Assembly of phagocyte NADPH oxidase: A concerted binding process?
The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1840; no. 11; pp. 3277 - 3283 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.
A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox–p67phox complex.
The data presented here are consistent with the absence of a catalytic role of the p47phox–p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.
The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.
•No order of fixation is required for the cytosolic subunits, however all the partners should be present simultaneously.•Space control: all partners should be in the vicinity for optimal assembly.•Time control: if a subunit is missing at the beginning of the activation process an optimized edifice cannot be built. |
---|---|
AbstractList | The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67(phox), p47(phox), p40(phox) and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.BACKGROUNDThe phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67(phox), p47(phox), p40(phox) and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47(phox)-p67(phox) complex.METHODSA wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47(phox)-p67(phox) complex.The data presented here are consistent with the absence of a catalytic role of the p47(phox)-p67(phox) interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.RESULTSThe data presented here are consistent with the absence of a catalytic role of the p47(phox)-p67(phox) interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.CONCLUSION AND GENERAL SIGNIFICANCEThe activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome. The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase. A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox–p67phox complex. The data presented here are consistent with the absence of a catalytic role of the p47phox–p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core. The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome. •No order of fixation is required for the cytosolic subunits, however all the partners should be present simultaneously.•Space control: all partners should be in the vicinity for optimal assembly.•Time control: if a subunit is missing at the beginning of the activation process an optimized edifice cannot be built. The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67(phox), p47(phox), p40(phox) and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase. A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47(phox)-p67(phox) complex. The data presented here are consistent with the absence of a catalytic role of the p47(phox)-p67(phox) interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core. The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome. The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox–p67phox complex.The data presented here are consistent with the absence of a catalytic role of the p47phox–p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome. Background The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.Methods A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox-p67phox complex.Results The data presented here are consistent with the absence of a catalytic role of the p47phox-p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.Conclusion and general significance The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome. |
Author | Dagher, Marie Claire Karimi, Gilda Bizouarn, Tania Houée Levin, Chantal Baciou, Laura |
Author_xml | – sequence: 1 givenname: Gilda surname: Karimi fullname: Karimi, Gilda organization: Laboratoire de Chimie Physique, Université Paris Sud, UMR8000, CNRS, Orsay F-91405, France – sequence: 2 givenname: Chantal surname: Houée Levin fullname: Houée Levin, Chantal organization: Laboratoire de Chimie Physique, Université Paris Sud, UMR8000, CNRS, Orsay F-91405, France – sequence: 3 givenname: Marie Claire surname: Dagher fullname: Dagher, Marie Claire organization: Laboratoire TIMC-IMAG, Equipe TheREx, UMR5525, 38710 La Tronche, France – sequence: 4 givenname: Laura surname: Baciou fullname: Baciou, Laura organization: Laboratoire de Chimie Physique, Université Paris Sud, UMR8000, CNRS, Orsay F-91405, France – sequence: 5 givenname: Tania surname: Bizouarn fullname: Bizouarn, Tania email: tania.bizouarn@u-psud.fr organization: Laboratoire de Chimie Physique, Université Paris Sud, UMR8000, CNRS, Orsay F-91405, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25108064$$D View this record in MEDLINE/PubMed https://universite-paris-saclay.hal.science/hal-04071160$$DView record in HAL |
BookMark | eNqFkU9v00AQxVeoiKaFb4CQj3Cwmf3ruAeQ1RaCFAEHOK_W69l0I8cbdp2KfHs2cumBA53LSKPfGz29d0HOxjAiIa8pVBSoer-tus5scKwYUFFBXQFjz8iCLmtWLgHUGVkAB1EKquQ5uUhpC3lkI1-QcyYpLEGJBWnblHDXDcciuGJ_ZzbBHicsvrY331dF-O17k_CqaAsbRotxwr7o_Nj7cVPsY7CY0seX5LkzQ8JXD_uS_Px0--N6Va6_ff5y3a5LK2o5lU5IIS1XWPO8BGW0l8Jx1zjWW15LjrXgyvFlY6SSxoLrgDconOiwd1zwS_Ju_ntnBr2PfmfiUQfj9apd69MNBNSUKrinmX07s9nkrwOmSe98sjgMZsRwSJrlJBhreKOeRKlUFDintMnomwf00O2wfzTxN80MiBmwMaQU0T0iFPSpNL3Vc2n6VJqGWmcbWXb1j8z6yUw-jFM0fnhK_GEWY87-3mPUyXrMZfU-op10H_z_H_wBwhmwmA |
CitedBy_id | crossref_primary_10_1016_j_redox_2014_10_001 crossref_primary_10_1371_journal_pone_0144829 crossref_primary_10_1016_j_mad_2017_11_001 crossref_primary_10_1016_j_freeradbiomed_2020_12_233 crossref_primary_10_1016_j_bbamem_2023_184180 crossref_primary_10_1016_j_freeradbiomed_2023_02_019 crossref_primary_10_1111_febs_13779 crossref_primary_10_3390_biomedicines12020442 crossref_primary_10_1007_s12013_024_01279_9 crossref_primary_10_1016_j_freeradbiomed_2018_03_049 crossref_primary_10_1155_2020_5793817 crossref_primary_10_1016_j_freeradbiomed_2017_09_011 crossref_primary_10_3389_fcimb_2017_00373 crossref_primary_10_1002_jcb_25155 crossref_primary_10_1016_j_bbamcr_2022_119276 crossref_primary_10_4049_jimmunol_1800365 crossref_primary_10_1016_j_freeradbiomed_2017_10_376 crossref_primary_10_1016_j_yexmp_2015_11_011 crossref_primary_10_1074_jbc_RA118_006864 crossref_primary_10_3389_fphys_2016_00284 crossref_primary_10_1016_j_bbagen_2020_129767 crossref_primary_10_15789_1563_0625_EAF_2503 crossref_primary_10_1016_j_jbc_2024_107943 crossref_primary_10_4049_jimmunol_1801143 |
Cites_doi | 10.1111/j.1742-4658.2008.06488.x 10.1189/jlb.0404216 10.1074/jbc.274.25.18055 10.1016/j.bcp.2011.07.070 10.1016/S0021-9258(17)31760-X 10.1074/jbc.271.48.30326 10.1182/blood-2009-07-231498 10.1016/0167-4889(96)00020-1 10.1016/S0021-9258(17)34132-7 10.1074/jbc.M112065200 10.1021/bi9800404 10.1126/science.8036496 10.1016/j.febslet.2009.09.011 10.1016/S0021-9258(19)77934-4 10.1016/j.febslet.2009.01.046 10.1042/BJ20041835 10.1042/bj3170919 10.1074/jbc.275.18.13793 10.1074/jbc.M110.161166 10.1074/jbc.273.7.4232 10.1084/jem.180.6.2011 10.1091/mbc.E08-06-0620 10.1016/j.freeradbiomed.2010.06.021 10.1042/bj3140409 10.1074/jbc.M110.139824 10.1074/jbc.M006013200 10.1021/bi0269052 10.1189/jlb.0804442 10.1111/boc.201300010 10.1016/S0021-9258(18)47341-3 10.1074/jbc.271.37.22578 10.1083/jcb.200903020 10.1016/S0021-9258(17)31804-5 10.1021/bi000483j 10.1042/0264-6021:3410251 10.1073/pnas.91.22.10650 10.1172/JCI114993 10.1189/jlb.1210701 10.1074/jbc.274.35.25051 10.1016/S0092-8674(03)00314-3 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.bbagen.2014.07.022 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 3283 |
ExternalDocumentID | oai_HAL_hal_04071160v1 25108064 10_1016_j_bbagen_2014_07_022 S0304416514002670 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. F5P H~9 K-O MVM NPM PKN RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c475t-f4545c36e735c34121d54f3f9f2dc3753e7436f389a565ac0fb039e4f4bedf343 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Fri May 09 12:16:01 EDT 2025 Fri Jul 11 07:56:44 EDT 2025 Fri Jul 11 05:00:34 EDT 2025 Wed Feb 19 02:34:28 EST 2025 Thu Apr 24 22:58:40 EDT 2025 Tue Jul 01 00:22:04 EDT 2025 Fri Feb 23 02:32:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | AA PBS Phox GST Protein translocation Arachidonic acid activation PMSF Nox ROS ITC MF PX domain FRET NADPH oxidase (Nox) Neutrophil Cell free system SH3 cell-free system human-neutrophils respiratory burst oxidase neutrophil protein translocation superoxide-production cell free system p67(phox) p47(phox) nadph oxidase (nox) independent activation arachidonic acid activation complex phosphorylation |
Language | English |
License | Copyright © 2014 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-f4545c36e735c34121d54f3f9f2dc3753e7436f389a565ac0fb039e4f4bedf343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3401-4844 0000-0002-0614-0173 |
OpenAccessLink | https://universite-paris-saclay.hal.science/hal-04071160 |
PMID | 25108064 |
PQID | 1561033119 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | hal_primary_oai_HAL_hal_04071160v1 proquest_miscellaneous_2000229396 proquest_miscellaneous_1561033119 pubmed_primary_25108064 crossref_primary_10_1016_j_bbagen_2014_07_022 crossref_citationtrail_10_1016_j_bbagen_2014_07_022 elsevier_sciencedirect_doi_10_1016_j_bbagen_2014_07_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Marcoux, Man, Castellan, Vives, Forest, Fieschi (bb0075) 2009; 583 Dusi, Donini, Rossi (bb0040) 1996; 314 Koshkin, Lotan, Pick (bb0160) 1996; 271 Curnutte, Erickson, Ding, Badwey (bb0180) 1994; 269 Matute (bb0190) 2009; 114 Gorzalczany, Sigal, Itan, Lotan, Pick (bb0055) 2000; 275 Dang, P.M. et al. The NADPH oxidase cytosolic component p67phox is constitutively phosphorylated in human neutrophils: Regulation by a protein tyrosine kinase, MEK1/2 and phosphatases 1/2A. Biochem Pharmacol 82, 1145–52. Cross, Erickson, Curnutte (bb0145) 1999; 341 Leto, Adams, de Mendez (bb0120) 1994; 91 McPhail (bb0125) 1994; 180 Miyano, Fukuda, Ebisu, Tamura (bb0095) 2003; 42 Heyworth, Bohl, Bokoch, Curnutte (bb0050) 1994; 269 Uhlinger, Taylor, Lambeth (bb0140) 1994; 269 Fuchs, Dagher, Faure, Vignais (bb0020) 1996; 1312 Diekmann, Abo, Johnston, Segal, Hall (bb0195) 1994; 265 Yeung (bb0185) 2009; 185 Quinn, Gauss (bb0015) 2004; 76 Paclet, Coleman, Vergnaud, Morel (bb0170) 2000; 39 Hata, Ito, Takeshige, Sumimoto (bb0065) 1998; 273 Koga, Terasawa, Nunoi, Takeshige, Inagaki, Sumimoto (bb0200) 1999; 274 Groemping, Lapouge, Smerdon, Rittinger (bb0070) 2003; 113 Freeman, Lambeth (bb0150) 1996; 271 Ostuni, Gelinotte, Bizouarn, Baciou, Houee-Levin (bb0135) 2010; 49 Li, Tian, Stull, Grinstein, Atkinson, Dinauer (bb0175) 2009; 20 Maehara, Miyano, Yuzawa, Akimoto, Takeya, Sumimoto (bb0155) 2010; 285 Toporik, Gorzalczany, Hirshberg, Pick, Lotan (bb0165) 1998; 37 Wientjes, Panayotou, Reeves, Segal (bb0030) 1996; 317 Shiose, Sumimoto (bb0060) 2000; 275 Heyworth, Curnutte, Nauseef, Volpp, Pearson, Rosen, Clark (bb0035) 1991; 87 Tlili, A., Erard, M., Faure, M.C., Baudin, X., Piolot, T., Dupre-Crochet, S. and Nusse, O. Stable accumulation of p67phox at the phagosomal membrane and ROS production within the phagosome. J Leukoc Biol 91, 83–95. Iyer, Pearson, Nauseef, Clark (bb0115) 1994; 269 Faure (bb0085) 2013; 105 Akasaki, Koga, Sumimoto (bb0110) 1999; 274 Babior, Kuver, Curnutte (bb0130) 1988; 263 Lapouge, Smith, Groemping, Rittinger (bb0025) 2002; 277 Baciou, Erard, Dagher, Bizouarn (bb0105) 2009; 583 Groemping, Rittinger (bb0010) 2005; 386 Sumimoto (bb0005) 2008; 275 Marcoux, Man, Petit-Haertlein, Vives, Forest, Fieschi (bb0100) 2010; 285 Sheppard, Kelher, Moore, McLaughlin, Banerjee, Silliman (bb0045) 2005; 78 Dusi (10.1016/j.bbagen.2014.07.022_bb0040) 1996; 314 Leto (10.1016/j.bbagen.2014.07.022_bb0120) 1994; 91 Li (10.1016/j.bbagen.2014.07.022_bb0175) 2009; 20 Matute (10.1016/j.bbagen.2014.07.022_bb0190) 2009; 114 Groemping (10.1016/j.bbagen.2014.07.022_bb0010) 2005; 386 Heyworth (10.1016/j.bbagen.2014.07.022_bb0035) 1991; 87 Iyer (10.1016/j.bbagen.2014.07.022_bb0115) 1994; 269 Sheppard (10.1016/j.bbagen.2014.07.022_bb0045) 2005; 78 Quinn (10.1016/j.bbagen.2014.07.022_bb0015) 2004; 76 Fuchs (10.1016/j.bbagen.2014.07.022_bb0020) 1996; 1312 Maehara (10.1016/j.bbagen.2014.07.022_bb0155) 2010; 285 Paclet (10.1016/j.bbagen.2014.07.022_bb0170) 2000; 39 Gorzalczany (10.1016/j.bbagen.2014.07.022_bb0055) 2000; 275 Marcoux (10.1016/j.bbagen.2014.07.022_bb0075) 2009; 583 Cross (10.1016/j.bbagen.2014.07.022_bb0145) 1999; 341 Akasaki (10.1016/j.bbagen.2014.07.022_bb0110) 1999; 274 Koshkin (10.1016/j.bbagen.2014.07.022_bb0160) 1996; 271 Koga (10.1016/j.bbagen.2014.07.022_bb0200) 1999; 274 Hata (10.1016/j.bbagen.2014.07.022_bb0065) 1998; 273 Wientjes (10.1016/j.bbagen.2014.07.022_bb0030) 1996; 317 Ostuni (10.1016/j.bbagen.2014.07.022_bb0135) 2010; 49 Uhlinger (10.1016/j.bbagen.2014.07.022_bb0140) 1994; 269 Diekmann (10.1016/j.bbagen.2014.07.022_bb0195) 1994; 265 Marcoux (10.1016/j.bbagen.2014.07.022_bb0100) 2010; 285 Toporik (10.1016/j.bbagen.2014.07.022_bb0165) 1998; 37 McPhail (10.1016/j.bbagen.2014.07.022_bb0125) 1994; 180 10.1016/j.bbagen.2014.07.022_bb0090 Baciou (10.1016/j.bbagen.2014.07.022_bb0105) 2009; 583 Curnutte (10.1016/j.bbagen.2014.07.022_bb0180) 1994; 269 Freeman (10.1016/j.bbagen.2014.07.022_bb0150) 1996; 271 Groemping (10.1016/j.bbagen.2014.07.022_bb0070) 2003; 113 10.1016/j.bbagen.2014.07.022_bb0080 Babior (10.1016/j.bbagen.2014.07.022_bb0130) 1988; 263 Yeung (10.1016/j.bbagen.2014.07.022_bb0185) 2009; 185 Miyano (10.1016/j.bbagen.2014.07.022_bb0095) 2003; 42 Heyworth (10.1016/j.bbagen.2014.07.022_bb0050) 1994; 269 Shiose (10.1016/j.bbagen.2014.07.022_bb0060) 2000; 275 Faure (10.1016/j.bbagen.2014.07.022_bb0085) 2013; 105 Sumimoto (10.1016/j.bbagen.2014.07.022_bb0005) 2008; 275 Lapouge (10.1016/j.bbagen.2014.07.022_bb0025) 2002; 277 |
References_xml | – volume: 386 start-page: 401 year: 2005 end-page: 416 ident: bb0010 article-title: Activation and assembly of the NADPH oxidase: a structural perspective publication-title: Biochem. J. – volume: 314 start-page: 409 year: 1996 end-page: 412 ident: bb0040 article-title: Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox publication-title: Biochem. J. – volume: 275 start-page: 13793 year: 2000 end-page: 13801 ident: bb0060 article-title: Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase publication-title: J. Biol. Chem. – volume: 185 start-page: 917 year: 2009 end-page: 928 ident: bb0185 article-title: Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation publication-title: J. Cell Biol. – volume: 1312 start-page: 39 year: 1996 end-page: 47 ident: bb0020 article-title: Topological organization of the cytosolic activating complex of the superoxide-generating NADPH-oxidase. Pinpointing the sites of interaction between p47phoz, p67phox and p40phox using the two-hybrid system publication-title: Biochim. Biophys. Acta – volume: 317 start-page: 919 year: 1996 end-page: 924 ident: bb0030 article-title: Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox publication-title: Biochem. J. – volume: 269 start-page: 30749 year: 1994 end-page: 30752 ident: bb0050 article-title: Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558 publication-title: J. Biol. Chem. – volume: 285 start-page: 28980 year: 2010 end-page: 28990 ident: bb0100 article-title: p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex publication-title: J. Biol. Chem. – volume: 583 start-page: 835 year: 2009 end-page: 840 ident: bb0075 article-title: Conformational changes in p47(phox) upon activation highlighted by mass spectrometry coupled to hydrogen/deuterium exchange and limited proteolysis publication-title: FEBS Lett. – volume: 274 start-page: 25051 year: 1999 end-page: 25060 ident: bb0200 article-title: Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase publication-title: J. Biol. Chem. – reference: Dang, P.M. et al. The NADPH oxidase cytosolic component p67phox is constitutively phosphorylated in human neutrophils: Regulation by a protein tyrosine kinase, MEK1/2 and phosphatases 1/2A. Biochem Pharmacol 82, 1145–52. – volume: 265 start-page: 531 year: 1994 end-page: 533 ident: bb0195 article-title: Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity publication-title: Science – volume: 583 start-page: 3225 year: 2009 end-page: 3229 ident: bb0105 article-title: The cytosolic subunit p67phox of the NADPH-oxidase complex does not bind NADPH publication-title: FEBS Lett. – volume: 39 start-page: 9302 year: 2000 end-page: 9310 ident: bb0170 article-title: P67-phox-mediated NADPH oxidase assembly: imaging of cytochrome b558 liposomes by atomic force microscopy publication-title: Biochemistry – volume: 114 start-page: 3309 year: 2009 end-page: 3315 ident: bb0190 article-title: A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity publication-title: Blood – volume: 277 start-page: 10121 year: 2002 end-page: 10128 ident: bb0025 article-title: Architecture of the p40–p47–p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox publication-title: J. Biol. Chem. – volume: 341 start-page: 251 year: 1999 end-page: 255 ident: bb0145 article-title: The mechanism of activation of NADPH oxidase in the cell-free system: the activation process is primarily catalytic and not through the formation of a stoichiometric complex publication-title: Biochem. J. – volume: 49 start-page: 900 year: 2010 end-page: 907 ident: bb0135 article-title: Targeting NADPH-oxidase by reactive oxygen species reveals an initial sensitive step in the assembly process publication-title: Free Radic. Biol. Med. – volume: 269 start-page: 22095 year: 1994 end-page: 22098 ident: bb0140 article-title: p67-phox enhances the binding of p47-phox to the human neutrophil respiratory burst oxidase complex publication-title: J. Biol. Chem. – volume: 271 start-page: 22578 year: 1996 end-page: 22582 ident: bb0150 article-title: NADPH oxidase activity is independent of p47phox in vitro publication-title: J. Biol. Chem. – volume: 263 start-page: 1713 year: 1988 end-page: 1718 ident: bb0130 article-title: Kinetics of activation of the respiratory burst oxidase in a fully soluble system from human neutrophils publication-title: J. Biol. Chem. – volume: 91 start-page: 10650 year: 1994 end-page: 10654 ident: bb0120 article-title: Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 87 start-page: 352 year: 1991 end-page: 356 ident: bb0035 article-title: Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558 publication-title: J. Clin. Invest. – volume: 274 start-page: 18055 year: 1999 end-page: 18059 ident: bb0110 article-title: Phosphoinositide 3-kinase-dependent and -independent activation of the small GTPase Rac2 in human neutrophils publication-title: J. Biol. Chem. – volume: 275 start-page: 40073 year: 2000 end-page: 40081 ident: bb0055 article-title: Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly publication-title: J. Biol. Chem. – volume: 285 start-page: 31435 year: 2010 end-page: 31445 ident: bb0155 article-title: A conserved region between the TPR and activation domains of p67phox participates in activation of the phagocyte NADPH oxidase publication-title: J. Biol. Chem. – volume: 42 start-page: 184 year: 2003 end-page: 190 ident: bb0095 article-title: Remarkable stabilization of neutrophil NADPH oxidase using RacQ61L and a p67phox–p47phox fusion protein publication-title: Biochemistry – volume: 273 start-page: 4232 year: 1998 end-page: 4236 ident: bb0065 article-title: Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C terminally truncated forms. Implication for regulatory Src homology 3 domain-mediated interactions publication-title: J. Biol. Chem. – volume: 76 start-page: 760 year: 2004 end-page: 781 ident: bb0015 article-title: Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases publication-title: J. Leukoc. Biol. – volume: 271 start-page: 30326 year: 1996 end-page: 30329 ident: bb0160 article-title: The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production publication-title: J. Biol. Chem. – volume: 113 start-page: 343 year: 2003 end-page: 355 ident: bb0070 article-title: Molecular basis of phosphorylation-induced activation of the NADPH oxidase publication-title: Cell – reference: Tlili, A., Erard, M., Faure, M.C., Baudin, X., Piolot, T., Dupre-Crochet, S. and Nusse, O. Stable accumulation of p67phox at the phagosomal membrane and ROS production within the phagosome. J Leukoc Biol 91, 83–95. – volume: 105 start-page: 501 year: 2013 end-page: 518 ident: bb0085 article-title: The recruitment of p47(phox) and Rac2G12V at the phagosome is transient and phosphatidylserine dependent publication-title: Biol. Cell. – volume: 37 start-page: 7147 year: 1998 end-page: 7156 ident: bb0165 article-title: Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase publication-title: Biochemistry – volume: 269 start-page: 22405 year: 1994 end-page: 22411 ident: bb0115 article-title: Evidence for a readily dissociable complex of p47phox and p67phox in cytosol of unstimulated human neutrophils publication-title: J. Biol. Chem. – volume: 275 start-page: 3249 year: 2008 end-page: 3277 ident: bb0005 article-title: Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species publication-title: FEBS J. – volume: 180 start-page: 2011 year: 1994 end-page: 2015 ident: bb0125 article-title: SH3-dependent assembly of the phagocyte NADPH oxidase publication-title: J. Exp. Med. – volume: 20 start-page: 1520 year: 2009 end-page: 1532 ident: bb0175 article-title: A fluorescently tagged C-terminal fragment of p47phox detects NADPH oxidase dynamics during phagocytosis publication-title: Mol. Biol. Cell – volume: 78 start-page: 1025 year: 2005 end-page: 1042 ident: bb0045 article-title: Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation publication-title: J. Leukoc. Biol. – volume: 269 start-page: 10813 year: 1994 end-page: 10819 ident: bb0180 article-title: Reciprocal interactions between protein kinase C and components of the NADPH oxidase complex may regulate superoxide production by neutrophils stimulated with a phorbol ester publication-title: J. Biol. Chem. – volume: 275 start-page: 3249 year: 2008 ident: 10.1016/j.bbagen.2014.07.022_bb0005 article-title: Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species publication-title: FEBS J. doi: 10.1111/j.1742-4658.2008.06488.x – volume: 76 start-page: 760 year: 2004 ident: 10.1016/j.bbagen.2014.07.022_bb0015 article-title: Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0404216 – volume: 274 start-page: 18055 year: 1999 ident: 10.1016/j.bbagen.2014.07.022_bb0110 article-title: Phosphoinositide 3-kinase-dependent and -independent activation of the small GTPase Rac2 in human neutrophils publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.25.18055 – ident: 10.1016/j.bbagen.2014.07.022_bb0080 doi: 10.1016/j.bcp.2011.07.070 – volume: 269 start-page: 22095 year: 1994 ident: 10.1016/j.bbagen.2014.07.022_bb0140 article-title: p67-phox enhances the binding of p47-phox to the human neutrophil respiratory burst oxidase complex publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)31760-X – volume: 271 start-page: 30326 year: 1996 ident: 10.1016/j.bbagen.2014.07.022_bb0160 article-title: The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.48.30326 – volume: 114 start-page: 3309 year: 2009 ident: 10.1016/j.bbagen.2014.07.022_bb0190 article-title: A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity publication-title: Blood doi: 10.1182/blood-2009-07-231498 – volume: 1312 start-page: 39 year: 1996 ident: 10.1016/j.bbagen.2014.07.022_bb0020 article-title: Topological organization of the cytosolic activating complex of the superoxide-generating NADPH-oxidase. Pinpointing the sites of interaction between p47phoz, p67phox and p40phox using the two-hybrid system publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4889(96)00020-1 – volume: 269 start-page: 10813 year: 1994 ident: 10.1016/j.bbagen.2014.07.022_bb0180 article-title: Reciprocal interactions between protein kinase C and components of the NADPH oxidase complex may regulate superoxide production by neutrophils stimulated with a phorbol ester publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)34132-7 – volume: 277 start-page: 10121 year: 2002 ident: 10.1016/j.bbagen.2014.07.022_bb0025 article-title: Architecture of the p40–p47–p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112065200 – volume: 37 start-page: 7147 year: 1998 ident: 10.1016/j.bbagen.2014.07.022_bb0165 article-title: Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase publication-title: Biochemistry doi: 10.1021/bi9800404 – volume: 265 start-page: 531 year: 1994 ident: 10.1016/j.bbagen.2014.07.022_bb0195 article-title: Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity publication-title: Science doi: 10.1126/science.8036496 – volume: 583 start-page: 3225 year: 2009 ident: 10.1016/j.bbagen.2014.07.022_bb0105 article-title: The cytosolic subunit p67phox of the NADPH-oxidase complex does not bind NADPH publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.09.011 – volume: 263 start-page: 1713 year: 1988 ident: 10.1016/j.bbagen.2014.07.022_bb0130 article-title: Kinetics of activation of the respiratory burst oxidase in a fully soluble system from human neutrophils publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)77934-4 – volume: 583 start-page: 835 year: 2009 ident: 10.1016/j.bbagen.2014.07.022_bb0075 article-title: Conformational changes in p47(phox) upon activation highlighted by mass spectrometry coupled to hydrogen/deuterium exchange and limited proteolysis publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.01.046 – volume: 386 start-page: 401 year: 2005 ident: 10.1016/j.bbagen.2014.07.022_bb0010 article-title: Activation and assembly of the NADPH oxidase: a structural perspective publication-title: Biochem. J. doi: 10.1042/BJ20041835 – volume: 317 start-page: 919 issue: Pt 3 year: 1996 ident: 10.1016/j.bbagen.2014.07.022_bb0030 article-title: Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox publication-title: Biochem. J. doi: 10.1042/bj3170919 – volume: 275 start-page: 13793 year: 2000 ident: 10.1016/j.bbagen.2014.07.022_bb0060 article-title: Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.18.13793 – volume: 285 start-page: 31435 year: 2010 ident: 10.1016/j.bbagen.2014.07.022_bb0155 article-title: A conserved region between the TPR and activation domains of p67phox participates in activation of the phagocyte NADPH oxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.161166 – volume: 273 start-page: 4232 year: 1998 ident: 10.1016/j.bbagen.2014.07.022_bb0065 article-title: Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C terminally truncated forms. Implication for regulatory Src homology 3 domain-mediated interactions publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.7.4232 – volume: 180 start-page: 2011 year: 1994 ident: 10.1016/j.bbagen.2014.07.022_bb0125 article-title: SH3-dependent assembly of the phagocyte NADPH oxidase publication-title: J. Exp. Med. doi: 10.1084/jem.180.6.2011 – volume: 20 start-page: 1520 year: 2009 ident: 10.1016/j.bbagen.2014.07.022_bb0175 article-title: A fluorescently tagged C-terminal fragment of p47phox detects NADPH oxidase dynamics during phagocytosis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E08-06-0620 – volume: 49 start-page: 900 year: 2010 ident: 10.1016/j.bbagen.2014.07.022_bb0135 article-title: Targeting NADPH-oxidase by reactive oxygen species reveals an initial sensitive step in the assembly process publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.06.021 – volume: 314 start-page: 409 issue: Pt 2 year: 1996 ident: 10.1016/j.bbagen.2014.07.022_bb0040 article-title: Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox publication-title: Biochem. J. doi: 10.1042/bj3140409 – volume: 285 start-page: 28980 year: 2010 ident: 10.1016/j.bbagen.2014.07.022_bb0100 article-title: p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.139824 – volume: 275 start-page: 40073 year: 2000 ident: 10.1016/j.bbagen.2014.07.022_bb0055 article-title: Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006013200 – volume: 42 start-page: 184 year: 2003 ident: 10.1016/j.bbagen.2014.07.022_bb0095 article-title: Remarkable stabilization of neutrophil NADPH oxidase using RacQ61L and a p67phox–p47phox fusion protein publication-title: Biochemistry doi: 10.1021/bi0269052 – volume: 78 start-page: 1025 year: 2005 ident: 10.1016/j.bbagen.2014.07.022_bb0045 article-title: Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0804442 – volume: 105 start-page: 501 year: 2013 ident: 10.1016/j.bbagen.2014.07.022_bb0085 article-title: The recruitment of p47(phox) and Rac2G12V at the phagosome is transient and phosphatidylserine dependent publication-title: Biol. Cell. doi: 10.1111/boc.201300010 – volume: 269 start-page: 30749 year: 1994 ident: 10.1016/j.bbagen.2014.07.022_bb0050 article-title: Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)47341-3 – volume: 271 start-page: 22578 year: 1996 ident: 10.1016/j.bbagen.2014.07.022_bb0150 article-title: NADPH oxidase activity is independent of p47phox in vitro publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.37.22578 – volume: 185 start-page: 917 year: 2009 ident: 10.1016/j.bbagen.2014.07.022_bb0185 article-title: Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation publication-title: J. Cell Biol. doi: 10.1083/jcb.200903020 – volume: 269 start-page: 22405 year: 1994 ident: 10.1016/j.bbagen.2014.07.022_bb0115 article-title: Evidence for a readily dissociable complex of p47phox and p67phox in cytosol of unstimulated human neutrophils publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)31804-5 – volume: 39 start-page: 9302 year: 2000 ident: 10.1016/j.bbagen.2014.07.022_bb0170 article-title: P67-phox-mediated NADPH oxidase assembly: imaging of cytochrome b558 liposomes by atomic force microscopy publication-title: Biochemistry doi: 10.1021/bi000483j – volume: 341 start-page: 251 issue: Pt 2 year: 1999 ident: 10.1016/j.bbagen.2014.07.022_bb0145 article-title: The mechanism of activation of NADPH oxidase in the cell-free system: the activation process is primarily catalytic and not through the formation of a stoichiometric complex publication-title: Biochem. J. doi: 10.1042/0264-6021:3410251 – volume: 91 start-page: 10650 year: 1994 ident: 10.1016/j.bbagen.2014.07.022_bb0120 article-title: Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.91.22.10650 – volume: 87 start-page: 352 year: 1991 ident: 10.1016/j.bbagen.2014.07.022_bb0035 article-title: Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558 publication-title: J. Clin. Invest. doi: 10.1172/JCI114993 – ident: 10.1016/j.bbagen.2014.07.022_bb0090 doi: 10.1189/jlb.1210701 – volume: 274 start-page: 25051 year: 1999 ident: 10.1016/j.bbagen.2014.07.022_bb0200 article-title: Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.35.25051 – volume: 113 start-page: 343 year: 2003 ident: 10.1016/j.bbagen.2014.07.022_bb0070 article-title: Molecular basis of phosphorylation-induced activation of the NADPH oxidase publication-title: Cell doi: 10.1016/S0092-8674(03)00314-3 |
SSID | ssj0000595 ssj0025309 |
Score | 2.2512038 |
Snippet | The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four... Background The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3277 |
SubjectTerms | Arachidonic acid activation binding sites Biochemistry Biochemistry, Molecular Biology catalytic activity Cell free system Life Sciences NAD(P)H oxidase (H2O2-forming) NADP (coenzyme) NADPH oxidase (Nox) Neutrophil phagocytes phagosomes Protein translocation proteins superoxide anion |
Title | Assembly of phagocyte NADPH oxidase: A concerted binding process? |
URI | https://dx.doi.org/10.1016/j.bbagen.2014.07.022 https://www.ncbi.nlm.nih.gov/pubmed/25108064 https://www.proquest.com/docview/1561033119 https://www.proquest.com/docview/2000229396 https://universite-paris-saclay.hal.science/hal-04071160 |
Volume | 1840 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQvCAaM8jEZxGtoHF-ThhcUFaZAoULAxN6s2LFZ0dZUW4foC387d3FSxEM1iScr1llO7i7n3-k-DPDC2cSNK46pq9RHmEsf5dYnkSNwb81Y2rjt3flxlpZH-P54dLwDk74WhtMqO9sfbHprrbuZYcfN4XI-H37hoB7BCTrx2ZHI2G9HzFjLX_7-m-ZB8GEUIgkYMXVfPtfmeBlDPy13QZXYtvBMkm3H07UTzpPcBkLbw-jwDtzuUKQowovehR232IMb4V7J9R7cnPTXuN2DgsO6Z-Z0LRovlifV98auV07MijefStH8mtd0jL0ShbBcv3hO-FOYeVvpIpahhuD1fTg6fPt1UkbdvQmRxWy0ijwSLLIqdZmiAWUi6xF65XOf1FaRf-IINqSeoEpFcK6ysTexyh16NK72CtUD2F00C_cQRObremwV96y3aLDOY0VkvKbCuo5xAKpnl7ZdU3G-2-JU99ljP3RgsmYm6zjTxOQBRJtVy9BU4wr6rJeE_kc5NNn9K1Y-J8FtNuFe2mXxQfNczK6sTOOfcgDPerlqEg5HTKqFay4vtGR0qZSU-XaapO0hlKs8HcB-UIrNfgQeCZGn-Oi_P-Ax3OKnUP34BHZX55fuKcGglTlo9fwArhfvpuWMx-nnb9M_3RIEMw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RoIpeqkJf6QO2Va9WvN61HXOprBRkSogqFSRuK-8LUkEcQaiaf8-MH6k4REicLK13ZHtmPfOtZucbgG_ORG5YUk5dJD6QGfdBZnwUOAT3Rg-5CWvuzpNJUpzJn-fx-QaMuloYOlbZ-v7Gp9feuh0ZtNoczKfTwW9K6iGcwIhPG4kU9-2bxE4V92AzPzouJv8dclw3X6H5AQl0FXT1MS-t8b8lIlQuaxbPKFoXoZ5d0lHJdTi0jkeHr-BlCyRZ3rzrNmy42Q48b1pLLndga9R1cnsNOWV2r_XVklWezS_Li8osF45N8h-_Clb9m1qMZPssZ4ZKGG8QgjI9rYtd2LwpI_j-Bs4OD05HRdC2TggMamAReNREbETiUoEXySNuY-mFz3xkjcAtikPkkHhEKyUiutKEXocic9JL7awXUryF3qyauffAUm_t0AiirTdSS5uFAqeRTCmtDWUfRKcuZVpecWpvcaW6A2R_VKNkRUpWYapQyX0IVlLzhlfjkflpZwn1YH0odP2PSH5Fw60eQnTaRT5WNBbSbpYn4V_ehy-dXRUah5Im5cxVd7eKE8AUgvNs_ZyophHKRJb04V2zKFbPQ_yIoDyRH578AXuwVZyejNX4aHL8EV7QnaYY8hP0Fjd37jOiooXebVf9PaNqBUE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly+of+phagocyte+NADPH+oxidase%3A+A+concerted+binding+process%3F&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Karimi%2C+Gilda&rft.au=Hou%C3%A9e-Levin%2C+Chantal&rft.au=Dagher%2C+Marie+Claire&rft.au=Baciou%2C+Laura&rft.date=2014-11-01&rft.issn=0304-4165&rft.volume=1840+p.3277-3283&rft.spage=3277&rft.epage=3283&rft_id=info:doi/10.1016%2Fj.bbagen.2014.07.022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |