Ultra-narrow metallic armchair graphene nanoribbons

Graphene nanoribbons (GNRs)-narrow stripes of graphene-have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 6; no. 1; p. 10177
Main Authors Kimouche, Amina, Ervasti, Mikko M, Drost, Robert, Halonen, Simo, Harju, Ari, Joensuu, Pekka M, Sainio, Jani, Liljeroth, Peter
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 14.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graphene nanoribbons (GNRs)-narrow stripes of graphene-have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs have exhibited wide bandgaps, theory predicts that every third armchair GNR (widths of N=3m+2, where m is an integer) should be nearly metallic with a very small bandgap. Here, we synthesize the narrowest possible GNR belonging to this family (five carbon atoms wide, N=5). We study the evolution of the electronic bandgap and orbital structure of GNR segments as a function of their length using low-temperature scanning tunnelling microscopy and density-functional theory calculations. Already GNRs with lengths of 5 nm reach almost metallic behaviour with ∼100 meV bandgap. Finally, we show that defects (kinks) in the GNRs do not strongly modify their electronic structure.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms10177