Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover

[Display omitted] •Continuous hydrothermal liquefaction of oleaginous yeast and lignin drives efficientcarbon utilization from corn stover.•A high quality distillate blendstock ideal for diesel, jet, and marine fuel applications was produced by continuous-flow biocrude hydrotreating.•Techno-economic...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 233-234; no. C; pp. 840 - 853
Main Authors Collett, James R., Billing, Justin M., Meyer, Pimphan A., Schmidt, Andrew J., Remington, A. Brook, Hawley, Erik R., Hofstad, Beth A., Panisko, Ellen A., Dai, Ziyu, Hart, Todd R., Santosa, Daniel M., Magnuson, Jon K., Hallen, Richard T., Jones, Susanne B.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Continuous hydrothermal liquefaction of oleaginous yeast and lignin drives efficientcarbon utilization from corn stover.•A high quality distillate blendstock ideal for diesel, jet, and marine fuel applications was produced by continuous-flow biocrude hydrotreating.•Techno-economic analysis suggests a doubling of renewable distillate fuel output compared to contemporary biorefinery designs. Oleaginous yeast can produce high yields of lipids from hydrolyzed lignocellulosic carbohydrates, but the difficulty and cost of extracting the lipids from the bioreactor broth, as well as the lack of profitable options for valorizing feedstock lignin are major barriers to cost-competitive production of renewable diesel from corn stover via bioconversion. Hydrothermal liquefaction of lignocellulosic biomass effectively breaks down and converts lignin into biocrude oil products, but provides relatively low yields of biocrude from feedstock carbohydrates. In the present study, bioconversion and hydrothermal liquefaction were integrated in a new hybrid approach that combines the advantages of both processes to produce a high quality distillate fuel blendstock. Eight bioreactor cultures of the oleaginous yeast Lipomyces starkeyi were grown in pretreated corn stover hydrolysate or simulated hydrolysate media, with dry cell mass yields from sugar of up to 0.43 g/g, and yields of intracellular triglyceride lipids from sugar (measured as fatty acid methyl esters) of up to 0.26 g/g. The lipid-rich cell mass in the bioreactor broth was pooled and mixed with pretreated corn stover lignin to produce a slurry intermediate with a total mass of 23.5 kg. The slurry was fed to a continuous hydrothermal liquefaction reactor at a dry solids loading of 16.3% to produce biocrude oil with a carbon yield of 55% and a mass yield of 40% from the feedstock. The biocrude was then hydrotreated to produce a renewable hydrocarbon fuel blendstock, with the majority of the product boiling in the distillate range. Techno-economic analysis suggested that a biorefinery employing this integrated, hybrid conversion approach could produce approximately twice as much distillate fuel blendstock than contemporary biorefinery designs that rely solely on lipids solvent-extracted from oleaginous yeast for production of distillate blendstocks from corn stover hydrolysate. Sensitivity analysis of the proposed biorefinery design suggested that the cost of production could be reduced to $3/gasoline gallon equivalent or less by addressing identified research gaps, such as optimizing the separation of biocrude to recover additional hydrocarbon from the aqueous phase of the reactor effluent. Our results provide a proof-of-concept for a new hybrid biorefinery design that could enhance domestic production of renewable diesel, jet, and marine fuel from corn stover or other forms of lignocellulosic biomass.
AbstractList Oleaginous yeast can produce high yields of lipids from hydrolyzed lignocellulosic carbohydrates, but the difficulty and cost of extracting the lipids from the bioreactor broth, as well as the lack of profitable options for valorizing feedstock lignin are major barriers to cost-competitive production of renewable diesel from corn stover via bioconversion. Hydrothermal liquefaction of lignocellulosic biomass effectively breaks down and converts lignin into biocrude oil products, but provides relatively low yields of biocrude from feedstock carbohydrates. In the present study, bioconversion and hydrothermal liquefaction were integrated in a new hybrid approach that combines the advantages of both processes to produce a high quality distillate fuel blendstock. Eight bioreactor cultures of the oleaginous yeast Lipomyces starkeyi were grown in pretreated corn stover hydrolysate or simulated hydrolysate media, with dry cell mass yields from sugar of up to 0.43 g/g, and yields of intracellular triglyceride lipids from sugar (measured as fatty acid methyl esters) of up to 0.26 g/g. The lipid-rich cell mass in the bioreactor broth was pooled and mixed with pretreated corn stover lignin to produce a slurry intermediate with a total mass of 23.5 kg. The slurry was fed to a continuous hydrothermal liquefaction reactor at a dry solids loading of 16.3% to produce biocrude oil with a carbon yield of 55% and a mass yield of 40% from the feedstock. The biocrude was then hydrotreated to produce a renewable hydrocarbon fuel blendstock, with the majority of the product boiling in the distillate range. Techno-economic analysis suggested that a biorefinery employing this integrated, hybrid conversion approach could produce approximately twice as much distillate fuel blendstock than contemporary biorefinery designs that rely solely on lipids solvent-extracted from oleaginous yeast for production of distillate blendstocks from corn stover hydrolysate. Sensitivity analysis of the proposed biorefinery design suggested that the cost of production could be reduced to $3/gasoline gallon equivalent or less by addressing identified research gaps, such as optimizing the separation of biocrude to recover additional hydrocarbon from the aqueous phase of the reactor effluent. Our results provide a proof-of-concept for a new hybrid biorefinery design that could enhance domestic production of renewable diesel, jet, and marine fuel from corn stover or other forms of lignocellulosic biomass.
A major barrier to profitable bioconversion of cellulosic biomass to hydrocarbon fuel precursors is the difficulty in breaking down feedstock lignin into carbon substrates that can be easily metabolized by industrial microbes. Hydrothermal liquefaction (HTL) of cellulosic biomass effectively breaks down and converts lignin into biocrude oil products, but provides relatively low yields of biocrude from feedstock carbohydrates. In the present study, bioconversion and HTL were integrated into a new hybrid system that employs the best of both processes to produce high quality fuel in high quantity. Bioreactor cultivation of the oleaginous yeast Lypomyces starkeyi produced dry cell mass yields up to 0.43 g/g of sugar and yields of intracellular triglyceride lipids (measured as fatty acid methyl esters) of up to 0.26 g/g of sugar in pretreated corn stover hydrolysate or simulated hydrolysate media. The lipid-rich bioreactor broth was mixed with pretreated corn stover lignin, and then co-fed to an HTL reactor to produce 0.40 g of biocrude oil per gram of feed on a dry weight basis. Optimizing the separation of HTL biocrude and the HTL aqueous phase could significantly increase the biocrude yield. Hydrotreating of the biocrude produced a high quality, renewable hydrocarbon fuel blendstock, with the majority of the product boiling in the distillate range. The estimated cost of production could be reduced to $3/gasoline gallon equivalent through addressing identified research gaps. Our results provide a proof-of-concept for a new hybrid biorefinery design that could enhance domestic production of renewable diesel, jet, and marine fuel in the United States.
[Display omitted] •Continuous hydrothermal liquefaction of oleaginous yeast and lignin drives efficientcarbon utilization from corn stover.•A high quality distillate blendstock ideal for diesel, jet, and marine fuel applications was produced by continuous-flow biocrude hydrotreating.•Techno-economic analysis suggests a doubling of renewable distillate fuel output compared to contemporary biorefinery designs. Oleaginous yeast can produce high yields of lipids from hydrolyzed lignocellulosic carbohydrates, but the difficulty and cost of extracting the lipids from the bioreactor broth, as well as the lack of profitable options for valorizing feedstock lignin are major barriers to cost-competitive production of renewable diesel from corn stover via bioconversion. Hydrothermal liquefaction of lignocellulosic biomass effectively breaks down and converts lignin into biocrude oil products, but provides relatively low yields of biocrude from feedstock carbohydrates. In the present study, bioconversion and hydrothermal liquefaction were integrated in a new hybrid approach that combines the advantages of both processes to produce a high quality distillate fuel blendstock. Eight bioreactor cultures of the oleaginous yeast Lipomyces starkeyi were grown in pretreated corn stover hydrolysate or simulated hydrolysate media, with dry cell mass yields from sugar of up to 0.43 g/g, and yields of intracellular triglyceride lipids from sugar (measured as fatty acid methyl esters) of up to 0.26 g/g. The lipid-rich cell mass in the bioreactor broth was pooled and mixed with pretreated corn stover lignin to produce a slurry intermediate with a total mass of 23.5 kg. The slurry was fed to a continuous hydrothermal liquefaction reactor at a dry solids loading of 16.3% to produce biocrude oil with a carbon yield of 55% and a mass yield of 40% from the feedstock. The biocrude was then hydrotreated to produce a renewable hydrocarbon fuel blendstock, with the majority of the product boiling in the distillate range. Techno-economic analysis suggested that a biorefinery employing this integrated, hybrid conversion approach could produce approximately twice as much distillate fuel blendstock than contemporary biorefinery designs that rely solely on lipids solvent-extracted from oleaginous yeast for production of distillate blendstocks from corn stover hydrolysate. Sensitivity analysis of the proposed biorefinery design suggested that the cost of production could be reduced to $3/gasoline gallon equivalent or less by addressing identified research gaps, such as optimizing the separation of biocrude to recover additional hydrocarbon from the aqueous phase of the reactor effluent. Our results provide a proof-of-concept for a new hybrid biorefinery design that could enhance domestic production of renewable diesel, jet, and marine fuel from corn stover or other forms of lignocellulosic biomass.
Author Hallen, Richard T.
Meyer, Pimphan A.
Remington, A. Brook
Jones, Susanne B.
Hart, Todd R.
Collett, James R.
Billing, Justin M.
Magnuson, Jon K.
Schmidt, Andrew J.
Hofstad, Beth A.
Panisko, Ellen A.
Santosa, Daniel M.
Hawley, Erik R.
Dai, Ziyu
Author_xml – sequence: 1
  givenname: James R.
  surname: Collett
  fullname: Collett, James R.
  email: James.Collett@pnnl.gov
– sequence: 2
  givenname: Justin M.
  surname: Billing
  fullname: Billing, Justin M.
  email: Justin.Billing@pnnl.gov
– sequence: 3
  givenname: Pimphan A.
  surname: Meyer
  fullname: Meyer, Pimphan A.
  email: Pimphan.Meyer@pnnl.gov
– sequence: 4
  givenname: Andrew J.
  surname: Schmidt
  fullname: Schmidt, Andrew J.
  email: Andy.Schmidt@pnnl.gov
– sequence: 5
  givenname: A. Brook
  surname: Remington
  fullname: Remington, A. Brook
– sequence: 6
  givenname: Erik R.
  surname: Hawley
  fullname: Hawley, Erik R.
– sequence: 7
  givenname: Beth A.
  surname: Hofstad
  fullname: Hofstad, Beth A.
  email: beth.hofstad@pnnl.gov
– sequence: 8
  givenname: Ellen A.
  surname: Panisko
  fullname: Panisko, Ellen A.
  email: ellen.panisko@pnnl.gov
– sequence: 9
  givenname: Ziyu
  surname: Dai
  fullname: Dai, Ziyu
  email: ziyu.dai@pnnl.gov
– sequence: 10
  givenname: Todd R.
  surname: Hart
  fullname: Hart, Todd R.
  email: todd.hart@pnnl.gov
– sequence: 11
  givenname: Daniel M.
  surname: Santosa
  fullname: Santosa, Daniel M.
  email: daniel.santosa@pnnl.gov
– sequence: 12
  givenname: Jon K.
  surname: Magnuson
  fullname: Magnuson, Jon K.
  email: jon.magnuson@pnnl.gov
– sequence: 13
  givenname: Richard T.
  surname: Hallen
  fullname: Hallen, Richard T.
  email: Richard.Hallen@pnnl.gov
– sequence: 14
  givenname: Susanne B.
  surname: Jones
  fullname: Jones, Susanne B.
  email: Sue.Jones@pnnl.gov
BackLink https://www.osti.gov/biblio/1492716$$D View this record in Osti.gov
BookMark eNqFkU-PUyEUxYkZEzujX8EQV27eE-j7R-JCM1HHZBITo2tyH1xaGgoVaJ1-e3l23LiZFeFyfiece67JVYgBCXnNWcsZH97tWjhgwLQ5t4LxqWWy5bx_RlZ8GkUjOZ-uyIqt2dCIgcsX5DrnHWNMcMFW5OF7RX_D7JEahxk9PTmg27NJsWwx7cFT734d0YIuLgYaLY0eYeNCPGZ6RsiFQjA0YXbm-Fe9CS5Qm-Kezi7qGE6Y8iOqYwo0l1hHL8lzCz7jq8fzhvz8_OnH7V1z_-3L19uP943uxr402FmQXaehs2wyo-n0uo7swFD3BoSWRjIYZqjvvZzYpMdpnuul07K30sD6hry5-MZcnMraFdTb-quAuijeSTHyoYreXkSHFGvYXNTeZY3eQ8CaUwk-yb4XUnRV-v4i1SnmnNCqagnLbkoC5xVnamlF7dS_VtTSimJS1VYqPvyHH5LbQzo_DX64gFiXdXKYliwYNBqXligmuqcs_gA6l7ID
CitedBy_id crossref_primary_10_1021_acssynbio_0c00503
crossref_primary_10_1021_acs_iecr_3c01587
crossref_primary_10_1016_j_joei_2023_101260
crossref_primary_10_1016_j_jaap_2023_106221
crossref_primary_10_1016_j_cej_2024_150117
crossref_primary_10_1016_j_fuel_2020_118605
crossref_primary_10_1039_D3GC02662K
crossref_primary_10_1016_j_apenergy_2021_117927
crossref_primary_10_1016_j_biortech_2020_122735
crossref_primary_10_1071_FP20244
crossref_primary_10_1016_j_cej_2022_136013
crossref_primary_10_1021_acssuschemeng_1c07214
crossref_primary_10_1016_j_seta_2022_102621
crossref_primary_10_1016_j_jclepro_2020_120076
crossref_primary_10_1016_j_rser_2021_111019
crossref_primary_10_1016_j_fuel_2022_126755
crossref_primary_10_3390_catal12121621
crossref_primary_10_1016_j_fuel_2022_124817
crossref_primary_10_1039_D2RA07352H
crossref_primary_10_1016_j_energy_2020_117524
crossref_primary_10_1016_j_indcrop_2020_112727
crossref_primary_10_1111_gcbb_13173
crossref_primary_10_1016_j_biortech_2022_128075
crossref_primary_10_1002_bbb_2619
crossref_primary_10_1016_j_heliyon_2024_e37520
crossref_primary_10_1007_s13399_023_03749_1
crossref_primary_10_1016_j_cjche_2020_10_025
crossref_primary_10_1016_j_biortech_2020_123639
crossref_primary_10_1016_j_fuel_2023_128066
crossref_primary_10_1016_j_jece_2022_109076
crossref_primary_10_1186_s12934_021_01712_1
crossref_primary_10_3389_fchem_2024_1402502
crossref_primary_10_1039_D1SE01254A
crossref_primary_10_1039_D3SE00308F
crossref_primary_10_1007_s13399_020_01129_7
crossref_primary_10_1016_j_indcrop_2024_118759
crossref_primary_10_3390_pr10020207
crossref_primary_10_1016_j_apenergy_2018_12_058
crossref_primary_10_1038_s41563_024_02024_6
crossref_primary_10_1016_j_indcrop_2021_114139
crossref_primary_10_1016_j_cep_2019_107629
crossref_primary_10_1016_j_fuproc_2020_106645
Cites_doi 10.1186/1754-6834-5-50
10.1016/j.meteno.2016.04.002
10.1073/pnas.1410657111
10.1016/j.energy.2013.04.065
10.1016/j.rser.2016.09.120
10.1016/j.biortech.2008.11.062
10.1016/j.biombioe.2012.12.029
10.1016/j.biortech.2014.02.076
10.1016/j.watres.2017.11.048
10.1016/j.apenergy.2015.12.001
10.2172/921839
10.1007/s10163-016-0566-0
10.1021/acssuschemeng.6b00243
10.1016/j.energy.2011.03.013
10.1007/s00253-011-3200-z
10.1021/ie060334i
10.1016/j.biortech.2014.09.132
10.1007/s13399-017-0264-8
10.1016/j.biortech.2015.07.077
10.1016/j.apenergy.2014.03.053
10.1016/j.cattod.2017.05.101
10.1016/j.rser.2010.11.054
10.1016/j.algal.2015.12.008
10.1038/nbt.3763
10.1016/j.apenergy.2016.06.002
10.1039/C7CS00566K
10.1002/bbb.1422
10.1021/acssuschemeng.5b00426
10.1016/j.bej.2017.08.006
10.1016/j.supflu.2016.12.015
10.1002/biot.201400570
10.1186/s13068-015-0345-5
10.1089/ind.2016.0007
10.1016/j.algal.2013.08.005
10.1007/BF02920191
10.1016/j.biortech.2016.03.075
10.1021/acsenergylett.6b00290
10.1139/v81-316
10.1016/j.fuel.2015.06.077
10.2175/106143017X15131012152861
10.1021/acssuschemeng.6b02367
10.1016/j.biortech.2014.05.113
10.1002/bit.21959
10.1016/j.biombioe.2007.02.002
10.1016/j.copbio.2016.02.030
10.1073/pnas.0704767105
10.1021/acs.energyfuels.8b01445
10.1016/j.apenergy.2015.11.067
10.1002/app.39273
10.1002/9781118878750.ch10
10.1021/acs.energyfuels.6b01229
10.1016/j.fuel.2011.06.052
10.1021/acssuschemeng.7b01874
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1016/j.apenergy.2018.09.115
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 853
ExternalDocumentID 1492716
10_1016_j_apenergy_2018_09_115
S0306261918314235
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
7S9
L.6
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c475t-e4fa944ca4f08d7d4c3e4ff60ec5da2c9d90a6baa4f59808c78bba4f4c95f9da3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Thu May 18 22:34:31 EDT 2023
Fri Jul 11 09:05:11 EDT 2025
Tue Jul 01 02:53:32 EDT 2025
Thu Apr 24 22:57:19 EDT 2025
Fri Feb 23 02:16:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Biocrude
Lignin
Economic analysis
Oleaginous yeast
Continuous hydrothermal liquefaction
Biomass
Continuous hydrotreating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-e4fa944ca4f08d7d4c3e4ff60ec5da2c9d90a6baa4f59808c78bba4f4c95f9da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-76RL01830
PNNL-SA-133222
PQID 2189552924
PQPubID 24069
PageCount 14
ParticipantIDs osti_scitechconnect_1492716
proquest_miscellaneous_2189552924
crossref_citationtrail_10_1016_j_apenergy_2018_09_115
crossref_primary_10_1016_j_apenergy_2018_09_115
elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_09_115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied energy
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Holladay JE, White JF, Bozell JJ, Johnson D. Top value added chemicals from biomass – Volume II, results of screening for potential candidates from biorefinery lignin; 2007.
Linger (b0105) 2014; 111
Huang (b0160) 2013; 56
Biller (b0175) 2018; 130
ProQuest. Publication database; 2018 [July 18, 2018; Publication Database]. Available from
Donohoe (b0305) 2008; 101
Toor, Rosendahl, Rudolf (b0125) 2011; 36
Laskar, Yang, Wang, Lee (b0100) 2013; 7
Marrone (b0300) 2016
Novozymes. Cellic® CTec2 and HTec2 – enzymes for hydrolysis of lignocellulosic materials; 2010 [July 18, 2018]. Available from
Islam, Park (b0180) 2018; 20
Akhtar, Amin (b0145) 2011; 15
Davis (b0245) 2013
Suesse, Norton, van Leeuwen (b0220) 2016; 30
Chiaramonti (b0185) 2017; 185
Snåre (b0325) 2006; 45
Baker, Rials (b0085) 2013; 130
Jones, Zhu, Anderson, Hallen, Elliott, Schmidt (b0285) 2014
Jena (b0210) 2015; 8
Humbird, Davis, McMillan (b0025) 2017; 127
Dong (b0030) 2016; 177
Heeres (b0040) 2015; 10
Knorr, Lukas, Schoen, Biddy (b0330) 2013
Elliott (b0120) 2015; 178
Elliott (b0265) 2013; 2
Fontana, Polidoro, Silveira (b0340) 2009; 100
Eager (b0315) 1981; 59
Collett, Meyer, Jones (b0290) 2014
.
Snowden-Swan, Zhu, Bearden, Seiple, Jones, Schmidt (b0170) 2017
Biddy (b0035) 2016; 4
Dimitriadis, Bezergianni (b0150) 2017; 68
Sharpe. Sharpe portable mixers; 2018 [cited 2018 July 18, 2018]. Available from
Skeer, Boshell, Ayuso (b0055) 2016; 1
Hinman, Yancey (b0280) 1998; 70–72
Shinners, Binversie (b0005) 2007; 31
Singh (b0225) 2014; 165
U.S. Department of Energy, B.T.O. EERE success story—Department of energy delivers on R&D targets around cellulosic ethanol; 2013 [cited 2018 February 2]. Available from
Tabur P, Dorin G. Method for purifying bio-organic compounds from fermentation broth containing surfactants by temperature-induced phase inversion. Google Patents; 2013.
Mulchandani, Westerhoff (b0155) 2016; 215
Maddi (b0320) 2017; 5
Ma, Guo, Zhang (b0095) 2018; 302
Biller (b0130) 2015; 159
Zhu (b0240) 2014; 129
Elliott (b0270) 2017; 7
USDOE (b0345) 2016
Summers (b0215) 2015; 196
Qiao (b0295) 2017; 35
Kruger (b0335) 2018; 6
Zheng (b0020) 2012; 5
Xie, Ragauskas, Yuan (b0080) 2016; 12
Albrecht (b0200) 2016; 14
U.S. Department of Energy, B.T.O. Bioenergy Technologies Office multiyear program plan. Washington, D.C; 2016.
Ageitos (b0015) 2011; 90
Schutyser (b0115) 2018; 47
Gray, Sato, Garcia, Eppler, Cherry, Amyris, Inc. (b0050) 2014
Hammerschmidt (b0205) 2011; 90
Marrone (b0165) 2018; 90
Arturi (b0230) 2017; 123
López Barreiro (b0190) 2013; 53
Elliott (b0235) 2010
Amarasekara (b0060) 2013; Wiley
Schmer (b0075) 2008; 105
ChemStations. CHEMCAD [Web Page]; 2017 [cited 2017 December 8]. Available from
Johnson (b0110) 2016; 3
Jarvis (b0135) 2018
Reddy (b0195) 2016; 165
Beckham (b0065) 2016; 42
Sievers, Tao, Schell (b0250) 2014; 167
Sun (b0310) 2015; 3
Marrone (10.1016/j.apenergy.2018.09.115_b0165) 2018; 90
10.1016/j.apenergy.2018.09.115_b0260
10.1016/j.apenergy.2018.09.115_b0140
Marrone (10.1016/j.apenergy.2018.09.115_b0300) 2016
Skeer (10.1016/j.apenergy.2018.09.115_b0055) 2016; 1
Jones (10.1016/j.apenergy.2018.09.115_b0285) 2014
Snåre (10.1016/j.apenergy.2018.09.115_b0325) 2006; 45
Hinman (10.1016/j.apenergy.2018.09.115_b0280) 1998; 70–72
Jarvis (10.1016/j.apenergy.2018.09.115_b0135) 2018
Summers (10.1016/j.apenergy.2018.09.115_b0215) 2015; 196
Mulchandani (10.1016/j.apenergy.2018.09.115_b0155) 2016; 215
10.1016/j.apenergy.2018.09.115_b0070
Huang (10.1016/j.apenergy.2018.09.115_b0160) 2013; 56
Snowden-Swan (10.1016/j.apenergy.2018.09.115_b0170) 2017
Davis (10.1016/j.apenergy.2018.09.115_b0245) 2013
Collett (10.1016/j.apenergy.2018.09.115_b0290) 2014
Humbird (10.1016/j.apenergy.2018.09.115_b0025) 2017; 127
Baker (10.1016/j.apenergy.2018.09.115_b0085) 2013; 130
Hammerschmidt (10.1016/j.apenergy.2018.09.115_b0205) 2011; 90
Sun (10.1016/j.apenergy.2018.09.115_b0310) 2015; 3
Islam (10.1016/j.apenergy.2018.09.115_b0180) 2018; 20
Biddy (10.1016/j.apenergy.2018.09.115_b0035) 2016; 4
Gray (10.1016/j.apenergy.2018.09.115_b0050) 2014
Dimitriadis (10.1016/j.apenergy.2018.09.115_b0150) 2017; 68
Zheng (10.1016/j.apenergy.2018.09.115_b0020) 2012; 5
10.1016/j.apenergy.2018.09.115_b0010
Heeres (10.1016/j.apenergy.2018.09.115_b0040) 2015; 10
Toor (10.1016/j.apenergy.2018.09.115_b0125) 2011; 36
Elliott (10.1016/j.apenergy.2018.09.115_b0265) 2013; 2
Arturi (10.1016/j.apenergy.2018.09.115_b0230) 2017; 123
10.1016/j.apenergy.2018.09.115_b0255
Beckham (10.1016/j.apenergy.2018.09.115_b0065) 2016; 42
Akhtar (10.1016/j.apenergy.2018.09.115_b0145) 2011; 15
Biller (10.1016/j.apenergy.2018.09.115_b0130) 2015; 159
Ageitos (10.1016/j.apenergy.2018.09.115_b0015) 2011; 90
Shinners (10.1016/j.apenergy.2018.09.115_b0005) 2007; 31
10.1016/j.apenergy.2018.09.115_b0045
Donohoe (10.1016/j.apenergy.2018.09.115_b0305) 2008; 101
Knorr (10.1016/j.apenergy.2018.09.115_b0330) 2013
10.1016/j.apenergy.2018.09.115_b0090
Ma (10.1016/j.apenergy.2018.09.115_b0095) 2018; 302
Schmer (10.1016/j.apenergy.2018.09.115_b0075) 2008; 105
Maddi (10.1016/j.apenergy.2018.09.115_b0320) 2017; 5
Reddy (10.1016/j.apenergy.2018.09.115_b0195) 2016; 165
Dong (10.1016/j.apenergy.2018.09.115_b0030) 2016; 177
Suesse (10.1016/j.apenergy.2018.09.115_b0220) 2016; 30
Linger (10.1016/j.apenergy.2018.09.115_b0105) 2014; 111
USDOE (10.1016/j.apenergy.2018.09.115_b0345) 2016
Elliott (10.1016/j.apenergy.2018.09.115_b0120) 2015; 178
Sievers (10.1016/j.apenergy.2018.09.115_b0250) 2014; 167
López Barreiro (10.1016/j.apenergy.2018.09.115_b0190) 2013; 53
Zhu (10.1016/j.apenergy.2018.09.115_b0240) 2014; 129
Schutyser (10.1016/j.apenergy.2018.09.115_b0115) 2018; 47
Elliott (10.1016/j.apenergy.2018.09.115_b0270) 2017; 7
Laskar (10.1016/j.apenergy.2018.09.115_b0100) 2013; 7
10.1016/j.apenergy.2018.09.115_b0275
Chiaramonti (10.1016/j.apenergy.2018.09.115_b0185) 2017; 185
Biller (10.1016/j.apenergy.2018.09.115_b0175) 2018; 130
Qiao (10.1016/j.apenergy.2018.09.115_b0295) 2017; 35
Albrecht (10.1016/j.apenergy.2018.09.115_b0200) 2016; 14
Xie (10.1016/j.apenergy.2018.09.115_b0080) 2016; 12
Elliott (10.1016/j.apenergy.2018.09.115_b0235) 2010
Fontana (10.1016/j.apenergy.2018.09.115_b0340) 2009; 100
Eager (10.1016/j.apenergy.2018.09.115_b0315) 1981; 59
Singh (10.1016/j.apenergy.2018.09.115_b0225) 2014; 165
Kruger (10.1016/j.apenergy.2018.09.115_b0335) 2018; 6
Amarasekara (10.1016/j.apenergy.2018.09.115_b0060) 2013; Wiley
Johnson (10.1016/j.apenergy.2018.09.115_b0110) 2016; 3
Jena (10.1016/j.apenergy.2018.09.115_b0210) 2015; 8
References_xml – volume: 42
  start-page: 40
  year: 2016
  end-page: 53
  ident: b0065
  article-title: Opportunities and challenges in biological lignin valorization
  publication-title: Curr Opin Biotechnol
– volume: 15
  start-page: 1615
  year: 2011
  end-page: 1624
  ident: b0145
  article-title: A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass
  publication-title: Renew Sustain Energy Rev
– volume: 2
  start-page: 445
  year: 2013
  end-page: 454
  ident: b0265
  article-title: Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor
  publication-title: Algal Res
– volume: 5
  start-page: 50
  year: 2012
  ident: b0020
  article-title: Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw
  publication-title: Biotechnol Biofuels
– volume: 127
  start-page: 161
  year: 2017
  end-page: 166
  ident: b0025
  article-title: Aeration costs in stirred-tank and bubble column bioreactors
  publication-title: Biochem Eng J
– volume: 167
  start-page: 291
  year: 2014
  end-page: 296
  ident: b0250
  article-title: Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover
  publication-title: Bioresour Technol
– volume: 129
  start-page: 384
  year: 2014
  end-page: 394
  ident: b0240
  article-title: Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading
  publication-title: Appl Energy
– reference: Novozymes. Cellic® CTec2 and HTec2 – enzymes for hydrolysis of lignocellulosic materials; 2010 [July 18, 2018]. Available from:
– volume: 10
  start-page: 1206
  year: 2015
  end-page: 1215
  ident: b0040
  article-title: Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation
  publication-title: Biotechnol J
– volume: 14
  start-page: 17
  year: 2016
  end-page: 27
  ident: b0200
  article-title: Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors
  publication-title: Algal Res
– reference: U.S. Department of Energy, B.T.O. Bioenergy Technologies Office multiyear program plan. Washington, D.C; 2016.
– volume: 165
  start-page: 319
  year: 2014
  end-page: 322
  ident: b0225
  article-title: Hydrothermal conversion of lignin to substituted phenols and aromatic ethers
  publication-title: Bioresour Technol
– volume: 130
  start-page: 58
  year: 2018
  end-page: 68
  ident: b0175
  article-title: Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction
  publication-title: Water Res
– volume: 68
  start-page: 113
  year: 2017
  end-page: 125
  ident: b0150
  article-title: Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review
  publication-title: Renew Sustain Energy Rev
– volume: 20
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0180
  article-title: A short review on hydrothermal liquefaction of livestock manure and a chance for Korea to advance swine manure to bio-oil technology
  publication-title: J Mater Cycles Waste Manage
– volume: 177
  start-page: 879
  year: 2016
  end-page: 895
  ident: b0030
  article-title: Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review
  publication-title: Appl Energy
– volume: 123
  start-page: 28
  year: 2017
  end-page: 39
  ident: b0230
  article-title: Hydrothermal liquefaction of lignin in near-critical water in a new batch reactor: Influence of phenol and temperature
  publication-title: J Supercrit Fluids
– reference: ChemStations. CHEMCAD [Web Page]; 2017 [cited 2017 December 8]. Available from:
– volume: 53
  start-page: 113
  year: 2013
  end-page: 127
  ident: b0190
  article-title: Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects
  publication-title: Biomass Bioenergy
– volume: 6
  start-page: 2921
  year: 2018
  end-page: 2931
  ident: b0335
  article-title: Recovery of fuel-precursor lipids from oleaginous yeast
  publication-title: ACS Sustain Chem Eng
– year: 2016
  ident: b0345
  article-title: Bioenergies technologies office multiyear program plan
– volume: 35
  start-page: 173
  year: 2017
  end-page: 177
  ident: b0295
  article-title: Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
  publication-title: Nat Biotechnol
– volume: 90
  start-page: 1219
  year: 2011
  end-page: 1227
  ident: b0015
  article-title: Oily yeasts as oleaginous cell factories
  publication-title: Appl Microbiol Biotechnol
– volume: 7
  start-page: 602
  year: 2013
  end-page: 626
  ident: b0100
  article-title: Pathways for biomass-derived lignin to hydrocarbon fuels
  publication-title: Biofuels Bioprod Biorefin
– volume: 59
  start-page: 2191
  year: 1981
  end-page: 2198
  ident: b0315
  article-title: Studies on the products resulting from the conversion of aspen poplar to an oil
  publication-title: Can J Chem
– volume: 12
  start-page: 161
  year: 2016
  end-page: 167
  ident: b0080
  article-title: Lignin conversion: opportunities and challenges for the integrated biorefinery
  publication-title: Ind Biotechnol
– reference: ProQuest. Publication database; 2018 [July 18, 2018; Publication Database]. Available from:
– volume: 165
  start-page: 943
  year: 2016
  end-page: 951
  ident: b0195
  article-title: Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and
  publication-title: Appl Energy
– year: 2010
  ident: b0235
  article-title: Hydrothermal liquefaction of agricultural and biorefinery residues – PNNL-19453
– volume: 5
  start-page: 2205
  year: 2017
  end-page: 2214
  ident: b0320
  article-title: Quantitative characterization of aqueous byproducts from hydrothermal liquefaction of municipal wastes, food industry wastes, and biomass grown on waste
  publication-title: ACS Sustain Chem Eng
– volume: 36
  start-page: 2328
  year: 2011
  end-page: 2342
  ident: b0125
  article-title: Hydrothermal liquefaction of biomass: a review of subcritical water technologies
  publication-title: Energy
– volume: 90
  start-page: 329
  year: 2018
  end-page: 342
  ident: b0165
  article-title: Bench-scale evaluation of hydrothermal processing technology for conversion of wastewater solids to fuels
  publication-title: Water Environ Res
– year: 2013
  ident: b0330
  article-title: Production of advanced biofuels via liquefaction: hydrothermal liquefaction reactor design
– year: 2016
  ident: b0300
  article-title: Geneifuel hydrothermal processing bench-scale evaluation project
– volume: 8
  start-page: 167
  year: 2015
  ident: b0210
  article-title: Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction
  publication-title: Biotechnol Biofuels
– volume: 90
  start-page: 3424
  year: 2011
  end-page: 3432
  ident: b0205
  article-title: Conversion of yeast by hydrothermal treatment under reducing conditions
  publication-title: Fuel
– year: 2014
  ident: b0285
  article-title: Technial Report: PNNL-23227
– volume: 111
  start-page: 12013
  year: 2014
  end-page: 12018
  ident: b0105
  article-title: Lignin valorization through integrated biological funneling and chemical catalysis
  publication-title: Proc Natl Acad Sci
– reference: U.S. Department of Energy, B.T.O. EERE success story—Department of energy delivers on R&D targets around cellulosic ethanol; 2013 [cited 2018 February 2]. Available from:
– volume: 302
  start-page: 50
  year: 2018
  end-page: 60
  ident: b0095
  article-title: Recent advances in oxidative valorization of lignin
  publication-title: Catal Today
– year: 2013
  ident: b0245
  article-title: Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons
– volume: 130
  start-page: 713
  year: 2013
  end-page: 728
  ident: b0085
  article-title: Recent advances in low-cost carbon fiber manufacture from lignin
  publication-title: J Appl Polym Sci
– volume: 30
  start-page: 7379
  year: 2016
  end-page: 7386
  ident: b0220
  article-title: Pilot-scale continuous-flow hydrothermal liquefaction of filamentous fungi
  publication-title: Energy Fuels
– volume: 100
  start-page: 4493
  year: 2009
  end-page: 4498
  ident: b0340
  article-title: Comparison of stirred tank and airlift bioreactors in the production of polygalacturonases by Aspergillus oryzae
  publication-title: Bioresour Technol
– reference: Sharpe. Sharpe portable mixers; 2018 [cited 2018 July 18, 2018]. Available from:
– volume: 70–72
  start-page: 807
  year: 1998
  end-page: 819
  ident: b0280
  article-title: Use of net present value analysis to evaluate a publicly funded biomass-to-ethanol research, development, and demonstration program and valuate expected private sector participation
  publication-title: Appl Biochem Biotechnol
– year: 2014
  ident: b0050
  article-title: Integrated biorefinery project summary final report
– year: 2014
  ident: b0290
  article-title: Preliminary economics for hydrocarbon fuel production from cellulosic sugars
– volume: 45
  start-page: 5708
  year: 2006
  end-page: 5715
  ident: b0325
  article-title: Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel
  publication-title: Ind Eng Chem Res
– volume: 4
  start-page: 3196
  year: 2016
  end-page: 3211
  ident: b0035
  article-title: The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass
  publication-title: ACS Sustain Chem Eng
– year: 2018
  ident: b0135
  article-title: Assessment of hydrotreatment for hydrothermal liquefaction biocrudes from sewage sludge, microalgae, and pine feedstocks
  publication-title: Energy Fuels
– volume: 3
  start-page: 2203
  year: 2015
  end-page: 2210
  ident: b0310
  article-title: Structural transformation of isolated poplar and switchgrass lignins during dilute acid treatment
  publication-title: ACS Sustain Chem Eng
– reference: Tabur P, Dorin G. Method for purifying bio-organic compounds from fermentation broth containing surfactants by temperature-induced phase inversion. Google Patents; 2013.
– volume: 105
  start-page: 464
  year: 2008
  end-page: 469
  ident: b0075
  article-title: Net energy of cellulosic ethanol from switchgrass
  publication-title: PNAS
– volume: 1
  start-page: 724
  year: 2016
  end-page: 725
  ident: b0055
  article-title: Technology innovation outlook for advanced liquid biofuels in transport
  publication-title: ACS Energy Lett
– volume: 3
  start-page: 111
  year: 2016
  end-page: 119
  ident: b0110
  article-title: Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity
  publication-title: Metab Eng Commun
– volume: 196
  start-page: 431
  year: 2015
  end-page: 440
  ident: b0215
  article-title: Techno-economic feasibility and life cycle assessment of dairy effluent to renewable diesel via hydrothermal liquefaction
  publication-title: Bioresour Technol
– volume: 56
  start-page: 52
  year: 2013
  end-page: 60
  ident: b0160
  article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge
  publication-title: Energy
– volume: 31
  start-page: 576
  year: 2007
  end-page: 584
  ident: b0005
  article-title: Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt
  publication-title: Biomass Bioenergy
– volume: Wiley
  start-page: 357
  year: 2013
  end-page: 380
  ident: b0060
  article-title: Separation and uses of lignin
  publication-title: Handbook of cellulosic ethanol
– volume: 101
  start-page: 913
  year: 2008
  end-page: 925
  ident: b0305
  article-title: Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment
  publication-title: Biotechnol Bioeng
– reference: .
– volume: 185
  start-page: 963
  year: 2017
  end-page: 972
  ident: b0185
  article-title: Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production
  publication-title: Appl Energy
– volume: 7
  start-page: 455
  year: 2017
  end-page: 465
  ident: b0270
  article-title: Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace
  publication-title: Biomass Convers Biorefin
– reference: Holladay JE, White JF, Bozell JJ, Johnson D. Top value added chemicals from biomass – Volume II, results of screening for potential candidates from biorefinery lignin; 2007.
– year: 2017
  ident: b0170
  article-title: Conceptual biorefinery design and research targeted for 2022: hydrothermal liquefaction processing of wet waste to fuels
– volume: 178
  start-page: 147
  year: 2015
  end-page: 156
  ident: b0120
  article-title: Hydrothermal liquefaction of biomass: developments from batch to continuous process
  publication-title: Bioresour Technol
– volume: 47
  start-page: 852
  year: 2018
  end-page: 908
  ident: b0115
  article-title: Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading
  publication-title: Chem Soc Rev
– volume: 159
  start-page: 197
  year: 2015
  end-page: 205
  ident: b0130
  article-title: Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae
  publication-title: Fuel
– volume: 215
  start-page: 215
  year: 2016
  end-page: 226
  ident: b0155
  article-title: Recovery opportunities for metals and energy from sewage sludges
  publication-title: Bioresour Technol
– ident: 10.1016/j.apenergy.2018.09.115_b0140
– volume: 5
  start-page: 50
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2018.09.115_b0020
  article-title: Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-5-50
– volume: 3
  start-page: 111
  year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0110
  article-title: Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity
  publication-title: Metab Eng Commun
  doi: 10.1016/j.meteno.2016.04.002
– volume: 111
  start-page: 12013
  issue: 33
  year: 2014
  ident: 10.1016/j.apenergy.2018.09.115_b0105
  article-title: Lignin valorization through integrated biological funneling and chemical catalysis
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1410657111
– volume: 56
  start-page: 52
  year: 2013
  ident: 10.1016/j.apenergy.2018.09.115_b0160
  article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.065
– year: 2014
  ident: 10.1016/j.apenergy.2018.09.115_b0050
– year: 2010
  ident: 10.1016/j.apenergy.2018.09.115_b0235
– volume: 68
  start-page: 113
  year: 2017
  ident: 10.1016/j.apenergy.2018.09.115_b0150
  article-title: Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.09.120
– year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0300
– volume: 100
  start-page: 4493
  issue: 19
  year: 2009
  ident: 10.1016/j.apenergy.2018.09.115_b0340
  article-title: Comparison of stirred tank and airlift bioreactors in the production of polygalacturonases by Aspergillus oryzae
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2008.11.062
– year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0345
– volume: 53
  start-page: 113
  year: 2013
  ident: 10.1016/j.apenergy.2018.09.115_b0190
  article-title: Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.12.029
– volume: 165
  start-page: 319
  year: 2014
  ident: 10.1016/j.apenergy.2018.09.115_b0225
  article-title: Hydrothermal conversion of lignin to substituted phenols and aromatic ethers
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.02.076
– volume: 130
  start-page: 58
  year: 2018
  ident: 10.1016/j.apenergy.2018.09.115_b0175
  article-title: Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.11.048
– volume: 185
  start-page: 963
  year: 2017
  ident: 10.1016/j.apenergy.2018.09.115_b0185
  article-title: Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.001
– ident: 10.1016/j.apenergy.2018.09.115_b0090
  doi: 10.2172/921839
– volume: 20
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.apenergy.2018.09.115_b0180
  article-title: A short review on hydrothermal liquefaction of livestock manure and a chance for Korea to advance swine manure to bio-oil technology
  publication-title: J Mater Cycles Waste Manage
  doi: 10.1007/s10163-016-0566-0
– volume: 4
  start-page: 3196
  issue: 6
  year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0035
  article-title: The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.6b00243
– ident: 10.1016/j.apenergy.2018.09.115_b0045
– volume: 36
  start-page: 2328
  issue: 5
  year: 2011
  ident: 10.1016/j.apenergy.2018.09.115_b0125
  article-title: Hydrothermal liquefaction of biomass: a review of subcritical water technologies
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.013
– volume: 90
  start-page: 1219
  issue: 4
  year: 2011
  ident: 10.1016/j.apenergy.2018.09.115_b0015
  article-title: Oily yeasts as oleaginous cell factories
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-011-3200-z
– volume: 45
  start-page: 5708
  issue: 16
  year: 2006
  ident: 10.1016/j.apenergy.2018.09.115_b0325
  article-title: Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie060334i
– volume: 178
  start-page: 147
  year: 2015
  ident: 10.1016/j.apenergy.2018.09.115_b0120
  article-title: Hydrothermal liquefaction of biomass: developments from batch to continuous process
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.09.132
– volume: 7
  start-page: 455
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2018.09.115_b0270
  article-title: Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace
  publication-title: Biomass Convers Biorefin
  doi: 10.1007/s13399-017-0264-8
– volume: 196
  start-page: 431
  year: 2015
  ident: 10.1016/j.apenergy.2018.09.115_b0215
  article-title: Techno-economic feasibility and life cycle assessment of dairy effluent to renewable diesel via hydrothermal liquefaction
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2015.07.077
– volume: 129
  start-page: 384
  year: 2014
  ident: 10.1016/j.apenergy.2018.09.115_b0240
  article-title: Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.03.053
– volume: 302
  start-page: 50
  year: 2018
  ident: 10.1016/j.apenergy.2018.09.115_b0095
  article-title: Recent advances in oxidative valorization of lignin
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2017.05.101
– volume: 15
  start-page: 1615
  issue: 3
  year: 2011
  ident: 10.1016/j.apenergy.2018.09.115_b0145
  article-title: A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.11.054
– volume: 14
  start-page: 17
  year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0200
  article-title: Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors
  publication-title: Algal Res
  doi: 10.1016/j.algal.2015.12.008
– volume: 35
  start-page: 173
  issue: 2
  year: 2017
  ident: 10.1016/j.apenergy.2018.09.115_b0295
  article-title: Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3763
– volume: 177
  start-page: 879
  year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0030
  article-title: Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.002
– volume: 47
  start-page: 852
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2018.09.115_b0115
  article-title: Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading
  publication-title: Chem Soc Rev
  doi: 10.1039/C7CS00566K
– volume: 7
  start-page: 602
  issue: 5
  year: 2013
  ident: 10.1016/j.apenergy.2018.09.115_b0100
  article-title: Pathways for biomass-derived lignin to hydrocarbon fuels
  publication-title: Biofuels Bioprod Biorefin
  doi: 10.1002/bbb.1422
– volume: 3
  start-page: 2203
  issue: 9
  year: 2015
  ident: 10.1016/j.apenergy.2018.09.115_b0310
  article-title: Structural transformation of isolated poplar and switchgrass lignins during dilute acid treatment
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.5b00426
– volume: 127
  start-page: 161
  year: 2017
  ident: 10.1016/j.apenergy.2018.09.115_b0025
  article-title: Aeration costs in stirred-tank and bubble column bioreactors
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2017.08.006
– year: 2013
  ident: 10.1016/j.apenergy.2018.09.115_b0245
– volume: 123
  start-page: 28
  year: 2017
  ident: 10.1016/j.apenergy.2018.09.115_b0230
  article-title: Hydrothermal liquefaction of lignin in near-critical water in a new batch reactor: Influence of phenol and temperature
  publication-title: J Supercrit Fluids
  doi: 10.1016/j.supflu.2016.12.015
– volume: 10
  start-page: 1206
  issue: 8
  year: 2015
  ident: 10.1016/j.apenergy.2018.09.115_b0040
  article-title: Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation
  publication-title: Biotechnol J
  doi: 10.1002/biot.201400570
– volume: 8
  start-page: 167
  year: 2015
  ident: 10.1016/j.apenergy.2018.09.115_b0210
  article-title: Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-015-0345-5
– ident: 10.1016/j.apenergy.2018.09.115_b0010
– volume: 12
  start-page: 161
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0080
  article-title: Lignin conversion: opportunities and challenges for the integrated biorefinery
  publication-title: Ind Biotechnol
  doi: 10.1089/ind.2016.0007
– volume: 2
  start-page: 445
  issue: 4
  year: 2013
  ident: 10.1016/j.apenergy.2018.09.115_b0265
  article-title: Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor
  publication-title: Algal Res
  doi: 10.1016/j.algal.2013.08.005
– volume: 70–72
  start-page: 807
  year: 1998
  ident: 10.1016/j.apenergy.2018.09.115_b0280
  article-title: Use of net present value analysis to evaluate a publicly funded biomass-to-ethanol research, development, and demonstration program and valuate expected private sector participation
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/BF02920191
– volume: 215
  start-page: 215
  year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0155
  article-title: Recovery opportunities for metals and energy from sewage sludges
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.03.075
– volume: 1
  start-page: 724
  issue: 4
  year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0055
  article-title: Technology innovation outlook for advanced liquid biofuels in transport
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.6b00290
– volume: 59
  start-page: 2191
  issue: 14
  year: 1981
  ident: 10.1016/j.apenergy.2018.09.115_b0315
  article-title: Studies on the products resulting from the conversion of aspen poplar to an oil
  publication-title: Can J Chem
  doi: 10.1139/v81-316
– volume: 159
  start-page: 197
  year: 2015
  ident: 10.1016/j.apenergy.2018.09.115_b0130
  article-title: Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.077
– volume: 90
  start-page: 329
  issue: 4
  year: 2018
  ident: 10.1016/j.apenergy.2018.09.115_b0165
  article-title: Bench-scale evaluation of hydrothermal processing technology for conversion of wastewater solids to fuels
  publication-title: Water Environ Res
  doi: 10.2175/106143017X15131012152861
– volume: 5
  start-page: 2205
  issue: 3
  year: 2017
  ident: 10.1016/j.apenergy.2018.09.115_b0320
  article-title: Quantitative characterization of aqueous byproducts from hydrothermal liquefaction of municipal wastes, food industry wastes, and biomass grown on waste
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.6b02367
– ident: 10.1016/j.apenergy.2018.09.115_b0255
– volume: 167
  start-page: 291
  year: 2014
  ident: 10.1016/j.apenergy.2018.09.115_b0250
  article-title: Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.05.113
– volume: 101
  start-page: 913
  issue: 5
  year: 2008
  ident: 10.1016/j.apenergy.2018.09.115_b0305
  article-title: Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.21959
– year: 2014
  ident: 10.1016/j.apenergy.2018.09.115_b0290
– volume: 31
  start-page: 576
  issue: 8
  year: 2007
  ident: 10.1016/j.apenergy.2018.09.115_b0005
  article-title: Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2007.02.002
– ident: 10.1016/j.apenergy.2018.09.115_b0275
– volume: 42
  start-page: 40
  year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0065
  article-title: Opportunities and challenges in biological lignin valorization
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2016.02.030
– volume: 105
  start-page: 464
  issue: 2
  year: 2008
  ident: 10.1016/j.apenergy.2018.09.115_b0075
  article-title: Net energy of cellulosic ethanol from switchgrass
  publication-title: PNAS
  doi: 10.1073/pnas.0704767105
– year: 2018
  ident: 10.1016/j.apenergy.2018.09.115_b0135
  article-title: Assessment of hydrotreatment for hydrothermal liquefaction biocrudes from sewage sludge, microalgae, and pine feedstocks
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.8b01445
– volume: 165
  start-page: 943
  year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0195
  article-title: Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp.
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.11.067
– volume: 130
  start-page: 713
  issue: 2
  year: 2013
  ident: 10.1016/j.apenergy.2018.09.115_b0085
  article-title: Recent advances in low-cost carbon fiber manufacture from lignin
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.39273
– year: 2017
  ident: 10.1016/j.apenergy.2018.09.115_b0170
– volume: Wiley
  start-page: 357
  year: 2013
  ident: 10.1016/j.apenergy.2018.09.115_b0060
  article-title: Separation and uses of lignin
  publication-title: Handbook of cellulosic ethanol
  doi: 10.1002/9781118878750.ch10
– ident: 10.1016/j.apenergy.2018.09.115_b0070
– year: 2014
  ident: 10.1016/j.apenergy.2018.09.115_b0285
– ident: 10.1016/j.apenergy.2018.09.115_b0260
– volume: 30
  start-page: 7379
  issue: 9
  year: 2016
  ident: 10.1016/j.apenergy.2018.09.115_b0220
  article-title: Pilot-scale continuous-flow hydrothermal liquefaction of filamentous fungi
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b01229
– volume: 90
  start-page: 3424
  issue: 11
  year: 2011
  ident: 10.1016/j.apenergy.2018.09.115_b0205
  article-title: Conversion of yeast by hydrothermal treatment under reducing conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.06.052
– volume: 6
  start-page: 2921
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2018.09.115_b0335
  article-title: Recovery of fuel-precursor lipids from oleaginous yeast
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b01874
– year: 2013
  ident: 10.1016/j.apenergy.2018.09.115_b0330
SSID ssj0002120
Score 2.4566813
Snippet [Display omitted] •Continuous hydrothermal liquefaction of oleaginous yeast and lignin drives efficientcarbon utilization from corn stover.•A high quality...
Oleaginous yeast can produce high yields of lipids from hydrolyzed lignocellulosic carbohydrates, but the difficulty and cost of extracting the lipids from the...
A major barrier to profitable bioconversion of cellulosic biomass to hydrocarbon fuel precursors is the difficulty in breaking down feedstock lignin into...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 840
SubjectTerms Biocrude
biofuels
Biomass
Biomass, Continuous hydrothermal liquefaction, Biocrude, Oleaginous yeast, Lignin, Continuous hydrotreating
bioreactors
biorefining
biotransformation
boiling
carbon
Continuous hydrothermal liquefaction
Continuous hydrotreating
corn stover
Economic analysis
fatty acid methyl esters
feedstocks
hydrolysates
hydrolysis
hydrothermal liquefaction
Lignin
lignocellulose
Lipomyces starkeyi
Oleaginous yeast
production costs
slurries
sugars
triacylglycerols
yeasts
Title Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover
URI https://dx.doi.org/10.1016/j.apenergy.2018.09.115
https://www.proquest.com/docview/2189552924
https://www.osti.gov/biblio/1492716
Volume 233-234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLbQcGEPiKcYXgoS1zKdTtI2R4RAsyA48JC4RXl1KRraETOwy4Xfjt1JgdWuxIFjUlutYjuxU382wL7pW5lkUkbcoPvGuUSbw5M2ylLvqeVqZgyhkc8v0uENP70Vt3Nw1GJhKK0y7P2zPb3ZrcNML6xmb1yWvSvydsn_R6Xso1NAQHPOM9Lyg9ePNI8klGZE4oioP6GE7w_02DcIO0rxyqneaZ_a4_7_gOrUaHP_7NjNMXSyBIvBf2SHs09chjlfrcCPT1UFV2D9-AO8hqTBeier8OcSv-M3YaUY5Q76EXsuNbt7cY8NDOsBiUdUzjWAHVhdsHrkqY1R_TRhL9Tlh-nKMYzQGwgXUv-qyooRRIWZsm4y2JvrN2LFsLZi6Fri1BrcnBxfHw2j0HkhsjwT08jzQkvOreZFnLvMcTvAqSKNvRVOJ1Y6GevUaHwuZB7nNsuNwQG3UhTS6cE6dKq68hvAUuNkqgd5wU2fOwqItU4xbDKWJ4VPsi6IdrmVDWXJqTvGSLX5Z_eqFZMiMalYYtgiutB75xvPCnN8ySFbaaq_VEzh6fEl7xaJn_iotq6lJCRkxPAywYCzC3utVii0TvrloiuPolHoQEkhEgxyN7_x9i1YwJGc3fxsQ2f6-OR30Beamt1G2Xdh_vDn2fDiDdAgDf4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAcEBQqlvIwEhzTzXrtJD5wQNBqSx8HaKXejF-BVEuy2t1S9sKf4g8yk3VoEUg9oB5jexLLY8_DmW8G4KUdOsVzpRJh0XwTQuGZQ02b5FkIVHI1t5bQyAeH2fhYvD-RJ2vws8PCUFhllP0rmd5K69gyiKs5mFbV4CNZu2T_46YcolHQRVbuheU5-m3z17vvkMmvON_ZPno7TmJpgcSJXC6SIEqjhHBGlGnhcy_cCJvKLA1OesOd8io1mTXYL1WRFi4vrMUH4ZQslTcjfO8NuClQXFDZhK0fF3ElPOaCxNklNL1LsOTTLTMNLaSPYsoKSrA6pHq8_9aIvQYP-V8qotV7O_fgbjRY2ZvVmtyHtVCvw51LaQzXYWP7Ai2HQ6O4mD-A7x9wHucEzmIUrBgm7Ftl2Jeln7W4r684eEL5YyO6gjUlayaB6iY1Z3O2pLJCzNSezcK8xYzh6M91VTPCxDBbNW3IfHvfR6ToR9cMbVlsegjH18KPDejVTR0eAcusV5kZFaWwQ-HJAzcmQz_NOsHLwPM-yG65tYt50Kkcx0R3AW-numOTJjbpVKGfJPsw-E03XWUCuZJCddzUf-xpjerqStpNYj_RUTJfR1FPSIj-LEcPtw8vul2hURzQPx5TB2SNRotNScnRq378H19_DrfGRwf7en_3cG8TbmOPWl07PYHeYnYWnqIhtrDP2o3P4NN1n7RfwHdMjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renewable+diesel+via+hydrothermal+liquefaction+of+oleaginous+yeast+and+residual+lignin+from+bioconversion+of+corn+stover&rft.jtitle=Applied+energy&rft.au=Collett%2C+James+R.&rft.au=Billing%2C+Justin+M.&rft.au=Meyer%2C+Pimphan+A.&rft.au=Schmidt%2C+Andrew+J.&rft.date=2019-01-01&rft.pub=Elsevier&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=233-234&rft.issue=C&rft_id=info:doi/10.1016%2Fj.apenergy.2018.09.115&rft.externalDocID=1492716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon