Molecular sieving of ethylene from ethane using a rigid metal–organic framework
There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal–organic framework...
Saved in:
Published in | Nature materials Vol. 17; no. 12; pp. 1128 - 1133 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal–organic framework [Ca(C
4
O
4
)(H
2
O)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal–organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes.
Separating ethylene from ethane is highly challenging as they have very similar physical properties. Here, a metal–organic framework is reported that, owing to its pore size and rigidity, adsorbs ethylene but almost completely excludes ethane under ambient conditions. |
---|---|
AbstractList | There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal–organic framework [Ca(C4O4)(H2O)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal–organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes. There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal–organic framework [Ca(C 4 O 4 )(H 2 O)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal–organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes. Separating ethylene from ethane is highly challenging as they have very similar physical properties. Here, a metal–organic framework is reported that, owing to its pore size and rigidity, adsorbs ethylene but almost completely excludes ethane under ambient conditions. There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal-organic framework [Ca(C4O4)(H2O)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal-organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes.There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal-organic framework [Ca(C4O4)(H2O)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal-organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes. There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal-organic framework [Ca(C O )(H O)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal-organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes. |
Author | Chen, Banglin He, Chaohui Lin, Rui-Biao Krishna, Rajamani Li, Libo Li, Shun Li, Jinping Wu, Hui Zhou, Wei Zhou, Hao-Long |
Author_xml | – sequence: 1 givenname: Rui-Biao surname: Lin fullname: Lin, Rui-Biao organization: Department of Chemistry, University of Texas at San Antonio – sequence: 2 givenname: Libo surname: Li fullname: Li, Libo organization: Department of Chemistry, University of Texas at San Antonio, Research Institute of Special Chemicals, Taiyuan University of Technology – sequence: 3 givenname: Hao-Long orcidid: 0000-0002-5007-6535 surname: Zhou fullname: Zhou, Hao-Long organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 4 givenname: Hui orcidid: 0000-0003-0296-5204 surname: Wu fullname: Wu, Hui organization: NIST Center for Neutron Research, National Institute of Standards and Technology – sequence: 5 givenname: Chaohui surname: He fullname: He, Chaohui organization: Research Institute of Special Chemicals, Taiyuan University of Technology – sequence: 6 givenname: Shun surname: Li fullname: Li, Shun organization: Research Institute of Special Chemicals, Taiyuan University of Technology – sequence: 7 givenname: Rajamani orcidid: 0000-0002-4784-8530 surname: Krishna fullname: Krishna, Rajamani organization: Van’t Hoff Institute for Molecular Sciences, University of Amsterdam – sequence: 8 givenname: Jinping surname: Li fullname: Li, Jinping organization: Research Institute of Special Chemicals, Taiyuan University of Technology – sequence: 9 givenname: Wei orcidid: 0000-0002-5461-3617 surname: Zhou fullname: Zhou, Wei email: wzhou@nist.gov organization: NIST Center for Neutron Research, National Institute of Standards and Technology – sequence: 10 givenname: Banglin orcidid: 0000-0001-8707-8115 surname: Chen fullname: Chen, Banglin email: banglin.chen@utsa.edu organization: Department of Chemistry, University of Texas at San Antonio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30397312$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctKxDAYhYMoOo4-gBspuHFTza1pZyniDUZEmH1Ik79jxrYZk1Zx5zv4hj6JKTMqCLrKCflOcvKfXbTZuhYQOiD4hGBWnAZOMsFSTIoUUyxSuoFGhOci5ULgzbUmhNIdtBvCAmNKskxsox2G2SRnhI7Q_a2rQfe18kmw8GzbeeKqBLqH1xpaSCrvmmGnou7DcKoSb-fWJA10qv54e3d-rlqrI6kaeHH-cQ9tVaoOsL9ex2h2eTE7v06nd1c352fTVPM861LIVDnRRkGpi7KiBRS6Ehk3wpSsIkRzA-UEAzNRFoYrhrOiMiVwVSqeUzZGx6trl9499RA62digoa5jVNcHSUn8JBYFJxE9-oUuXO_bGG6g8jgfigfqcE31ZQNGLr1tlH-VX7OKAFkB2rsQPFTfCMFy6EOu-pCxDzn0IQdP_sujbac669rOK1v_66QrZ4ivtHPwP6H_Nn0C5qygAQ |
CitedBy_id | crossref_primary_10_1016_j_seppur_2025_132491 crossref_primary_10_1016_j_micromeso_2021_111096 crossref_primary_10_1126_science_abn8418 crossref_primary_10_1002_ejic_202300089 crossref_primary_10_3390_inorganics7050056 crossref_primary_10_1007_s11426_024_2185_8 crossref_primary_10_6023_A20100494 crossref_primary_10_1002_smll_202402523 crossref_primary_10_1038_s42256_020_00249_z crossref_primary_10_1016_j_ccr_2022_214852 crossref_primary_10_1021_acsami_2c00118 crossref_primary_10_1021_acsami_3c07870 crossref_primary_10_1016_j_seppur_2025_132018 crossref_primary_10_1016_j_cej_2021_133284 crossref_primary_10_1002_anie_202210343 crossref_primary_10_1016_j_chempr_2022_08_014 crossref_primary_10_1007_s11426_024_2271_2 crossref_primary_10_1016_j_seppur_2019_01_014 crossref_primary_10_1039_D3QM00430A crossref_primary_10_1039_C9TA12671F crossref_primary_10_1002_anie_202209121 crossref_primary_10_1039_D2TA04835C crossref_primary_10_1016_j_cej_2024_149587 crossref_primary_10_1016_j_seppur_2023_126247 crossref_primary_10_1002_adma_202408416 crossref_primary_10_1002_ange_202003421 crossref_primary_10_1002_anie_202302564 crossref_primary_10_1039_C9TA06329C crossref_primary_10_1021_acsami_0c07800 crossref_primary_10_1002_anie_202100707 crossref_primary_10_1016_j_seppur_2021_119284 crossref_primary_10_1021_acs_jpcc_0c02280 crossref_primary_10_1021_acs_inorgchem_4c00592 crossref_primary_10_1016_j_cjche_2023_06_001 crossref_primary_10_1002_anie_201905563 crossref_primary_10_1007_s10847_024_01266_w crossref_primary_10_1016_j_cej_2022_134784 crossref_primary_10_1016_j_seppur_2023_124075 crossref_primary_10_1038_s41467_024_45004_9 crossref_primary_10_1002_anie_202303527 crossref_primary_10_1016_j_ccr_2022_214714 crossref_primary_10_1038_s41467_023_39470_w crossref_primary_10_1016_j_jlumin_2020_117418 crossref_primary_10_1039_D1CC03105H crossref_primary_10_1007_s12274_020_2714_z crossref_primary_10_1002_smtd_202402061 crossref_primary_10_1021_acs_chemrev_9b00828 crossref_primary_10_1038_s41467_025_55991_y crossref_primary_10_1021_acsami_3c04225 crossref_primary_10_1021_acs_inorgchem_2c01130 crossref_primary_10_1021_acsami_0c13022 crossref_primary_10_1021_acs_cgd_1c00942 crossref_primary_10_1016_j_fmre_2025_03_005 crossref_primary_10_1039_D1TA02684D crossref_primary_10_1002_adma_202201423 crossref_primary_10_1021_jacs_9b12358 crossref_primary_10_1039_D2QI00465H crossref_primary_10_1021_acs_inorgchem_2c03319 crossref_primary_10_1002_cssc_202300215 crossref_primary_10_1021_acsmaterialslett_3c01021 crossref_primary_10_1002_anie_202208134 crossref_primary_10_1021_acsami_1c01810 crossref_primary_10_1002_ange_201902209 crossref_primary_10_1007_s00894_020_04612_0 crossref_primary_10_1016_j_seppur_2021_120126 crossref_primary_10_1016_j_seppur_2021_119385 crossref_primary_10_1016_j_memsci_2020_118852 crossref_primary_10_1016_j_apsusc_2022_156002 crossref_primary_10_1002_smll_202401226 crossref_primary_10_1016_j_cej_2023_143858 crossref_primary_10_1039_D2QI00890D crossref_primary_10_1002_ange_202207579 crossref_primary_10_1021_acsami_3c06530 crossref_primary_10_1002_advs_202003243 crossref_primary_10_1002_ange_202103044 crossref_primary_10_1002_celc_202000136 crossref_primary_10_3390_nano12244402 crossref_primary_10_1021_acsnano_3c03962 crossref_primary_10_1002_cplu_202100482 crossref_primary_10_1016_j_seppur_2022_122617 crossref_primary_10_1002_anie_201907773 crossref_primary_10_1002_adma_202002165 crossref_primary_10_1039_D4CE00041B crossref_primary_10_1016_j_trechm_2020_01_002 crossref_primary_10_1002_smll_202205542 crossref_primary_10_1016_j_cej_2020_127238 crossref_primary_10_1021_acsanm_3c01191 crossref_primary_10_1039_D1TA09467J crossref_primary_10_1016_j_cej_2024_157054 crossref_primary_10_1002_chem_202100911 crossref_primary_10_1002_smll_202401594 crossref_primary_10_1016_j_chempr_2019_10_012 crossref_primary_10_1360_TB_2023_0594 crossref_primary_10_1021_acs_chemmater_3c03190 crossref_primary_10_1002_anie_202103044 crossref_primary_10_1039_C9TA12497G crossref_primary_10_1021_jacs_9b00232 crossref_primary_10_1039_D0QM00597E crossref_primary_10_1002_anie_202418853 crossref_primary_10_1016_j_fuel_2024_133678 crossref_primary_10_1021_acs_chemrev_2c00140 crossref_primary_10_1016_j_ccr_2019_01_009 crossref_primary_10_1016_j_jssc_2020_121321 crossref_primary_10_1016_j_ica_2019_05_037 crossref_primary_10_1002_ange_202014893 crossref_primary_10_1016_j_seppur_2020_116758 crossref_primary_10_1002_asia_202000013 crossref_primary_10_1007_s40242_024_4044_2 crossref_primary_10_1134_S0022476622050018 crossref_primary_10_1002_anie_202316792 crossref_primary_10_1021_jacs_1c07803 crossref_primary_10_1021_acs_inorgchem_1c00863 crossref_primary_10_1016_j_chempr_2020_12_025 crossref_primary_10_1007_s41061_019_0257_0 crossref_primary_10_1016_j_fuproc_2019_106189 crossref_primary_10_1016_j_cej_2019_122731 crossref_primary_10_1021_acsami_2c21261 crossref_primary_10_1070_RCR5026 crossref_primary_10_1016_j_ces_2020_115636 crossref_primary_10_1002_aic_17094 crossref_primary_10_1002_ange_202418853 crossref_primary_10_1039_D3CS00939D crossref_primary_10_1039_C9TA02822F crossref_primary_10_2139_ssrn_4169691 crossref_primary_10_1002_ange_202100707 crossref_primary_10_1016_j_seppur_2022_121330 crossref_primary_10_3390_cryst15040294 crossref_primary_10_1002_anie_202317648 crossref_primary_10_1021_acs_chemmater_3c03282 crossref_primary_10_20517_cs_2024_16 crossref_primary_10_1021_cbe_3c00057 crossref_primary_10_1002_smll_201900426 crossref_primary_10_1016_j_seppur_2023_126191 crossref_primary_10_1021_acs_iecr_3c00656 crossref_primary_10_1016_j_jssc_2020_121337 crossref_primary_10_1002_asia_202400175 crossref_primary_10_1016_j_jssc_2020_121209 crossref_primary_10_1021_jacs_1c02108 crossref_primary_10_1021_jacs_9b12428 crossref_primary_10_1039_D4QI02562H crossref_primary_10_1021_acs_inorgchem_1c00753 crossref_primary_10_1021_acsami_1c20533 crossref_primary_10_1016_j_cjsc_2023_100012 crossref_primary_10_1039_D0QI00518E crossref_primary_10_1021_acs_jced_4c00244 crossref_primary_10_1002_admt_202300962 crossref_primary_10_1039_C9TA08283B crossref_primary_10_3390_ma15186455 crossref_primary_10_1016_j_gee_2022_12_010 crossref_primary_10_1007_s11426_020_9722_2 crossref_primary_10_1021_jacs_8b13639 crossref_primary_10_1039_D4TA04528A crossref_primary_10_1021_acs_inorgchem_4c02473 crossref_primary_10_1016_j_cej_2021_134184 crossref_primary_10_1021_acsami_0c15517 crossref_primary_10_1007_s40843_024_3091_9 crossref_primary_10_1039_D4SC06360K crossref_primary_10_1002_ange_201903600 crossref_primary_10_1039_D4GC03302G crossref_primary_10_2139_ssrn_4098681 crossref_primary_10_1021_acsomega_1c02136 crossref_primary_10_1002_anie_202003421 crossref_primary_10_1016_j_isci_2021_103042 crossref_primary_10_1016_j_jcis_2020_09_037 crossref_primary_10_1039_D2SC00207H crossref_primary_10_1021_acs_cgd_0c01180 crossref_primary_10_1021_acs_chemmater_1c03084 crossref_primary_10_1038_s41467_020_20587_1 crossref_primary_10_1016_j_cej_2023_147605 crossref_primary_10_1039_D1DT03814A crossref_primary_10_1016_j_ccr_2020_213485 crossref_primary_10_1039_C8QI01225C crossref_primary_10_1002_anie_202403421 crossref_primary_10_1021_acs_chemmater_9b04177 crossref_primary_10_1039_C9TC02778E crossref_primary_10_1016_j_cej_2021_133208 crossref_primary_10_1021_acssuschemeng_8b05480 crossref_primary_10_1039_D2SC01180H crossref_primary_10_1002_ange_202304535 crossref_primary_10_1021_cbe_4c00113 crossref_primary_10_1039_D1CP05931A crossref_primary_10_1002_cjoc_202400977 crossref_primary_10_1002_sstr_202300302 crossref_primary_10_1021_accountsmr_4c00336 crossref_primary_10_1126_sciadv_aaz4322 crossref_primary_10_1007_s11426_024_2178_0 crossref_primary_10_1021_acs_iecr_9b01877 crossref_primary_10_1039_D1TA04096K crossref_primary_10_1002_anie_201902209 crossref_primary_10_1021_acs_inorgchem_4c04343 crossref_primary_10_1002_smll_202303848 crossref_primary_10_1002_anie_202100782 crossref_primary_10_1002_anie_202103936 crossref_primary_10_1002_cssc_202400595 crossref_primary_10_1039_D4TA00330F crossref_primary_10_1016_j_jssc_2019_07_030 crossref_primary_10_1016_j_cej_2020_124222 crossref_primary_10_1039_C9CS00756C crossref_primary_10_1002_anie_202011802 crossref_primary_10_1021_acs_iecr_9b00997 crossref_primary_10_1021_acs_chemmater_2c01097 crossref_primary_10_1016_j_jssc_2020_121258 crossref_primary_10_1039_D2DT03462J crossref_primary_10_1002_ange_202316792 crossref_primary_10_1021_acsmaterialslett_5c00264 crossref_primary_10_1021_acsomega_0c02218 crossref_primary_10_1039_D3CE00085K crossref_primary_10_1016_j_jssc_2019_120936 crossref_primary_10_1016_j_trechm_2023_11_001 crossref_primary_10_1021_acsmaterialslett_1c00013 crossref_primary_10_1039_D2DT02383K crossref_primary_10_1016_j_matt_2022_06_043 crossref_primary_10_1039_D3NR02768F crossref_primary_10_1021_jacs_2c10548 crossref_primary_10_1021_acsmaterialslett_0c00264 crossref_primary_10_1002_ange_202500783 crossref_primary_10_1007_s11426_020_9929_8 crossref_primary_10_1021_jacs_3c01705 crossref_primary_10_1016_j_biomaterials_2019_119619 crossref_primary_10_1016_j_jechem_2022_05_023 crossref_primary_10_1002_ange_202209121 crossref_primary_10_1016_j_cjche_2021_08_010 crossref_primary_10_1002_chem_202000008 crossref_primary_10_1016_j_apcata_2019_117214 crossref_primary_10_1002_smll_202005165 crossref_primary_10_1039_D5TA00132C crossref_primary_10_1002_ange_202210343 crossref_primary_10_1002_advs_201901918 crossref_primary_10_1002_anie_202216710 crossref_primary_10_1002_anie_201901390 crossref_primary_10_1002_ange_202400823 crossref_primary_10_1002_aic_17152 crossref_primary_10_1021_jacs_0c09466 crossref_primary_10_1039_D4SC05749J crossref_primary_10_1016_j_cej_2020_126428 crossref_primary_10_1016_j_ccr_2022_214776 crossref_primary_10_1021_acssuschemeng_1c05813 crossref_primary_10_1002_ange_202303527 crossref_primary_10_1021_acs_cgd_9b00850 crossref_primary_10_1038_s41467_022_30597_w crossref_primary_10_1002_ange_202106625 crossref_primary_10_1021_acsami_1c25005 crossref_primary_10_1039_D3QI01595E crossref_primary_10_1021_acsami_1c00061 crossref_primary_10_1016_j_micromeso_2023_112532 crossref_primary_10_1002_ange_202011300 crossref_primary_10_1039_D0CC01315C crossref_primary_10_1002_ange_202013965 crossref_primary_10_1002_slct_201900416 crossref_primary_10_1039_D0QI00537A crossref_primary_10_1021_acs_inorgchem_9b01954 crossref_primary_10_1021_jacs_3c00515 crossref_primary_10_1002_anie_201904312 crossref_primary_10_1002_anie_202206613 crossref_primary_10_1021_acscentsci_9b00423 crossref_primary_10_1016_j_jece_2022_108300 crossref_primary_10_1002_ange_202208134 crossref_primary_10_1002_chem_202101053 crossref_primary_10_1021_acsami_1c02257 crossref_primary_10_1016_j_inoche_2019_03_023 crossref_primary_10_1016_j_joule_2021_12_005 crossref_primary_10_1038_s41467_023_39871_x crossref_primary_10_1002_ange_202104318 crossref_primary_10_1021_jacs_8b13463 crossref_primary_10_1002_ange_202302564 crossref_primary_10_1021_acs_chemmater_3c02233 crossref_primary_10_1002_adfm_202422135 crossref_primary_10_1016_j_jhazmat_2022_129525 crossref_primary_10_1002_adma_201907601 crossref_primary_10_1021_acs_jpcc_8b11673 crossref_primary_10_1002_anie_202006414 crossref_primary_10_1002_anie_202414503 crossref_primary_10_1002_ange_202207026 crossref_primary_10_1016_j_enchem_2019_100006 crossref_primary_10_1021_acsaenm_2c00079 crossref_primary_10_1039_D1DT04149E crossref_primary_10_2139_ssrn_4158399 crossref_primary_10_1039_D3SC04119K crossref_primary_10_1016_j_ccr_2022_214628 crossref_primary_10_1016_j_seppur_2023_125252 crossref_primary_10_1016_j_ccr_2024_216291 crossref_primary_10_1021_acs_accounts_8b00658 crossref_primary_10_1002_chem_202101060 crossref_primary_10_1002_anie_202309874 crossref_primary_10_1021_acs_chemmater_3c00065 crossref_primary_10_1016_j_micromeso_2019_04_031 crossref_primary_10_1016_j_seppur_2025_132141 crossref_primary_10_1016_j_cej_2020_124137 crossref_primary_10_1021_acsmaterialslett_5c00361 crossref_primary_10_1038_s41563_022_01317_y crossref_primary_10_1002_adts_201900120 crossref_primary_10_1016_j_cej_2024_151451 crossref_primary_10_1016_j_ccr_2025_216464 crossref_primary_10_1039_D4QI00236A crossref_primary_10_1002_ange_202000323 crossref_primary_10_1021_acsami_0c03139 crossref_primary_10_1002_anie_202109338 crossref_primary_10_1515_psr_2022_0304 crossref_primary_10_1002_ange_202218027 crossref_primary_10_1039_D0TA08498K crossref_primary_10_1016_j_cjche_2023_01_001 crossref_primary_10_1021_acsomega_8b03480 crossref_primary_10_1002_ange_202303671 crossref_primary_10_1021_jacs_9b11172 crossref_primary_10_1016_j_jhazmat_2022_128321 crossref_primary_10_1038_s41557_021_00740_z crossref_primary_10_1016_j_fuel_2024_131673 crossref_primary_10_3390_cleantechnol5010001 crossref_primary_10_1021_jacs_0c12153 crossref_primary_10_1039_D4SC00424H crossref_primary_10_1002_anie_202011300 crossref_primary_10_1002_anie_202013965 crossref_primary_10_1002_adma_202105880 crossref_primary_10_1002_anie_202217662 crossref_primary_10_1002_adfm_202406664 crossref_primary_10_1016_j_memsci_2022_120902 crossref_primary_10_1021_jacs_1c10620 crossref_primary_10_1016_j_cej_2022_136152 crossref_primary_10_1016_j_enchem_2022_100080 crossref_primary_10_1021_acs_jpcc_0c07062 crossref_primary_10_1039_D1NJ02175C crossref_primary_10_1021_acsmaterialslett_4c00113 crossref_primary_10_1016_j_cej_2024_157653 crossref_primary_10_1016_j_seppur_2024_129358 crossref_primary_10_1021_acs_inorgchem_4c05145 crossref_primary_10_1002_zaac_202200151 crossref_primary_10_1021_acsmaterialslett_4c00111 crossref_primary_10_1021_jacs_9b12924 crossref_primary_10_1016_j_cclet_2024_109729 crossref_primary_10_1002_ange_202010405 crossref_primary_10_1039_D0CC00353K crossref_primary_10_1016_j_micromeso_2020_110152 crossref_primary_10_1002_aic_18676 crossref_primary_10_1002_ange_202009765 crossref_primary_10_1016_j_cjche_2021_07_027 crossref_primary_10_1039_D3TA01598J crossref_primary_10_1016_j_memsci_2020_118033 crossref_primary_10_1016_j_cej_2021_131302 crossref_primary_10_1002_adfm_202309089 crossref_primary_10_1021_acssuschemeng_9b00062 crossref_primary_10_1021_acs_nanolett_3c00804 crossref_primary_10_1039_D3GC01114C crossref_primary_10_1002_smll_202408742 crossref_primary_10_1016_j_isci_2019_08_039 crossref_primary_10_1021_jacs_0c13019 crossref_primary_10_1016_j_memsci_2021_119773 crossref_primary_10_1039_D1TA10516G crossref_primary_10_1038_s41467_024_54348_1 crossref_primary_10_1021_acsnano_2c04886 crossref_primary_10_1002_chem_201903952 crossref_primary_10_1016_j_poly_2022_115995 crossref_primary_10_1021_acs_jpcc_2c08476 crossref_primary_10_3390_cryst12060785 crossref_primary_10_1016_j_seppur_2019_115872 crossref_primary_10_3390_molecules26175121 crossref_primary_10_1016_j_molstruc_2022_132757 crossref_primary_10_1039_D1TA09974D crossref_primary_10_1038_s41467_022_32677_3 crossref_primary_10_1021_acsanm_3c01331 crossref_primary_10_1038_s41467_022_30408_2 crossref_primary_10_1039_D0DT03345F crossref_primary_10_1021_acs_cgd_4c01065 crossref_primary_10_1016_j_seppur_2025_131827 crossref_primary_10_1039_D1CP01276B crossref_primary_10_1002_aic_17688 crossref_primary_10_1002_aic_18656 crossref_primary_10_3390_ma16010154 crossref_primary_10_1002_ange_202401817 crossref_primary_10_1007_s12274_022_4796_2 crossref_primary_10_1002_ange_202401706 crossref_primary_10_1002_asia_202100482 crossref_primary_10_1002_anie_202205427 crossref_primary_10_1021_acs_inorgchem_4c03193 crossref_primary_10_1038_s41467_023_39126_9 crossref_primary_10_1016_j_seppur_2024_127143 crossref_primary_10_1021_jacs_9b06582 crossref_primary_10_1016_j_cej_2019_122074 crossref_primary_10_1039_D1ME00085C crossref_primary_10_1021_acs_iecr_0c00362 crossref_primary_10_1039_D3TA04732F crossref_primary_10_1021_acsanm_3c01558 crossref_primary_10_1002_ange_202411744 crossref_primary_10_1002_smll_202303540 crossref_primary_10_1016_j_seppur_2023_125862 crossref_primary_10_1021_acs_chemmater_4c01904 crossref_primary_10_1021_acsami_4c14131 crossref_primary_10_1002_adma_202106627 crossref_primary_10_1016_j_ijbiomac_2023_123333 crossref_primary_10_1016_j_mtchem_2023_101522 crossref_primary_10_1002_aic_18646 crossref_primary_10_1038_s41467_023_36890_6 crossref_primary_10_3390_membranes12020201 crossref_primary_10_1002_aic_17671 crossref_primary_10_1021_acs_analchem_9b02543 crossref_primary_10_1039_D3QI00235G crossref_primary_10_1016_j_advmem_2022_100035 crossref_primary_10_1038_s41467_019_14227_6 crossref_primary_10_1002_adma_202002603 crossref_primary_10_1002_aic_18759 crossref_primary_10_3390_ma16093406 crossref_primary_10_1039_D1NJ00414J crossref_primary_10_1002_ange_202216710 crossref_primary_10_1039_D3MA01024D crossref_primary_10_1002_ange_202100240 crossref_primary_10_1016_j_seppur_2024_127258 crossref_primary_10_1021_acs_chemmater_2c00947 crossref_primary_10_1016_j_ccr_2021_213955 crossref_primary_10_1016_j_seppur_2023_124660 crossref_primary_10_1021_acs_inorgchem_9b03290 crossref_primary_10_1021_acs_energyfuels_2c01427 crossref_primary_10_1021_acsmaterialslett_4c01406 crossref_primary_10_1002_ange_202317648 crossref_primary_10_1002_anie_202010405 crossref_primary_10_1016_j_fmre_2022_08_012 crossref_primary_10_1039_D3QI00103B crossref_primary_10_1016_j_snb_2019_127337 crossref_primary_10_1016_j_seppur_2024_128696 crossref_primary_10_1016_j_ccr_2021_213968 crossref_primary_10_3390_magnetochemistry6030039 crossref_primary_10_1002_anie_202009765 crossref_primary_10_1038_s41467_020_20101_7 crossref_primary_10_1016_j_checat_2021_03_001 crossref_primary_10_1039_D4SC05286B crossref_primary_10_1021_acs_cgd_1c01151 crossref_primary_10_1021_acs_energyfuels_1c01642 crossref_primary_10_1149_1945_7111_ac9f7c crossref_primary_10_1021_jacs_9b10923 crossref_primary_10_1088_2399_6528_ac53f9 crossref_primary_10_1016_j_cej_2022_138272 crossref_primary_10_3389_fchem_2019_00652 crossref_primary_10_1002_aic_17528 crossref_primary_10_1038_s41563_022_01237_x crossref_primary_10_1016_j_cej_2021_133786 crossref_primary_10_1016_j_cej_2019_123117 crossref_primary_10_1021_prechem_2c00003 crossref_primary_10_1016_j_seppur_2023_125777 crossref_primary_10_1002_adfm_201905229 crossref_primary_10_1016_j_seppur_2020_117146 crossref_primary_10_1016_j_tifs_2023_06_024 crossref_primary_10_1002_ange_201907773 crossref_primary_10_1002_anie_201903600 crossref_primary_10_1016_j_seppur_2022_122095 crossref_primary_10_1038_s41467_021_26473_8 crossref_primary_10_1007_s11242_021_01638_7 crossref_primary_10_1021_acs_inorgchem_3c02486 crossref_primary_10_1039_D0CC04645K crossref_primary_10_1039_C9QI01119F crossref_primary_10_1002_anie_202100240 crossref_primary_10_1002_adfm_202420927 crossref_primary_10_1039_D0DT03013A crossref_primary_10_1039_D0DT03279D crossref_primary_10_1002_adfm_202203745 crossref_primary_10_1007_s12274_022_4915_0 crossref_primary_10_1126_sciadv_adj6473 crossref_primary_10_1039_C9DT01911A crossref_primary_10_1039_D3SC06076D crossref_primary_10_1039_D2DT03926E crossref_primary_10_1021_acs_inorgchem_4c01733 crossref_primary_10_1063_5_0031579 crossref_primary_10_1039_D2DT04088C crossref_primary_10_1021_acs_chemrev_9b00648 crossref_primary_10_1002_anie_202207579 crossref_primary_10_1016_j_cej_2023_141743 crossref_primary_10_1002_anie_202014893 crossref_primary_10_1021_acsami_9b02605 crossref_primary_10_1021_jacs_3c13480 crossref_primary_10_1002_adfm_202104349 crossref_primary_10_1007_s40242_021_1352_7 crossref_primary_10_1016_j_trechm_2020_02_013 crossref_primary_10_1038_s41467_020_16960_9 crossref_primary_10_1002_ange_202006414 crossref_primary_10_1002_ange_202414503 crossref_primary_10_1021_acssuschemeng_9b00699 crossref_primary_10_1038_s41563_018_0223_1 crossref_primary_10_1002_adma_201806445 crossref_primary_10_1038_s41586_021_03627_8 crossref_primary_10_1021_acsami_3c18378 crossref_primary_10_1002_smll_202401965 crossref_primary_10_1039_D2TA03216C crossref_primary_10_1007_s12274_022_5231_4 crossref_primary_10_1002_anie_202411744 crossref_primary_10_1021_acs_inorgchem_9b02449 crossref_primary_10_1002_chem_202101779 crossref_primary_10_1039_D2CE00650B crossref_primary_10_1039_D2DT01993K crossref_primary_10_1021_acscentsci_2c00554 crossref_primary_10_1021_acs_iecr_9b06765 crossref_primary_10_1155_2023_4740672 crossref_primary_10_1021_acs_chemmater_9b01691 crossref_primary_10_1021_acs_chemmater_1c03620 crossref_primary_10_1002_smll_202412724 crossref_primary_10_1002_anie_202400823 crossref_primary_10_1016_j_seppur_2024_131382 crossref_primary_10_1016_j_cej_2023_145096 crossref_primary_10_1021_jacs_2c01058 crossref_primary_10_1039_D0MA00038H crossref_primary_10_1002_adfm_202500210 crossref_primary_10_1021_acsami_2c12998 crossref_primary_10_1021_acs_jpcc_1c03876 crossref_primary_10_1002_anie_202500783 crossref_primary_10_1080_08927022_2020_1822528 crossref_primary_10_1002_ange_201905563 crossref_primary_10_1039_D0QI01166E crossref_primary_10_1016_j_enchem_2021_100057 crossref_primary_10_1021_acs_cgd_0c00336 crossref_primary_10_1021_acsomega_1c06309 crossref_primary_10_1002_ange_202217662 crossref_primary_10_1021_acsmaterialslett_4c00731 crossref_primary_10_1021_acs_inorgchem_1c01245 crossref_primary_10_1002_anie_202401706 crossref_primary_10_1038_s41578_020_00268_7 crossref_primary_10_1016_j_apsusc_2023_156941 crossref_primary_10_1016_j_seppur_2022_122332 crossref_primary_10_1016_j_jcis_2023_08_140 crossref_primary_10_1021_acsami_9b01423 crossref_primary_10_1021_acs_inorgchem_9b00169 crossref_primary_10_1016_j_jssc_2024_124894 crossref_primary_10_1002_smll_201900058 crossref_primary_10_1016_j_chempr_2020_06_018 crossref_primary_10_1039_D3CS00285C crossref_primary_10_1039_D3CS00370A crossref_primary_10_1002_ange_202011802 crossref_primary_10_1016_j_partic_2022_05_004 crossref_primary_10_1002_anie_202401817 crossref_primary_10_1038_s41563_023_01629_7 crossref_primary_10_1021_jacs_0c00805 crossref_primary_10_1039_D1QI01562A crossref_primary_10_1021_acs_cgd_0c00352 crossref_primary_10_1002_adma_202002563 crossref_primary_10_1016_j_seppur_2022_121031 crossref_primary_10_1021_acsanm_3c02689 crossref_primary_10_1021_acs_accounts_2c00418 crossref_primary_10_1002_ange_202205427 crossref_primary_10_1016_j_seppur_2024_131359 crossref_primary_10_1016_j_jssc_2020_121948 crossref_primary_10_1002_ange_202109338 crossref_primary_10_1016_j_ica_2019_119317 crossref_primary_10_1002_aic_16616 crossref_primary_10_1002_aic_16858 crossref_primary_10_1021_acs_inorgchem_0c00003 crossref_primary_10_1021_acs_iecr_0c01049 crossref_primary_10_1002_anie_202000323 crossref_primary_10_1002_anie_202218027 crossref_primary_10_1021_jacs_2c05448 crossref_primary_10_1002_advs_202001398 crossref_primary_10_1021_acs_iecr_1c02220 crossref_primary_10_1021_acs_chemmater_1c01892 crossref_primary_10_1021_acs_inorgchem_9b00182 crossref_primary_10_1039_C9TA07510K crossref_primary_10_1039_D1DT01477C crossref_primary_10_1016_j_seppur_2022_122476 crossref_primary_10_1002_ejic_202400583 crossref_primary_10_1016_j_micromeso_2024_113120 crossref_primary_10_1016_j_snb_2019_04_050 crossref_primary_10_1021_acs_inorgchem_2c01343 crossref_primary_10_1039_D2DT01961B crossref_primary_10_1002_anie_202207026 crossref_primary_10_4028_www_scientific_net_KEM_907_186 crossref_primary_10_1016_j_ccr_2023_215111 crossref_primary_10_1039_C8TA11596F crossref_primary_10_1002_smll_201904866 crossref_primary_10_1021_acscentsci_1c01344 crossref_primary_10_1002_cssc_202002677 crossref_primary_10_1021_acssuschemeng_9b04901 crossref_primary_10_1002_ange_202403421 crossref_primary_10_1039_C9TA08614E crossref_primary_10_1016_j_seppur_2024_131343 crossref_primary_10_1016_j_cej_2022_139756 crossref_primary_10_1016_j_cogsc_2024_100948 crossref_primary_10_1016_j_cjche_2019_09_005 crossref_primary_10_1016_j_cej_2020_127183 crossref_primary_10_1002_anie_202304535 crossref_primary_10_3390_nano13020234 crossref_primary_10_1016_j_ccr_2020_213709 crossref_primary_10_1038_s41467_024_45081_w crossref_primary_10_1039_D3TA03852A crossref_primary_10_1021_acs_accounts_1c00328 crossref_primary_10_1002_ange_202309874 crossref_primary_10_1002_cnma_202100377 crossref_primary_10_1002_ange_202206613 crossref_primary_10_1039_D0FD00103A crossref_primary_10_1016_j_seppur_2023_124967 crossref_primary_10_1039_D0CS00552E crossref_primary_10_1038_s41557_025_01744_9 crossref_primary_10_1038_s41563_019_0427_z crossref_primary_10_1016_j_mattod_2022_08_018 crossref_primary_10_1016_j_cej_2022_137101 crossref_primary_10_1016_j_jiec_2023_11_054 crossref_primary_10_1021_acs_inorgchem_2c01218 crossref_primary_10_1002_ange_201904312 crossref_primary_10_1039_D4CC02065K crossref_primary_10_1002_asia_201900239 crossref_primary_10_1002_ange_202100782 crossref_primary_10_1016_j_gee_2022_03_015 crossref_primary_10_1016_j_eng_2024_01_024 crossref_primary_10_3390_cryst10111006 crossref_primary_10_1002_ange_202103936 crossref_primary_10_1002_anie_202104318 crossref_primary_10_1002_sstr_202000022 crossref_primary_10_1002_adfm_202312150 crossref_primary_10_1002_agt2_565 crossref_primary_10_1002_anie_202303671 crossref_primary_10_1002_cctc_202001622 crossref_primary_10_1002_ange_201901390 crossref_primary_10_1021_acs_iecr_2c02438 crossref_primary_10_1021_jacs_1c02176 crossref_primary_10_1039_D3MH00541K crossref_primary_10_1007_s00723_022_01486_8 crossref_primary_10_1016_j_seppur_2024_130359 crossref_primary_10_1002_anie_202106625 crossref_primary_10_1021_acs_inorgchem_9b02397 crossref_primary_10_1038_s41467_024_53024_8 crossref_primary_10_1021_acsami_1c03923 crossref_primary_10_1002_chem_202101871 crossref_primary_10_1039_D2RA04031J crossref_primary_10_1016_j_cej_2023_145151 crossref_primary_10_1016_j_cep_2024_109946 crossref_primary_10_1021_acsanm_0c03336 crossref_primary_10_1016_j_jece_2021_106842 crossref_primary_10_1039_D0QM00186D |
Cites_doi | 10.1126/science.1217544 10.1002/anie.201503835 10.1002/anie.201001230 10.1002/anie.201607676 10.1021/ef700680d 10.1021/ja973906m 10.1088/0953-8984/21/39/395502 10.1007/s10450-012-9423-1 10.1016/j.fuel.2014.09.034 10.1038/532435a 10.1126/science.aaf2458 10.1021/ja3122872 10.1016/0025-5408(87)90055-9 10.1002/jcc.21112 10.1021/ja305663k 10.1039/C6EE01886F 10.1016/j.ces.2012.01.037 10.1038/nmat4834 10.1126/science.aam7232 10.1016/j.energy.2005.04.001 10.1038/nchem.2114 10.1021/jacs.7b05761 10.1021/ja808896f 10.1021/jacs.5b11350 10.1038/nmat4825 10.1126/science.aag2267 10.1126/science.1254227 10.1021/ja502119z 10.1126/science.aaf6323 10.1039/C7CS00153C 10.1126/science.aao0092 10.1126/science.1230444 10.1021/jacs.7b10110 10.1016/j.micromeso.2013.10.026 10.1002/anie.200503503 10.1038/nature03852 10.1126/science.1194237 10.1038/ncomms13645 10.1021/jacs.7b03850 10.1039/c2ee22858k 10.1016/j.ces.2008.05.038 10.1002/047144409X |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2018 Copyright Nature Publishing Group Dec 2018 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2018 – notice: Copyright Nature Publishing Group Dec 2018 |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41563-018-0206-2 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 1133 |
ExternalDocumentID | 30397312 10_1038_s41563_018_0206_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c475t-e5ab9cdaebc8bf28e8cf654d6db3f11c4deb90e3d1c48d4a3058fdbe4aba4723 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Thu Jul 10 22:47:14 EDT 2025 Fri Jul 25 09:00:23 EDT 2025 Wed Feb 19 02:36:20 EST 2025 Thu Apr 24 22:58:48 EDT 2025 Tue Jul 01 02:13:59 EDT 2025 Fri Feb 21 02:40:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-e5ab9cdaebc8bf28e8cf654d6db3f11c4deb90e3d1c48d4a3058fdbe4aba4723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0296-5204 0000-0002-5461-3617 0000-0001-8707-8115 0000-0002-5007-6535 0000-0002-4784-8530 |
PMID | 30397312 |
PQID | 2137122201 |
PQPubID | 27576 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2130306841 proquest_journals_2137122201 pubmed_primary_30397312 crossref_primary_10_1038_s41563_018_0206_2 crossref_citationtrail_10_1038_s41563_018_0206_2 springer_journals_10_1038_s41563_018_0206_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Yoon (CR31) 2010; 49 Ren, Patel, Blok (CR3) 2006; 31 Zhai (CR15) 2016; 7 Adil (CR23) 2017; 46 Bloch (CR7) 2012; 335 He, Krishna, Chen (CR14) 2012; 5 Sholl, Lively (CR1) 2016; 532 Cadiau, Adil, Bhatt, Belmabkhout, Eddaoudi (CR9) 2016; 353 Webster, Drago, Zerner (CR25) 1998; 120 Barone (CR41) 2009; 30 Ma, Sun, Yuan, Wang, Zhou (CR21) 2009; 131 Pan, Olson, Ciemnolonski, Heddy, Li (CR20) 2006; 45 Krishna (CR42) 2014; 185 Matsuda (CR6) 2005; 436 Bao (CR22) 2016; 9 Bereciartua (CR30) 2017; 358 Aguado, Bergeret, Daniel, Farrusseng (CR32) 2012; 134 Peng (CR19) 2014; 346 Liao, Huang, Zhang, Zhang, Chen (CR11) 2017; 356 Zhang, Wu, Zhang (CR36) 2008; 22 Yang (CR8) 2014; 7 CR28 Kishida (CR35) 2016; 55 Lin (CR39) 2017; 139 Kitagawa (CR4) 2015; 54 Vaidhyanathan (CR13) 2010; 330 Robl, Weiss (CR24) 1987; 22 Sen (CR34) 2017; 139 Yoon (CR12) 2016; 16 Sadrameli (CR37) 2015; 140 Klet (CR17) 2015; 137 Faiz, Li (CR33) 2012; 73 Horike (CR38) 2013; 135 Li (CR29) 2014; 136 Lin (CR18) 2016; 353 Anson, Wang, Lin, Kuznicki, Kuznicki (CR27) 2008; 63 Chu, Cui, Liu (CR2) 2017; 16 Furukawa, Cordova, O’Keeffe, Yaghi (CR5) 2013; 341 Ji (CR16) 2017; 139 Cui (CR10) 2016; 353 Mofarahi, Salehi (CR26) 2013; 19 Giannozzi (CR40) 2009; 21 R Vaidhyanathan (206_CR13) 2010; 330 S Chu (206_CR2) 2017; 16 H Furukawa (206_CR5) 2013; 341 ED Bloch (206_CR7) 2012; 335 PJ Bereciartua (206_CR30) 2017; 358 DS Sholl (206_CR1) 2016; 532 B Li (206_CR29) 2014; 136 S Horike (206_CR38) 2013; 135 R Matsuda (206_CR6) 2005; 436 Y He (206_CR14) 2012; 5 K Adil (206_CR23) 2017; 46 R Faiz (206_CR33) 2012; 73 JYS Lin (206_CR18) 2016; 353 QG Zhai (206_CR15) 2016; 7 RC Klet (206_CR17) 2015; 137 S Kitagawa (206_CR4) 2015; 54 CE Webster (206_CR25) 1998; 120 X Cui (206_CR10) 2016; 353 C Robl (206_CR24) 1987; 22 Z Bao (206_CR22) 2016; 9 T Ren (206_CR3) 2006; 31 PQ Liao (206_CR11) 2017; 356 M Mofarahi (206_CR26) 2013; 19 A Cadiau (206_CR9) 2016; 353 R Krishna (206_CR42) 2014; 185 S Sen (206_CR34) 2017; 139 V Barone (206_CR41) 2009; 30 S Yang (206_CR8) 2014; 7 K Kishida (206_CR35) 2016; 55 S Ma (206_CR21) 2009; 131 Y Zhang (206_CR36) 2008; 22 P Giannozzi (206_CR40) 2009; 21 SM Sadrameli (206_CR37) 2015; 140 P Ji (206_CR16) 2017; 139 JW Yoon (206_CR31) 2010; 49 206_CR28 RB Lin (206_CR39) 2017; 139 L Pan (206_CR20) 2006; 45 JW Yoon (206_CR12) 2016; 16 Y Peng (206_CR19) 2014; 346 S Aguado (206_CR32) 2012; 134 A Anson (206_CR27) 2008; 63 30397309 - Nat Mater. 2018 Dec;17(12):1057-1058 |
References_xml | – volume: 335 start-page: 1606 year: 2012 end-page: 1610 ident: CR7 article-title: Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites publication-title: Science doi: 10.1126/science.1217544 – volume: 54 start-page: 10686 year: 2015 end-page: 10687 ident: CR4 article-title: Porous materials and the age of gas publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503835 – volume: 49 start-page: 5949 year: 2010 end-page: 5952 ident: CR31 article-title: Controlled reducibility of a metal–organic framework with coordinatively unsaturated sites for preferential gas sorption publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201001230 – volume: 55 start-page: 13784 year: 2016 end-page: 13788 ident: CR35 article-title: Recognition of 1,3-butadiene by a porous coordination polymer publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201607676 – volume: 22 start-page: 1142 year: 2008 end-page: 1147 ident: CR36 article-title: Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz publication-title: Energy Fuels doi: 10.1021/ef700680d – volume: 120 start-page: 5509 year: 1998 end-page: 5516 ident: CR25 article-title: Molecular dimensions for adsorptives publication-title: J. Am. Chem. Soc. doi: 10.1021/ja973906m – volume: 21 start-page: 395502 year: 2009 ident: CR40 article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 19 start-page: 101 year: 2013 end-page: 110 ident: CR26 article-title: Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A publication-title: Adsorption doi: 10.1007/s10450-012-9423-1 – volume: 140 start-page: 102 year: 2015 end-page: 115 ident: CR37 article-title: Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review I: thermal cracking review publication-title: Fuel doi: 10.1016/j.fuel.2014.09.034 – volume: 532 start-page: 435 year: 2016 end-page: 437 ident: CR1 article-title: Seven chemical separations to change the world publication-title: Nature doi: 10.1038/532435a – volume: 353 start-page: 141 year: 2016 end-page: 144 ident: CR10 article-title: Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene publication-title: Science doi: 10.1126/science.aaf2458 – volume: 135 start-page: 4612 year: 2013 end-page: 4615 ident: CR38 article-title: Postsynthesis modification of a porous coordination polymer by LiCl to enhance H transport publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3122872 – volume: 22 start-page: 373 year: 1987 end-page: 380 ident: CR24 article-title: Alkaline-earth squarates III. CaC O ·2.5H O, a novel polymer complex with zeolitic properties (1) publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(87)90055-9 – volume: 30 start-page: 934 year: 2009 end-page: 939 ident: CR41 article-title: Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases publication-title: J. Comput. Chem. doi: 10.1002/jcc.21112 – volume: 134 start-page: 14635 year: 2012 end-page: 14637 ident: CR32 article-title: Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305663k – volume: 9 start-page: 3612 year: 2016 end-page: 3641 ident: CR22 article-title: Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01886F – volume: 73 start-page: 261 year: 2012 end-page: 284 ident: CR33 article-title: Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.01.037 – volume: 16 start-page: 16 year: 2017 end-page: 22 ident: CR2 article-title: The path towards sustainable energy publication-title: Nat. Mater. doi: 10.1038/nmat4834 – volume: 356 start-page: 1193 year: 2017 end-page: 1196 ident: CR11 article-title: Controlling guest conformation for efficient purification of butadiene publication-title: Science doi: 10.1126/science.aam7232 – volume: 31 start-page: 425 year: 2006 end-page: 451 ident: CR3 article-title: Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes publication-title: Energy doi: 10.1016/j.energy.2005.04.001 – volume: 7 start-page: 121 year: 2014 end-page: 129 ident: CR8 article-title: Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework publication-title: Nat. Chem. doi: 10.1038/nchem.2114 – volume: 139 start-page: 11325 year: 2017 end-page: 11328 ident: CR16 article-title: Transformation of metal–organic framework secondary building units into hexanuclear Zr-alkyl catalysts for ethylene polymerization publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05761 – volume: 131 start-page: 6445 year: 2009 end-page: 6451 ident: CR21 article-title: Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808896f – volume: 137 start-page: 15680 year: 2015 end-page: 15683 ident: CR17 article-title: Single-site organozirconium catalyst embedded in a metal–organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11350 – volume: 16 start-page: 526 year: 2016 end-page: 531 ident: CR12 article-title: Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites publication-title: Nat. Mater. doi: 10.1038/nmat4825 – volume: 353 start-page: 121 year: 2016 end-page: 122 ident: CR18 article-title: Molecular sieves for gas separation publication-title: Science doi: 10.1126/science.aag2267 – volume: 346 start-page: 1356 year: 2014 end-page: 1359 ident: CR19 article-title: Metal–organic framework nanosheets as building blocks for molecular sieving membranes publication-title: Science doi: 10.1126/science.1254227 – volume: 136 start-page: 8654 year: 2014 end-page: 8660 ident: CR29 article-title: Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502119z – volume: 353 start-page: 137 year: 2016 end-page: 140 ident: CR9 article-title: A metal–organic framework-based splitter for separating propylene from propane publication-title: Science doi: 10.1126/science.aaf6323 – volume: 46 start-page: 3402 year: 2017 end-page: 3430 ident: CR23 article-title: Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00153C – volume: 358 start-page: 1068 year: 2017 end-page: 1071 ident: CR30 article-title: Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene publication-title: Science doi: 10.1126/science.aao0092 – volume: 341 start-page: 1230444 year: 2013 ident: CR5 article-title: The chemistry and applications of metal–organic frameworks publication-title: Science doi: 10.1126/science.1230444 – volume: 139 start-page: 18313 year: 2017 end-page: 18321 ident: CR34 article-title: Cooperative bond scission in a soft porous crystal enables discriminatory gate opening for ethylene over ethane publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10110 – volume: 185 start-page: 30 year: 2014 end-page: 50 ident: CR42 article-title: The Maxwell–Stefan description of mixture diffusion in nanoporous crystalline materials publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.10.026 – ident: CR28 – volume: 45 start-page: 616 year: 2006 end-page: 619 ident: CR20 article-title: Separation of hydrocarbons with a microporous metal–organic framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503503 – volume: 436 start-page: 238 year: 2005 end-page: 241 ident: CR6 article-title: Highly controlled acetylene accommodation in a metal–organic microporous material publication-title: Nature doi: 10.1038/nature03852 – volume: 330 start-page: 650 year: 2010 end-page: 653 ident: CR13 article-title: Direct observation and quantification of CO binding within an amine-functionalized nanoporous solid publication-title: Science doi: 10.1126/science.1194237 – volume: 7 year: 2016 ident: CR15 article-title: An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials publication-title: Nat. Commun. doi: 10.1038/ncomms13645 – volume: 139 start-page: 8022 year: 2017 end-page: 8028 ident: CR39 article-title: Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03850 – volume: 5 start-page: 9107 year: 2012 end-page: 9120 ident: CR14 article-title: Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22858k – volume: 63 start-page: 4171 year: 2008 end-page: 4175 ident: CR27 article-title: Adsorption of ethane and ethylene on modified ETS-10 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.05.038 – volume: 16 start-page: 16 year: 2017 ident: 206_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat4834 – volume: 31 start-page: 425 year: 2006 ident: 206_CR3 publication-title: Energy doi: 10.1016/j.energy.2005.04.001 – volume: 353 start-page: 141 year: 2016 ident: 206_CR10 publication-title: Science doi: 10.1126/science.aaf2458 – volume: 9 start-page: 3612 year: 2016 ident: 206_CR22 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01886F – volume: 140 start-page: 102 year: 2015 ident: 206_CR37 publication-title: Fuel doi: 10.1016/j.fuel.2014.09.034 – volume: 185 start-page: 30 year: 2014 ident: 206_CR42 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.10.026 – volume: 139 start-page: 8022 year: 2017 ident: 206_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03850 – volume: 330 start-page: 650 year: 2010 ident: 206_CR13 publication-title: Science doi: 10.1126/science.1194237 – volume: 353 start-page: 137 year: 2016 ident: 206_CR9 publication-title: Science doi: 10.1126/science.aaf6323 – volume: 346 start-page: 1356 year: 2014 ident: 206_CR19 publication-title: Science doi: 10.1126/science.1254227 – volume: 436 start-page: 238 year: 2005 ident: 206_CR6 publication-title: Nature doi: 10.1038/nature03852 – volume: 22 start-page: 373 year: 1987 ident: 206_CR24 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(87)90055-9 – volume: 55 start-page: 13784 year: 2016 ident: 206_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201607676 – volume: 22 start-page: 1142 year: 2008 ident: 206_CR36 publication-title: Energy Fuels doi: 10.1021/ef700680d – volume: 131 start-page: 6445 year: 2009 ident: 206_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808896f – ident: 206_CR28 doi: 10.1002/047144409X – volume: 45 start-page: 616 year: 2006 ident: 206_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503503 – volume: 139 start-page: 11325 year: 2017 ident: 206_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05761 – volume: 353 start-page: 121 year: 2016 ident: 206_CR18 publication-title: Science doi: 10.1126/science.aag2267 – volume: 49 start-page: 5949 year: 2010 ident: 206_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201001230 – volume: 73 start-page: 261 year: 2012 ident: 206_CR33 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.01.037 – volume: 63 start-page: 4171 year: 2008 ident: 206_CR27 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.05.038 – volume: 46 start-page: 3402 year: 2017 ident: 206_CR23 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00153C – volume: 137 start-page: 15680 year: 2015 ident: 206_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11350 – volume: 139 start-page: 18313 year: 2017 ident: 206_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10110 – volume: 356 start-page: 1193 year: 2017 ident: 206_CR11 publication-title: Science doi: 10.1126/science.aam7232 – volume: 30 start-page: 934 year: 2009 ident: 206_CR41 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21112 – volume: 358 start-page: 1068 year: 2017 ident: 206_CR30 publication-title: Science doi: 10.1126/science.aao0092 – volume: 7 year: 2016 ident: 206_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms13645 – volume: 120 start-page: 5509 year: 1998 ident: 206_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja973906m – volume: 134 start-page: 14635 year: 2012 ident: 206_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305663k – volume: 335 start-page: 1606 year: 2012 ident: 206_CR7 publication-title: Science doi: 10.1126/science.1217544 – volume: 19 start-page: 101 year: 2013 ident: 206_CR26 publication-title: Adsorption doi: 10.1007/s10450-012-9423-1 – volume: 532 start-page: 435 year: 2016 ident: 206_CR1 publication-title: Nature doi: 10.1038/532435a – volume: 5 start-page: 9107 year: 2012 ident: 206_CR14 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22858k – volume: 136 start-page: 8654 year: 2014 ident: 206_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502119z – volume: 16 start-page: 526 year: 2016 ident: 206_CR12 publication-title: Nat. Mater. doi: 10.1038/nmat4825 – volume: 135 start-page: 4612 year: 2013 ident: 206_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3122872 – volume: 341 start-page: 1230444 year: 2013 ident: 206_CR5 publication-title: Science doi: 10.1126/science.1230444 – volume: 54 start-page: 10686 year: 2015 ident: 206_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503835 – volume: 7 start-page: 121 year: 2014 ident: 206_CR8 publication-title: Nat. Chem. doi: 10.1038/nchem.2114 – volume: 21 start-page: 395502 year: 2009 ident: 206_CR40 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – reference: 30397309 - Nat Mater. 2018 Dec;17(12):1057-1058 |
SSID | ssj0021556 |
Score | 2.693008 |
Snippet | There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1128 |
SubjectTerms | 639/301 639/301/299/1013 639/301/299/921 639/638 Apertures Biomaterials Calcium nitrate Chemical separation Chemistry and Materials Science Condensed Matter Physics Distillation Ethane Ethylene Materials Science Metal-organic frameworks Molecular sieves Nanotechnology Optical and Electronic Materials Organic chemistry Paraffins Physical properties Pores Porous materials Rigidity Separation processes Synthesis |
Title | Molecular sieving of ethylene from ethane using a rigid metal–organic framework |
URI | https://link.springer.com/article/10.1038/s41563-018-0206-2 https://www.ncbi.nlm.nih.gov/pubmed/30397312 https://www.proquest.com/docview/2137122201 https://www.proquest.com/docview/2130306841 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBapfWkPoe86dY0KPbWIeLXySj6VJtg1AZsmuODboscoBFI7ydr3_of-w_6SzuzDbjH1ZdGiWa2YkTQzmpE-xj5orZ2VCoTUwyiUHnhhMxVEEnX0YNF9AzrgPJ1lk-_qYjFY1BtuRZ1W2ayJ5UIdVp72yE9lkuoElVk_-Xx3Lwg1iqKrNYTGI9amq8sopUsvdg4X6srqdJHOBNoVsolqpua0IMeFMomMQIMpE_JfvbRnbO4FSkv9M37KjmvDkX-pJP2MHcHyOXvy13WCL9jltMG65cUN0E4BX0UOKApULcDpJAm9WSxTuvs1t5xgsQL_AWiC__75q4J48khZZ2y9ZPPxaH4-ETVkgvDI57WAgXVDH5DH3rgoDRgfs4Ei1Kg0JolXAdywD2nAognK4mw3MThQ1lmlZfqKtZarJbxhPPhoIUFrbejQB3PB9BXIzGa4HkrtZdJh_YZfua-vEydUi9u8DGunJq9YnCOLc2JxLjvs4_aTu-oujUPE3UYIeT2tinw3CDrs_bYaJwRFOZB7q01JQ36QUUjzuhLe9m9YQ1Bd2PinRpq7xv_blZPDXXnLHksaR2WOS5e11g8beIeWytr1yuGITzP-2mPts9Hs29UfQf3odQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V5QAcEO8GChgJLiCrWa-z9h4QQkBIaVMJKUi9WX6MERIkhaRC3PgP_A7-FL-EmX2koIreetuVvV5rHp4Zz9gfwCNjTPBKo1SmzlKbUZS-0kkW2eSInsI35APO04Nq8l6_PRwdbsCv_iwMl1X2a2KzUKdF5D3yHVWUpiBjNiyeH32RjBrF2dUeQqMViz38_o1CtuWz3VfE38dKjV_PXk5khyogI01lJXHkQx0TTSPakJVFG3M10gysVOaiiDphqIdYJnq0SXtSCJtTQO2D14bvOaAV_4Iuy5oVyo7frOM7Ms3tYSZTSXJjVJ9ELe3OkuMkLlyykvyzSqp_zeAp3_ZUXrYxd-OrcKXzU8WLVrCuwQbOr8Plv24vvAHvpj20rlh-RN6YEIsskDhPlgwFH1zhN0_PXF3_QXjBKFxJfEby-H__-NkiSkXq2RWI3YTZedDyFmzOF3PcApFi9liQc1gHCvlCskONqvIVLb_KRFUMYNjTy8Xu9nIG0fjkmix6aV1LYkckdkxipwbwZP3JUXt1x1mdt3smuE6Ll-5E5gbwcN1M-sdJFaLe4rjpw2GX1dTndsu89d-ohZHBaPCnPTdPBv_vVO6cPZUHcHEym-67_d2DvbtwSbFMNeU127C5-nqM98hJWoX7jWgKcOesCn8AYoQl-A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dalQxEA6lQtEL0frT1Woj6I0SdpOTc5K9EBHbpbW2KFTYu5CfSSnobnW3iHe-g0_j6_gkzpyfXUtp73p3DsnJGSYzmZnMJB9jz40xwSsNQplhFtqUUfhKJyGzyRE8hm9AB5wPDqvdz_r9uByvsD_dWRgqq-zWxHqhTtNIe-R9JQsj0ZgNZD-3ZREft0dvTr8JQpCiTGsHp9GIyD78_IHh2-z13jbO9QulRjtH73ZFizAgIpI1F1D6MIwJSYo2ZGXBxlyVmkCWiixl1AnCcABFwkebtEflsDkF0D54bejOA1z9b5iilKRiZryM9dBMNwebTCXQpVFdQrWw_RnFTFTEZAX6apVQ503iBT_3Qo62Nn2jO-x267Pyt42Q3WUrMFlnt_67yfAe-3TQwezy2QnQJgWfZg4oBWjVgNMhFnrz-EyV9sfcc0LkSvwroPf_99fvBl0qYs-2WOw-O7oOXj5gq5PpBDYYTzF7kOgoDgOGfyHZgQZV-QqXYmWikj026PjlYnuTOQFqfHF1Rr2wrmGxQxY7YrFTPfZy8clpc43HVZ03u0lwrUbP3FL-euzZohl1kRIsyL3pWd2HQjCrsc_DZvIWf8MWQgnDwV91s7kc_FJSHl1NyhZbQyVwH_YO9x-zm4pEqq602WSr8-9n8AT9pXl4WksmZ-6aNeEfvGcqJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+sieving+of+ethylene+from+ethane+using+a+rigid+metal%E2%80%93organic+framework&rft.jtitle=Nature+materials&rft.au=Lin%2C+Rui-Biao&rft.au=Li%2C+Libo&rft.au=Zhou%2C+Hao-Long&rft.au=Wu%2C+Hui&rft.date=2018-12-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=17&rft.issue=12&rft.spage=1128&rft.epage=1133&rft_id=info:doi/10.1038%2Fs41563-018-0206-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41563_018_0206_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |