Assembly of phagocyte NADPH oxidase: A concerted binding process?

The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1840; no. 11; pp. 3277 - 3283
Main Authors Karimi, Gilda, Houée Levin, Chantal, Dagher, Marie Claire, Baciou, Laura, Bizouarn, Tania
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase. A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox–p67phox complex. The data presented here are consistent with the absence of a catalytic role of the p47phox–p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core. The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome. •No order of fixation is required for the cytosolic subunits, however all the partners should be present simultaneously.•Space control: all partners should be in the vicinity for optimal assembly.•Time control: if a subunit is missing at the beginning of the activation process an optimized edifice cannot be built.
AbstractList The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67(phox), p47(phox), p40(phox) and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.BACKGROUNDThe phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67(phox), p47(phox), p40(phox) and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47(phox)-p67(phox) complex.METHODSA wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47(phox)-p67(phox) complex.The data presented here are consistent with the absence of a catalytic role of the p47(phox)-p67(phox) interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.RESULTSThe data presented here are consistent with the absence of a catalytic role of the p47(phox)-p67(phox) interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.CONCLUSION AND GENERAL SIGNIFICANCEThe activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.
The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase. A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox–p67phox complex. The data presented here are consistent with the absence of a catalytic role of the p47phox–p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core. The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome. •No order of fixation is required for the cytosolic subunits, however all the partners should be present simultaneously.•Space control: all partners should be in the vicinity for optimal assembly.•Time control: if a subunit is missing at the beginning of the activation process an optimized edifice cannot be built.
The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67(phox), p47(phox), p40(phox) and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase. A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47(phox)-p67(phox) complex. The data presented here are consistent with the absence of a catalytic role of the p47(phox)-p67(phox) interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core. The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.
The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox–p67phox complex.The data presented here are consistent with the absence of a catalytic role of the p47phox–p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.
Background The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.Methods A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox-p67phox complex.Results The data presented here are consistent with the absence of a catalytic role of the p47phox-p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.Conclusion and general significance The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.
Author Dagher, Marie Claire
Karimi, Gilda
Bizouarn, Tania
Houée Levin, Chantal
Baciou, Laura
Author_xml – sequence: 1
  givenname: Gilda
  surname: Karimi
  fullname: Karimi, Gilda
  organization: Laboratoire de Chimie Physique, Université Paris Sud, UMR8000, CNRS, Orsay F-91405, France
– sequence: 2
  givenname: Chantal
  surname: Houée Levin
  fullname: Houée Levin, Chantal
  organization: Laboratoire de Chimie Physique, Université Paris Sud, UMR8000, CNRS, Orsay F-91405, France
– sequence: 3
  givenname: Marie Claire
  surname: Dagher
  fullname: Dagher, Marie Claire
  organization: Laboratoire TIMC-IMAG, Equipe TheREx, UMR5525, 38710 La Tronche, France
– sequence: 4
  givenname: Laura
  surname: Baciou
  fullname: Baciou, Laura
  organization: Laboratoire de Chimie Physique, Université Paris Sud, UMR8000, CNRS, Orsay F-91405, France
– sequence: 5
  givenname: Tania
  surname: Bizouarn
  fullname: Bizouarn, Tania
  email: tania.bizouarn@u-psud.fr
  organization: Laboratoire de Chimie Physique, Université Paris Sud, UMR8000, CNRS, Orsay F-91405, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25108064$$D View this record in MEDLINE/PubMed
https://universite-paris-saclay.hal.science/hal-04071160$$DView record in HAL
BookMark eNqFkU9v00AQxVeoiKaFb4CQj3Cwmf3ruAeQ1RaCFAEHOK_W69l0I8cbdp2KfHs2cumBA53LSKPfGz29d0HOxjAiIa8pVBSoer-tus5scKwYUFFBXQFjz8iCLmtWLgHUGVkAB1EKquQ5uUhpC3lkI1-QcyYpLEGJBWnblHDXDcciuGJ_ZzbBHicsvrY331dF-O17k_CqaAsbRotxwr7o_Nj7cVPsY7CY0seX5LkzQ8JXD_uS_Px0--N6Va6_ff5y3a5LK2o5lU5IIS1XWPO8BGW0l8Jx1zjWW15LjrXgyvFlY6SSxoLrgDconOiwd1zwS_Ju_ntnBr2PfmfiUQfj9apd69MNBNSUKrinmX07s9nkrwOmSe98sjgMZsRwSJrlJBhreKOeRKlUFDintMnomwf00O2wfzTxN80MiBmwMaQU0T0iFPSpNL3Vc2n6VJqGWmcbWXb1j8z6yUw-jFM0fnhK_GEWY87-3mPUyXrMZfU-op10H_z_H_wBwhmwmA
CitedBy_id crossref_primary_10_1016_j_redox_2014_10_001
crossref_primary_10_1371_journal_pone_0144829
crossref_primary_10_1016_j_mad_2017_11_001
crossref_primary_10_1016_j_freeradbiomed_2020_12_233
crossref_primary_10_1016_j_bbamem_2023_184180
crossref_primary_10_1016_j_freeradbiomed_2023_02_019
crossref_primary_10_1111_febs_13779
crossref_primary_10_3390_biomedicines12020442
crossref_primary_10_1007_s12013_024_01279_9
crossref_primary_10_1016_j_freeradbiomed_2018_03_049
crossref_primary_10_1155_2020_5793817
crossref_primary_10_1016_j_freeradbiomed_2017_09_011
crossref_primary_10_3389_fcimb_2017_00373
crossref_primary_10_1002_jcb_25155
crossref_primary_10_1016_j_bbamcr_2022_119276
crossref_primary_10_4049_jimmunol_1800365
crossref_primary_10_1016_j_freeradbiomed_2017_10_376
crossref_primary_10_1016_j_yexmp_2015_11_011
crossref_primary_10_1074_jbc_RA118_006864
crossref_primary_10_3389_fphys_2016_00284
crossref_primary_10_1016_j_bbagen_2020_129767
crossref_primary_10_15789_1563_0625_EAF_2503
crossref_primary_10_1016_j_jbc_2024_107943
crossref_primary_10_4049_jimmunol_1801143
Cites_doi 10.1111/j.1742-4658.2008.06488.x
10.1189/jlb.0404216
10.1074/jbc.274.25.18055
10.1016/j.bcp.2011.07.070
10.1016/S0021-9258(17)31760-X
10.1074/jbc.271.48.30326
10.1182/blood-2009-07-231498
10.1016/0167-4889(96)00020-1
10.1016/S0021-9258(17)34132-7
10.1074/jbc.M112065200
10.1021/bi9800404
10.1126/science.8036496
10.1016/j.febslet.2009.09.011
10.1016/S0021-9258(19)77934-4
10.1016/j.febslet.2009.01.046
10.1042/BJ20041835
10.1042/bj3170919
10.1074/jbc.275.18.13793
10.1074/jbc.M110.161166
10.1074/jbc.273.7.4232
10.1084/jem.180.6.2011
10.1091/mbc.E08-06-0620
10.1016/j.freeradbiomed.2010.06.021
10.1042/bj3140409
10.1074/jbc.M110.139824
10.1074/jbc.M006013200
10.1021/bi0269052
10.1189/jlb.0804442
10.1111/boc.201300010
10.1016/S0021-9258(18)47341-3
10.1074/jbc.271.37.22578
10.1083/jcb.200903020
10.1016/S0021-9258(17)31804-5
10.1021/bi000483j
10.1042/0264-6021:3410251
10.1073/pnas.91.22.10650
10.1172/JCI114993
10.1189/jlb.1210701
10.1074/jbc.274.35.25051
10.1016/S0092-8674(03)00314-3
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright © 2014 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
1XC
VOOES
DOI 10.1016/j.bbagen.2014.07.022
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 3283
ExternalDocumentID oai_HAL_hal_04071160v1
25108064
10_1016_j_bbagen_2014_07_022
S0304416514002670
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
F5P
H~9
K-O
MVM
NPM
PKN
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c475t-f4545c36e735c34121d54f3f9f2dc3753e7436f389a565ac0fb039e4f4bedf343
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Fri May 09 12:16:01 EDT 2025
Fri Jul 11 07:56:44 EDT 2025
Fri Jul 11 05:00:34 EDT 2025
Wed Feb 19 02:34:28 EST 2025
Thu Apr 24 22:58:40 EDT 2025
Tue Jul 01 00:22:04 EDT 2025
Fri Feb 23 02:32:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords AA
PBS
Phox
GST
Protein translocation
Arachidonic acid activation
PMSF
Nox
ROS
ITC
MF
PX domain
FRET
NADPH oxidase (Nox)
Neutrophil
Cell free system
SH3
cell-free system
human-neutrophils
respiratory burst oxidase
neutrophil
protein translocation
superoxide-production
cell free system
p67(phox)
p47(phox)
nadph oxidase (nox)
independent activation
arachidonic acid activation
complex
phosphorylation
Language English
License Copyright © 2014 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-f4545c36e735c34121d54f3f9f2dc3753e7436f389a565ac0fb039e4f4bedf343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3401-4844
0000-0002-0614-0173
OpenAccessLink https://universite-paris-saclay.hal.science/hal-04071160
PMID 25108064
PQID 1561033119
PQPubID 23479
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_04071160v1
proquest_miscellaneous_2000229396
proquest_miscellaneous_1561033119
pubmed_primary_25108064
crossref_primary_10_1016_j_bbagen_2014_07_022
crossref_citationtrail_10_1016_j_bbagen_2014_07_022
elsevier_sciencedirect_doi_10_1016_j_bbagen_2014_07_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Marcoux, Man, Castellan, Vives, Forest, Fieschi (bb0075) 2009; 583
Dusi, Donini, Rossi (bb0040) 1996; 314
Koshkin, Lotan, Pick (bb0160) 1996; 271
Curnutte, Erickson, Ding, Badwey (bb0180) 1994; 269
Matute (bb0190) 2009; 114
Gorzalczany, Sigal, Itan, Lotan, Pick (bb0055) 2000; 275
Dang, P.M. et al. The NADPH oxidase cytosolic component p67phox is constitutively phosphorylated in human neutrophils: Regulation by a protein tyrosine kinase, MEK1/2 and phosphatases 1/2A. Biochem Pharmacol 82, 1145–52.
Cross, Erickson, Curnutte (bb0145) 1999; 341
Leto, Adams, de Mendez (bb0120) 1994; 91
McPhail (bb0125) 1994; 180
Miyano, Fukuda, Ebisu, Tamura (bb0095) 2003; 42
Heyworth, Bohl, Bokoch, Curnutte (bb0050) 1994; 269
Uhlinger, Taylor, Lambeth (bb0140) 1994; 269
Fuchs, Dagher, Faure, Vignais (bb0020) 1996; 1312
Diekmann, Abo, Johnston, Segal, Hall (bb0195) 1994; 265
Yeung (bb0185) 2009; 185
Quinn, Gauss (bb0015) 2004; 76
Paclet, Coleman, Vergnaud, Morel (bb0170) 2000; 39
Hata, Ito, Takeshige, Sumimoto (bb0065) 1998; 273
Koga, Terasawa, Nunoi, Takeshige, Inagaki, Sumimoto (bb0200) 1999; 274
Groemping, Lapouge, Smerdon, Rittinger (bb0070) 2003; 113
Freeman, Lambeth (bb0150) 1996; 271
Ostuni, Gelinotte, Bizouarn, Baciou, Houee-Levin (bb0135) 2010; 49
Li, Tian, Stull, Grinstein, Atkinson, Dinauer (bb0175) 2009; 20
Maehara, Miyano, Yuzawa, Akimoto, Takeya, Sumimoto (bb0155) 2010; 285
Toporik, Gorzalczany, Hirshberg, Pick, Lotan (bb0165) 1998; 37
Wientjes, Panayotou, Reeves, Segal (bb0030) 1996; 317
Shiose, Sumimoto (bb0060) 2000; 275
Heyworth, Curnutte, Nauseef, Volpp, Pearson, Rosen, Clark (bb0035) 1991; 87
Tlili, A., Erard, M., Faure, M.C., Baudin, X., Piolot, T., Dupre-Crochet, S. and Nusse, O. Stable accumulation of p67phox at the phagosomal membrane and ROS production within the phagosome. J Leukoc Biol 91, 83–95.
Iyer, Pearson, Nauseef, Clark (bb0115) 1994; 269
Faure (bb0085) 2013; 105
Akasaki, Koga, Sumimoto (bb0110) 1999; 274
Babior, Kuver, Curnutte (bb0130) 1988; 263
Lapouge, Smith, Groemping, Rittinger (bb0025) 2002; 277
Baciou, Erard, Dagher, Bizouarn (bb0105) 2009; 583
Groemping, Rittinger (bb0010) 2005; 386
Sumimoto (bb0005) 2008; 275
Marcoux, Man, Petit-Haertlein, Vives, Forest, Fieschi (bb0100) 2010; 285
Sheppard, Kelher, Moore, McLaughlin, Banerjee, Silliman (bb0045) 2005; 78
Dusi (10.1016/j.bbagen.2014.07.022_bb0040) 1996; 314
Leto (10.1016/j.bbagen.2014.07.022_bb0120) 1994; 91
Li (10.1016/j.bbagen.2014.07.022_bb0175) 2009; 20
Matute (10.1016/j.bbagen.2014.07.022_bb0190) 2009; 114
Groemping (10.1016/j.bbagen.2014.07.022_bb0010) 2005; 386
Heyworth (10.1016/j.bbagen.2014.07.022_bb0035) 1991; 87
Iyer (10.1016/j.bbagen.2014.07.022_bb0115) 1994; 269
Sheppard (10.1016/j.bbagen.2014.07.022_bb0045) 2005; 78
Quinn (10.1016/j.bbagen.2014.07.022_bb0015) 2004; 76
Fuchs (10.1016/j.bbagen.2014.07.022_bb0020) 1996; 1312
Maehara (10.1016/j.bbagen.2014.07.022_bb0155) 2010; 285
Paclet (10.1016/j.bbagen.2014.07.022_bb0170) 2000; 39
Gorzalczany (10.1016/j.bbagen.2014.07.022_bb0055) 2000; 275
Marcoux (10.1016/j.bbagen.2014.07.022_bb0075) 2009; 583
Cross (10.1016/j.bbagen.2014.07.022_bb0145) 1999; 341
Akasaki (10.1016/j.bbagen.2014.07.022_bb0110) 1999; 274
Koshkin (10.1016/j.bbagen.2014.07.022_bb0160) 1996; 271
Koga (10.1016/j.bbagen.2014.07.022_bb0200) 1999; 274
Hata (10.1016/j.bbagen.2014.07.022_bb0065) 1998; 273
Wientjes (10.1016/j.bbagen.2014.07.022_bb0030) 1996; 317
Ostuni (10.1016/j.bbagen.2014.07.022_bb0135) 2010; 49
Uhlinger (10.1016/j.bbagen.2014.07.022_bb0140) 1994; 269
Diekmann (10.1016/j.bbagen.2014.07.022_bb0195) 1994; 265
Marcoux (10.1016/j.bbagen.2014.07.022_bb0100) 2010; 285
Toporik (10.1016/j.bbagen.2014.07.022_bb0165) 1998; 37
McPhail (10.1016/j.bbagen.2014.07.022_bb0125) 1994; 180
10.1016/j.bbagen.2014.07.022_bb0090
Baciou (10.1016/j.bbagen.2014.07.022_bb0105) 2009; 583
Curnutte (10.1016/j.bbagen.2014.07.022_bb0180) 1994; 269
Freeman (10.1016/j.bbagen.2014.07.022_bb0150) 1996; 271
Groemping (10.1016/j.bbagen.2014.07.022_bb0070) 2003; 113
10.1016/j.bbagen.2014.07.022_bb0080
Babior (10.1016/j.bbagen.2014.07.022_bb0130) 1988; 263
Yeung (10.1016/j.bbagen.2014.07.022_bb0185) 2009; 185
Miyano (10.1016/j.bbagen.2014.07.022_bb0095) 2003; 42
Heyworth (10.1016/j.bbagen.2014.07.022_bb0050) 1994; 269
Shiose (10.1016/j.bbagen.2014.07.022_bb0060) 2000; 275
Faure (10.1016/j.bbagen.2014.07.022_bb0085) 2013; 105
Sumimoto (10.1016/j.bbagen.2014.07.022_bb0005) 2008; 275
Lapouge (10.1016/j.bbagen.2014.07.022_bb0025) 2002; 277
References_xml – volume: 386
  start-page: 401
  year: 2005
  end-page: 416
  ident: bb0010
  article-title: Activation and assembly of the NADPH oxidase: a structural perspective
  publication-title: Biochem. J.
– volume: 314
  start-page: 409
  year: 1996
  end-page: 412
  ident: bb0040
  article-title: Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox
  publication-title: Biochem. J.
– volume: 275
  start-page: 13793
  year: 2000
  end-page: 13801
  ident: bb0060
  article-title: Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase
  publication-title: J. Biol. Chem.
– volume: 185
  start-page: 917
  year: 2009
  end-page: 928
  ident: bb0185
  article-title: Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation
  publication-title: J. Cell Biol.
– volume: 1312
  start-page: 39
  year: 1996
  end-page: 47
  ident: bb0020
  article-title: Topological organization of the cytosolic activating complex of the superoxide-generating NADPH-oxidase. Pinpointing the sites of interaction between p47phoz, p67phox and p40phox using the two-hybrid system
  publication-title: Biochim. Biophys. Acta
– volume: 317
  start-page: 919
  year: 1996
  end-page: 924
  ident: bb0030
  article-title: Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox
  publication-title: Biochem. J.
– volume: 269
  start-page: 30749
  year: 1994
  end-page: 30752
  ident: bb0050
  article-title: Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558
  publication-title: J. Biol. Chem.
– volume: 285
  start-page: 28980
  year: 2010
  end-page: 28990
  ident: bb0100
  article-title: p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex
  publication-title: J. Biol. Chem.
– volume: 583
  start-page: 835
  year: 2009
  end-page: 840
  ident: bb0075
  article-title: Conformational changes in p47(phox) upon activation highlighted by mass spectrometry coupled to hydrogen/deuterium exchange and limited proteolysis
  publication-title: FEBS Lett.
– volume: 274
  start-page: 25051
  year: 1999
  end-page: 25060
  ident: bb0200
  article-title: Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase
  publication-title: J. Biol. Chem.
– reference: Dang, P.M. et al. The NADPH oxidase cytosolic component p67phox is constitutively phosphorylated in human neutrophils: Regulation by a protein tyrosine kinase, MEK1/2 and phosphatases 1/2A. Biochem Pharmacol 82, 1145–52.
– volume: 265
  start-page: 531
  year: 1994
  end-page: 533
  ident: bb0195
  article-title: Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity
  publication-title: Science
– volume: 583
  start-page: 3225
  year: 2009
  end-page: 3229
  ident: bb0105
  article-title: The cytosolic subunit p67phox of the NADPH-oxidase complex does not bind NADPH
  publication-title: FEBS Lett.
– volume: 39
  start-page: 9302
  year: 2000
  end-page: 9310
  ident: bb0170
  article-title: P67-phox-mediated NADPH oxidase assembly: imaging of cytochrome b558 liposomes by atomic force microscopy
  publication-title: Biochemistry
– volume: 114
  start-page: 3309
  year: 2009
  end-page: 3315
  ident: bb0190
  article-title: A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity
  publication-title: Blood
– volume: 277
  start-page: 10121
  year: 2002
  end-page: 10128
  ident: bb0025
  article-title: Architecture of the p40–p47–p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox
  publication-title: J. Biol. Chem.
– volume: 341
  start-page: 251
  year: 1999
  end-page: 255
  ident: bb0145
  article-title: The mechanism of activation of NADPH oxidase in the cell-free system: the activation process is primarily catalytic and not through the formation of a stoichiometric complex
  publication-title: Biochem. J.
– volume: 49
  start-page: 900
  year: 2010
  end-page: 907
  ident: bb0135
  article-title: Targeting NADPH-oxidase by reactive oxygen species reveals an initial sensitive step in the assembly process
  publication-title: Free Radic. Biol. Med.
– volume: 269
  start-page: 22095
  year: 1994
  end-page: 22098
  ident: bb0140
  article-title: p67-phox enhances the binding of p47-phox to the human neutrophil respiratory burst oxidase complex
  publication-title: J. Biol. Chem.
– volume: 271
  start-page: 22578
  year: 1996
  end-page: 22582
  ident: bb0150
  article-title: NADPH oxidase activity is independent of p47phox in vitro
  publication-title: J. Biol. Chem.
– volume: 263
  start-page: 1713
  year: 1988
  end-page: 1718
  ident: bb0130
  article-title: Kinetics of activation of the respiratory burst oxidase in a fully soluble system from human neutrophils
  publication-title: J. Biol. Chem.
– volume: 91
  start-page: 10650
  year: 1994
  end-page: 10654
  ident: bb0120
  article-title: Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 87
  start-page: 352
  year: 1991
  end-page: 356
  ident: bb0035
  article-title: Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558
  publication-title: J. Clin. Invest.
– volume: 274
  start-page: 18055
  year: 1999
  end-page: 18059
  ident: bb0110
  article-title: Phosphoinositide 3-kinase-dependent and -independent activation of the small GTPase Rac2 in human neutrophils
  publication-title: J. Biol. Chem.
– volume: 275
  start-page: 40073
  year: 2000
  end-page: 40081
  ident: bb0055
  article-title: Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly
  publication-title: J. Biol. Chem.
– volume: 285
  start-page: 31435
  year: 2010
  end-page: 31445
  ident: bb0155
  article-title: A conserved region between the TPR and activation domains of p67phox participates in activation of the phagocyte NADPH oxidase
  publication-title: J. Biol. Chem.
– volume: 42
  start-page: 184
  year: 2003
  end-page: 190
  ident: bb0095
  article-title: Remarkable stabilization of neutrophil NADPH oxidase using RacQ61L and a p67phox–p47phox fusion protein
  publication-title: Biochemistry
– volume: 273
  start-page: 4232
  year: 1998
  end-page: 4236
  ident: bb0065
  article-title: Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C terminally truncated forms. Implication for regulatory Src homology 3 domain-mediated interactions
  publication-title: J. Biol. Chem.
– volume: 76
  start-page: 760
  year: 2004
  end-page: 781
  ident: bb0015
  article-title: Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases
  publication-title: J. Leukoc. Biol.
– volume: 271
  start-page: 30326
  year: 1996
  end-page: 30329
  ident: bb0160
  article-title: The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production
  publication-title: J. Biol. Chem.
– volume: 113
  start-page: 343
  year: 2003
  end-page: 355
  ident: bb0070
  article-title: Molecular basis of phosphorylation-induced activation of the NADPH oxidase
  publication-title: Cell
– reference: Tlili, A., Erard, M., Faure, M.C., Baudin, X., Piolot, T., Dupre-Crochet, S. and Nusse, O. Stable accumulation of p67phox at the phagosomal membrane and ROS production within the phagosome. J Leukoc Biol 91, 83–95.
– volume: 105
  start-page: 501
  year: 2013
  end-page: 518
  ident: bb0085
  article-title: The recruitment of p47(phox) and Rac2G12V at the phagosome is transient and phosphatidylserine dependent
  publication-title: Biol. Cell.
– volume: 37
  start-page: 7147
  year: 1998
  end-page: 7156
  ident: bb0165
  article-title: Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase
  publication-title: Biochemistry
– volume: 269
  start-page: 22405
  year: 1994
  end-page: 22411
  ident: bb0115
  article-title: Evidence for a readily dissociable complex of p47phox and p67phox in cytosol of unstimulated human neutrophils
  publication-title: J. Biol. Chem.
– volume: 275
  start-page: 3249
  year: 2008
  end-page: 3277
  ident: bb0005
  article-title: Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species
  publication-title: FEBS J.
– volume: 180
  start-page: 2011
  year: 1994
  end-page: 2015
  ident: bb0125
  article-title: SH3-dependent assembly of the phagocyte NADPH oxidase
  publication-title: J. Exp. Med.
– volume: 20
  start-page: 1520
  year: 2009
  end-page: 1532
  ident: bb0175
  article-title: A fluorescently tagged C-terminal fragment of p47phox detects NADPH oxidase dynamics during phagocytosis
  publication-title: Mol. Biol. Cell
– volume: 78
  start-page: 1025
  year: 2005
  end-page: 1042
  ident: bb0045
  article-title: Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation
  publication-title: J. Leukoc. Biol.
– volume: 269
  start-page: 10813
  year: 1994
  end-page: 10819
  ident: bb0180
  article-title: Reciprocal interactions between protein kinase C and components of the NADPH oxidase complex may regulate superoxide production by neutrophils stimulated with a phorbol ester
  publication-title: J. Biol. Chem.
– volume: 275
  start-page: 3249
  year: 2008
  ident: 10.1016/j.bbagen.2014.07.022_bb0005
  article-title: Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2008.06488.x
– volume: 76
  start-page: 760
  year: 2004
  ident: 10.1016/j.bbagen.2014.07.022_bb0015
  article-title: Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0404216
– volume: 274
  start-page: 18055
  year: 1999
  ident: 10.1016/j.bbagen.2014.07.022_bb0110
  article-title: Phosphoinositide 3-kinase-dependent and -independent activation of the small GTPase Rac2 in human neutrophils
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.25.18055
– ident: 10.1016/j.bbagen.2014.07.022_bb0080
  doi: 10.1016/j.bcp.2011.07.070
– volume: 269
  start-page: 22095
  year: 1994
  ident: 10.1016/j.bbagen.2014.07.022_bb0140
  article-title: p67-phox enhances the binding of p47-phox to the human neutrophil respiratory burst oxidase complex
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)31760-X
– volume: 271
  start-page: 30326
  year: 1996
  ident: 10.1016/j.bbagen.2014.07.022_bb0160
  article-title: The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.48.30326
– volume: 114
  start-page: 3309
  year: 2009
  ident: 10.1016/j.bbagen.2014.07.022_bb0190
  article-title: A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity
  publication-title: Blood
  doi: 10.1182/blood-2009-07-231498
– volume: 1312
  start-page: 39
  year: 1996
  ident: 10.1016/j.bbagen.2014.07.022_bb0020
  article-title: Topological organization of the cytosolic activating complex of the superoxide-generating NADPH-oxidase. Pinpointing the sites of interaction between p47phoz, p67phox and p40phox using the two-hybrid system
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4889(96)00020-1
– volume: 269
  start-page: 10813
  year: 1994
  ident: 10.1016/j.bbagen.2014.07.022_bb0180
  article-title: Reciprocal interactions between protein kinase C and components of the NADPH oxidase complex may regulate superoxide production by neutrophils stimulated with a phorbol ester
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)34132-7
– volume: 277
  start-page: 10121
  year: 2002
  ident: 10.1016/j.bbagen.2014.07.022_bb0025
  article-title: Architecture of the p40–p47–p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112065200
– volume: 37
  start-page: 7147
  year: 1998
  ident: 10.1016/j.bbagen.2014.07.022_bb0165
  article-title: Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase
  publication-title: Biochemistry
  doi: 10.1021/bi9800404
– volume: 265
  start-page: 531
  year: 1994
  ident: 10.1016/j.bbagen.2014.07.022_bb0195
  article-title: Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity
  publication-title: Science
  doi: 10.1126/science.8036496
– volume: 583
  start-page: 3225
  year: 2009
  ident: 10.1016/j.bbagen.2014.07.022_bb0105
  article-title: The cytosolic subunit p67phox of the NADPH-oxidase complex does not bind NADPH
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.09.011
– volume: 263
  start-page: 1713
  year: 1988
  ident: 10.1016/j.bbagen.2014.07.022_bb0130
  article-title: Kinetics of activation of the respiratory burst oxidase in a fully soluble system from human neutrophils
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)77934-4
– volume: 583
  start-page: 835
  year: 2009
  ident: 10.1016/j.bbagen.2014.07.022_bb0075
  article-title: Conformational changes in p47(phox) upon activation highlighted by mass spectrometry coupled to hydrogen/deuterium exchange and limited proteolysis
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.01.046
– volume: 386
  start-page: 401
  year: 2005
  ident: 10.1016/j.bbagen.2014.07.022_bb0010
  article-title: Activation and assembly of the NADPH oxidase: a structural perspective
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041835
– volume: 317
  start-page: 919
  issue: Pt 3
  year: 1996
  ident: 10.1016/j.bbagen.2014.07.022_bb0030
  article-title: Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox
  publication-title: Biochem. J.
  doi: 10.1042/bj3170919
– volume: 275
  start-page: 13793
  year: 2000
  ident: 10.1016/j.bbagen.2014.07.022_bb0060
  article-title: Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.18.13793
– volume: 285
  start-page: 31435
  year: 2010
  ident: 10.1016/j.bbagen.2014.07.022_bb0155
  article-title: A conserved region between the TPR and activation domains of p67phox participates in activation of the phagocyte NADPH oxidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.161166
– volume: 273
  start-page: 4232
  year: 1998
  ident: 10.1016/j.bbagen.2014.07.022_bb0065
  article-title: Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C terminally truncated forms. Implication for regulatory Src homology 3 domain-mediated interactions
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.7.4232
– volume: 180
  start-page: 2011
  year: 1994
  ident: 10.1016/j.bbagen.2014.07.022_bb0125
  article-title: SH3-dependent assembly of the phagocyte NADPH oxidase
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.180.6.2011
– volume: 20
  start-page: 1520
  year: 2009
  ident: 10.1016/j.bbagen.2014.07.022_bb0175
  article-title: A fluorescently tagged C-terminal fragment of p47phox detects NADPH oxidase dynamics during phagocytosis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E08-06-0620
– volume: 49
  start-page: 900
  year: 2010
  ident: 10.1016/j.bbagen.2014.07.022_bb0135
  article-title: Targeting NADPH-oxidase by reactive oxygen species reveals an initial sensitive step in the assembly process
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2010.06.021
– volume: 314
  start-page: 409
  issue: Pt 2
  year: 1996
  ident: 10.1016/j.bbagen.2014.07.022_bb0040
  article-title: Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox
  publication-title: Biochem. J.
  doi: 10.1042/bj3140409
– volume: 285
  start-page: 28980
  year: 2010
  ident: 10.1016/j.bbagen.2014.07.022_bb0100
  article-title: p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.139824
– volume: 275
  start-page: 40073
  year: 2000
  ident: 10.1016/j.bbagen.2014.07.022_bb0055
  article-title: Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006013200
– volume: 42
  start-page: 184
  year: 2003
  ident: 10.1016/j.bbagen.2014.07.022_bb0095
  article-title: Remarkable stabilization of neutrophil NADPH oxidase using RacQ61L and a p67phox–p47phox fusion protein
  publication-title: Biochemistry
  doi: 10.1021/bi0269052
– volume: 78
  start-page: 1025
  year: 2005
  ident: 10.1016/j.bbagen.2014.07.022_bb0045
  article-title: Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0804442
– volume: 105
  start-page: 501
  year: 2013
  ident: 10.1016/j.bbagen.2014.07.022_bb0085
  article-title: The recruitment of p47(phox) and Rac2G12V at the phagosome is transient and phosphatidylserine dependent
  publication-title: Biol. Cell.
  doi: 10.1111/boc.201300010
– volume: 269
  start-page: 30749
  year: 1994
  ident: 10.1016/j.bbagen.2014.07.022_bb0050
  article-title: Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)47341-3
– volume: 271
  start-page: 22578
  year: 1996
  ident: 10.1016/j.bbagen.2014.07.022_bb0150
  article-title: NADPH oxidase activity is independent of p47phox in vitro
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.37.22578
– volume: 185
  start-page: 917
  year: 2009
  ident: 10.1016/j.bbagen.2014.07.022_bb0185
  article-title: Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200903020
– volume: 269
  start-page: 22405
  year: 1994
  ident: 10.1016/j.bbagen.2014.07.022_bb0115
  article-title: Evidence for a readily dissociable complex of p47phox and p67phox in cytosol of unstimulated human neutrophils
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)31804-5
– volume: 39
  start-page: 9302
  year: 2000
  ident: 10.1016/j.bbagen.2014.07.022_bb0170
  article-title: P67-phox-mediated NADPH oxidase assembly: imaging of cytochrome b558 liposomes by atomic force microscopy
  publication-title: Biochemistry
  doi: 10.1021/bi000483j
– volume: 341
  start-page: 251
  issue: Pt 2
  year: 1999
  ident: 10.1016/j.bbagen.2014.07.022_bb0145
  article-title: The mechanism of activation of NADPH oxidase in the cell-free system: the activation process is primarily catalytic and not through the formation of a stoichiometric complex
  publication-title: Biochem. J.
  doi: 10.1042/0264-6021:3410251
– volume: 91
  start-page: 10650
  year: 1994
  ident: 10.1016/j.bbagen.2014.07.022_bb0120
  article-title: Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.91.22.10650
– volume: 87
  start-page: 352
  year: 1991
  ident: 10.1016/j.bbagen.2014.07.022_bb0035
  article-title: Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI114993
– ident: 10.1016/j.bbagen.2014.07.022_bb0090
  doi: 10.1189/jlb.1210701
– volume: 274
  start-page: 25051
  year: 1999
  ident: 10.1016/j.bbagen.2014.07.022_bb0200
  article-title: Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.35.25051
– volume: 113
  start-page: 343
  year: 2003
  ident: 10.1016/j.bbagen.2014.07.022_bb0070
  article-title: Molecular basis of phosphorylation-induced activation of the NADPH oxidase
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00314-3
SSID ssj0000595
ssj0025309
Score 2.2512038
Snippet The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four...
Background The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3277
SubjectTerms Arachidonic acid activation
binding sites
Biochemistry
Biochemistry, Molecular Biology
catalytic activity
Cell free system
Life Sciences
NAD(P)H oxidase (H2O2-forming)
NADP (coenzyme)
NADPH oxidase (Nox)
Neutrophil
phagocytes
phagosomes
Protein translocation
proteins
superoxide anion
Title Assembly of phagocyte NADPH oxidase: A concerted binding process?
URI https://dx.doi.org/10.1016/j.bbagen.2014.07.022
https://www.ncbi.nlm.nih.gov/pubmed/25108064
https://www.proquest.com/docview/1561033119
https://www.proquest.com/docview/2000229396
https://universite-paris-saclay.hal.science/hal-04071160
Volume 1840
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQvCAaM8jEZxGtoHF-ThhcUFaZAoULAxN6s2LFZ0dZUW4foC387d3FSxEM1iScr1llO7i7n3-k-DPDC2cSNK46pq9RHmEsf5dYnkSNwb81Y2rjt3flxlpZH-P54dLwDk74WhtMqO9sfbHprrbuZYcfN4XI-H37hoB7BCTrx2ZHI2G9HzFjLX_7-m-ZB8GEUIgkYMXVfPtfmeBlDPy13QZXYtvBMkm3H07UTzpPcBkLbw-jwDtzuUKQowovehR232IMb4V7J9R7cnPTXuN2DgsO6Z-Z0LRovlifV98auV07MijefStH8mtd0jL0ShbBcv3hO-FOYeVvpIpahhuD1fTg6fPt1UkbdvQmRxWy0ijwSLLIqdZmiAWUi6xF65XOf1FaRf-IINqSeoEpFcK6ysTexyh16NK72CtUD2F00C_cQRObremwV96y3aLDOY0VkvKbCuo5xAKpnl7ZdU3G-2-JU99ljP3RgsmYm6zjTxOQBRJtVy9BU4wr6rJeE_kc5NNn9K1Y-J8FtNuFe2mXxQfNczK6sTOOfcgDPerlqEg5HTKqFay4vtGR0qZSU-XaapO0hlKs8HcB-UIrNfgQeCZGn-Oi_P-Ax3OKnUP34BHZX55fuKcGglTlo9fwArhfvpuWMx-nnb9M_3RIEMw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RoIpeqkJf6QO2Va9WvN61HXOprBRkSogqFSRuK-8LUkEcQaiaf8-MH6k4REicLK13ZHtmPfOtZucbgG_ORG5YUk5dJD6QGfdBZnwUOAT3Rg-5CWvuzpNJUpzJn-fx-QaMuloYOlbZ-v7Gp9feuh0ZtNoczKfTwW9K6iGcwIhPG4kU9-2bxE4V92AzPzouJv8dclw3X6H5AQl0FXT1MS-t8b8lIlQuaxbPKFoXoZ5d0lHJdTi0jkeHr-BlCyRZ3rzrNmy42Q48b1pLLndga9R1cnsNOWV2r_XVklWezS_Li8osF45N8h-_Clb9m1qMZPssZ4ZKGG8QgjI9rYtd2LwpI_j-Bs4OD05HRdC2TggMamAReNREbETiUoEXySNuY-mFz3xkjcAtikPkkHhEKyUiutKEXocic9JL7awXUryF3qyauffAUm_t0AiirTdSS5uFAqeRTCmtDWUfRKcuZVpecWpvcaW6A2R_VKNkRUpWYapQyX0IVlLzhlfjkflpZwn1YH0odP2PSH5Fw60eQnTaRT5WNBbSbpYn4V_ehy-dXRUah5Im5cxVd7eKE8AUgvNs_ZyophHKRJb04V2zKFbPQ_yIoDyRH578AXuwVZyejNX4aHL8EV7QnaYY8hP0Fjd37jOiooXebVf9PaNqBUE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly+of+phagocyte+NADPH+oxidase%3A+A+concerted+binding+process%3F&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Karimi%2C+Gilda&rft.au=Hou%C3%A9e-Levin%2C+Chantal&rft.au=Dagher%2C+Marie+Claire&rft.au=Baciou%2C+Laura&rft.date=2014-11-01&rft.issn=0304-4165&rft.volume=1840+p.3277-3283&rft.spage=3277&rft.epage=3283&rft_id=info:doi/10.1016%2Fj.bbagen.2014.07.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon