ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions

Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence th...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 19; pp. E1807 - E1816
Main Authors Verghese, Philip B., Castellano, Joseph M., Garai, Kanchan, Wang, Yinong, Jiang, Hong, Shah, Aarti, Bu, Guojun, Frieden, Carl, Holtzman, David M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.05.2013
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)–dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE’s regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis.
AbstractList Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)–dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE’s regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis.
It has been proposed that differential physical interactions of apolipoprotein E (apoE) isoforms with soluble amyloid-β (Aβ) in brain fluids influence the metabolism of Aβ, providing a major mechanism to account for how APOE influences Alzheimer’s disease risk. The current study challenges this proposal and clearly shows that lipoproteins containing apoE isoforms are unlikely to play a significant role in Aβ metabolism by binding directly to Aβ in physiological fluids such as cerebrospinal fluid or interstitial fluid. Our in vitro and in vivo results suggest that apoE isoforms influence Aβ metabolism by competing for the same clearance pathways within the brain. Apolipoprotein E gene ( APOE ) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)–dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE’s regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis.
Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer's disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE's regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis.Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer's disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE's regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis.
Author Yinong Wang
Joseph M. Castellano
Kanchan Garai
Aarti Shah
David M. Holtzman
Philip B. Verghese
Hong Jiang
Guojun Bu
Carl Frieden
Author_xml – sequence: 1
  givenname: Philip B.
  surname: Verghese
  fullname: Verghese, Philip B.
  organization: Departments of aNeurology,, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and
– sequence: 2
  givenname: Joseph M.
  surname: Castellano
  fullname: Castellano, Joseph M.
  organization: Departments of aNeurology,, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and
– sequence: 3
  givenname: Kanchan
  surname: Garai
  fullname: Garai, Kanchan
  organization: Biochemistry and Molecular Biophysics, and, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and
– sequence: 4
  givenname: Yinong
  surname: Wang
  fullname: Wang, Yinong
  organization: Biomedical Engineering,, Hope Center for Neurological Disorders, and
– sequence: 5
  givenname: Hong
  surname: Jiang
  fullname: Jiang, Hong
  organization: Departments of aNeurology,, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and
– sequence: 6
  givenname: Aarti
  surname: Shah
  fullname: Shah, Aarti
  organization: Departments of aNeurology,, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and
– sequence: 7
  givenname: Guojun
  surname: Bu
  fullname: Bu, Guojun
  organization: Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
– sequence: 8
  givenname: Carl
  surname: Frieden
  fullname: Frieden, Carl
  organization: Biochemistry and Molecular Biophysics, and, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and
– sequence: 9
  givenname: David M.
  surname: Holtzman
  fullname: Holtzman, David M.
  organization: Departments of aNeurology,, Hope Center for Neurological Disorders, and, The Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110; and
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23620513$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAYxC1URLeFMzfwsRzS_fwvcS5Iq2opSJU4lJ4tr-NsDY4d4izSvlYfpM-E0122hQM9Rdb8ZjKf5gQdhRgsQm8JnBOo2LwPOp0TSoFLTgi8QDMCNSlKXsMRmgHQqpCc8mN0ktJ3AKiFhFfomLKSgiBshn4s-rjELrR-Y4OxCetu66Nrivs7fLa4v_uAjbd60FnDjU29Gy3uXHCd9lhn6zwzWKcUjdOjiyFH4f52m1z0ce1MpkwMjZuk9Bq9bLVP9s3-e4puPi2_XXwurr5efrlYXBWGV2Is2kbAdI9tGANJqAHQpgXSSNvmlxHlSnNTgQXZWEqllqvKmhUFCg1IXrJT9HGX229WnW2MDeOgveqH3HrYqqid-lsJ7lat4y_FSkE4ZzngbB8wxJ8bm0bVuWSs9zrYuEmKSGCEcsHJ8yjjdQWCC5HRd09rHfr8GSMD8x1ghpjSYNsDQkBNc6tpbvU4d3aIfxzGjQ875Luc_48P76tMwuEvE16rZT6vysj7HdLqqPR6cEndXFMgJQBhFac1-w3crMWf
CitedBy_id crossref_primary_10_1007_s12031_016_0839_z
crossref_primary_10_2217_clp_14_64
crossref_primary_10_1002_1873_3468_14858
crossref_primary_10_1002_mds_27196
crossref_primary_10_3390_ijms21124371
crossref_primary_10_1517_13543776_2014_880692
crossref_primary_10_1016_j_neurobiolaging_2019_02_017
crossref_primary_10_1042_BCJ20180068
crossref_primary_10_1007_s00702_020_02152_8
crossref_primary_10_1111_tra_12451
crossref_primary_10_3390_ijms23169356
crossref_primary_10_7554_eLife_54822
crossref_primary_10_3390_app13020853
crossref_primary_10_1002_pro_3396
crossref_primary_10_1038_ncomms9876
crossref_primary_10_3233_JAD_221042
crossref_primary_10_3109_13506129_2013_879643
crossref_primary_10_1016_j_ebiom_2019_07_014
crossref_primary_10_1186_s12916_019_1299_4
crossref_primary_10_1016_j_cell_2016_12_044
crossref_primary_10_1016_S1474_4422_20_30412_9
crossref_primary_10_1186_s13024_015_0002_2
crossref_primary_10_1038_srep13842
crossref_primary_10_3233_JAD_190464
crossref_primary_10_3389_fpsyt_2024_1435394
crossref_primary_10_1186_s13024_016_0138_8
crossref_primary_10_1002_1873_3468_13428
crossref_primary_10_1371_journal_pone_0193867
crossref_primary_10_3390_ijms22189689
crossref_primary_10_1523_JNEUROSCI_1054_16_2016
crossref_primary_10_37376_ljst_v14i2_7205
crossref_primary_10_1016_j_neuint_2021_105073
crossref_primary_10_1007_s00395_020_00829_5
crossref_primary_10_1373_jalm_2019_030023
crossref_primary_10_3390_ijms17030338
crossref_primary_10_1016_j_nbd_2014_08_025
crossref_primary_10_1038_s41593_024_01757_6
crossref_primary_10_1016_j_bbadis_2015_08_025
crossref_primary_10_1038_s41467_021_23762_0
crossref_primary_10_1080_15548627_2016_1159375
crossref_primary_10_1016_j_nbd_2016_04_005
crossref_primary_10_1089_neu_2018_6334
crossref_primary_10_3390_antiox11112116
crossref_primary_10_1523_JNEUROSCI_2521_21_2022
crossref_primary_10_1016_j_biopsych_2017_03_003
crossref_primary_10_56082_annalsarscibio_2020_1_65
crossref_primary_10_1016_j_jns_2022_120435
crossref_primary_10_1016_j_biopsych_2014_05_006
crossref_primary_10_1007_s12035_020_01873_x
crossref_primary_10_1371_journal_pone_0089970
crossref_primary_10_1002_advs_202303402
crossref_primary_10_3389_fnins_2017_00119
crossref_primary_10_1111_febs_16344
crossref_primary_10_1194_jlr_R075796
crossref_primary_10_3389_fnagi_2021_765252
crossref_primary_10_1007_s40263_016_0361_4
crossref_primary_10_3233_JAD_142184
crossref_primary_10_1007_s12035_015_9674_4
crossref_primary_10_1186_s13195_023_01209_6
crossref_primary_10_3233_JAD_221016
crossref_primary_10_1016_j_bbadis_2023_166729
crossref_primary_10_1016_j_ajpath_2019_04_010
crossref_primary_10_1016_j_arr_2020_101126
crossref_primary_10_1194_jlr_R075481
crossref_primary_10_3390_ijms21061989
crossref_primary_10_1038_s41467_024_49028_z
crossref_primary_10_1194_jlr_R076331
crossref_primary_10_1021_acschembio_6b00195
crossref_primary_10_3390_cells10030540
crossref_primary_10_1016_j_neurobiolaging_2020_12_011
crossref_primary_10_1074_jbc_M115_679043
crossref_primary_10_1111_jnc_12637
crossref_primary_10_1016_j_neurobiolaging_2019_01_001
crossref_primary_10_1089_rej_2014_1605
crossref_primary_10_1016_j_neulet_2015_03_032
crossref_primary_10_1371_journal_pone_0188191
crossref_primary_10_1016_j_tem_2013_10_003
crossref_primary_10_1038_s41598_023_33677_z
crossref_primary_10_1152_ajpheart_00592_2023
crossref_primary_10_1007_s00702_023_02723_5
crossref_primary_10_1016_j_pneurobio_2017_08_001
crossref_primary_10_1080_14737175_2019_1621750
crossref_primary_10_3390_biom12040499
crossref_primary_10_2217_nmt_14_43
crossref_primary_10_1001_jamaneurol_2018_0821
crossref_primary_10_3390_ijerph16111995
crossref_primary_10_3390_ijms252212311
crossref_primary_10_3390_toxics2020327
crossref_primary_10_1002_pro_2379
crossref_primary_10_1016_j_nicl_2024_103660
crossref_primary_10_1016_j_ejphar_2021_173873
crossref_primary_10_1016_j_neuron_2014_08_005
crossref_primary_10_1242_jcs_258687
crossref_primary_10_1007_s00018_023_05026_w
crossref_primary_10_1177_1533317517707288
crossref_primary_10_3389_fnagi_2021_727590
crossref_primary_10_1002_ctd2_287
crossref_primary_10_1186_s13195_021_00778_8
crossref_primary_10_1038_s41598_019_40438_4
crossref_primary_10_2174_1567205018666211105140732
crossref_primary_10_1074_jbc_RA118_002025
crossref_primary_10_1186_s13024_018_0298_9
crossref_primary_10_3389_fnins_2015_00345
crossref_primary_10_1016_j_plefa_2014_10_003
crossref_primary_10_3389_fnmol_2017_00232
crossref_primary_10_1074_jbc_M113_526095
crossref_primary_10_1007_s00018_016_2295_x
crossref_primary_10_1016_j_nbd_2020_104788
crossref_primary_10_1073_pnas_2112095118
crossref_primary_10_1242_bio_058990
crossref_primary_10_1016_j_exger_2017_10_020
crossref_primary_10_3390_jcm10143009
crossref_primary_10_1016_j_nbd_2020_104784
crossref_primary_10_1021_acschemneuro_1c00209
crossref_primary_10_1038_s41582_019_0281_2
crossref_primary_10_1093_gerona_glab169
crossref_primary_10_1002_med_21947
crossref_primary_10_1016_j_cell_2015_12_056
crossref_primary_10_1021_acschemneuro_4c00048
crossref_primary_10_1016_j_addr_2020_04_013
crossref_primary_10_1088_1742_6596_1168_3_032120
crossref_primary_10_1136_jnnp_2016_314697
crossref_primary_10_3389_fncel_2022_875138
crossref_primary_10_1126_scitranslmed_aad1904
crossref_primary_10_2174_1567205017666200528162046
crossref_primary_10_1007_s11064_018_2629_1
crossref_primary_10_1002_bies_201700062
crossref_primary_10_1089_hum_2024_112
crossref_primary_10_3390_ijms232012092
crossref_primary_10_1016_j_dadm_2018_10_004
crossref_primary_10_3389_fnmol_2017_00319
crossref_primary_10_1016_j_mcn_2015_02_016
crossref_primary_10_1002_glia_24469
crossref_primary_10_1007_s12035_023_03541_2
crossref_primary_10_1016_j_neurobiolaging_2017_03_002
crossref_primary_10_3389_fphys_2021_700847
crossref_primary_10_1016_j_nbd_2014_05_007
crossref_primary_10_1523_JNEUROSCI_3788_13_2014
crossref_primary_10_1016_j_neuron_2014_05_041
crossref_primary_10_1111_jnc_15030
crossref_primary_10_1242_dmm_037218
crossref_primary_10_1146_annurev_cellbio_100617_062636
crossref_primary_10_1080_1028415X_2020_1831262
crossref_primary_10_3389_fnagi_2023_1096206
crossref_primary_10_1038_s41582_019_0228_7
crossref_primary_10_3389_fnagi_2014_00093
crossref_primary_10_1007_s00018_023_04784_x
crossref_primary_10_3390_ijms251910797
crossref_primary_10_1016_j_arr_2020_101212
crossref_primary_10_1186_s13024_022_00574_4
crossref_primary_10_1186_s12974_022_02565_0
crossref_primary_10_3389_fnins_2025_1515374
crossref_primary_10_1016_j_parkreldis_2023_105884
crossref_primary_10_1093_cvr_cvu148
crossref_primary_10_1523_JNEUROSCI_3442_16_2017
crossref_primary_10_3389_fnagi_2015_00199
crossref_primary_10_1098_rstb_2022_0378
crossref_primary_10_1038_nn_4018
crossref_primary_10_1038_s41580_023_00647_2
crossref_primary_10_3390_ijms140714908
crossref_primary_10_1016_j_jconrel_2019_01_008
crossref_primary_10_1186_s13024_022_00566_4
crossref_primary_10_1186_s13024_020_00413_4
crossref_primary_10_1016_j_nbd_2015_08_007
crossref_primary_10_1038_ncomms15137
crossref_primary_10_3390_ijms241814177
crossref_primary_10_3390_ijms222111883
crossref_primary_10_1021_acs_analchem_0c03542
crossref_primary_10_1186_s13195_023_01340_4
crossref_primary_10_1134_S000629791513012X
crossref_primary_10_1016_j_neubiorev_2019_02_014
crossref_primary_10_2174_0929867329666220620162018
crossref_primary_10_3389_fnagi_2016_00160
crossref_primary_10_3389_fnmol_2021_620090
crossref_primary_10_1021_acs_jproteome_2c00143
crossref_primary_10_1097_NEN_0000000000000207
crossref_primary_10_1002_hbm_22740
crossref_primary_10_1073_pnas_1707544114
crossref_primary_10_1016_j_jprot_2014_07_028
crossref_primary_10_1016_j_pneurobio_2020_101904
crossref_primary_10_1001_jamaneurol_2018_3139
crossref_primary_10_1007_s00401_014_1266_2
crossref_primary_10_1038_s41380_021_01076_3
crossref_primary_10_1016_S1474_4422_16_00065_X
crossref_primary_10_1177_0271678X20968032
crossref_primary_10_1186_s40035_024_00434_9
crossref_primary_10_1016_j_mcp_2016_09_001
crossref_primary_10_1016_j_nbd_2014_07_015
crossref_primary_10_3389_fnsyn_2023_1129036
crossref_primary_10_1016_j_brainres_2019_05_031
crossref_primary_10_1038_s41435_020_00113_5
crossref_primary_10_1007_s10571_016_0357_0
crossref_primary_10_1038_srep35514
crossref_primary_10_1038_nrneurol_2013_90
crossref_primary_10_1016_j_brainres_2016_09_022
crossref_primary_10_1007_s00018_018_2825_9
crossref_primary_10_1371_journal_pone_0139574
crossref_primary_10_1002_jnr_24922
crossref_primary_10_1016_j_nbd_2017_03_014
crossref_primary_10_1038_nature20412
crossref_primary_10_3389_fnagi_2020_00150
crossref_primary_10_3233_JAD_240042
crossref_primary_10_1016_j_jmb_2019_12_005
crossref_primary_10_1177_1177271920964108
crossref_primary_10_1007_s13365_014_0263_5
crossref_primary_10_1038_s41386_020_00840_3
crossref_primary_10_1093_procel_pwae026
crossref_primary_10_1007_s00018_017_2463_7
crossref_primary_10_1074_jbc_M116_721779
crossref_primary_10_3390_ijms24087258
crossref_primary_10_3390_diseases12060110
crossref_primary_10_1523_JNEUROSCI_1135_17_2017
crossref_primary_10_1016_j_neuroscience_2016_12_017
crossref_primary_10_1038_mp_2014_123
crossref_primary_10_1002_alz_12173
crossref_primary_10_1016_j_neurobiolaging_2017_02_017
crossref_primary_10_1038_s41419_017_0236_8
crossref_primary_10_3233_JAD_170062
crossref_primary_10_3233_JAD_150797
crossref_primary_10_1186_s40478_014_0075_0
crossref_primary_10_1002_med_21440
crossref_primary_10_1016_j_pneurobio_2018_05_001
crossref_primary_10_1007_s12031_014_0465_6
crossref_primary_10_1111_febs_14988
crossref_primary_10_15252_embr_201540614
crossref_primary_10_3389_fnagi_2022_919712
crossref_primary_10_1007_s12551_017_0271_9
crossref_primary_10_3389_fnagi_2019_00120
crossref_primary_10_1186_s13195_017_0313_3
crossref_primary_10_1016_j_physbeh_2017_09_021
crossref_primary_10_26508_lsa_202201542
crossref_primary_10_1194_jlr_M049940
crossref_primary_10_1016_j_stemcr_2021_11_007
crossref_primary_10_1152_ajpendo_00429_2015
crossref_primary_10_3389_fnagi_2019_00014
crossref_primary_10_1007_s10534_018_0134_2
crossref_primary_10_1002_wnan_1696
crossref_primary_10_1021_acs_jproteome_9b00136
crossref_primary_10_1016_j_jbc_2022_102062
crossref_primary_10_1016_j_nbd_2022_105824
crossref_primary_10_3389_fnagi_2021_658605
crossref_primary_10_1016_j_bioelechem_2019_107447
crossref_primary_10_1016_j_pneurobio_2016_01_001
crossref_primary_10_3390_ijms22083869
crossref_primary_10_1038_s41598_024_59013_7
crossref_primary_10_3233_JAD_220643
crossref_primary_10_1155_2020_5086250
crossref_primary_10_1007_s00401_013_1190_x
crossref_primary_10_1042_NS20180203
crossref_primary_10_1073_pnas_1516779112
crossref_primary_10_1073_pnas_1314145110
crossref_primary_10_1186_1750_1326_8_34
crossref_primary_10_1146_annurev_neuro_071013_014300
crossref_primary_10_3233_ADR_220075
crossref_primary_10_3233_JAD_179909
crossref_primary_10_3233_JAD_160169
crossref_primary_10_3233_JAD_161259
crossref_primary_10_1097_MCO_0000000000000069
crossref_primary_10_1007_s12017_014_8318_6
crossref_primary_10_15252_embr_202256467
crossref_primary_10_1016_j_neuron_2016_06_015
crossref_primary_10_1038_s41380_024_02691_6
crossref_primary_10_1155_2017_1892612
crossref_primary_10_1021_bi5008172
crossref_primary_10_3233_JAD_230658
crossref_primary_10_1007_s00109_016_1427_y
crossref_primary_10_3389_fnins_2021_666958
crossref_primary_10_1186_s13195_016_0231_9
crossref_primary_10_3233_ADR_210027
crossref_primary_10_3389_fncel_2023_1264402
crossref_primary_10_1038_srep13489
crossref_primary_10_1186_s12979_018_0142_7
crossref_primary_10_3389_fphar_2014_00097
crossref_primary_10_1016_j_immuni_2022_10_016
crossref_primary_10_1111_nan_12476
crossref_primary_10_3389_fnins_2023_1217451
crossref_primary_10_1007_s13365_019_00761_y
crossref_primary_10_1016_j_bbalip_2021_158980
crossref_primary_10_1016_j_jalz_2018_04_008
crossref_primary_10_1016_j_neurobiolaging_2015_07_015
crossref_primary_10_3389_fncel_2020_544612
crossref_primary_10_1093_gerona_glaa054
crossref_primary_10_12677_SA_2023_126174
crossref_primary_10_1002_alz_14376
crossref_primary_10_1016_j_pneurobio_2025_102744
crossref_primary_10_1080_14728222_2017_1267142
crossref_primary_10_1016_j_bbapap_2014_08_016
crossref_primary_10_1007_s12035_017_0547_x
crossref_primary_10_3171_2018_1_JNS172938
crossref_primary_10_1186_1750_1326_9_2
crossref_primary_10_3390_antiox9121224
crossref_primary_10_1016_j_bios_2015_05_017
crossref_primary_10_1002_path_4468
crossref_primary_10_1515_revneuro_2017_0063
crossref_primary_10_1038_s41380_021_01351_3
crossref_primary_10_31083_j_fbl2810258
crossref_primary_10_1007_s12035_018_1396_y
crossref_primary_10_1172_JCI127578
crossref_primary_10_1016_j_neuron_2020_10_008
crossref_primary_10_1096_fj_202402725RR
crossref_primary_10_3390_ijms252413637
crossref_primary_10_3390_genes16030331
crossref_primary_10_1016_j_nbd_2022_105631
crossref_primary_10_1073_pnas_1609896113
crossref_primary_10_1002_pro_2597
crossref_primary_10_1186_s13024_022_00590_4
crossref_primary_10_1016_j_neuron_2017_11_014
crossref_primary_10_3389_fnagi_2021_735524
crossref_primary_10_3390_ijms25115754
crossref_primary_10_1172_JCI124853
crossref_primary_10_1016_j_jgg_2014_04_003
crossref_primary_10_1073_pnas_1707151114
crossref_primary_10_1186_s13578_019_0354_3
crossref_primary_10_1074_jbc_M114_600833
crossref_primary_10_1002_glia_22619
crossref_primary_10_1126_sciadv_abh2307
crossref_primary_10_1038_s41598_022_05862_z
crossref_primary_10_3390_ijms26031130
crossref_primary_10_3233_JAD_240899
crossref_primary_10_1186_s40478_015_0250_y
crossref_primary_10_1186_s40035_022_00315_z
crossref_primary_10_3390_proteomes11040033
crossref_primary_10_1016_j_expneurol_2024_114702
crossref_primary_10_1186_alzrt187
crossref_primary_10_3233_JAD_230700
crossref_primary_10_1016_j_nbd_2021_105373
crossref_primary_10_1089_neur_2024_0048
crossref_primary_10_1186_s13024_016_0099_y
crossref_primary_10_3389_fnagi_2023_1201982
crossref_primary_10_1186_s13024_017_0165_0
crossref_primary_10_1186_s13195_023_01170_4
crossref_primary_10_1038_s41598_018_37149_7
crossref_primary_10_1016_j_brainresbull_2025_111198
crossref_primary_10_3390_ijms21145149
crossref_primary_10_1016_j_bbapap_2015_04_028
crossref_primary_10_3389_fgene_2024_1417262
crossref_primary_10_1002_psp4_12876
crossref_primary_10_1016_j_neurobiolaging_2014_03_036
crossref_primary_10_1186_s13024_023_00620_9
crossref_primary_10_1016_j_yexcr_2018_05_025
crossref_primary_10_1124_molpharm_123_000670
crossref_primary_10_1093_jnen_nlab085
crossref_primary_10_1073_pnas_1801612115
crossref_primary_10_1016_j_jacc_2019_12_033
crossref_primary_10_1038_s43587_023_00491_1
crossref_primary_10_1038_nrneurol_2015_119
crossref_primary_10_2139_ssrn_4163140
crossref_primary_10_1016_j_neuron_2023_12_018
crossref_primary_10_1016_j_pharmr_2025_100053
crossref_primary_10_1016_j_pharmr_2025_100052
crossref_primary_10_1038_s41598_017_08604_8
crossref_primary_10_1021_acschemneuro_3c00830
crossref_primary_10_1038_s44321_024_00162_7
crossref_primary_10_1186_s13195_022_01108_2
crossref_primary_10_3390_ijms23115885
crossref_primary_10_15406_mojgg_2024_09_00319
crossref_primary_10_3389_fnins_2020_611393
crossref_primary_10_1016_j_neuron_2014_01_045
crossref_primary_10_1186_s40035_022_00290_5
crossref_primary_10_1080_17460441_2020_1793755
crossref_primary_10_1111_cns_14440
crossref_primary_10_1002_celc_201800985
crossref_primary_10_1016_j_cell_2019_09_001
crossref_primary_10_1002_ibra_12155
crossref_primary_10_3389_fnins_2021_633576
crossref_primary_10_3390_antiox10121890
crossref_primary_10_3390_ijms25042114
crossref_primary_10_1016_j_neuron_2019_01_056
crossref_primary_10_3389_fnagi_2024_1482947
crossref_primary_10_3233_JAD_161097
crossref_primary_10_1016_j_celrep_2014_08_065
crossref_primary_10_1016_j_arr_2021_101496
crossref_primary_10_1016_j_mcn_2018_03_015
crossref_primary_10_1093_discim_kyad015
crossref_primary_10_1007_s00018_024_05225_z
crossref_primary_10_1007_s12035_024_04672_w
crossref_primary_10_1016_j_apsb_2021_10_002
crossref_primary_10_1016_j_bbagen_2016_01_003
crossref_primary_10_1038_s41422_022_00759_y
crossref_primary_10_1111_jnc_13443
crossref_primary_10_1016_j_exger_2014_02_004
crossref_primary_10_1038_srep04383
crossref_primary_10_1016_j_freeradbiomed_2020_10_007
crossref_primary_10_1074_jbc_RA117_001388
crossref_primary_10_3390_ph17040491
crossref_primary_10_1016_j_bcp_2024_116643
crossref_primary_10_1007_s12035_017_0757_2
crossref_primary_10_1016_j_jocn_2017_06_074
crossref_primary_10_1042_NS20220086
crossref_primary_10_1002_anbr_202100097
crossref_primary_10_1074_jbc_RA117_001278
crossref_primary_10_3390_ijms252212029
crossref_primary_10_1016_j_cmet_2014_01_003
crossref_primary_10_1007_s12035_023_03437_1
crossref_primary_10_1111_bph_14668
crossref_primary_10_1016_j_ymthe_2024_11_003
crossref_primary_10_1111_jnc_14554
Cites_doi 10.1038/372092a0
10.1126/science.1074069
10.1038/ng1197-263
10.1074/jbc.M409324200
10.1002/1531-8249(200008)48:2<201::AID-ANA10>3.0.CO;2-X
10.1074/jbc.M111.288746
10.1212/WNL.49.3_Suppl_3.S7
10.1016/j.bbalip.2011.11.005
10.1172/JCI117407
10.1006/bbrc.1996.0940
10.1016/j.nbd.2004.11.005
10.1038/nm1058
10.1523/JNEUROSCI.3773-11.2011
10.1126/scitranslmed.3002369
10.1042/bj3060599
10.1038/nrn2620
10.1016/S0021-9258(17)31529-6
10.1021/bi992294a
10.1016/j.neuron.2009.06.026
10.1073/pnas.96.26.15233
10.1042/bj3480359
10.1042/bj20020207
10.1073/pnas.90.20.9649
10.1523/JNEUROSCI.5491-10.2011
10.1002/bip.1974.360130103
10.1074/jbc.M109.014464
10.1038/nm838
10.1016/S0022-2275(20)32449-4
10.1021/bi702097s
10.1126/scitranslmed.3002156
10.1016/S1474-4422(10)70325-2
10.1016/j.bbalip.2008.02.001
10.1146/annurev.genom.1.1.507
10.1371/journal.pone.0021880
10.1126/scitranslmed.3003748
10.1002/prot.22891
10.1007/978-1-60761-744-0_3
10.1016/j.neuron.2004.07.017
10.1038/ncb1819
10.1038/nrd3505
10.1126/science.8346443
10.1016/0896-6273(93)90070-8
10.1002/jnr.22615
10.1016/0006-8993(91)91092-F
10.1523/JNEUROSCI.3987-12.2012
10.1073/pnas.90.17.8098
10.1006/bbrc.1994.2775
10.1046/j.1471-4159.1997.68020721.x
10.1016/0014-5793(96)00206-2
10.1126/science.1072994
10.1523/JNEUROSCI.23-26-08844.2003
10.1038/nm1438
10.1073/pnas.90.5.1977
10.1074/jbc.M112.377549
10.1074/jbc.271.51.32916
10.1021/bi952852v
10.1172/JCI36663
10.1093/hmg/dds296
10.1038/sj.jcbfm.9600419
10.1016/S0197-0186(01)00049-3
10.1016/0304-3940(92)90444-C
10.1073/pnas.050004797
10.2174/138161208784705487
10.1073/pnas.1206446109
10.1002/ana.21559
10.1016/j.cell.2005.02.008
10.1016/0140-6736(93)91709-U
10.1523/JNEUROSCI.0033-12.2012
10.1007/BF03401614
10.1038/sj.embor.7400897
10.1073/pnas.0914984107
10.1073/pnas.151261398
10.1126/science.1197623
10.1097/00041433-200104000-00003
10.2174/156720506779025189
10.1038/nm1635
ContentType Journal Article
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1220484110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate ApoE/Aβ direct interaction and Aβ clearance
EISSN 1091-6490
EndPage E1816
ExternalDocumentID PMC3651443
23620513
10_1073_pnas_1220484110
110_19_E1807
US201600137429
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: AG027924
– fundername: NIA NIH HHS
  grantid: R37 AG013956
– fundername: NIA NIH HHS
  grantid: R01 AG035355
– fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NIA NIH HHS
  grantid: R01 AG046205
– fundername: NIA NIH HHS
  grantid: P01 AG030128
– fundername: NIA NIH HHS
  grantid: AG03991
– fundername: NIA NIH HHS
  grantid: AG056810
– fundername: NINDS NIH HHS
  grantid: NS074969
– fundername: NIA NIH HHS
  grantid: R01 AG013956
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
CITATION
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c475t-fd500484ed330812c00acf01d8ef12cc56ba4c70e08de228a8b7ecb2020d08463
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:08:59 EDT 2025
Fri Jul 11 11:06:24 EDT 2025
Fri Jul 11 16:30:52 EDT 2025
Mon Jul 21 06:02:47 EDT 2025
Tue Jul 01 03:39:42 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Wed Nov 11 00:30:35 EST 2020
Wed Dec 27 19:20:32 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords neurodegeneration
cholesterol efflux
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c475t-fd500484ed330812c00acf01d8ef12cc56ba4c70e08de228a8b7ecb2020d08463
Notes http://dx.doi.org/10.1073/pnas.1220484110
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved April 3, 2013 (received for review November 26, 2012)
Author contributions: P.B.V., J.M.C., K.G., C.F., and D.M.H. designed research; P.B.V., J.M.C., K.G., Y.W., H.J., and A.S. performed research; G.B. contributed new reagents/analytic tools; P.B.V., J.M.C., K.G., Y.W., H.J., C.F., and D.M.H. analyzed data; and P.B.V. and D.M.H. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/110/19/E1807.full.pdf
PMID 23620513
PQID 1349705455
PQPubID 23479
ParticipantIDs crossref_citationtrail_10_1073_pnas_1220484110
fao_agris_US201600137429
proquest_miscellaneous_1349705455
pubmed_primary_23620513
pnas_primary_110_19_E1807
crossref_primary_10_1073_pnas_1220484110
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3651443
proquest_miscellaneous_1803124541
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-07
PublicationDateYYYYMMDD 2013-05-07
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
10769131 - Biochemistry. 2000 Apr 25;39(16):4746-54
20967581 - Methods Mol Biol. 2011;670:33-44
18673201 - Curr Pharm Des. 2008;14(16):1601-5
2029618 - Brain Res. 1991 Feb 8;541(1):163-6
15485881 - J Biol Chem. 2004 Dec 31;279(53):55483-92
22492035 - J Neurosci. 2012 Apr 4;32(14):4803-11
17077814 - J Cereb Blood Flow Metab. 2007 May;27(5):909-18
8955133 - J Biol Chem. 1996 Dec 20;271(51):32916-22
12399581 - Science. 2002 Oct 25;298(5594):789-91
11264981 - Curr Opin Lipidol. 2001 Apr;12(2):105-12
8446617 - Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1977-81
8089103 - J Biol Chem. 1994 Sep 23;269(38):23403-6
7802634 - Biochem Biophys Res Commun. 1994 Dec 15;205(2):1072-8
20547867 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):12011-6
8103823 - Lancet. 1993 Sep 18;342(8873):710-1
10939571 - Ann Neurol. 2000 Aug;48(2):201-10
9003062 - J Neurochem. 1997 Feb;68(2):721-5
4818131 - Biopolymers. 1974 Jan;13(1):29-61
14523085 - J Neurosci. 2003 Oct 1;23(26):8844-53
21755005 - PLoS One. 2011;6(7):e21880
22821396 - Hum Mol Genet. 2012 Oct 15;21(20):4558-71
19679070 - Neuron. 2009 Aug 13;63(3):287-303
22159114 - J Neurosci. 2011 Dec 7;31(49):18007-12
15837562 - Neurobiol Dis. 2005 Jun-Jul;19(1-2):66-76
12130773 - Science. 2002 Jul 19;297(5580):353-6
9310506 - Neurology. 1997 Sep;49(3 Suppl 3):S7-10
18359298 - Biochim Biophys Acta. 2008 May;1781(5):232-8
11438712 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8850-5
8612800 - FEBS Lett. 1996 Mar 25;383(1-2):9-12
21715678 - Sci Transl Med. 2011 Jun 29;3(89):89ra57
19098903 - Nat Cell Biol. 2009 Feb;11(2):143-53
8726460 - Mol Med. 1996 Mar;2(2):175-80
8679539 - Biochemistry. 1996 Jun 4;35(22):7123-30
21471435 - Sci Transl Med. 2011 Apr 6;3(77):77sr1
21394760 - J Neurosci Res. 2011 Jun;89(6):815-21
11701639 - Annu Rev Genomics Hum Genet. 2000;1:507-37
21349439 - Lancet Neurol. 2011 Mar;10(3):241-52
22730380 - J Biol Chem. 2012 Aug 10;287(33):27876-84
9354781 - Nat Genet. 1997 Nov;17(3):263-4
8398148 - Neuron. 1993 Oct;11(4):575-80
19260027 - Ann Neurol. 2009 Feb;65(2):176-83
15294142 - Neuron. 2004 Aug 5;43(3):333-44
10611368 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15233-8
12612547 - Nat Med. 2003 Apr;9(4):453-7
19666463 - J Biol Chem. 2009 Oct 2;284(40):27273-80
21148344 - Science. 2010 Dec 24;330(6012):1774
8346443 - Science. 1993 Aug 13;261(5123):921-3
10694577 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2892-7
8687441 - Biochem Biophys Res Commun. 1996 Jun 25;223(3):592-7
10064733 - J Lipid Res. 1999 Mar;40(3):447-55
8040342 - J Clin Invest. 1994 Aug;94(2):860-9
7969426 - Nature. 1994 Nov 3;372(6501):92-4
22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111
17694066 - Nat Med. 2007 Sep;13(9):1029-31
19339974 - Nat Rev Neurosci. 2009 May;10(5):333-44
21069870 - Proteins. 2011 Feb;79(2):402-16
12015813 - Biochem J. 2002 Aug 15;366(Pt 1):273-9
8367470 - Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8098-102
16799555 - Nat Med. 2006 Jul;12(7):856-61
22927427 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15502-7
21852788 - Nat Rev Drug Discov. 2011 Sep;10(9):698-712
19033669 - J Clin Invest. 2008 Dec;118(12):4002-13
22138302 - Biochim Biophys Acta. 2012 Feb;1821(2):295-302
23152628 - J Neurosci. 2012 Nov 14;32(46):16458-65
15734686 - Cell. 2005 Feb 25;120(4):545-55
11578777 - Neurochem Int. 2001 Nov-Dec;39(5-6):415-25
17168641 - Curr Alzheimer Res. 2006 Dec;3(5):421-30
1625800 - Neurosci Lett. 1992 Feb 3;135(2):235-8
22383525 - J Biol Chem. 2012 Apr 20;287(17):13959-71
8415756 - Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9649-53
10816430 - Biochem J. 2000 Jun 1;348 Pt 2:359-65
7534068 - Biochem J. 1995 Mar 1;306 ( Pt 2):599-604
15195085 - Nat Med. 2004 Jul;10(7):719-26
21289173 - J Neurosci. 2011 Feb 2;31(5):1644-51
18407659 - Biochemistry. 2008 May 6;47(18):5225-34
17268505 - EMBO Rep. 2007 Feb;8(2):141-6
References_xml – ident: e_1_3_3_14_2
  doi: 10.1038/372092a0
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1074069
– ident: e_1_3_3_16_2
  doi: 10.1038/ng1197-263
– ident: e_1_3_3_71_2
  doi: 10.1074/jbc.M409324200
– ident: e_1_3_3_41_2
  doi: 10.1002/1531-8249(200008)48:2<201::AID-ANA10>3.0.CO;2-X
– ident: e_1_3_3_47_2
  doi: 10.1074/jbc.M111.288746
– ident: e_1_3_3_1_2
  doi: 10.1212/WNL.49.3_Suppl_3.S7
– ident: e_1_3_3_26_2
  doi: 10.1016/j.bbalip.2011.11.005
– ident: e_1_3_3_30_2
  doi: 10.1172/JCI117407
– ident: e_1_3_3_27_2
  doi: 10.1006/bbrc.1996.0940
– ident: e_1_3_3_39_2
  doi: 10.1016/j.nbd.2004.11.005
– ident: e_1_3_3_49_2
  doi: 10.1038/nm1058
– ident: e_1_3_3_66_2
  doi: 10.1523/JNEUROSCI.3773-11.2011
– ident: e_1_3_3_3_2
  doi: 10.1126/scitranslmed.3002369
– ident: e_1_3_3_15_2
  doi: 10.1042/bj3060599
– ident: e_1_3_3_72_2
  doi: 10.1038/nrn2620
– ident: e_1_3_3_25_2
  doi: 10.1016/S0021-9258(17)31529-6
– ident: e_1_3_3_69_2
  doi: 10.1021/bi992294a
– ident: e_1_3_3_13_2
  doi: 10.1016/j.neuron.2009.06.026
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.96.26.15233
– ident: e_1_3_3_34_2
  doi: 10.1042/bj3480359
– ident: e_1_3_3_31_2
  doi: 10.1042/bj20020207
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.90.20.9649
– ident: e_1_3_3_50_2
  doi: 10.1523/JNEUROSCI.5491-10.2011
– ident: e_1_3_3_46_2
  doi: 10.1002/bip.1974.360130103
– ident: e_1_3_3_55_2
  doi: 10.1074/jbc.M109.014464
– ident: e_1_3_3_48_2
  doi: 10.1038/nm838
– ident: e_1_3_3_68_2
  doi: 10.1016/S0022-2275(20)32449-4
– ident: e_1_3_3_45_2
  doi: 10.1021/bi702097s
– ident: e_1_3_3_21_2
  doi: 10.1126/scitranslmed.3002156
– ident: e_1_3_3_12_2
  doi: 10.1016/S1474-4422(10)70325-2
– ident: e_1_3_3_42_2
  doi: 10.1016/j.bbalip.2008.02.001
– ident: e_1_3_3_8_2
  doi: 10.1146/annurev.genom.1.1.507
– ident: e_1_3_3_54_2
  doi: 10.1371/journal.pone.0021880
– ident: e_1_3_3_65_2
  doi: 10.1126/scitranslmed.3003748
– ident: e_1_3_3_28_2
  doi: 10.1002/prot.22891
– ident: e_1_3_3_44_2
  doi: 10.1007/978-1-60761-744-0_3
– ident: e_1_3_3_73_2
  doi: 10.1016/j.neuron.2004.07.017
– ident: e_1_3_3_74_2
  doi: 10.1038/ncb1819
– ident: e_1_3_3_5_2
  doi: 10.1038/nrd3505
– ident: e_1_3_3_9_2
  doi: 10.1126/science.8346443
– ident: e_1_3_3_20_2
  doi: 10.1016/0896-6273(93)90070-8
– ident: e_1_3_3_61_2
  doi: 10.1002/jnr.22615
– ident: e_1_3_3_22_2
  doi: 10.1016/0006-8993(91)91092-F
– ident: e_1_3_3_75_2
  doi: 10.1523/JNEUROSCI.3987-12.2012
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.90.17.8098
– ident: e_1_3_3_35_2
  doi: 10.1006/bbrc.1994.2775
– ident: e_1_3_3_33_2
  doi: 10.1046/j.1471-4159.1997.68020721.x
– ident: e_1_3_3_62_2
  doi: 10.1016/0014-5793(96)00206-2
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1072994
– ident: e_1_3_3_57_2
  doi: 10.1523/JNEUROSCI.23-26-08844.2003
– ident: e_1_3_3_59_2
  doi: 10.1038/nm1438
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.90.5.1977
– ident: e_1_3_3_56_2
  doi: 10.1074/jbc.M112.377549
– ident: e_1_3_3_60_2
  doi: 10.1074/jbc.271.51.32916
– ident: e_1_3_3_32_2
  doi: 10.1021/bi952852v
– ident: e_1_3_3_64_2
  doi: 10.1172/JCI36663
– ident: e_1_3_3_43_2
  doi: 10.1093/hmg/dds296
– ident: e_1_3_3_63_2
  doi: 10.1038/sj.jcbfm.9600419
– ident: e_1_3_3_40_2
  doi: 10.1016/S0197-0186(01)00049-3
– ident: e_1_3_3_23_2
  doi: 10.1016/0304-3940(92)90444-C
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.050004797
– ident: e_1_3_3_53_2
  doi: 10.2174/138161208784705487
– ident: e_1_3_3_52_2
  doi: 10.1073/pnas.1206446109
– ident: e_1_3_3_38_2
  doi: 10.1002/ana.21559
– ident: e_1_3_3_7_2
  doi: 10.1016/j.cell.2005.02.008
– ident: e_1_3_3_11_2
  doi: 10.1016/0140-6736(93)91709-U
– ident: e_1_3_3_67_2
  doi: 10.1523/JNEUROSCI.0033-12.2012
– ident: e_1_3_3_29_2
  doi: 10.1007/BF03401614
– ident: e_1_3_3_37_2
  doi: 10.1038/sj.embor.7400897
– ident: e_1_3_3_70_2
  doi: 10.1073/pnas.0914984107
– ident: e_1_3_3_76_2
  doi: 10.1073/pnas.151261398
– ident: e_1_3_3_58_2
  doi: 10.1126/science.1197623
– ident: e_1_3_3_36_2
  doi: 10.1097/00041433-200104000-00003
– ident: e_1_3_3_6_2
  doi: 10.2174/156720506779025189
– ident: e_1_3_3_51_2
  doi: 10.1038/nm1635
– reference: 11701639 - Annu Rev Genomics Hum Genet. 2000;1:507-37
– reference: 17168641 - Curr Alzheimer Res. 2006 Dec;3(5):421-30
– reference: 15734686 - Cell. 2005 Feb 25;120(4):545-55
– reference: 8446617 - Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1977-81
– reference: 21394760 - J Neurosci Res. 2011 Jun;89(6):815-21
– reference: 8415756 - Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9649-53
– reference: 19033669 - J Clin Invest. 2008 Dec;118(12):4002-13
– reference: 10694577 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2892-7
– reference: 11264981 - Curr Opin Lipidol. 2001 Apr;12(2):105-12
– reference: 9354781 - Nat Genet. 1997 Nov;17(3):263-4
– reference: 11438712 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8850-5
– reference: 12015813 - Biochem J. 2002 Aug 15;366(Pt 1):273-9
– reference: 10611368 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15233-8
– reference: 15485881 - J Biol Chem. 2004 Dec 31;279(53):55483-92
– reference: 7802634 - Biochem Biophys Res Commun. 1994 Dec 15;205(2):1072-8
– reference: 19098903 - Nat Cell Biol. 2009 Feb;11(2):143-53
– reference: 8679539 - Biochemistry. 1996 Jun 4;35(22):7123-30
– reference: 10064733 - J Lipid Res. 1999 Mar;40(3):447-55
– reference: 10939571 - Ann Neurol. 2000 Aug;48(2):201-10
– reference: 8612800 - FEBS Lett. 1996 Mar 25;383(1-2):9-12
– reference: 8726460 - Mol Med. 1996 Mar;2(2):175-80
– reference: 22138302 - Biochim Biophys Acta. 2012 Feb;1821(2):295-302
– reference: 8955133 - J Biol Chem. 1996 Dec 20;271(51):32916-22
– reference: 22159114 - J Neurosci. 2011 Dec 7;31(49):18007-12
– reference: 17268505 - EMBO Rep. 2007 Feb;8(2):141-6
– reference: 18359298 - Biochim Biophys Acta. 2008 May;1781(5):232-8
– reference: 9310506 - Neurology. 1997 Sep;49(3 Suppl 3):S7-10
– reference: 7969426 - Nature. 1994 Nov 3;372(6501):92-4
– reference: 19260027 - Ann Neurol. 2009 Feb;65(2):176-83
– reference: 21852788 - Nat Rev Drug Discov. 2011 Sep;10(9):698-712
– reference: 15294142 - Neuron. 2004 Aug 5;43(3):333-44
– reference: 20547867 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):12011-6
– reference: 2029618 - Brain Res. 1991 Feb 8;541(1):163-6
– reference: 8040342 - J Clin Invest. 1994 Aug;94(2):860-9
– reference: 19666463 - J Biol Chem. 2009 Oct 2;284(40):27273-80
– reference: 22492035 - J Neurosci. 2012 Apr 4;32(14):4803-11
– reference: 21349439 - Lancet Neurol. 2011 Mar;10(3):241-52
– reference: 1625800 - Neurosci Lett. 1992 Feb 3;135(2):235-8
– reference: 8398148 - Neuron. 1993 Oct;11(4):575-80
– reference: 21069870 - Proteins. 2011 Feb;79(2):402-16
– reference: 9003062 - J Neurochem. 1997 Feb;68(2):721-5
– reference: 10816430 - Biochem J. 2000 Jun 1;348 Pt 2:359-65
– reference: 12612547 - Nat Med. 2003 Apr;9(4):453-7
– reference: 17077814 - J Cereb Blood Flow Metab. 2007 May;27(5):909-18
– reference: 8089103 - J Biol Chem. 1994 Sep 23;269(38):23403-6
– reference: 8103823 - Lancet. 1993 Sep 18;342(8873):710-1
– reference: 14523085 - J Neurosci. 2003 Oct 1;23(26):8844-53
– reference: 12399581 - Science. 2002 Oct 25;298(5594):789-91
– reference: 22821396 - Hum Mol Genet. 2012 Oct 15;21(20):4558-71
– reference: 18407659 - Biochemistry. 2008 May 6;47(18):5225-34
– reference: 19679070 - Neuron. 2009 Aug 13;63(3):287-303
– reference: 20967581 - Methods Mol Biol. 2011;670:33-44
– reference: 22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111
– reference: 8687441 - Biochem Biophys Res Commun. 1996 Jun 25;223(3):592-7
– reference: 12130773 - Science. 2002 Jul 19;297(5580):353-6
– reference: 21755005 - PLoS One. 2011;6(7):e21880
– reference: 22730380 - J Biol Chem. 2012 Aug 10;287(33):27876-84
– reference: 21148344 - Science. 2010 Dec 24;330(6012):1774
– reference: 7534068 - Biochem J. 1995 Mar 1;306 ( Pt 2):599-604
– reference: 22383525 - J Biol Chem. 2012 Apr 20;287(17):13959-71
– reference: 10769131 - Biochemistry. 2000 Apr 25;39(16):4746-54
– reference: 17694066 - Nat Med. 2007 Sep;13(9):1029-31
– reference: 18673201 - Curr Pharm Des. 2008;14(16):1601-5
– reference: 8346443 - Science. 1993 Aug 13;261(5123):921-3
– reference: 23152628 - J Neurosci. 2012 Nov 14;32(46):16458-65
– reference: 8367470 - Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8098-102
– reference: 21715678 - Sci Transl Med. 2011 Jun 29;3(89):89ra57
– reference: 22927427 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15502-7
– reference: 15837562 - Neurobiol Dis. 2005 Jun-Jul;19(1-2):66-76
– reference: 16799555 - Nat Med. 2006 Jul;12(7):856-61
– reference: 11578777 - Neurochem Int. 2001 Nov-Dec;39(5-6):415-25
– reference: 19339974 - Nat Rev Neurosci. 2009 May;10(5):333-44
– reference: 15195085 - Nat Med. 2004 Jul;10(7):719-26
– reference: 4818131 - Biopolymers. 1974 Jan;13(1):29-61
– reference: 21471435 - Sci Transl Med. 2011 Apr 6;3(77):77sr1
– reference: 21289173 - J Neurosci. 2011 Feb 2;31(5):1644-51
SSID ssj0009580
Score 2.5821178
Snippet Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ)...
It has been proposed that differential physical interactions of apolipoprotein E (apoE) isoforms with soluble amyloid-β (Aβ) in brain fluids influence the...
Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer's disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ)...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E1807
SubjectTerms alleles
Alzheimer disease
Alzheimer Disease - diagnosis
Alzheimer Disease - genetics
Amyloid beta-Peptides - metabolism
analytical methods
Animals
apolipoprotein E
Apolipoproteins E - metabolism
astrocytes
Biological Sciences
brain
Brain - pathology
Cell Line
cerebrospinal fluid
Cholesterol - metabolism
extracellular fluids
Gene Expression Regulation
Humans
low density lipoprotein
metabolism
Mice
Mice, Knockout
microdialysis
Neurodegenerative Diseases - metabolism
pathogenesis
PNAS Plus
Protein Binding
protein isoforms
Protein Isoforms - metabolism
receptors
risk
Time Factors
transporters
Title ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions
URI http://www.pnas.org/content/110/19/E1807.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23620513
https://www.proquest.com/docview/1349705455
https://www.proquest.com/docview/1803124541
https://pubmed.ncbi.nlm.nih.gov/PMC3651443
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLbS7mUv07pb2U2etEqpECkYE8hjGmWLJjWqtGbrGzLGaaItFzXJy35Wf0h_y37CzsHGkKyrtr0gQowxnI9zMcffIeQ9Gys5zpj0RJj7Hg-yyOv4eeYlArz1dq5YLHBq4GzYHoz4p8vostH4Wcta2qyzlvxx57qS_5EqHAO54irZf5Cs7RQOwD7IF7YgYdj-lYy7y0Uf06l0mZGVK2YQfk9z76jXPzpl6Dx29S7G_hILRBQLBHL8vL5WLtKKzJArALopeBX0aaKSWJFjjpK0KhLC53xaTfIZt_bcmsFVmXQwLGcZu9WaFaNIVq7nng-rCsh6Usc9bblf1PXVRFXfi_T3Cfes5fbECte7iPnCmgi4lwlop49wV1OrvKZzLJ70VRiDbOYzAp09GFfpHvXR2XHVVTgDs8r1wuuW0lobnB6vzXXdUavWTbqswW-npqX7QaKv-Jv9AIWHRY_nYtUKGHIac9NNDU3LWQEnBqYfNFpYGdIyeWDHvtqsxwADrk5aXH2PPGAQ2BSpqIM6TXSiF02ZmyzJqOLwZGdQyGJtRrDlUu2NxQKJeqH1XUHTbu5vzZm6eEwemSiIdjWkD0hDzZ-Qg1IMtGnI0I-fkm-IcVphnJYYv72hze7tzTG1uKYG19TgmiKuT6ANrSEauqJbiKYVop-R0Yf-RW_gmQIhnuRxtPbGeYQWiKs8DMG1ZdL3hRz7QZ6oMfySUTsTXMa-8hPQOiwRSRYrmTEIkXIfHO_wOdkHVKpDQiX4LILFUige8ERFScBjPxcsiyImO1I6pFU-41Qa9nws4vI9LbI44jDFJ55W8nFI056w1MQxf256CEJLxRWY9XT0mSHpIzKBgqvoEKdobHuoQcgh70rxpmATZPESqsUGug55J4ZYLIruaZOAOWc84oFDXmhI2KuUwHJIvAUW2wA56bf_mU8nBTd92IYIjIcv7xn3K_Kweu9fk_319Ua9Ac9-nb0tXoZfiob2pw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ApoE+influences+amyloid-%CE%B2+%28A%CE%B2%29+clearance+despite+minimal+apoE%2FA%CE%B2+association+in+physiological+conditions&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Philip+B.+Verghese&rft.au=Joseph+M.+Castellano&rft.au=Kanchan+Garai&rft.au=Yinong+Wang&rft.date=2013-05-07&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=19&rft.spage=E1807&rft_id=info:doi/10.1073%2Fpnas.1220484110&rft_id=info%3Apmid%2F23620513&rft.externalDBID=n%2Fa&rft.externalDocID=110_19_E1807
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F19.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F19.cover.gif