/j.neuron.2004.07.017 – ident: e_1_3_3_74_2 doi: 10.1038/ncb1819 – ident: e_1_3_3_5_2 doi: 10.1038/nrd3505 – ident: e_1_3_3_9_2 doi: 10.1126/science.8346443 – ident: e_1_3_3_20_2 doi: 10.1016/0896-6273(93)90070-8 – ident: e_1_3_3_61_2 doi: 10.1002/jnr.22615 – ident: e_1_3_3_22_2 doi: 10.1016/0006-8993(91)91092-F – ident: e_1_3_3_75_2 doi: 10.1523/JNEUROSCI.3987-12.2012 – ident: e_1_3_3_24_2 doi: 10.1073/pnas.90.17.8098 – ident: e_1_3_3_35_2 doi: 10.1006/bbrc.1994.2775 – ident: e_1_3_3_33_2 doi: 10.1046/j.1471-4159.1997.68020721.x – ident: e_1_3_3_62_2 doi: 10.1016/0014-5793(96)00206-2 – ident: e_1_3_3_4_2 doi: 10.1126/science.1072994 – ident: e_1_3_3_57_2 doi: 10.1523/JNEUROSCI.23-26-08844.2003 – ident: e_1_3_3_59_2 doi: 10.1038/nm1438 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.90.5.1977 – ident: e_1_3_3_56_2 doi: 10.1074/jbc.M112.377549 – ident: e_1_3_3_60_2 doi: 10.1074/jbc.271.51.32916 – ident: e_1_3_3_32_2 doi: 10.1021/bi952852v – ident: e_1_3_3_64_2 doi: 10.1172/JCI36663 – ident: e_1_3_3_43_2 doi: 10.1093/hmg/dds296 – ident: e_1_3_3_63_2 doi: 10.1038/sj.jcbfm.9600419 – ident: e_1_3_3_40_2 doi: 10.1016/S0197-0186(01)00049-3 – ident: e_1_3_3_23_2 doi: 10.1016/0304-3940(92)90444-C – ident: e_1_3_3_18_2 doi: 10.1073/pnas.050004797 – ident: e_1_3_3_53_2 doi: 10.2174/138161208784705487 – ident: e_1_3_3_52_2 doi: 10.1073/pnas.1206446109 – ident: e_1_3_3_38_2 doi: 10.1002/ana.21559 – ident: e_1_3_3_7_2 doi: 10.1016/j.cell.2005.02.008 – ident: e_1_3_3_11_2 doi: 10.1016/0140-6736(93)91709-U – ident: e_1_3_3_67_2 doi: 10.1523/JNEUROSCI.0033-12.2012 – ident: e_1_3_3_29_2 doi: 10.1007/BF03401614 – ident: e_1_3_3_37_2 doi: 10.1038/sj.embor.7400897 – ident: e_1_3_3_70_2 doi: 10.1073/pnas.0914984107 – ident: e_1_3_3_76_2 doi: 10.1073/pnas.151261398 – ident: e_1_3_3_58_2 doi: 10.1126/science.1197623 – ident: e_1_3_3_36_2 doi: 10.1097/00041433-200104000-00003 – ident: e_1_3_3_6_2 doi: 10.2174/156720506779025189 – ident: e_1_3_3_51_2 doi: 10.1038/nm1635 – reference: 11701639 - Annu Rev Genomics Hum Genet. 2000;1:507-37 – reference: 17168641 - Curr Alzheimer Res. 2006 Dec;3(5):421-30 – reference: 15734686 - Cell. 2005 Feb 25;120(4):545-55 – reference: 8446617 - Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1977-81 – reference: 21394760 - J Neurosci Res. 2011 Jun;89(6):815-21 – reference: 8415756 - Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9649-53 – reference: 19033669 - J Clin Invest. 2008 Dec;118(12):4002-13 – reference: 10694577 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2892-7 – reference: 11264981 - Curr Opin Lipidol. 2001 Apr;12(2):105-12 – reference: 9354781 - Nat Genet. 1997 Nov;17(3):263-4 – reference: 11438712 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8850-5 – reference: 12015813 - Biochem J. 2002 Aug 15;366(Pt 1):273-9 – reference: 10611368 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15233-8 – reference: 15485881 - J Biol Chem. 2004 Dec 31;279(53):55483-92 – reference: 7802634 - Biochem Biophys Res Commun. 1994 Dec 15;205(2):1072-8 – reference: 19098903 - Nat Cell Biol. 2009 Feb;11(2):143-53 – reference: 8679539 - Biochemistry. 1996 Jun 4;35(22):7123-30 – reference: 10064733 - J Lipid Res. 1999 Mar;40(3):447-55 – reference: 10939571 - Ann Neurol. 2000 Aug;48(2):201-10 – reference: 8612800 - FEBS Lett. 1996 Mar 25;383(1-2):9-12 – reference: 8726460 - Mol Med. 1996 Mar;2(2):175-80 – reference: 22138302 - Biochim Biophys Acta. 2012 Feb;1821(2):295-302 – reference: 8955133 - J Biol Chem. 1996 Dec 20;271(51):32916-22 – reference: 22159114 - J Neurosci. 2011 Dec 7;31(49):18007-12 – reference: 17268505 - EMBO Rep. 2007 Feb;8(2):141-6 – reference: 18359298 - Biochim Biophys Acta. 2008 May;1781(5):232-8 – reference: 9310506 - Neurology. 1997 Sep;49(3 Suppl 3):S7-10 – reference: 7969426 - Nature. 1994 Nov 3;372(6501):92-4 – reference: 19260027 - Ann Neurol. 2009 Feb;65(2):176-83 – reference: 21852788 - Nat Rev Drug Discov. 2011 Sep;10(9):698-712 – reference: 15294142 - Neuron. 2004 Aug 5;43(3):333-44 – reference: 20547867 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):12011-6 – reference: 2029618 - Brain Res. 1991 Feb 8;541(1):163-6 – reference: 8040342 - J Clin Invest. 1994 Aug;94(2):860-9 – reference: 19666463 - J Biol Chem. 2009 Oct 2;284(40):27273-80 – reference: 22492035 - J Neurosci. 2012 Apr 4;32(14):4803-11 – reference: 21349439 - Lancet Neurol. 2011 Mar;10(3):241-52 – reference: 1625800 - Neurosci Lett. 1992 Feb 3;135(2):235-8 – reference: 8398148 - Neuron. 1993 Oct;11(4):575-80 – reference: 21069870 - Proteins. 2011 Feb;79(2):402-16 – reference: 9003062 - J Neurochem. 1997 Feb;68(2):721-5 – reference: 10816430 - Biochem J. 2000 Jun 1;348 Pt 2:359-65 – reference: 12612547 - Nat Med. 2003 Apr;9(4):453-7 – reference: 17077814 - J Cereb Blood Flow Metab. 2007 May;27(5):909-18 – reference: 8089103 - J Biol Chem. 1994 Sep 23;269(38):23403-6 – reference: 8103823 - Lancet. 1993 Sep 18;342(8873):710-1 – reference: 14523085 - J Neurosci. 2003 Oct 1;23(26):8844-53 – reference: 12399581 - Science. 2002 Oct 25;298(5594):789-91 – reference: 22821396 - Hum Mol Genet. 2012 Oct 15;21(20):4558-71 – reference: 18407659 - Biochemistry. 2008 May 6;47(18):5225-34 – reference: 19679070 - Neuron. 2009 Aug 13;63(3):287-303 – reference: 20967581 - Methods Mol Biol. 2011;670:33-44 – reference: 22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111 – reference: 8687441 - Biochem Biophys Res Commun. 1996 Jun 25;223(3):592-7 – reference: 12130773 - Science. 2002 Jul 19;297(5580):353-6 – reference: 21755005 - PLoS One. 2011;6(7):e21880 – reference: 22730380 - J Biol Chem. 2012 Aug 10;287(33):27876-84 – reference: 21148344 - Science. 2010 Dec 24;330(6012):1774 – reference: 7534068 - Biochem J. 1995 Mar 1;306 ( Pt 2):599-604 – reference: 22383525 - J Biol Chem. 2012 Apr 20;287(17):13959-71 – reference: 10769131 - Biochemistry. 2000 Apr 25;39(16):4746-54 – reference: 17694066 - Nat Med. 2007 Sep;13(9):1029-31 – reference: 18673201 - Curr Pharm Des. 2008;14(16):1601-5 – reference: 8346443 - Science. 1993 Aug 13;261(5123):921-3 – reference: 23152628 - J Neurosci. 2012 Nov 14;32(46):16458-65 – reference: 8367470 - Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8098-102 – reference: 21715678 - Sci Transl Med. 2011 Jun 29;3(89):89ra57 – reference: 22927427 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15502-7 – reference: 15837562 - Neurobiol Dis. 2005 Jun-Jul;19(1-2):66-76 – reference: 16799555 - Nat Med. 2006 Jul;12(7):856-61 – reference: 11578777 - Neurochem Int. 2001 Nov-Dec;39(5-6):415-25 – reference: 19339974 - Nat Rev Neurosci. 2009 May;10(5):333-44 – reference: 15195085 - Nat Med. 2004 Jul;10(7):719-26 – reference: 4818131 - Biopolymers. 1974 Jan;13(1):29-61 – reference: 21471435 - Sci Transl Med. 2011 Apr 6;3(77):77sr1 – reference: 21289173 - J Neurosci. 2011 Feb 2;31(5):1644-51 |
SSID | ssj0009580 |
Score | 2.5821178 |
Snippet | Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ)... It has been proposed that differential physical interactions of apolipoprotein E (apoE) isoforms with soluble amyloid-β (Aβ) in brain fluids influence the... Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer's disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ)... |
SourceID | pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E1807 |
SubjectTerms | alleles Alzheimer disease Alzheimer Disease - diagnosis Alzheimer Disease - genetics Amyloid beta-Peptides - metabolism analytical methods Animals apolipoprotein E Apolipoproteins E - metabolism astrocytes Biological Sciences brain Brain - pathology Cell Line cerebrospinal fluid Cholesterol - metabolism extracellular fluids Gene Expression Regulation Humans low density lipoprotein metabolism Mice Mice, Knockout microdialysis Neurodegenerative Diseases - metabolism pathogenesis PNAS Plus Protein Binding protein isoforms Protein Isoforms - metabolism receptors risk Time Factors transporters |
Title | ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions |
URI | http://www.pnas.org/content/110/19/E1807.abstract https://www.ncbi.nlm.nih.gov/pubmed/23620513 https://www.proquest.com/docview/1349705455 https://www.proquest.com/docview/1803124541 https://pubmed.ncbi.nlm.nih.gov/PMC3651443 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLbS7mUv07pb2U2etEqpECkYE8hjGmWLJjWqtGbrGzLGaaItFzXJy35Wf0h_y37CzsHGkKyrtr0gQowxnI9zMcffIeQ9Gys5zpj0RJj7Hg-yyOv4eeYlArz1dq5YLHBq4GzYHoz4p8vostH4Wcta2qyzlvxx57qS_5EqHAO54irZf5Cs7RQOwD7IF7YgYdj-lYy7y0Uf06l0mZGVK2YQfk9z76jXPzpl6Dx29S7G_hILRBQLBHL8vL5WLtKKzJArALopeBX0aaKSWJFjjpK0KhLC53xaTfIZt_bcmsFVmXQwLGcZu9WaFaNIVq7nng-rCsh6Usc9bblf1PXVRFXfi_T3Cfes5fbECte7iPnCmgi4lwlop49wV1OrvKZzLJ70VRiDbOYzAp09GFfpHvXR2XHVVTgDs8r1wuuW0lobnB6vzXXdUavWTbqswW-npqX7QaKv-Jv9AIWHRY_nYtUKGHIac9NNDU3LWQEnBqYfNFpYGdIyeWDHvtqsxwADrk5aXH2PPGAQ2BSpqIM6TXSiF02ZmyzJqOLwZGdQyGJtRrDlUu2NxQKJeqH1XUHTbu5vzZm6eEwemSiIdjWkD0hDzZ-Qg1IMtGnI0I-fkm-IcVphnJYYv72hze7tzTG1uKYG19TgmiKuT6ANrSEauqJbiKYVop-R0Yf-RW_gmQIhnuRxtPbGeYQWiKs8DMG1ZdL3hRz7QZ6oMfySUTsTXMa-8hPQOiwRSRYrmTEIkXIfHO_wOdkHVKpDQiX4LILFUige8ERFScBjPxcsiyImO1I6pFU-41Qa9nws4vI9LbI44jDFJ55W8nFI056w1MQxf256CEJLxRWY9XT0mSHpIzKBgqvoEKdobHuoQcgh70rxpmATZPESqsUGug55J4ZYLIruaZOAOWc84oFDXmhI2KuUwHJIvAUW2wA56bf_mU8nBTd92IYIjIcv7xn3K_Kweu9fk_319Ua9Ac9-nb0tXoZfiob2pw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ApoE+influences+amyloid-%CE%B2+%28A%CE%B2%29+clearance+despite+minimal+apoE%2FA%CE%B2+association+in+physiological+conditions&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Philip+B.+Verghese&rft.au=Joseph+M.+Castellano&rft.au=Kanchan+Garai&rft.au=Yinong+Wang&rft.date=2013-05-07&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=19&rft.spage=E1807&rft_id=info:doi/10.1073%2Fpnas.1220484110&rft_id=info%3Apmid%2F23620513&rft.externalDBID=n%2Fa&rft.externalDocID=110_19_E1807 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F19.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F19.cover.gif |