Chronic Glucocorticoids Increase Hippocampal Vulnerability to Neurotoxicity under Conditions That Produce CA3 Dendritic Retraction But Fail to Impair Spatial Recognition Memory
We previously found that chronic stress conditions producing CA3 dendritic retraction and spatial memory deficits make the hippocampus vulnerable to the neurotoxin ibotenic acid (IBO). The purpose of this study was to determine whether exposure to chronic corticosterone (CORT) under conditions that...
Saved in:
Published in | The Journal of neuroscience Vol. 27; no. 31; pp. 8278 - 8285 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
01.08.2007
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We previously found that chronic stress conditions producing CA3 dendritic retraction and spatial memory deficits make the hippocampus vulnerable to the neurotoxin ibotenic acid (IBO). The purpose of this study was to determine whether exposure to chronic corticosterone (CORT) under conditions that produce CA3 dendritic retraction would enhance CA3 susceptibility to IBO. Male Sprague Dawley rats were chronically treated for 21 d with CORT in drinking water (400 μg/ml), and half were given daily injections of phenytoin (40 mg/kg), an antiepileptic drug that prevents CA3 dendritic retraction. Three days after treatments stopped, IBO was infused into the CA3 region. Conditions producing CA3 dendritic retraction (CORT and vehicle) exacerbated IBO-induced CA3 damage compared with conditions in which CA3 dendritic retraction was not observed (vehicle and vehicle, vehicle and phenytoin, CORT and phenytoin). Additionally, spatial recognition memory was assessed using the Y-maze, revealing that conditions producing CA3 dendritic retraction failed to impair spatial recognition memory. Furthermore, CORT levels in response to a potentially mild stressor (injection and Y-maze exposure) stayed at basal levels and failed to differ among key groups (vehicle and vehicle, CORT and vehicle, CORT and phenytoin), supporting the interpretations that CORT levels were unlikely to have been elevated during IBO infusion and that the neuroprotective actions of phenytoin were not through CORT alterations. These data are the first to show that conditions with prolonged glucocorticoid elevations leading to structural changes in hippocampal dendritic arbors can make the hippocampus vulnerable to neurotoxic challenges. These findings have significance for many disorders with elevated glucocorticoids that include depression, schizophrenia, Alzheimer's disease, and Cushing's disease. |
---|---|
AbstractList | We previously found that chronic stress conditions producing CA3 dendritic retraction and spatial memory deficits make the hippocampus vulnerable to the neurotoxin ibotenic acid (IBO). The purpose of this study was to determine whether exposure to chronic corticosterone (CORT) under conditions that produce CA3 dendritic retraction would enhance CA3 susceptibility to IBO. Male Sprague Dawley rats were chronically treated for 21 d with CORT in drinking water (400 μg/ml), and half were given daily injections of phenytoin (40 mg/kg), an antiepileptic drug that prevents CA3 dendritic retraction. Three days after treatments stopped, IBO was infused into the CA3 region. Conditions producing CA3 dendritic retraction (CORT and vehicle) exacerbated IBO-induced CA3 damage compared with conditions in which CA3 dendritic retraction was not observed (vehicle and vehicle, vehicle and phenytoin, CORT and phenytoin). Additionally, spatial recognition memory was assessed using the Y-maze, revealing that conditions producing CA3 dendritic retraction failed to impair spatial recognition memory. Furthermore, CORT levels in response to a potentially mild stressor (injection and Y-maze exposure) stayed at basal levels and failed to differ among key groups (vehicle and vehicle, CORT and vehicle, CORT and phenytoin), supporting the interpretations that CORT levels were unlikely to have been elevated during IBO infusion and that the neuroprotective actions of phenytoin were not through CORT alterations. These data are the first to show that conditions with prolonged glucocorticoid elevations leading to structural changes in hippocampal dendritic arbors can make the hippocampus vulnerable to neurotoxic challenges. These findings have significance for many disorders with elevated glucocorticoids that include depression, schizophrenia, Alzheimer's disease, and Cushing's disease. We previously found that chronic stress conditions producing CA3 dendritic retraction and spatial memory deficits make the hippocampus vulnerable to the neurotoxin ibotenic acid (IBO). The purpose of this study was to determine whether exposure to chronic corticosterone (CORT) under conditions that produce CA3 dendritic retraction would enhance CA3 susceptibility to IBO. Male Sprague Dawley rats were chronically treated for 21 d with CORT in drinking water (400 microg/ml), and half were given daily injections of phenytoin (40 mg/kg), an antiepileptic drug that prevents CA3 dendritic retraction. Three days after treatments stopped, IBO was infused into the CA3 region. Conditions producing CA3 dendritic retraction (CORT and vehicle) exacerbated IBO-induced CA3 damage compared with conditions in which CA3 dendritic retraction was not observed (vehicle and vehicle, vehicle and phenytoin, CORT and phenytoin). Additionally, spatial recognition memory was assessed using the Y-maze, revealing that conditions producing CA3 dendritic retraction failed to impair spatial recognition memory. Furthermore, CORT levels in response to a potentially mild stressor (injection and Y-maze exposure) stayed at basal levels and failed to differ among key groups (vehicle and vehicle, CORT and vehicle, CORT and phenytoin), supporting the interpretations that CORT levels were unlikely to have been elevated during IBO infusion and that the neuroprotective actions of phenytoin were not through CORT alterations. These data are the first to show that conditions with prolonged glucocorticoid elevations leading to structural changes in hippocampal dendritic arbors can make the hippocampus vulnerable to neurotoxic challenges. These findings have significance for many disorders with elevated glucocorticoids that include depression, schizophrenia, Alzheimer's disease, and Cushing's disease. We previously found that chronic stress conditions producing CA3 dendritic retraction and spatial memory deficits make the hippocampus vulnerable to the neurotoxin ibotenic acid (IBO). The purpose of this study was to determine whether exposure to chronic corticosterone (CORT) under conditions that produce CA3 dendritic retraction would enhance CA3 susceptibility to IBO. Male Sprague Dawley rats were chronically treated for 21 d with CORT in drinking water (400 mu g/ml), and half were given daily injections of phenytoin (40 mg/kg), an antiepileptic drug that prevents CA3 dendritic retraction. Three days after treatments stopped, IBO was infused into the CA3 region. Conditions producing CA3 dendritic retraction (CORT and vehicle) exacerbated IBO-induced CA3 damage compared with conditions in which CA3 dendritic retraction was not observed (vehicle and vehicle, vehicle and phenytoin, CORT and phenytoin). Additionally, spatial recognition memory was assessed using the Y-maze, revealing that conditions producing CA3 dendritic retraction failed to impair spatial recognition memory. Furthermore, CORT levels in response to a potentially mild stressor (injection and Y-maze exposure) stayed at basal levels and failed to differ among key groups (vehicle and vehicle, CORT and vehicle, CORT and phenytoin), supporting the interpretations that CORT levels were unlikely to have been elevated during IBO infusion and that the neuroprotective actions of phenytoin were not through CORT alterations. These data are the first to show that conditions with prolonged glucocorticoid elevations leading to structural changes in hippocampal dendritic arbors can make the hippocampus vulnerable to neurotoxic challenges. These findings have significance for many disorders with elevated glucocorticoids that include depression, schizophrenia, Alzheimer's disease, and Cushing's disease. We previously found that chronic stress conditions producing CA3 dendritic retraction and spatial memory deficits make the hippocampus vulnerable to the neurotoxin ibotenic acid (IBO). The purpose of this study was to determine whether exposure to chronic corticosterone (CORT) under conditions that produce CA3 dendritic retraction would enhance CA3 susceptibility to IBO. Male Sprague Dawley rats were chronically treated for 21 d with CORT in drinking water (400 microg/ml), and half were given daily injections of phenytoin (40 mg/kg), an antiepileptic drug that prevents CA3 dendritic retraction. Three days after treatments stopped, IBO was infused into the CA3 region. Conditions producing CA3 dendritic retraction (CORT and vehicle) exacerbated IBO-induced CA3 damage compared with conditions in which CA3 dendritic retraction was not observed (vehicle and vehicle, vehicle and phenytoin, CORT and phenytoin). Additionally, spatial recognition memory was assessed using the Y-maze, revealing that conditions producing CA3 dendritic retraction failed to impair spatial recognition memory. Furthermore, CORT levels in response to a potentially mild stressor (injection and Y-maze exposure) stayed at basal levels and failed to differ among key groups (vehicle and vehicle, CORT and vehicle, CORT and phenytoin), supporting the interpretations that CORT levels were unlikely to have been elevated during IBO infusion and that the neuroprotective actions of phenytoin were not through CORT alterations. These data are the first to show that conditions with prolonged glucocorticoid elevations leading to structural changes in hippocampal dendritic arbors can make the hippocampus vulnerable to neurotoxic challenges. These findings have significance for many disorders with elevated glucocorticoids that include depression, schizophrenia, Alzheimer's disease, and Cushing's disease.We previously found that chronic stress conditions producing CA3 dendritic retraction and spatial memory deficits make the hippocampus vulnerable to the neurotoxin ibotenic acid (IBO). The purpose of this study was to determine whether exposure to chronic corticosterone (CORT) under conditions that produce CA3 dendritic retraction would enhance CA3 susceptibility to IBO. Male Sprague Dawley rats were chronically treated for 21 d with CORT in drinking water (400 microg/ml), and half were given daily injections of phenytoin (40 mg/kg), an antiepileptic drug that prevents CA3 dendritic retraction. Three days after treatments stopped, IBO was infused into the CA3 region. Conditions producing CA3 dendritic retraction (CORT and vehicle) exacerbated IBO-induced CA3 damage compared with conditions in which CA3 dendritic retraction was not observed (vehicle and vehicle, vehicle and phenytoin, CORT and phenytoin). Additionally, spatial recognition memory was assessed using the Y-maze, revealing that conditions producing CA3 dendritic retraction failed to impair spatial recognition memory. Furthermore, CORT levels in response to a potentially mild stressor (injection and Y-maze exposure) stayed at basal levels and failed to differ among key groups (vehicle and vehicle, CORT and vehicle, CORT and phenytoin), supporting the interpretations that CORT levels were unlikely to have been elevated during IBO infusion and that the neuroprotective actions of phenytoin were not through CORT alterations. These data are the first to show that conditions with prolonged glucocorticoid elevations leading to structural changes in hippocampal dendritic arbors can make the hippocampus vulnerable to neurotoxic challenges. These findings have significance for many disorders with elevated glucocorticoids that include depression, schizophrenia, Alzheimer's disease, and Cushing's disease. |
Author | McLaughlin, Katie J Conrad, Cheryl D Wright, Ryan L Wieczorek, Lindsay Lightner, Elizabeth Harman, James S Foltz, Cainan |
Author_xml | – sequence: 1 fullname: Conrad, Cheryl D – sequence: 2 fullname: McLaughlin, Katie J – sequence: 3 fullname: Harman, James S – sequence: 4 fullname: Foltz, Cainan – sequence: 5 fullname: Wieczorek, Lindsay – sequence: 6 fullname: Lightner, Elizabeth – sequence: 7 fullname: Wright, Ryan L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17670974$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUt1u0zAUjtAQ6wavMPkKrlJsx61jCSFtYT9FY0Pdxq3l2KetUWoHO6H0rXhEHDoq4GZXlny-P53zHWUHzjvIshOCx2RCi7cfb84f5rd31WxMCSU55mOKMX-WjdJU5JRhcpCNMOU4nzLODrOjGL_ihMCEv8gOCZ9yLDgbZT-rVfDOanTZ9NprHzqrvTURzZwOoCKgK9u2Xqt1qxr0pW8cBFXbxnZb1Hl0A33wnf9h9fDROwMBVd4Z21nvIrpfqQ59Dt70GlB1WqAP4ExIQ43m0AWlBxg66zt0oWwzCM6Sjw3orlWdTYZz0H7pfquhT7D2Yfsye75QTYRXj-9x9nBxfl9d5de3l7Pq9DrXjE-6HJRmgi5wXUKBtaBKCD5RtSlNDXqCqcGFKXmNTakMKwgBSkwpFLBaMMOnRXGcvd_ptn29BqPBpbyNbINdq7CVXln578TZlVz675KIUhDGksDrR4Hgv_UQO7m2UUPTKAe-j3JaEkoLTJ4EEsELQdkkAU_-jrTP8ueaCfBuB9DBxxhgIdNZ1LC8lNA2kmA5lEfuyyOH8kjM5VCeRJ_-R987PEV8syOu7HK1sQFkXKumSTGJ3Gw2lMuCyJLysvgF3_zcvw |
CitedBy_id | crossref_primary_10_3109_10253890_2011_604751 crossref_primary_10_1111_j_1600_079X_2010_00775_x crossref_primary_10_1002_pbc_23060 crossref_primary_10_1177_09603271231163477 crossref_primary_10_1093_schbul_sbm147 crossref_primary_10_1016_j_alcohol_2011_12_005 crossref_primary_10_3390_ijms22169090 crossref_primary_10_1016_j_neuint_2013_08_011 crossref_primary_10_1093_hmg_ddr614 crossref_primary_10_1016_j_yhbeh_2012_09_012 crossref_primary_10_1007_s12035_009_8079_7 crossref_primary_10_1007_s12035_016_0148_0 crossref_primary_10_1124_jpet_122_001482 crossref_primary_10_1016_j_physbeh_2009_04_011 crossref_primary_10_1016_j_phymed_2014_06_004 crossref_primary_10_1155_2015_419808 crossref_primary_10_1002_hipo_20599 crossref_primary_10_1002_jnr_22566 crossref_primary_10_3389_fped_2024_1496846 crossref_primary_10_1016_j_neuint_2011_06_014 crossref_primary_10_1186_s12974_017_0911_9 crossref_primary_10_1016_j_neuroscience_2012_01_034 crossref_primary_10_1002_hipo_20744 crossref_primary_10_1016_j_physbeh_2017_09_019 crossref_primary_10_1016_j_yhbeh_2008_04_010 crossref_primary_10_1016_j_nlm_2011_01_006 crossref_primary_10_1016_j_acthis_2014_09_009 crossref_primary_10_1016_j_jad_2019_01_007 crossref_primary_10_1016_j_jad_2015_09_049 crossref_primary_10_1016_j_bbr_2017_02_014 crossref_primary_10_3389_fncel_2020_00282 crossref_primary_10_1016_j_neuron_2009_04_017 crossref_primary_10_3109_13880209_2014_935866 crossref_primary_10_1523_JNEUROSCI_1309_11_2011 crossref_primary_10_1155_2012_670536 crossref_primary_10_1007_s11920_018_0864_4 crossref_primary_10_4303_jdar_236017 crossref_primary_10_1016_j_yfrne_2017_11_001 crossref_primary_10_1016_j_npbr_2019_05_004 crossref_primary_10_1515_REVNEURO_2008_19_6_395 crossref_primary_10_1093_cercor_bhz092 crossref_primary_10_1210_en_2012_1953 crossref_primary_10_1016_j_yhbeh_2019_03_004 crossref_primary_10_1016_j_yhbeh_2022_105180 crossref_primary_10_1515_revneuro_2018_0083 crossref_primary_10_1016_j_expneurol_2012_11_028 crossref_primary_10_1016_j_mcn_2012_03_005 crossref_primary_10_1016_j_nbd_2011_01_020 crossref_primary_10_3390_ijms23063349 crossref_primary_10_1016_j_bbi_2015_09_019 crossref_primary_10_1523_JNEUROSCI_0731_10_2010 crossref_primary_10_1016_j_neuroscience_2013_04_027 crossref_primary_10_1124_jpet_116_235788 crossref_primary_10_1186_2045_5380_1_4 crossref_primary_10_1016_j_jpsychires_2014_01_014 crossref_primary_10_1080_15592294_2017_1334025 crossref_primary_10_3389_fmed_2024_1474043 crossref_primary_10_1080_15592294_2020_1864169 crossref_primary_10_3109_10253890_2014_974029 crossref_primary_10_1016_j_physbeh_2016_11_017 crossref_primary_10_1007_s11418_013_0782_z crossref_primary_10_1007_s00213_011_2533_8 crossref_primary_10_17537_2024_19_609 crossref_primary_10_3390_nu16030381 crossref_primary_10_3390_brainsci8070121 crossref_primary_10_1007_s11418_022_01636_z crossref_primary_10_1016_j_yhbeh_2024_105600 crossref_primary_10_3892_ijmm_2017_3092 crossref_primary_10_1002_hipo_20678 crossref_primary_10_1371_journal_pone_0016447 crossref_primary_10_1016_j_physbeh_2017_01_006 crossref_primary_10_1002_syn_22066 crossref_primary_10_1016_j_brainres_2008_08_057 crossref_primary_10_1016_j_physbeh_2016_05_015 crossref_primary_10_1152_ajpregu_00492_2007 crossref_primary_10_1016_j_psyneuen_2011_08_008 crossref_primary_10_1016_j_ejphar_2009_11_045 crossref_primary_10_1254_jphs_09107FP crossref_primary_10_1007_s12035_015_9580_9 crossref_primary_10_1016_j_yhbeh_2019_104563 crossref_primary_10_1016_j_intimp_2022_108972 crossref_primary_10_1159_000438986 crossref_primary_10_1007_s11682_015_9373_9 crossref_primary_10_1111_cdep_12429 crossref_primary_10_1016_j_neuroscience_2009_04_057 crossref_primary_10_1016_j_neubiorev_2010_09_010 crossref_primary_10_1016_j_bbr_2014_07_044 crossref_primary_10_3727_096368912X655181 crossref_primary_10_1016_j_biopha_2020_110995 crossref_primary_10_1016_j_ynstr_2016_08_003 crossref_primary_10_1016_j_brainres_2014_04_034 crossref_primary_10_1016_j_ejphar_2011_05_012 crossref_primary_10_1016_j_jchemneu_2013_01_001 crossref_primary_10_1016_j_yfrne_2013_12_001 crossref_primary_10_1007_s11011_020_00595_2 crossref_primary_10_1097_FBP_0000000000000061 crossref_primary_10_1016_j_nlm_2012_01_003 crossref_primary_10_1007_s00394_020_02454_3 crossref_primary_10_1016_j_bbr_2013_05_026 crossref_primary_10_1007_s00424_013_1271_7 crossref_primary_10_1016_j_bbr_2008_02_031 crossref_primary_10_1016_j_neuroscience_2013_01_037 crossref_primary_10_1016_j_bbr_2019_02_035 crossref_primary_10_1016_j_euroneuro_2012_10_008 crossref_primary_10_1016_j_biopha_2016_12_105 crossref_primary_10_1016_j_intimp_2017_05_039 crossref_primary_10_1016_j_pscychresns_2013_07_013 |
Cites_doi | 10.1016/0304-3940(95)12296-6 10.1016/0306-4522(95)00259-L 10.1523/JNEUROSCI.14-09-05373.1994 10.1002/hipo.450020410 10.1177/0091270005277938 10.1126/science.1106477 10.1016/0165-0270(89)90149-0 10.1016/S0306-4522(98)00615-0 10.1016/S0006-8993(02)02482-4 10.1016/S0031-9384(97)00529-5 10.1016/0163-1047(93)90173-F 10.1037/0735-7044.110.6.1321 10.1016/0006-8993(89)91340-1 10.1016/S0006-8993(98)00882-8 10.1016/0006-8993(93)90193-Q 10.1037/0735-7044.113.5.902 10.1016/j.neuroscience.2004.01.049 10.1523/JNEUROSCI.15-01-00061.1995 10.1037/0735-7044.120.4.842 10.1016/0006-8993(92)91597-8 10.1016/0031-9384(95)02172-8 10.1016/j.brainres.2007.05.042 10.1016/S1074-7427(03)00019-4 10.1016/0006-8993(88)90180-1 10.1016/S0163-1047(05)80074-3 10.1006/nlme.1995.1028 10.1038/nrn1683 10.1523/JNEUROSCI.09-05-01705.1989 10.1006/nlme.1998.3898 10.1111/j.1460-9568.2006.04948.x 10.1126/science.715460 10.1016/S0165-0173(01)00131-X 10.1016/0006-8993(85)91440-4 10.1016/0306-4522(95)00256-I 10.1177/1534582306289043 10.1016/0006-8993(90)90778-A 10.1136/jim-50-06-06 10.1126/science.4035356 10.1016/S0006-3223(00)00964-1 |
ContentType | Journal Article |
Copyright | Copyright © 2007 Society for Neuroscience 0270-6474/07/278278-08$15.00/0 2007 |
Copyright_xml | – notice: Copyright © 2007 Society for Neuroscience 0270-6474/07/278278-08$15.00/0 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7TK 7X8 5PM |
DOI | 10.1523/JNEUROSCI.2121-07.2007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts Animal Behavior Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 8285 |
ExternalDocumentID | PMC1989144 17670974 10_1523_JNEUROSCI_2121_07_2007 www27_31_8278 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH064727 – fundername: NIMH NIH HHS grantid: MH64727 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7QG 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c475t-eac492f0b8e30c92a9975abd8dbec502d03d87b0d8ad4311e21d89ae4b94d7633 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:33:00 EDT 2025 Fri Jul 11 12:30:36 EDT 2025 Fri Jul 11 07:30:11 EDT 2025 Fri May 30 11:01:18 EDT 2025 Tue Jul 01 02:58:47 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Tue Nov 10 19:50:53 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c475t-eac492f0b8e30c92a9975abd8dbec502d03d87b0d8ad4311e21d89ae4b94d7633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/27/31/8278.full.pdf |
PMID | 17670974 |
PQID | 19739245 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1989144 proquest_miscellaneous_68122301 proquest_miscellaneous_19739245 pubmed_primary_17670974 crossref_citationtrail_10_1523_JNEUROSCI_2121_07_2007 crossref_primary_10_1523_JNEUROSCI_2121_07_2007 highwire_smallpub1_www27_31_8278 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20070801 2007-08-01 2007-Aug-01 |
PublicationDateYYYYMMDD | 2007-08-01 |
PublicationDate_xml | – month: 08 year: 2007 text: 20070801 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2007 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | 2023041303264524000_27.31.8278.41 2023041303264524000_27.31.8278.40 2023041303264524000_27.31.8278.23 2023041303264524000_27.31.8278.22 2023041303264524000_27.31.8278.21 2023041303264524000_27.31.8278.20 2023041303264524000_27.31.8278.42 Stein-Behrens (2023041303264524000_27.31.8278.37) 1994; 14 2023041303264524000_27.31.8278.27 2023041303264524000_27.31.8278.26 2023041303264524000_27.31.8278.25 2023041303264524000_27.31.8278.24 2023041303264524000_27.31.8278.29 2023041303264524000_27.31.8278.28 2023041303264524000_27.31.8278.6 2023041303264524000_27.31.8278.7 2023041303264524000_27.31.8278.8 2023041303264524000_27.31.8278.9 2023041303264524000_27.31.8278.12 2023041303264524000_27.31.8278.34 Bardgett (2023041303264524000_27.31.8278.1) 1994; 61 2023041303264524000_27.31.8278.11 Dallman (2023041303264524000_27.31.8278.13) 2000; Vol 2 2023041303264524000_27.31.8278.33 2023041303264524000_27.31.8278.10 2023041303264524000_27.31.8278.32 2023041303264524000_27.31.8278.31 2023041303264524000_27.31.8278.2 2023041303264524000_27.31.8278.4 2023041303264524000_27.31.8278.5 Uno (2023041303264524000_27.31.8278.38) 1989; 9 2023041303264524000_27.31.8278.16 2023041303264524000_27.31.8278.15 2023041303264524000_27.31.8278.14 2023041303264524000_27.31.8278.36 2023041303264524000_27.31.8278.35 2023041303264524000_27.31.8278.19 2023041303264524000_27.31.8278.18 Ramos-Remus (2023041303264524000_27.31.8278.30) 2002; 50 Bodnoff (2023041303264524000_27.31.8278.3) 1995; 15 2023041303264524000_27.31.8278.17 2023041303264524000_27.31.8278.39 |
References_xml | – ident: 2023041303264524000_27.31.8278.17 doi: 10.1016/0304-3940(95)12296-6 – ident: 2023041303264524000_27.31.8278.24 doi: 10.1016/0306-4522(95)00259-L – volume: 14 start-page: 5373 year: 1994 ident: 2023041303264524000_27.31.8278.37 article-title: Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-09-05373.1994 – ident: 2023041303264524000_27.31.8278.40 doi: 10.1002/hipo.450020410 – ident: 2023041303264524000_27.31.8278.16 doi: 10.1177/0091270005277938 – ident: 2023041303264524000_27.31.8278.33 doi: 10.1126/science.1106477 – ident: 2023041303264524000_27.31.8278.19 doi: 10.1016/0165-0270(89)90149-0 – ident: 2023041303264524000_27.31.8278.31 doi: 10.1016/S0306-4522(98)00615-0 – ident: 2023041303264524000_27.31.8278.14 doi: 10.1016/S0006-8993(02)02482-4 – ident: 2023041303264524000_27.31.8278.28 doi: 10.1016/S0031-9384(97)00529-5 – ident: 2023041303264524000_27.31.8278.11 doi: 10.1016/0163-1047(93)90173-F – ident: 2023041303264524000_27.31.8278.7 doi: 10.1037/0735-7044.110.6.1321 – ident: 2023041303264524000_27.31.8278.18 doi: 10.1016/0006-8993(89)91340-1 – ident: 2023041303264524000_27.31.8278.25 doi: 10.1016/S0006-8993(98)00882-8 – ident: 2023041303264524000_27.31.8278.22 doi: 10.1016/0006-8993(93)90193-Q – ident: 2023041303264524000_27.31.8278.9 doi: 10.1037/0735-7044.113.5.902 – ident: 2023041303264524000_27.31.8278.10 doi: 10.1016/j.neuroscience.2004.01.049 – volume: 15 start-page: 61 year: 1995 ident: 2023041303264524000_27.31.8278.3 article-title: Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats publication-title: J Neurosci doi: 10.1523/JNEUROSCI.15-01-00061.1995 – ident: 2023041303264524000_27.31.8278.20 doi: 10.1037/0735-7044.120.4.842 – ident: 2023041303264524000_27.31.8278.39 doi: 10.1016/0006-8993(92)91597-8 – ident: 2023041303264524000_27.31.8278.2 doi: 10.1016/0031-9384(95)02172-8 – ident: 2023041303264524000_27.31.8278.27 doi: 10.1016/j.brainres.2007.05.042 – ident: 2023041303264524000_27.31.8278.4 doi: 10.1016/S1074-7427(03)00019-4 – ident: 2023041303264524000_27.31.8278.35 doi: 10.1016/0006-8993(88)90180-1 – volume: 61 start-page: 186 year: 1994 ident: 2023041303264524000_27.31.8278.1 article-title: Chronic corticosterone treatment impairs spontaneous alternation behavior in rats publication-title: Behav Neural Biol doi: 10.1016/S0163-1047(05)80074-3 – ident: 2023041303264524000_27.31.8278.12 doi: 10.1006/nlme.1995.1028 – ident: 2023041303264524000_27.31.8278.15 doi: 10.1038/nrn1683 – volume: 9 start-page: 1705 year: 1989 ident: 2023041303264524000_27.31.8278.38 article-title: Hippocampal damage associated with prolonged and fatal stress in primates publication-title: J Neurosci doi: 10.1523/JNEUROSCI.09-05-01705.1989 – ident: 2023041303264524000_27.31.8278.5 – ident: 2023041303264524000_27.31.8278.8 doi: 10.1006/nlme.1998.3898 – ident: 2023041303264524000_27.31.8278.42 doi: 10.1111/j.1460-9568.2006.04948.x – ident: 2023041303264524000_27.31.8278.21 doi: 10.1126/science.715460 – ident: 2023041303264524000_27.31.8278.29 doi: 10.1016/S0165-0173(01)00131-X – ident: 2023041303264524000_27.31.8278.36 – volume: Vol 2 start-page: 468 volume-title: Encyclopedia of stress year: 2000 ident: 2023041303264524000_27.31.8278.13 article-title: Hypothalamo-pituitary-adrenal axis – ident: 2023041303264524000_27.31.8278.32 doi: 10.1016/0006-8993(85)91440-4 – ident: 2023041303264524000_27.31.8278.23 doi: 10.1016/0306-4522(95)00256-I – ident: 2023041303264524000_27.31.8278.6 doi: 10.1177/1534582306289043 – ident: 2023041303264524000_27.31.8278.41 doi: 10.1016/0006-8993(90)90778-A – volume: 50 start-page: 458 year: 2002 ident: 2023041303264524000_27.31.8278.30 article-title: Prednisone induces cognitive dysfunction, neuronal degeneration, and reactive gliosis in rats publication-title: J Invest Med doi: 10.1136/jim-50-06-06 – ident: 2023041303264524000_27.31.8278.34 doi: 10.1126/science.4035356 – ident: 2023041303264524000_27.31.8278.26 doi: 10.1016/S0006-3223(00)00964-1 |
SSID | ssj0007017 |
Score | 2.277048 |
Snippet | We previously found that chronic stress conditions producing CA3 dendritic retraction and spatial memory deficits make the hippocampus vulnerable to the... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8278 |
SubjectTerms | Animals Dendrites - drug effects Dendrites - physiology Glucocorticoids - administration & dosage Glucocorticoids - blood Hippocampus - cytology Hippocampus - drug effects Hippocampus - physiology Ibotenic Acid - toxicity Male Memory - drug effects Memory - physiology Rats Rats, Sprague-Dawley Recognition, Psychology - drug effects Recognition, Psychology - physiology Spatial Behavior - drug effects Spatial Behavior - physiology |
Title | Chronic Glucocorticoids Increase Hippocampal Vulnerability to Neurotoxicity under Conditions That Produce CA3 Dendritic Retraction But Fail to Impair Spatial Recognition Memory |
URI | http://www.jneurosci.org/cgi/content/abstract/27/31/8278 https://www.ncbi.nlm.nih.gov/pubmed/17670974 https://www.proquest.com/docview/19739245 https://www.proquest.com/docview/68122301 https://pubmed.ncbi.nlm.nih.gov/PMC1989144 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcuGCgPIIzz0gLpZbP9ZZ-xiFRn1zIJV6W9neDY3k2pXjEMqv4i_wz5hZr-24BBW4WNFm_ZDm886M95tvCHnvo49wIm6r4WxoM8gh7HA2VLZiw2Q2dDzpBFicfHo2PDhnRxfBxdbWzzXW0rJKdtPvG-tK_seqMAZ2xSrZf7Bse1EYgN9gXziCheH4VzY2yraW5p1DGgkTirlmuGIsqNWEr6_BWcErn1lflxkqTGsyrA45tZRlVXybpziAxWQlktBlTeKCiDSukL4lwfjWeORbsEJJ3RjBKlVVmh7jybKyZvE8wwtixeW8tBZI0tb9Agw3CaZdIaG3t4Pc1aTpaHhNV7OF2hhbH8iaFKDKm6xjJ5-mJ_Hyy6VpNn-M2rDd_tYBfqXPWwpw93F3UmS6e601xpKxvPfBg7d0u3aN9vSmUD2kNoyZhb0WHTAANr6mXqZDr-4b9Jv_CLSOxdEZ0ig_jw93wbG7tsO1YkHnMRuWwNknMTk_ORHT_YvpPXLfg0wFm2h8PDxugwHu6KbP7fOZInW4z97mu_Tjo0azelP-c5vGuxYXTR-Rh8aEdFSj8zHZUvkTsjPK46q4uqEfqKYY672bHfLDAJbeAixtAEvXAEt7gKVVQXuApRqwtAMsRcBSA1gKgKUtYGkHWAqApQhYvGANWGoAS9cAS2vAPiXnk_3p-MA2LUPslPGgsiGMYJE3c5JQ-U4aeXEU8SBOZChhrQpw6fFlyBNHhrGE0NlVnivDKFYsiZgEV-s_I9t5kasXhEa-D6mCTCB6k4wnYRz5LA0j5XmJjKMwHZCgMZRIjZ4-tnXJBObVYGDRGliggYXDsecrH5C99rzrWlHmzjNogwOxuIqzDMzuitVq5XHhuwLBPCDvGnwI8A-46RfnqlguhBtxSIFY8OcZqEDogZ8fkOc1nrrH4qjuyNmA8B7S2gmoTd__J59fao16pGK6jL28866vyIPuJX9Ntqtyqd5AnF8lb_Wb9AvOrAox |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chronic+glucocorticoids+increase+hippocampal+vulnerability+to+neurotoxicity+under+conditions+that+produce+CA3+dendritic+retraction+but+fail+to+impair+spatial+recognition+memory&rft.jtitle=The+Journal+of+neuroscience&rft.au=Conrad%2C+Cheryl+D&rft.au=McLaughlin%2C+Katie+J&rft.au=Harman%2C+James+S&rft.au=Foltz%2C+Cainan&rft.date=2007-08-01&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=27&rft.issue=31&rft.spage=8278&rft_id=info:doi/10.1523%2FJNEUROSCI.2121-07.2007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |