Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover
[Display omitted] •Continuous hydrothermal liquefaction of oleaginous yeast and lignin drives efficientcarbon utilization from corn stover.•A high quality distillate blendstock ideal for diesel, jet, and marine fuel applications was produced by continuous-flow biocrude hydrotreating.•Techno-economic...
Saved in:
Published in | Applied energy Vol. 233-234; no. C; pp. 840 - 853 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.01.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Continuous hydrothermal liquefaction of oleaginous yeast and lignin drives efficientcarbon utilization from corn stover.•A high quality distillate blendstock ideal for diesel, jet, and marine fuel applications was produced by continuous-flow biocrude hydrotreating.•Techno-economic analysis suggests a doubling of renewable distillate fuel output compared to contemporary biorefinery designs.
Oleaginous yeast can produce high yields of lipids from hydrolyzed lignocellulosic carbohydrates, but the difficulty and cost of extracting the lipids from the bioreactor broth, as well as the lack of profitable options for valorizing feedstock lignin are major barriers to cost-competitive production of renewable diesel from corn stover via bioconversion. Hydrothermal liquefaction of lignocellulosic biomass effectively breaks down and converts lignin into biocrude oil products, but provides relatively low yields of biocrude from feedstock carbohydrates. In the present study, bioconversion and hydrothermal liquefaction were integrated in a new hybrid approach that combines the advantages of both processes to produce a high quality distillate fuel blendstock. Eight bioreactor cultures of the oleaginous yeast Lipomyces starkeyi were grown in pretreated corn stover hydrolysate or simulated hydrolysate media, with dry cell mass yields from sugar of up to 0.43 g/g, and yields of intracellular triglyceride lipids from sugar (measured as fatty acid methyl esters) of up to 0.26 g/g. The lipid-rich cell mass in the bioreactor broth was pooled and mixed with pretreated corn stover lignin to produce a slurry intermediate with a total mass of 23.5 kg. The slurry was fed to a continuous hydrothermal liquefaction reactor at a dry solids loading of 16.3% to produce biocrude oil with a carbon yield of 55% and a mass yield of 40% from the feedstock. The biocrude was then hydrotreated to produce a renewable hydrocarbon fuel blendstock, with the majority of the product boiling in the distillate range. Techno-economic analysis suggested that a biorefinery employing this integrated, hybrid conversion approach could produce approximately twice as much distillate fuel blendstock than contemporary biorefinery designs that rely solely on lipids solvent-extracted from oleaginous yeast for production of distillate blendstocks from corn stover hydrolysate. Sensitivity analysis of the proposed biorefinery design suggested that the cost of production could be reduced to $3/gasoline gallon equivalent or less by addressing identified research gaps, such as optimizing the separation of biocrude to recover additional hydrocarbon from the aqueous phase of the reactor effluent. Our results provide a proof-of-concept for a new hybrid biorefinery design that could enhance domestic production of renewable diesel, jet, and marine fuel from corn stover or other forms of lignocellulosic biomass. |
---|---|
AbstractList | Oleaginous yeast can produce high yields of lipids from hydrolyzed lignocellulosic carbohydrates, but the difficulty and cost of extracting the lipids from the bioreactor broth, as well as the lack of profitable options for valorizing feedstock lignin are major barriers to cost-competitive production of renewable diesel from corn stover via bioconversion. Hydrothermal liquefaction of lignocellulosic biomass effectively breaks down and converts lignin into biocrude oil products, but provides relatively low yields of biocrude from feedstock carbohydrates. In the present study, bioconversion and hydrothermal liquefaction were integrated in a new hybrid approach that combines the advantages of both processes to produce a high quality distillate fuel blendstock. Eight bioreactor cultures of the oleaginous yeast Lipomyces starkeyi were grown in pretreated corn stover hydrolysate or simulated hydrolysate media, with dry cell mass yields from sugar of up to 0.43 g/g, and yields of intracellular triglyceride lipids from sugar (measured as fatty acid methyl esters) of up to 0.26 g/g. The lipid-rich cell mass in the bioreactor broth was pooled and mixed with pretreated corn stover lignin to produce a slurry intermediate with a total mass of 23.5 kg. The slurry was fed to a continuous hydrothermal liquefaction reactor at a dry solids loading of 16.3% to produce biocrude oil with a carbon yield of 55% and a mass yield of 40% from the feedstock. The biocrude was then hydrotreated to produce a renewable hydrocarbon fuel blendstock, with the majority of the product boiling in the distillate range. Techno-economic analysis suggested that a biorefinery employing this integrated, hybrid conversion approach could produce approximately twice as much distillate fuel blendstock than contemporary biorefinery designs that rely solely on lipids solvent-extracted from oleaginous yeast for production of distillate blendstocks from corn stover hydrolysate. Sensitivity analysis of the proposed biorefinery design suggested that the cost of production could be reduced to $3/gasoline gallon equivalent or less by addressing identified research gaps, such as optimizing the separation of biocrude to recover additional hydrocarbon from the aqueous phase of the reactor effluent. Our results provide a proof-of-concept for a new hybrid biorefinery design that could enhance domestic production of renewable diesel, jet, and marine fuel from corn stover or other forms of lignocellulosic biomass. A major barrier to profitable bioconversion of cellulosic biomass to hydrocarbon fuel precursors is the difficulty in breaking down feedstock lignin into carbon substrates that can be easily metabolized by industrial microbes. Hydrothermal liquefaction (HTL) of cellulosic biomass effectively breaks down and converts lignin into biocrude oil products, but provides relatively low yields of biocrude from feedstock carbohydrates. In the present study, bioconversion and HTL were integrated into a new hybrid system that employs the best of both processes to produce high quality fuel in high quantity. Bioreactor cultivation of the oleaginous yeast Lypomyces starkeyi produced dry cell mass yields up to 0.43 g/g of sugar and yields of intracellular triglyceride lipids (measured as fatty acid methyl esters) of up to 0.26 g/g of sugar in pretreated corn stover hydrolysate or simulated hydrolysate media. The lipid-rich bioreactor broth was mixed with pretreated corn stover lignin, and then co-fed to an HTL reactor to produce 0.40 g of biocrude oil per gram of feed on a dry weight basis. Optimizing the separation of HTL biocrude and the HTL aqueous phase could significantly increase the biocrude yield. Hydrotreating of the biocrude produced a high quality, renewable hydrocarbon fuel blendstock, with the majority of the product boiling in the distillate range. The estimated cost of production could be reduced to $3/gasoline gallon equivalent through addressing identified research gaps. Our results provide a proof-of-concept for a new hybrid biorefinery design that could enhance domestic production of renewable diesel, jet, and marine fuel in the United States. [Display omitted] •Continuous hydrothermal liquefaction of oleaginous yeast and lignin drives efficientcarbon utilization from corn stover.•A high quality distillate blendstock ideal for diesel, jet, and marine fuel applications was produced by continuous-flow biocrude hydrotreating.•Techno-economic analysis suggests a doubling of renewable distillate fuel output compared to contemporary biorefinery designs. Oleaginous yeast can produce high yields of lipids from hydrolyzed lignocellulosic carbohydrates, but the difficulty and cost of extracting the lipids from the bioreactor broth, as well as the lack of profitable options for valorizing feedstock lignin are major barriers to cost-competitive production of renewable diesel from corn stover via bioconversion. Hydrothermal liquefaction of lignocellulosic biomass effectively breaks down and converts lignin into biocrude oil products, but provides relatively low yields of biocrude from feedstock carbohydrates. In the present study, bioconversion and hydrothermal liquefaction were integrated in a new hybrid approach that combines the advantages of both processes to produce a high quality distillate fuel blendstock. Eight bioreactor cultures of the oleaginous yeast Lipomyces starkeyi were grown in pretreated corn stover hydrolysate or simulated hydrolysate media, with dry cell mass yields from sugar of up to 0.43 g/g, and yields of intracellular triglyceride lipids from sugar (measured as fatty acid methyl esters) of up to 0.26 g/g. The lipid-rich cell mass in the bioreactor broth was pooled and mixed with pretreated corn stover lignin to produce a slurry intermediate with a total mass of 23.5 kg. The slurry was fed to a continuous hydrothermal liquefaction reactor at a dry solids loading of 16.3% to produce biocrude oil with a carbon yield of 55% and a mass yield of 40% from the feedstock. The biocrude was then hydrotreated to produce a renewable hydrocarbon fuel blendstock, with the majority of the product boiling in the distillate range. Techno-economic analysis suggested that a biorefinery employing this integrated, hybrid conversion approach could produce approximately twice as much distillate fuel blendstock than contemporary biorefinery designs that rely solely on lipids solvent-extracted from oleaginous yeast for production of distillate blendstocks from corn stover hydrolysate. Sensitivity analysis of the proposed biorefinery design suggested that the cost of production could be reduced to $3/gasoline gallon equivalent or less by addressing identified research gaps, such as optimizing the separation of biocrude to recover additional hydrocarbon from the aqueous phase of the reactor effluent. Our results provide a proof-of-concept for a new hybrid biorefinery design that could enhance domestic production of renewable diesel, jet, and marine fuel from corn stover or other forms of lignocellulosic biomass. |
Author | Hallen, Richard T. Meyer, Pimphan A. Remington, A. Brook Jones, Susanne B. Hart, Todd R. Collett, James R. Billing, Justin M. Magnuson, Jon K. Schmidt, Andrew J. Hofstad, Beth A. Panisko, Ellen A. Santosa, Daniel M. Hawley, Erik R. Dai, Ziyu |
Author_xml | – sequence: 1 givenname: James R. surname: Collett fullname: Collett, James R. email: James.Collett@pnnl.gov – sequence: 2 givenname: Justin M. surname: Billing fullname: Billing, Justin M. email: Justin.Billing@pnnl.gov – sequence: 3 givenname: Pimphan A. surname: Meyer fullname: Meyer, Pimphan A. email: Pimphan.Meyer@pnnl.gov – sequence: 4 givenname: Andrew J. surname: Schmidt fullname: Schmidt, Andrew J. email: Andy.Schmidt@pnnl.gov – sequence: 5 givenname: A. Brook surname: Remington fullname: Remington, A. Brook – sequence: 6 givenname: Erik R. surname: Hawley fullname: Hawley, Erik R. – sequence: 7 givenname: Beth A. surname: Hofstad fullname: Hofstad, Beth A. email: beth.hofstad@pnnl.gov – sequence: 8 givenname: Ellen A. surname: Panisko fullname: Panisko, Ellen A. email: ellen.panisko@pnnl.gov – sequence: 9 givenname: Ziyu surname: Dai fullname: Dai, Ziyu email: ziyu.dai@pnnl.gov – sequence: 10 givenname: Todd R. surname: Hart fullname: Hart, Todd R. email: todd.hart@pnnl.gov – sequence: 11 givenname: Daniel M. surname: Santosa fullname: Santosa, Daniel M. email: daniel.santosa@pnnl.gov – sequence: 12 givenname: Jon K. surname: Magnuson fullname: Magnuson, Jon K. email: jon.magnuson@pnnl.gov – sequence: 13 givenname: Richard T. surname: Hallen fullname: Hallen, Richard T. email: Richard.Hallen@pnnl.gov – sequence: 14 givenname: Susanne B. surname: Jones fullname: Jones, Susanne B. email: Sue.Jones@pnnl.gov |
BackLink | https://www.osti.gov/biblio/1492716$$D View this record in Osti.gov |
BookMark | eNqFkU-PUyEUxYkZEzujX8EQV27eE-j7R-JCM1HHZBITo2tyH1xaGgoVaJ1-e3l23LiZFeFyfiece67JVYgBCXnNWcsZH97tWjhgwLQ5t4LxqWWy5bx_RlZ8GkUjOZ-uyIqt2dCIgcsX5DrnHWNMcMFW5OF7RX_D7JEahxk9PTmg27NJsWwx7cFT734d0YIuLgYaLY0eYeNCPGZ6RsiFQjA0YXbm-Fe9CS5Qm-Kezi7qGE6Y8iOqYwo0l1hHL8lzCz7jq8fzhvz8_OnH7V1z_-3L19uP943uxr402FmQXaehs2wyo-n0uo7swFD3BoSWRjIYZqjvvZzYpMdpnuul07K30sD6hry5-MZcnMraFdTb-quAuijeSTHyoYreXkSHFGvYXNTeZY3eQ8CaUwk-yb4XUnRV-v4i1SnmnNCqagnLbkoC5xVnamlF7dS_VtTSimJS1VYqPvyHH5LbQzo_DX64gFiXdXKYliwYNBqXligmuqcs_gA6l7ID |
CitedBy_id | crossref_primary_10_1021_acssynbio_0c00503 crossref_primary_10_1021_acs_iecr_3c01587 crossref_primary_10_1016_j_joei_2023_101260 crossref_primary_10_1016_j_jaap_2023_106221 crossref_primary_10_1016_j_cej_2024_150117 crossref_primary_10_1016_j_fuel_2020_118605 crossref_primary_10_1039_D3GC02662K crossref_primary_10_1016_j_apenergy_2021_117927 crossref_primary_10_1016_j_biortech_2020_122735 crossref_primary_10_1071_FP20244 crossref_primary_10_1016_j_cej_2022_136013 crossref_primary_10_1021_acssuschemeng_1c07214 crossref_primary_10_1016_j_seta_2022_102621 crossref_primary_10_1016_j_jclepro_2020_120076 crossref_primary_10_1016_j_rser_2021_111019 crossref_primary_10_1016_j_fuel_2022_126755 crossref_primary_10_3390_catal12121621 crossref_primary_10_1016_j_fuel_2022_124817 crossref_primary_10_1039_D2RA07352H crossref_primary_10_1016_j_energy_2020_117524 crossref_primary_10_1016_j_indcrop_2020_112727 crossref_primary_10_1111_gcbb_13173 crossref_primary_10_1016_j_biortech_2022_128075 crossref_primary_10_1002_bbb_2619 crossref_primary_10_1016_j_heliyon_2024_e37520 crossref_primary_10_1007_s13399_023_03749_1 crossref_primary_10_1016_j_cjche_2020_10_025 crossref_primary_10_1016_j_biortech_2020_123639 crossref_primary_10_1016_j_fuel_2023_128066 crossref_primary_10_1016_j_jece_2022_109076 crossref_primary_10_1186_s12934_021_01712_1 crossref_primary_10_3389_fchem_2024_1402502 crossref_primary_10_1039_D1SE01254A crossref_primary_10_1039_D3SE00308F crossref_primary_10_1007_s13399_020_01129_7 crossref_primary_10_1016_j_indcrop_2024_118759 crossref_primary_10_3390_pr10020207 crossref_primary_10_1016_j_apenergy_2018_12_058 crossref_primary_10_1038_s41563_024_02024_6 crossref_primary_10_1016_j_indcrop_2021_114139 crossref_primary_10_1016_j_cep_2019_107629 crossref_primary_10_1016_j_fuproc_2020_106645 |
Cites_doi | 10.1186/1754-6834-5-50 10.1016/j.meteno.2016.04.002 10.1073/pnas.1410657111 10.1016/j.energy.2013.04.065 10.1016/j.rser.2016.09.120 10.1016/j.biortech.2008.11.062 10.1016/j.biombioe.2012.12.029 10.1016/j.biortech.2014.02.076 10.1016/j.watres.2017.11.048 10.1016/j.apenergy.2015.12.001 10.2172/921839 10.1007/s10163-016-0566-0 10.1021/acssuschemeng.6b00243 10.1016/j.energy.2011.03.013 10.1007/s00253-011-3200-z 10.1021/ie060334i 10.1016/j.biortech.2014.09.132 10.1007/s13399-017-0264-8 10.1016/j.biortech.2015.07.077 10.1016/j.apenergy.2014.03.053 10.1016/j.cattod.2017.05.101 10.1016/j.rser.2010.11.054 10.1016/j.algal.2015.12.008 10.1038/nbt.3763 10.1016/j.apenergy.2016.06.002 10.1039/C7CS00566K 10.1002/bbb.1422 10.1021/acssuschemeng.5b00426 10.1016/j.bej.2017.08.006 10.1016/j.supflu.2016.12.015 10.1002/biot.201400570 10.1186/s13068-015-0345-5 10.1089/ind.2016.0007 10.1016/j.algal.2013.08.005 10.1007/BF02920191 10.1016/j.biortech.2016.03.075 10.1021/acsenergylett.6b00290 10.1139/v81-316 10.1016/j.fuel.2015.06.077 10.2175/106143017X15131012152861 10.1021/acssuschemeng.6b02367 10.1016/j.biortech.2014.05.113 10.1002/bit.21959 10.1016/j.biombioe.2007.02.002 10.1016/j.copbio.2016.02.030 10.1073/pnas.0704767105 10.1021/acs.energyfuels.8b01445 10.1016/j.apenergy.2015.11.067 10.1002/app.39273 10.1002/9781118878750.ch10 10.1021/acs.energyfuels.6b01229 10.1016/j.fuel.2011.06.052 10.1021/acssuschemeng.7b01874 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | AAYXX CITATION 7S9 L.6 OTOTI |
DOI | 10.1016/j.apenergy.2018.09.115 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
EndPage | 853 |
ExternalDocumentID | 1492716 10_1016_j_apenergy_2018_09_115 S0306261918314235 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 7S9 L.6 AALMO AAPBV ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c475t-e4fa944ca4f08d7d4c3e4ff60ec5da2c9d90a6baa4f59808c78bba4f4c95f9da3 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Thu May 18 22:34:31 EDT 2023 Fri Jul 11 09:05:11 EDT 2025 Tue Jul 01 02:53:32 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Fri Feb 23 02:16:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Biocrude Lignin Economic analysis Oleaginous yeast Continuous hydrothermal liquefaction Biomass Continuous hydrotreating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-e4fa944ca4f08d7d4c3e4ff60ec5da2c9d90a6baa4f59808c78bba4f4c95f9da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-76RL01830 PNNL-SA-133222 |
PQID | 2189552924 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | osti_scitechconnect_1492716 proquest_miscellaneous_2189552924 crossref_citationtrail_10_1016_j_apenergy_2018_09_115 crossref_primary_10_1016_j_apenergy_2018_09_115 elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_09_115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied energy |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Holladay JE, White JF, Bozell JJ, Johnson D. Top value added chemicals from biomass – Volume II, results of screening for potential candidates from biorefinery lignin; 2007. Linger (b0105) 2014; 111 Huang (b0160) 2013; 56 Biller (b0175) 2018; 130 ProQuest. Publication database; 2018 [July 18, 2018; Publication Database]. Available from Donohoe (b0305) 2008; 101 Toor, Rosendahl, Rudolf (b0125) 2011; 36 Laskar, Yang, Wang, Lee (b0100) 2013; 7 Marrone (b0300) 2016 Novozymes. Cellic® CTec2 and HTec2 – enzymes for hydrolysis of lignocellulosic materials; 2010 [July 18, 2018]. Available from Islam, Park (b0180) 2018; 20 Akhtar, Amin (b0145) 2011; 15 Davis (b0245) 2013 Suesse, Norton, van Leeuwen (b0220) 2016; 30 Chiaramonti (b0185) 2017; 185 Snåre (b0325) 2006; 45 Baker, Rials (b0085) 2013; 130 Jones, Zhu, Anderson, Hallen, Elliott, Schmidt (b0285) 2014 Jena (b0210) 2015; 8 Humbird, Davis, McMillan (b0025) 2017; 127 Dong (b0030) 2016; 177 Heeres (b0040) 2015; 10 Knorr, Lukas, Schoen, Biddy (b0330) 2013 Elliott (b0120) 2015; 178 Elliott (b0265) 2013; 2 Fontana, Polidoro, Silveira (b0340) 2009; 100 Eager (b0315) 1981; 59 Collett, Meyer, Jones (b0290) 2014 . Snowden-Swan, Zhu, Bearden, Seiple, Jones, Schmidt (b0170) 2017 Biddy (b0035) 2016; 4 Dimitriadis, Bezergianni (b0150) 2017; 68 Sharpe. Sharpe portable mixers; 2018 [cited 2018 July 18, 2018]. Available from Skeer, Boshell, Ayuso (b0055) 2016; 1 Hinman, Yancey (b0280) 1998; 70–72 Shinners, Binversie (b0005) 2007; 31 Singh (b0225) 2014; 165 U.S. Department of Energy, B.T.O. EERE success story—Department of energy delivers on R&D targets around cellulosic ethanol; 2013 [cited 2018 February 2]. Available from Tabur P, Dorin G. Method for purifying bio-organic compounds from fermentation broth containing surfactants by temperature-induced phase inversion. Google Patents; 2013. Mulchandani, Westerhoff (b0155) 2016; 215 Maddi (b0320) 2017; 5 Ma, Guo, Zhang (b0095) 2018; 302 Biller (b0130) 2015; 159 Zhu (b0240) 2014; 129 Elliott (b0270) 2017; 7 USDOE (b0345) 2016 Summers (b0215) 2015; 196 Qiao (b0295) 2017; 35 Kruger (b0335) 2018; 6 Zheng (b0020) 2012; 5 Xie, Ragauskas, Yuan (b0080) 2016; 12 Albrecht (b0200) 2016; 14 U.S. Department of Energy, B.T.O. Bioenergy Technologies Office multiyear program plan. Washington, D.C; 2016. Ageitos (b0015) 2011; 90 Schutyser (b0115) 2018; 47 Gray, Sato, Garcia, Eppler, Cherry, Amyris, Inc. (b0050) 2014 Hammerschmidt (b0205) 2011; 90 Marrone (b0165) 2018; 90 Arturi (b0230) 2017; 123 López Barreiro (b0190) 2013; 53 Elliott (b0235) 2010 Amarasekara (b0060) 2013; Wiley Schmer (b0075) 2008; 105 ChemStations. CHEMCAD [Web Page]; 2017 [cited 2017 December 8]. Available from Johnson (b0110) 2016; 3 Jarvis (b0135) 2018 Reddy (b0195) 2016; 165 Beckham (b0065) 2016; 42 Sievers, Tao, Schell (b0250) 2014; 167 Sun (b0310) 2015; 3 Marrone (10.1016/j.apenergy.2018.09.115_b0165) 2018; 90 10.1016/j.apenergy.2018.09.115_b0260 10.1016/j.apenergy.2018.09.115_b0140 Marrone (10.1016/j.apenergy.2018.09.115_b0300) 2016 Skeer (10.1016/j.apenergy.2018.09.115_b0055) 2016; 1 Jones (10.1016/j.apenergy.2018.09.115_b0285) 2014 Snåre (10.1016/j.apenergy.2018.09.115_b0325) 2006; 45 Hinman (10.1016/j.apenergy.2018.09.115_b0280) 1998; 70–72 Jarvis (10.1016/j.apenergy.2018.09.115_b0135) 2018 Summers (10.1016/j.apenergy.2018.09.115_b0215) 2015; 196 Mulchandani (10.1016/j.apenergy.2018.09.115_b0155) 2016; 215 10.1016/j.apenergy.2018.09.115_b0070 Huang (10.1016/j.apenergy.2018.09.115_b0160) 2013; 56 Snowden-Swan (10.1016/j.apenergy.2018.09.115_b0170) 2017 Davis (10.1016/j.apenergy.2018.09.115_b0245) 2013 Collett (10.1016/j.apenergy.2018.09.115_b0290) 2014 Humbird (10.1016/j.apenergy.2018.09.115_b0025) 2017; 127 Baker (10.1016/j.apenergy.2018.09.115_b0085) 2013; 130 Hammerschmidt (10.1016/j.apenergy.2018.09.115_b0205) 2011; 90 Sun (10.1016/j.apenergy.2018.09.115_b0310) 2015; 3 Islam (10.1016/j.apenergy.2018.09.115_b0180) 2018; 20 Biddy (10.1016/j.apenergy.2018.09.115_b0035) 2016; 4 Gray (10.1016/j.apenergy.2018.09.115_b0050) 2014 Dimitriadis (10.1016/j.apenergy.2018.09.115_b0150) 2017; 68 Zheng (10.1016/j.apenergy.2018.09.115_b0020) 2012; 5 10.1016/j.apenergy.2018.09.115_b0010 Heeres (10.1016/j.apenergy.2018.09.115_b0040) 2015; 10 Toor (10.1016/j.apenergy.2018.09.115_b0125) 2011; 36 Elliott (10.1016/j.apenergy.2018.09.115_b0265) 2013; 2 Arturi (10.1016/j.apenergy.2018.09.115_b0230) 2017; 123 10.1016/j.apenergy.2018.09.115_b0255 Beckham (10.1016/j.apenergy.2018.09.115_b0065) 2016; 42 Akhtar (10.1016/j.apenergy.2018.09.115_b0145) 2011; 15 Biller (10.1016/j.apenergy.2018.09.115_b0130) 2015; 159 Ageitos (10.1016/j.apenergy.2018.09.115_b0015) 2011; 90 Shinners (10.1016/j.apenergy.2018.09.115_b0005) 2007; 31 10.1016/j.apenergy.2018.09.115_b0045 Donohoe (10.1016/j.apenergy.2018.09.115_b0305) 2008; 101 Knorr (10.1016/j.apenergy.2018.09.115_b0330) 2013 10.1016/j.apenergy.2018.09.115_b0090 Ma (10.1016/j.apenergy.2018.09.115_b0095) 2018; 302 Schmer (10.1016/j.apenergy.2018.09.115_b0075) 2008; 105 Maddi (10.1016/j.apenergy.2018.09.115_b0320) 2017; 5 Reddy (10.1016/j.apenergy.2018.09.115_b0195) 2016; 165 Dong (10.1016/j.apenergy.2018.09.115_b0030) 2016; 177 Suesse (10.1016/j.apenergy.2018.09.115_b0220) 2016; 30 Linger (10.1016/j.apenergy.2018.09.115_b0105) 2014; 111 USDOE (10.1016/j.apenergy.2018.09.115_b0345) 2016 Elliott (10.1016/j.apenergy.2018.09.115_b0120) 2015; 178 Sievers (10.1016/j.apenergy.2018.09.115_b0250) 2014; 167 López Barreiro (10.1016/j.apenergy.2018.09.115_b0190) 2013; 53 Zhu (10.1016/j.apenergy.2018.09.115_b0240) 2014; 129 Schutyser (10.1016/j.apenergy.2018.09.115_b0115) 2018; 47 Elliott (10.1016/j.apenergy.2018.09.115_b0270) 2017; 7 Laskar (10.1016/j.apenergy.2018.09.115_b0100) 2013; 7 10.1016/j.apenergy.2018.09.115_b0275 Chiaramonti (10.1016/j.apenergy.2018.09.115_b0185) 2017; 185 Biller (10.1016/j.apenergy.2018.09.115_b0175) 2018; 130 Qiao (10.1016/j.apenergy.2018.09.115_b0295) 2017; 35 Albrecht (10.1016/j.apenergy.2018.09.115_b0200) 2016; 14 Xie (10.1016/j.apenergy.2018.09.115_b0080) 2016; 12 Elliott (10.1016/j.apenergy.2018.09.115_b0235) 2010 Fontana (10.1016/j.apenergy.2018.09.115_b0340) 2009; 100 Eager (10.1016/j.apenergy.2018.09.115_b0315) 1981; 59 Singh (10.1016/j.apenergy.2018.09.115_b0225) 2014; 165 Kruger (10.1016/j.apenergy.2018.09.115_b0335) 2018; 6 Amarasekara (10.1016/j.apenergy.2018.09.115_b0060) 2013; Wiley Johnson (10.1016/j.apenergy.2018.09.115_b0110) 2016; 3 Jena (10.1016/j.apenergy.2018.09.115_b0210) 2015; 8 |
References_xml | – volume: 42 start-page: 40 year: 2016 end-page: 53 ident: b0065 article-title: Opportunities and challenges in biological lignin valorization publication-title: Curr Opin Biotechnol – volume: 15 start-page: 1615 year: 2011 end-page: 1624 ident: b0145 article-title: A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass publication-title: Renew Sustain Energy Rev – volume: 2 start-page: 445 year: 2013 end-page: 454 ident: b0265 article-title: Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor publication-title: Algal Res – volume: 5 start-page: 50 year: 2012 ident: b0020 article-title: Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw publication-title: Biotechnol Biofuels – volume: 127 start-page: 161 year: 2017 end-page: 166 ident: b0025 article-title: Aeration costs in stirred-tank and bubble column bioreactors publication-title: Biochem Eng J – volume: 167 start-page: 291 year: 2014 end-page: 296 ident: b0250 article-title: Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover publication-title: Bioresour Technol – volume: 129 start-page: 384 year: 2014 end-page: 394 ident: b0240 article-title: Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading publication-title: Appl Energy – reference: Novozymes. Cellic® CTec2 and HTec2 – enzymes for hydrolysis of lignocellulosic materials; 2010 [July 18, 2018]. Available from: – volume: 10 start-page: 1206 year: 2015 end-page: 1215 ident: b0040 article-title: Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation publication-title: Biotechnol J – volume: 14 start-page: 17 year: 2016 end-page: 27 ident: b0200 article-title: Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors publication-title: Algal Res – reference: U.S. Department of Energy, B.T.O. Bioenergy Technologies Office multiyear program plan. Washington, D.C; 2016. – volume: 165 start-page: 319 year: 2014 end-page: 322 ident: b0225 article-title: Hydrothermal conversion of lignin to substituted phenols and aromatic ethers publication-title: Bioresour Technol – volume: 130 start-page: 58 year: 2018 end-page: 68 ident: b0175 article-title: Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction publication-title: Water Res – volume: 68 start-page: 113 year: 2017 end-page: 125 ident: b0150 article-title: Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review publication-title: Renew Sustain Energy Rev – volume: 20 start-page: 1 year: 2018 end-page: 9 ident: b0180 article-title: A short review on hydrothermal liquefaction of livestock manure and a chance for Korea to advance swine manure to bio-oil technology publication-title: J Mater Cycles Waste Manage – volume: 177 start-page: 879 year: 2016 end-page: 895 ident: b0030 article-title: Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review publication-title: Appl Energy – volume: 123 start-page: 28 year: 2017 end-page: 39 ident: b0230 article-title: Hydrothermal liquefaction of lignin in near-critical water in a new batch reactor: Influence of phenol and temperature publication-title: J Supercrit Fluids – reference: ChemStations. CHEMCAD [Web Page]; 2017 [cited 2017 December 8]. Available from: – volume: 53 start-page: 113 year: 2013 end-page: 127 ident: b0190 article-title: Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects publication-title: Biomass Bioenergy – volume: 6 start-page: 2921 year: 2018 end-page: 2931 ident: b0335 article-title: Recovery of fuel-precursor lipids from oleaginous yeast publication-title: ACS Sustain Chem Eng – year: 2016 ident: b0345 article-title: Bioenergies technologies office multiyear program plan – volume: 35 start-page: 173 year: 2017 end-page: 177 ident: b0295 article-title: Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism publication-title: Nat Biotechnol – volume: 90 start-page: 1219 year: 2011 end-page: 1227 ident: b0015 article-title: Oily yeasts as oleaginous cell factories publication-title: Appl Microbiol Biotechnol – volume: 7 start-page: 602 year: 2013 end-page: 626 ident: b0100 article-title: Pathways for biomass-derived lignin to hydrocarbon fuels publication-title: Biofuels Bioprod Biorefin – volume: 59 start-page: 2191 year: 1981 end-page: 2198 ident: b0315 article-title: Studies on the products resulting from the conversion of aspen poplar to an oil publication-title: Can J Chem – volume: 12 start-page: 161 year: 2016 end-page: 167 ident: b0080 article-title: Lignin conversion: opportunities and challenges for the integrated biorefinery publication-title: Ind Biotechnol – reference: ProQuest. Publication database; 2018 [July 18, 2018; Publication Database]. Available from: – volume: 165 start-page: 943 year: 2016 end-page: 951 ident: b0195 article-title: Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and publication-title: Appl Energy – year: 2010 ident: b0235 article-title: Hydrothermal liquefaction of agricultural and biorefinery residues – PNNL-19453 – volume: 5 start-page: 2205 year: 2017 end-page: 2214 ident: b0320 article-title: Quantitative characterization of aqueous byproducts from hydrothermal liquefaction of municipal wastes, food industry wastes, and biomass grown on waste publication-title: ACS Sustain Chem Eng – volume: 36 start-page: 2328 year: 2011 end-page: 2342 ident: b0125 article-title: Hydrothermal liquefaction of biomass: a review of subcritical water technologies publication-title: Energy – volume: 90 start-page: 329 year: 2018 end-page: 342 ident: b0165 article-title: Bench-scale evaluation of hydrothermal processing technology for conversion of wastewater solids to fuels publication-title: Water Environ Res – year: 2013 ident: b0330 article-title: Production of advanced biofuels via liquefaction: hydrothermal liquefaction reactor design – year: 2016 ident: b0300 article-title: Geneifuel hydrothermal processing bench-scale evaluation project – volume: 8 start-page: 167 year: 2015 ident: b0210 article-title: Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction publication-title: Biotechnol Biofuels – volume: 90 start-page: 3424 year: 2011 end-page: 3432 ident: b0205 article-title: Conversion of yeast by hydrothermal treatment under reducing conditions publication-title: Fuel – year: 2014 ident: b0285 article-title: Technial Report: PNNL-23227 – volume: 111 start-page: 12013 year: 2014 end-page: 12018 ident: b0105 article-title: Lignin valorization through integrated biological funneling and chemical catalysis publication-title: Proc Natl Acad Sci – reference: U.S. Department of Energy, B.T.O. EERE success story—Department of energy delivers on R&D targets around cellulosic ethanol; 2013 [cited 2018 February 2]. Available from: – volume: 302 start-page: 50 year: 2018 end-page: 60 ident: b0095 article-title: Recent advances in oxidative valorization of lignin publication-title: Catal Today – year: 2013 ident: b0245 article-title: Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons – volume: 130 start-page: 713 year: 2013 end-page: 728 ident: b0085 article-title: Recent advances in low-cost carbon fiber manufacture from lignin publication-title: J Appl Polym Sci – volume: 30 start-page: 7379 year: 2016 end-page: 7386 ident: b0220 article-title: Pilot-scale continuous-flow hydrothermal liquefaction of filamentous fungi publication-title: Energy Fuels – volume: 100 start-page: 4493 year: 2009 end-page: 4498 ident: b0340 article-title: Comparison of stirred tank and airlift bioreactors in the production of polygalacturonases by Aspergillus oryzae publication-title: Bioresour Technol – reference: Sharpe. Sharpe portable mixers; 2018 [cited 2018 July 18, 2018]. Available from: – volume: 70–72 start-page: 807 year: 1998 end-page: 819 ident: b0280 article-title: Use of net present value analysis to evaluate a publicly funded biomass-to-ethanol research, development, and demonstration program and valuate expected private sector participation publication-title: Appl Biochem Biotechnol – year: 2014 ident: b0050 article-title: Integrated biorefinery project summary final report – year: 2014 ident: b0290 article-title: Preliminary economics for hydrocarbon fuel production from cellulosic sugars – volume: 45 start-page: 5708 year: 2006 end-page: 5715 ident: b0325 article-title: Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel publication-title: Ind Eng Chem Res – volume: 4 start-page: 3196 year: 2016 end-page: 3211 ident: b0035 article-title: The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass publication-title: ACS Sustain Chem Eng – year: 2018 ident: b0135 article-title: Assessment of hydrotreatment for hydrothermal liquefaction biocrudes from sewage sludge, microalgae, and pine feedstocks publication-title: Energy Fuels – volume: 3 start-page: 2203 year: 2015 end-page: 2210 ident: b0310 article-title: Structural transformation of isolated poplar and switchgrass lignins during dilute acid treatment publication-title: ACS Sustain Chem Eng – reference: Tabur P, Dorin G. Method for purifying bio-organic compounds from fermentation broth containing surfactants by temperature-induced phase inversion. Google Patents; 2013. – volume: 105 start-page: 464 year: 2008 end-page: 469 ident: b0075 article-title: Net energy of cellulosic ethanol from switchgrass publication-title: PNAS – volume: 1 start-page: 724 year: 2016 end-page: 725 ident: b0055 article-title: Technology innovation outlook for advanced liquid biofuels in transport publication-title: ACS Energy Lett – volume: 3 start-page: 111 year: 2016 end-page: 119 ident: b0110 article-title: Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity publication-title: Metab Eng Commun – volume: 196 start-page: 431 year: 2015 end-page: 440 ident: b0215 article-title: Techno-economic feasibility and life cycle assessment of dairy effluent to renewable diesel via hydrothermal liquefaction publication-title: Bioresour Technol – volume: 56 start-page: 52 year: 2013 end-page: 60 ident: b0160 article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge publication-title: Energy – volume: 31 start-page: 576 year: 2007 end-page: 584 ident: b0005 article-title: Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt publication-title: Biomass Bioenergy – volume: Wiley start-page: 357 year: 2013 end-page: 380 ident: b0060 article-title: Separation and uses of lignin publication-title: Handbook of cellulosic ethanol – volume: 101 start-page: 913 year: 2008 end-page: 925 ident: b0305 article-title: Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment publication-title: Biotechnol Bioeng – reference: . – volume: 185 start-page: 963 year: 2017 end-page: 972 ident: b0185 article-title: Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production publication-title: Appl Energy – volume: 7 start-page: 455 year: 2017 end-page: 465 ident: b0270 article-title: Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace publication-title: Biomass Convers Biorefin – reference: Holladay JE, White JF, Bozell JJ, Johnson D. Top value added chemicals from biomass – Volume II, results of screening for potential candidates from biorefinery lignin; 2007. – year: 2017 ident: b0170 article-title: Conceptual biorefinery design and research targeted for 2022: hydrothermal liquefaction processing of wet waste to fuels – volume: 178 start-page: 147 year: 2015 end-page: 156 ident: b0120 article-title: Hydrothermal liquefaction of biomass: developments from batch to continuous process publication-title: Bioresour Technol – volume: 47 start-page: 852 year: 2018 end-page: 908 ident: b0115 article-title: Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading publication-title: Chem Soc Rev – volume: 159 start-page: 197 year: 2015 end-page: 205 ident: b0130 article-title: Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae publication-title: Fuel – volume: 215 start-page: 215 year: 2016 end-page: 226 ident: b0155 article-title: Recovery opportunities for metals and energy from sewage sludges publication-title: Bioresour Technol – ident: 10.1016/j.apenergy.2018.09.115_b0140 – volume: 5 start-page: 50 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2018.09.115_b0020 article-title: Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-5-50 – volume: 3 start-page: 111 year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0110 article-title: Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity publication-title: Metab Eng Commun doi: 10.1016/j.meteno.2016.04.002 – volume: 111 start-page: 12013 issue: 33 year: 2014 ident: 10.1016/j.apenergy.2018.09.115_b0105 article-title: Lignin valorization through integrated biological funneling and chemical catalysis publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1410657111 – volume: 56 start-page: 52 year: 2013 ident: 10.1016/j.apenergy.2018.09.115_b0160 article-title: Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge publication-title: Energy doi: 10.1016/j.energy.2013.04.065 – year: 2014 ident: 10.1016/j.apenergy.2018.09.115_b0050 – year: 2010 ident: 10.1016/j.apenergy.2018.09.115_b0235 – volume: 68 start-page: 113 year: 2017 ident: 10.1016/j.apenergy.2018.09.115_b0150 article-title: Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.09.120 – year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0300 – volume: 100 start-page: 4493 issue: 19 year: 2009 ident: 10.1016/j.apenergy.2018.09.115_b0340 article-title: Comparison of stirred tank and airlift bioreactors in the production of polygalacturonases by Aspergillus oryzae publication-title: Bioresour Technol doi: 10.1016/j.biortech.2008.11.062 – year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0345 – volume: 53 start-page: 113 year: 2013 ident: 10.1016/j.apenergy.2018.09.115_b0190 article-title: Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.12.029 – volume: 165 start-page: 319 year: 2014 ident: 10.1016/j.apenergy.2018.09.115_b0225 article-title: Hydrothermal conversion of lignin to substituted phenols and aromatic ethers publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.02.076 – volume: 130 start-page: 58 year: 2018 ident: 10.1016/j.apenergy.2018.09.115_b0175 article-title: Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction publication-title: Water Res doi: 10.1016/j.watres.2017.11.048 – volume: 185 start-page: 963 year: 2017 ident: 10.1016/j.apenergy.2018.09.115_b0185 article-title: Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.001 – ident: 10.1016/j.apenergy.2018.09.115_b0090 doi: 10.2172/921839 – volume: 20 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.apenergy.2018.09.115_b0180 article-title: A short review on hydrothermal liquefaction of livestock manure and a chance for Korea to advance swine manure to bio-oil technology publication-title: J Mater Cycles Waste Manage doi: 10.1007/s10163-016-0566-0 – volume: 4 start-page: 3196 issue: 6 year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0035 article-title: The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.6b00243 – ident: 10.1016/j.apenergy.2018.09.115_b0045 – volume: 36 start-page: 2328 issue: 5 year: 2011 ident: 10.1016/j.apenergy.2018.09.115_b0125 article-title: Hydrothermal liquefaction of biomass: a review of subcritical water technologies publication-title: Energy doi: 10.1016/j.energy.2011.03.013 – volume: 90 start-page: 1219 issue: 4 year: 2011 ident: 10.1016/j.apenergy.2018.09.115_b0015 article-title: Oily yeasts as oleaginous cell factories publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3200-z – volume: 45 start-page: 5708 issue: 16 year: 2006 ident: 10.1016/j.apenergy.2018.09.115_b0325 article-title: Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel publication-title: Ind Eng Chem Res doi: 10.1021/ie060334i – volume: 178 start-page: 147 year: 2015 ident: 10.1016/j.apenergy.2018.09.115_b0120 article-title: Hydrothermal liquefaction of biomass: developments from batch to continuous process publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.09.132 – volume: 7 start-page: 455 issue: 4 year: 2017 ident: 10.1016/j.apenergy.2018.09.115_b0270 article-title: Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace publication-title: Biomass Convers Biorefin doi: 10.1007/s13399-017-0264-8 – volume: 196 start-page: 431 year: 2015 ident: 10.1016/j.apenergy.2018.09.115_b0215 article-title: Techno-economic feasibility and life cycle assessment of dairy effluent to renewable diesel via hydrothermal liquefaction publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.07.077 – volume: 129 start-page: 384 year: 2014 ident: 10.1016/j.apenergy.2018.09.115_b0240 article-title: Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.03.053 – volume: 302 start-page: 50 year: 2018 ident: 10.1016/j.apenergy.2018.09.115_b0095 article-title: Recent advances in oxidative valorization of lignin publication-title: Catal Today doi: 10.1016/j.cattod.2017.05.101 – volume: 15 start-page: 1615 issue: 3 year: 2011 ident: 10.1016/j.apenergy.2018.09.115_b0145 article-title: A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2010.11.054 – volume: 14 start-page: 17 year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0200 article-title: Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors publication-title: Algal Res doi: 10.1016/j.algal.2015.12.008 – volume: 35 start-page: 173 issue: 2 year: 2017 ident: 10.1016/j.apenergy.2018.09.115_b0295 article-title: Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism publication-title: Nat Biotechnol doi: 10.1038/nbt.3763 – volume: 177 start-page: 879 year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0030 article-title: Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.002 – volume: 47 start-page: 852 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2018.09.115_b0115 article-title: Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading publication-title: Chem Soc Rev doi: 10.1039/C7CS00566K – volume: 7 start-page: 602 issue: 5 year: 2013 ident: 10.1016/j.apenergy.2018.09.115_b0100 article-title: Pathways for biomass-derived lignin to hydrocarbon fuels publication-title: Biofuels Bioprod Biorefin doi: 10.1002/bbb.1422 – volume: 3 start-page: 2203 issue: 9 year: 2015 ident: 10.1016/j.apenergy.2018.09.115_b0310 article-title: Structural transformation of isolated poplar and switchgrass lignins during dilute acid treatment publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.5b00426 – volume: 127 start-page: 161 year: 2017 ident: 10.1016/j.apenergy.2018.09.115_b0025 article-title: Aeration costs in stirred-tank and bubble column bioreactors publication-title: Biochem Eng J doi: 10.1016/j.bej.2017.08.006 – year: 2013 ident: 10.1016/j.apenergy.2018.09.115_b0245 – volume: 123 start-page: 28 year: 2017 ident: 10.1016/j.apenergy.2018.09.115_b0230 article-title: Hydrothermal liquefaction of lignin in near-critical water in a new batch reactor: Influence of phenol and temperature publication-title: J Supercrit Fluids doi: 10.1016/j.supflu.2016.12.015 – volume: 10 start-page: 1206 issue: 8 year: 2015 ident: 10.1016/j.apenergy.2018.09.115_b0040 article-title: Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation publication-title: Biotechnol J doi: 10.1002/biot.201400570 – volume: 8 start-page: 167 year: 2015 ident: 10.1016/j.apenergy.2018.09.115_b0210 article-title: Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction publication-title: Biotechnol Biofuels doi: 10.1186/s13068-015-0345-5 – ident: 10.1016/j.apenergy.2018.09.115_b0010 – volume: 12 start-page: 161 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0080 article-title: Lignin conversion: opportunities and challenges for the integrated biorefinery publication-title: Ind Biotechnol doi: 10.1089/ind.2016.0007 – volume: 2 start-page: 445 issue: 4 year: 2013 ident: 10.1016/j.apenergy.2018.09.115_b0265 article-title: Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor publication-title: Algal Res doi: 10.1016/j.algal.2013.08.005 – volume: 70–72 start-page: 807 year: 1998 ident: 10.1016/j.apenergy.2018.09.115_b0280 article-title: Use of net present value analysis to evaluate a publicly funded biomass-to-ethanol research, development, and demonstration program and valuate expected private sector participation publication-title: Appl Biochem Biotechnol doi: 10.1007/BF02920191 – volume: 215 start-page: 215 year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0155 article-title: Recovery opportunities for metals and energy from sewage sludges publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.03.075 – volume: 1 start-page: 724 issue: 4 year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0055 article-title: Technology innovation outlook for advanced liquid biofuels in transport publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.6b00290 – volume: 59 start-page: 2191 issue: 14 year: 1981 ident: 10.1016/j.apenergy.2018.09.115_b0315 article-title: Studies on the products resulting from the conversion of aspen poplar to an oil publication-title: Can J Chem doi: 10.1139/v81-316 – volume: 159 start-page: 197 year: 2015 ident: 10.1016/j.apenergy.2018.09.115_b0130 article-title: Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae publication-title: Fuel doi: 10.1016/j.fuel.2015.06.077 – volume: 90 start-page: 329 issue: 4 year: 2018 ident: 10.1016/j.apenergy.2018.09.115_b0165 article-title: Bench-scale evaluation of hydrothermal processing technology for conversion of wastewater solids to fuels publication-title: Water Environ Res doi: 10.2175/106143017X15131012152861 – volume: 5 start-page: 2205 issue: 3 year: 2017 ident: 10.1016/j.apenergy.2018.09.115_b0320 article-title: Quantitative characterization of aqueous byproducts from hydrothermal liquefaction of municipal wastes, food industry wastes, and biomass grown on waste publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.6b02367 – ident: 10.1016/j.apenergy.2018.09.115_b0255 – volume: 167 start-page: 291 year: 2014 ident: 10.1016/j.apenergy.2018.09.115_b0250 article-title: Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.05.113 – volume: 101 start-page: 913 issue: 5 year: 2008 ident: 10.1016/j.apenergy.2018.09.115_b0305 article-title: Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment publication-title: Biotechnol Bioeng doi: 10.1002/bit.21959 – year: 2014 ident: 10.1016/j.apenergy.2018.09.115_b0290 – volume: 31 start-page: 576 issue: 8 year: 2007 ident: 10.1016/j.apenergy.2018.09.115_b0005 article-title: Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2007.02.002 – ident: 10.1016/j.apenergy.2018.09.115_b0275 – volume: 42 start-page: 40 year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0065 article-title: Opportunities and challenges in biological lignin valorization publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2016.02.030 – volume: 105 start-page: 464 issue: 2 year: 2008 ident: 10.1016/j.apenergy.2018.09.115_b0075 article-title: Net energy of cellulosic ethanol from switchgrass publication-title: PNAS doi: 10.1073/pnas.0704767105 – year: 2018 ident: 10.1016/j.apenergy.2018.09.115_b0135 article-title: Assessment of hydrotreatment for hydrothermal liquefaction biocrudes from sewage sludge, microalgae, and pine feedstocks publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b01445 – volume: 165 start-page: 943 year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0195 article-title: Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp. publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.11.067 – volume: 130 start-page: 713 issue: 2 year: 2013 ident: 10.1016/j.apenergy.2018.09.115_b0085 article-title: Recent advances in low-cost carbon fiber manufacture from lignin publication-title: J Appl Polym Sci doi: 10.1002/app.39273 – year: 2017 ident: 10.1016/j.apenergy.2018.09.115_b0170 – volume: Wiley start-page: 357 year: 2013 ident: 10.1016/j.apenergy.2018.09.115_b0060 article-title: Separation and uses of lignin publication-title: Handbook of cellulosic ethanol doi: 10.1002/9781118878750.ch10 – ident: 10.1016/j.apenergy.2018.09.115_b0070 – year: 2014 ident: 10.1016/j.apenergy.2018.09.115_b0285 – ident: 10.1016/j.apenergy.2018.09.115_b0260 – volume: 30 start-page: 7379 issue: 9 year: 2016 ident: 10.1016/j.apenergy.2018.09.115_b0220 article-title: Pilot-scale continuous-flow hydrothermal liquefaction of filamentous fungi publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b01229 – volume: 90 start-page: 3424 issue: 11 year: 2011 ident: 10.1016/j.apenergy.2018.09.115_b0205 article-title: Conversion of yeast by hydrothermal treatment under reducing conditions publication-title: Fuel doi: 10.1016/j.fuel.2011.06.052 – volume: 6 start-page: 2921 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2018.09.115_b0335 article-title: Recovery of fuel-precursor lipids from oleaginous yeast publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.7b01874 – year: 2013 ident: 10.1016/j.apenergy.2018.09.115_b0330 |
SSID | ssj0002120 |
Score | 2.4566813 |
Snippet | [Display omitted]
•Continuous hydrothermal liquefaction of oleaginous yeast and lignin drives efficientcarbon utilization from corn stover.•A high quality... Oleaginous yeast can produce high yields of lipids from hydrolyzed lignocellulosic carbohydrates, but the difficulty and cost of extracting the lipids from the... A major barrier to profitable bioconversion of cellulosic biomass to hydrocarbon fuel precursors is the difficulty in breaking down feedstock lignin into... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 840 |
SubjectTerms | Biocrude biofuels Biomass Biomass, Continuous hydrothermal liquefaction, Biocrude, Oleaginous yeast, Lignin, Continuous hydrotreating bioreactors biorefining biotransformation boiling carbon Continuous hydrothermal liquefaction Continuous hydrotreating corn stover Economic analysis fatty acid methyl esters feedstocks hydrolysates hydrolysis hydrothermal liquefaction Lignin lignocellulose Lipomyces starkeyi Oleaginous yeast production costs slurries sugars triacylglycerols yeasts |
Title | Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover |
URI | https://dx.doi.org/10.1016/j.apenergy.2018.09.115 https://www.proquest.com/docview/2189552924 https://www.osti.gov/biblio/1492716 |
Volume | 233-234 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLbQcGEPiKcYXgoS1zKdTtI2R4RAsyA48JC4RXl1KRraETOwy4Xfjt1JgdWuxIFjUlutYjuxU382wL7pW5lkUkbcoPvGuUSbw5M2ylLvqeVqZgyhkc8v0uENP70Vt3Nw1GJhKK0y7P2zPb3ZrcNML6xmb1yWvSvydsn_R6Xso1NAQHPOM9Lyg9ePNI8klGZE4oioP6GE7w_02DcIO0rxyqneaZ_a4_7_gOrUaHP_7NjNMXSyBIvBf2SHs09chjlfrcCPT1UFV2D9-AO8hqTBeier8OcSv-M3YaUY5Q76EXsuNbt7cY8NDOsBiUdUzjWAHVhdsHrkqY1R_TRhL9Tlh-nKMYzQGwgXUv-qyooRRIWZsm4y2JvrN2LFsLZi6Fri1BrcnBxfHw2j0HkhsjwT08jzQkvOreZFnLvMcTvAqSKNvRVOJ1Y6GevUaHwuZB7nNsuNwQG3UhTS6cE6dKq68hvAUuNkqgd5wU2fOwqItU4xbDKWJ4VPsi6IdrmVDWXJqTvGSLX5Z_eqFZMiMalYYtgiutB75xvPCnN8ySFbaaq_VEzh6fEl7xaJn_iotq6lJCRkxPAywYCzC3utVii0TvrloiuPolHoQEkhEgxyN7_x9i1YwJGc3fxsQ2f6-OR30Beamt1G2Xdh_vDn2fDiDdAgDf4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAcEBQqlvIwEhzTzXrtJD5wQNBqSx8HaKXejF-BVEuy2t1S9sKf4g8yk3VoEUg9oB5jexLLY8_DmW8G4KUdOsVzpRJh0XwTQuGZQ02b5FkIVHI1t5bQyAeH2fhYvD-RJ2vws8PCUFhllP0rmd5K69gyiKs5mFbV4CNZu2T_46YcolHQRVbuheU5-m3z17vvkMmvON_ZPno7TmJpgcSJXC6SIEqjhHBGlGnhcy_cCJvKLA1OesOd8io1mTXYL1WRFi4vrMUH4ZQslTcjfO8NuClQXFDZhK0fF3ElPOaCxNklNL1LsOTTLTMNLaSPYsoKSrA6pHq8_9aIvQYP-V8qotV7O_fgbjRY2ZvVmtyHtVCvw51LaQzXYWP7Ai2HQ6O4mD-A7x9wHucEzmIUrBgm7Ftl2Jeln7W4r684eEL5YyO6gjUlayaB6iY1Z3O2pLJCzNSezcK8xYzh6M91VTPCxDBbNW3IfHvfR6ToR9cMbVlsegjH18KPDejVTR0eAcusV5kZFaWwQ-HJAzcmQz_NOsHLwPM-yG65tYt50Kkcx0R3AW-numOTJjbpVKGfJPsw-E03XWUCuZJCddzUf-xpjerqStpNYj_RUTJfR1FPSIj-LEcPtw8vul2hURzQPx5TB2SNRotNScnRq378H19_DrfGRwf7en_3cG8TbmOPWl07PYHeYnYWnqIhtrDP2o3P4NN1n7RfwHdMjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renewable+diesel+via+hydrothermal+liquefaction+of+oleaginous+yeast+and+residual+lignin+from+bioconversion+of+corn+stover&rft.jtitle=Applied+energy&rft.au=Collett%2C+James+R.&rft.au=Billing%2C+Justin+M.&rft.au=Meyer%2C+Pimphan+A.&rft.au=Schmidt%2C+Andrew+J.&rft.date=2019-01-01&rft.pub=Elsevier&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=233-234&rft.issue=C&rft_id=info:doi/10.1016%2Fj.apenergy.2018.09.115&rft.externalDocID=1492716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |