Textural heterogeneity of liver lesions in CT imaging - comparison of colorectal and pancreatic metastases

Purpose Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based a...

Full description

Saved in:
Bibliographic Details
Published inAbdominal imaging Vol. 49; no. 12; pp. 4295 - 4306
Main Authors Pietsch, Friedrich L., Haag, Florian, Ayx, Isabelle, Grawe, Freba, Vellala, Abhinay K., Schoenberg, Stefan O., Froelich, Matthias F., Tharmaseelan, Hishan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2366-0058
2366-004X
2366-0058
DOI10.1007/s00261-024-04511-5

Cover

Loading…
Abstract Purpose Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC). Materials and methods In this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases. Results In both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference ( p  < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity. Conclusions Radiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown.
AbstractList PurposeTumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC).Materials and methodsIn this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases.ResultsIn both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference (p < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity.ConclusionsRadiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown.
Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC). In this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases. In both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference (p < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity. Radiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown.
Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC).PURPOSETumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC).In this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases.MATERIALS AND METHODSIn this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases.In both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference (p < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity.RESULTSIn both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference (p < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity.Radiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown.CONCLUSIONSRadiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown.
Purpose Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC). Materials and methods In this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases. Results In both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference ( p  < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity. Conclusions Radiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown.
Author Vellala, Abhinay K.
Grawe, Freba
Tharmaseelan, Hishan
Ayx, Isabelle
Schoenberg, Stefan O.
Haag, Florian
Pietsch, Friedrich L.
Froelich, Matthias F.
Author_xml – sequence: 1
  givenname: Friedrich L.
  surname: Pietsch
  fullname: Pietsch, Friedrich L.
  organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University
– sequence: 2
  givenname: Florian
  surname: Haag
  fullname: Haag, Florian
  organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University
– sequence: 3
  givenname: Isabelle
  surname: Ayx
  fullname: Ayx, Isabelle
  organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University
– sequence: 4
  givenname: Freba
  surname: Grawe
  fullname: Grawe, Freba
  organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, DKFZ Hector Cancer Institute at the University Medical Center Mannheim
– sequence: 5
  givenname: Abhinay K.
  surname: Vellala
  fullname: Vellala, Abhinay K.
  organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University
– sequence: 6
  givenname: Stefan O.
  surname: Schoenberg
  fullname: Schoenberg, Stefan O.
  organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University
– sequence: 7
  givenname: Matthias F.
  orcidid: 0000-0001-8501-2147
  surname: Froelich
  fullname: Froelich, Matthias F.
  email: matthias.froelich@medma.uni-heidelberg.de
  organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University
– sequence: 8
  givenname: Hishan
  surname: Tharmaseelan
  fullname: Tharmaseelan, Hishan
  organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39115682$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEYhYNUbK39Ay4k4MbNaL4nsxK5-AUFN9d1yGTemeYyk1yTTGn_vbneVmsXhUACec7hvO95iU5CDIDQa0reU0LaD5kQpmhDmGiIkJQ28hk6Y1yphhCpTx68T9FFzjtCCFWVY_IFOuUdpVJpdoZ2W7gpa7IzvoICKU4QwJdbHEc8-2tIeIbsY8jYB7zZYr_YyYcJN9jFZW-TzzEcWBfnmMCV6mPDgPc2uAS2eIcXKDbXA_kVej7aOcPF3X2Ofn75vN18ay5_fP2--XTZONHK0gyqdQKcppazUfdajT3pO06Jaznnkloh-q5zVLO2o9IJ3g9CtnbkchjHTll-jj4effdrv8DgIJQ6n9mnGj7dmmi9-f8n-CszxWtTd8IYpbo6vLtzSPHXCrmYxWcH82wDxDUbTjqieMuYqOjbR-gurinU-QynjLYd10xV6s3DSH-z3PdQAX0EXIo5JxiN86XuLx4S-tlQYg6tm2PrprZu_rRuZJWyR9J79ydF_CjKFQ4TpH-xn1D9Blacv1w
CitedBy_id crossref_primary_10_16899_jcm_1611569
Cites_doi 10.1146/annurev-pathmechdis-031621-024600
10.1007/s00330-022-08922-0
10.3322/caac.21660
10.1080/02664763.2020.1808599
10.4161/hv.19643
10.2214/AJR.20.23490
10.1186/s41747-018-0068-z
10.1158/2159-8290.CD-15-1283
10.1016/j.trecan.2023.03.002
10.1002/med.21809
10.1016/j.critrevonc.2023.104242
10.1038/s41598-020-64068-3
10.3390/tomography7020022
10.1148/radiol.2019190794
10.1186/s40644-023-00612-4
10.1016/j.ejca.2011.11.036
10.1038/nrclinonc.2017.166
10.1102/1470-7330.2013.0015
10.1056/NEJMoa1113205
10.1016/j.ccr.2013.12.015
10.3389/fonc.2021.633176
10.1126/sciadv.adf5464
10.1038/s41598-021-98445-3
10.1038/s41467-021-26870-z
10.1038/s41568-019-0199-4
10.1038/s41422-019-0195-y
10.3748/wjg.v28.i32.4698
10.1148/radiol.212579
10.3748/wjg.v24.i19.2047
10.1016/S2214-109X(23)00406-0
10.1007/s00330-018-5454-7
10.1038/s41572-021-00261-6
10.1038/s41598-022-22877-8
10.1007/s00330-022-08628-3
10.1038/s41592-020-01008-z
10.1038/s41598-022-20931-z
10.1136/gutjnl-2022-327736
10.1038/s41598-023-31711-8
10.1007/s13244-012-0196-6
10.1038/s43018-023-00526-x
10.1136/jitc-2022-004867
10.3390/cancers14133293
10.1148/radiol.2015151169
10.3390/cancers14246224
10.1148/radiol.13131184
10.1016/j.ccell.2018.06.004
10.3390/cancers14071646
10.1158/0008-5472.CAN-17-0339
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
NAPCQ
P64
7X8
5PM
DOI 10.1007/s00261-024-04511-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Computer Science Collection
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2366-0058
EndPage 4306
ExternalDocumentID PMC11522118
39115682
10_1007_s00261_024_04511_5
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Medizinische Fakultät Mannheim der Universität Heidelberg (8990)
GroupedDBID -EM
04C
0R~
29~
2J2
2JN
2JY
2KG
2KM
2LR
406
53G
5VS
7RV
7X7
88E
8AO
8FH
8FI
8FJ
95-
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWZB
AGYKE
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJOOF
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BMSDO
BSONS
C6C
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GNWQR
GRRUI
H13
HCIFZ
HMCUK
IKXTQ
IMOTQ
ITM
IWAJR
J-C
JZLTJ
K7-
KOV
LK8
LLZTM
M1P
M4Y
M7P
NAPCQ
NPVJJ
NQJWS
NU0
O9J
PQQKQ
PROAC
PSQYO
PT4
QOR
R89
ROL
RSV
S16
SCLPG
SDE
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
TSG
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W23
YLTOR
Z7X
Z83
Z87
Z8V
Z8W
Z91
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PHGZT
---
.86
.VR
06C
06D
0VY
1N0
23M
2~H
30V
36B
4.4
408
409
40D
40E
5GY
5RE
67Z
6NX
8FD
8TC
95.
95~
96X
AAWCG
AAWTL
AAYQN
ABBXA
ABOCM
ACOMO
ADHIR
ADIMF
AEGAL
AENEX
AEPYU
AETLH
AFWTZ
AHAVH
AIIXL
AKMHD
ALWAN
BA0
CS3
DL5
ESBYG
F5P
FEDTE
FR3
G-Y
G-Z
GGRSB
GJIRD
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IXC
IZIGR
IZQ
I~Z
J0Z
JQ2
K9.
KDC
KPH
LAS
M7Z
MA-
N9A
NB0
O93
O9I
OAM
OVD
P19
P64
P9S
PF0
QOK
QOS
R9I
RHV
RPX
RRX
S27
S37
S3B
SAP
SDH
SHX
SMD
T13
TSV
TT1
TUC
U2A
U9L
VC2
WH7
WJK
WK8
Z45
ZOVNA
7X8
5PM
ABRTQ
ID FETCH-LOGICAL-c475t-d67c4ec81a32f8b86fb0b9310c733351a44b99c1827915c43bd457af35dff96a3
IEDL.DBID AGYKE
ISSN 2366-0058
2366-004X
IngestDate Thu Aug 21 18:43:55 EDT 2025
Fri Jul 11 09:56:07 EDT 2025
Fri Jul 25 19:38:50 EDT 2025
Thu Apr 03 07:03:27 EDT 2025
Thu Apr 24 23:00:20 EDT 2025
Tue Jul 01 02:07:07 EDT 2025
Fri Feb 21 02:36:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Tumor/Oncology
Computed tomography
Pancreas
Colorectum
Tumoral Heterogeneity
Radiomics
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-d67c4ec81a32f8b86fb0b9310c733351a44b99c1827915c43bd457af35dff96a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8501-2147
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00261-024-04511-5
PMID 39115682
PQID 3121793826
PQPubID 31175
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11522118
proquest_miscellaneous_3090637224
proquest_journals_3121793826
pubmed_primary_39115682
crossref_citationtrail_10_1007_s00261_024_04511_5
crossref_primary_10_1007_s00261_024_04511_5
springer_journals_10_1007_s00261_024_04511_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Abdominal imaging
PublicationTitleAbbrev Abdom Radiol
PublicationTitleAlternate Abdom Radiol (NY)
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gao, Cheng, Zhu, Wang, Deng, Sun, Wang, Xue (CR29) 2022; 32
Khan, Albalawi, Pottoo (CR9) 2022; 42
Ganeshan, Miles (CR16) 2013; 13
Flohr, Schmidt (CR40) 2023; 58
Chen, Zhong, Wang, Shi, Lu, Li, Feng, Xia, Chang, Fan, Chen, Zhu, Yan, Yao, Zhang (CR46) 2022; 32
Zhao (CR47) 2021; 11
Davnall, Yip, Ljungqvist, Selmi, Ng, Sanghera, Ganeshan, Miles, Cook, Goh (CR18) 2012; 3
Rizzo, Botta, Raimondi, Origgi, Fanciullo, Morganti, Bellomi (CR32) 2018; 2
Jensen, Kim, Elgeti, Steffen, Hamm, Nagel (CR49) 2021; 7
CR34
CR33
Tharmaseelan, Vellala, Hertel, Tollens, Rotkopf, Rink, Woznicki, Ayx, Bartling, Norenberg, Schoenberg, Froelich (CR25) 2023; 23
Korte, Cardenas, Hardcastle, Kron, Wang, Bahig, Elgohari, Ger, Court, Fuller, Ng (CR48) 2021; 11
Ilic, Ilic (CR4) 2022; 28
Gerlinger, Rowan, Horswell, Math, Larkin, Endesfelder, Gronroos, Martinez, Matthews, Stewart, Tarpey, Varela, Phillimore, Begum, McDonald, Butler, Jones, Raine, Latimer, Santos, Nohadani, Eklund, Spencer-Dene, Clark, Pickering, Stamp, Gore, Szallasi, Downward, Futreal, Swanton (CR13) 2012; 366
Iacobuzio-Donahue, Michael, Baez, Kappagantula, Hooper, Hollman (CR42) 2019; 19
Rajendran, Petersilka, Henning, Shanblatt, Schmidt, Flohr, Ferrero, Baffour, Diehn, Yu, Rajiah, Fletcher, Leng, McCollough (CR39) 2022; 303
Park, Sham, Kawamoto, Blair, Rozich, Fouladi, Shayesteh, Hruban, He, Wolfgang, Yuille, Fishman, Chu (CR27) 2021; 217
Froelich, Heinemann, Sommer, Holch, Schoeppe, Hesse, Baumann, Kunz, Reiser, Ricke, D’Anastasi, Stintzing, Modest, Kazmierczak, Hofmann (CR44) 2018; 28
Wang, Long, Li, Wu, Da, Wang, Huang, Jiang, Yao, Ma, Lian, Zhao, Cao (CR17) 2023; 9
Torresan, de Scordilli, Bortolot, Di Nardo, Foltran, Fumagalli, Guardascione, Ongaro, Puglisi (CR43) 2023; 194
Bärthel, Falcomatà, Rad, Theis, Saur (CR11) 2023; 4
CR6
CR5
Fidler (CR14) 2012; 8
CR45
Tharmaseelan, Rotkopf, Ayx, Hertel, Nörenberg, Schoenberg, Froelich (CR41) 2022; 12
Sherman, Beatty (CR10) 2023; 18
Tsilimigras, Brodt, Clavien, Muschel, D’Angelica, Endo, Parks, Doyle, de Santibañes (CR8) 2021; 7
Morgan, Arnold, Gini, Lorenzoni, Cabasag, Laversanne, Vignat, Ferlay, Murphy, Bray (CR3) 2023; 72
Lohr, Stojanov, Carter, Cruz-Gordillo, Lawrence, Auclair, Sougnez, Knoechel, Gould, Saksena, Cibulskis, McKenna, Chapman, Straussman, Levy, Perkins, Keats, Schumacher, Rosenberg, Getz, Golub (CR36) 2014; 25
Peng, Sun, Chen, Zhou, Chen, Chen, Liu, Huang, Jiang, Cui, Yang, Wang, Guo, Dai, Guo, Zhang, Liao, Liu, Zhao, Han, Zhao, Yang, Wu (CR12) 2019; 29
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (CR2) 2021; 71
van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (CR31) 2017; 77
Lambin, Rios-Velazquez, Leijenaar, Carvalho, van Stiphout, Granton, Zegers, Gillies, Boellard, Dekker, Aerts (CR23) 2012; 48
Yoon, Lee, Chang, Kang, Bandos, Lim, Kang, Kang, Ryoo, Jeong, Park (CR19) 2020; 294
CR52
Zhang, Sanagapalli, Stoita (CR20) 2018; 24
Henry, Sun, Lerousseau, Estienne, Robert, Besse, Robert, Paragios, Deutsch (CR26) 2022; 12
Frick, Rumgay, Vignat, Ginsburg, Nolte, Bray, Soerjomataram (CR1) 2023; 11
Schmelz, Toedling, Huska, Cwikla, Kruetzfeldt, Proba, Ambros, Ambros, Boral, Lodrini, Chen, Burkert, Guergen, Szymansky, Astrahantseff, Kuenkele, Haase, Fischer, Deubzer, Hertwig, Hundsdoerfer, Henssen, Schwarz, Schulte, Eggert (CR35) 2021; 12
CR28
Botta-Dukát (CR51) 2023; 13
CR24
CR22
CR21
Wang, Liu, Xia, Lei, Huang, Huang (CR7) 2020; 10
Russo, Siravegna, Blaszkowsky, Corti, Crisafulli, Ahronian, Mussolin, Kwak, Buscarino, Lazzari, Valtorta, Truini, Jessop, Robinson, Hong, Mino-Kenudson, Di Nicolantonio, Thabet, Sartore-Bianchi, Siena, Iafrate, Bardelli, Corcoran (CR37) 2016; 6
Dagogo-Jack, Shaw (CR15) 2018; 15
Isensee, Jaeger, Kohl, Petersen (CR30) 2021; 18
Arachchige, Prendergast, Staudte (CR50) 2022; 49
Hessey, Fessas, Zaccaria, Jamal-Hanjani, Swanton (CR38) 2023; 9
DI Tsilimigras (4511_CR8) 2021; 7
4511_CR24
4511_CR21
4511_CR22
I Ilic (4511_CR4) 2022; 28
J Peng (4511_CR12) 2019; 29
LJ Jensen (4511_CR49) 2021; 7
H Tharmaseelan (4511_CR41) 2022; 12
JH Yoon (4511_CR19) 2020; 294
4511_CR28
FA Khan (4511_CR9) 2022; 42
M Russo (4511_CR37) 2016; 6
4511_CR34
4511_CR33
CA Iacobuzio-Donahue (4511_CR42) 2019; 19
4511_CR6
4511_CR5
I Dagogo-Jack (4511_CR15) 2018; 15
H Tharmaseelan (4511_CR25) 2023; 23
H Sung (4511_CR2) 2021; 71
H Wang (4511_CR7) 2020; 10
4511_CR45
K Rajendran (4511_CR39) 2022; 303
P Lambin (4511_CR23) 2012; 48
K Schmelz (4511_CR35) 2021; 12
C Arachchige (4511_CR50) 2022; 49
F Davnall (4511_CR18) 2012; 3
E Morgan (4511_CR3) 2023; 72
S Bärthel (4511_CR11) 2023; 4
F Wang (4511_CR17) 2023; 9
F Isensee (4511_CR30) 2021; 18
JC Korte (4511_CR48) 2021; 11
MH Sherman (4511_CR10) 2023; 18
T Henry (4511_CR26) 2022; 12
L Zhang (4511_CR20) 2018; 24
S Hessey (4511_CR38) 2023; 9
S Rizzo (4511_CR32) 2018; 2
MF Froelich (4511_CR44) 2018; 28
C Frick (4511_CR1) 2023; 11
4511_CR52
B Ganeshan (4511_CR16) 2013; 13
M Gerlinger (4511_CR13) 2012; 366
S Park (4511_CR27) 2021; 217
IJ Fidler (4511_CR14) 2012; 8
Y Gao (4511_CR29) 2022; 32
JJM van Griethuysen (4511_CR31) 2017; 77
Z Botta-Dukát (4511_CR51) 2023; 13
JG Lohr (4511_CR36) 2014; 25
Y Chen (4511_CR46) 2022; 32
B Zhao (4511_CR47) 2021; 11
T Flohr (4511_CR40) 2023; 58
S Torresan (4511_CR43) 2023; 194
References_xml – ident: CR45
– ident: CR22
– volume: 18
  start-page: 123
  year: 2023
  end-page: 148
  ident: CR10
  article-title: Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev-pathmechdis-031621-024600
– volume: 32
  start-page: 8443
  issue: 12
  year: 2022
  end-page: 8452
  ident: CR29
  article-title: A systematic review of prognosis predictive role of radiomics in pancreatic cancer: heterogeneity markers or statistical tricks?
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-08922-0
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  end-page: 249
  ident: CR2
  article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 49
  start-page: 268
  issue: 2
  year: 2022
  end-page: 290
  ident: CR50
  article-title: Robust analogs to the coefficient of variation
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2020.1808599
– volume: 8
  start-page: 1141
  issue: 8
  year: 2012
  end-page: 2
  ident: CR14
  article-title: Biological heterogeneity of cancer: implication to therapy
  publication-title: Hum Vaccin Immunother
  doi: 10.4161/hv.19643
– volume: 217
  start-page: 1104
  issue: 5
  year: 2021
  end-page: 1112
  ident: CR27
  article-title: CT Radiomics–Based Preoperative Survival Prediction in Patients with Pancreatic Ductal Adenocarcinoma
  publication-title: American Journal of Roentgenology
  doi: 10.2214/AJR.20.23490
– volume: 77
  start-page: e104-e107
  issue: 21
  year: 2017
  ident: CR31
  article-title: Computational Radiomics System to Decode the Radiographic Phenotype
  publication-title: Cancer Res
– volume: 2
  start-page: 36
  issue: 1
  year: 2018
  ident: CR32
  article-title: Radiomics: the facts and the challenges of image analysis
  publication-title: Eur Radiol Exp
  doi: 10.1186/s41747-018-0068-z
– volume: 6
  start-page: 147
  issue: 2
  year: 2016
  end-page: 153
  ident: CR37
  article-title: Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-1283
– volume: 9
  start-page: 490
  issue: 6
  year: 2023
  end-page: 502
  ident: CR38
  article-title: Insights into the metastatic cascade through research autopsies
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2023.03.002
– volume: 42
  start-page: 227
  issue: 1
  year: 2022
  end-page: 258
  ident: CR9
  article-title: Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment
  publication-title: Med Res Rev
  doi: 10.1002/med.21809
– ident: CR21
– volume: 194
  start-page: 104242
  year: 2023
  ident: CR43
  article-title: Liquid biopsy in colorectal cancer: Onward and upward
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2023.104242
– volume: 10
  start-page: 7048
  issue: 1
  year: 2020
  ident: CR7
  article-title: Survival of pancreatic cancer patients is negatively correlated with age at diagnosis: a population-based retrospective study
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-64068-3
– volume: 7
  start-page: 238
  issue: 2
  year: 2021
  end-page: 252
  ident: CR49
  article-title: Stability of Radiomic Features across Different Region of Interest Sizes-A CT and MR Phantom Study
  publication-title: Tomography
  doi: 10.3390/tomography7020022
– volume: 294
  start-page: 310
  issue: 2
  year: 2020
  end-page: 319
  ident: CR19
  article-title: Initial M Staging of Rectal Cancer: FDG PET/MRI with a Hepatocyte-specific Contrast Agent versus Contrast-enhanced CT
  publication-title: Radiology
  doi: 10.1148/radiol.2019190794
– ident: CR5
– volume: 23
  start-page: 95
  issue: 1
  year: 2023
  ident: CR25
  article-title: Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-023-00612-4
– volume: 48
  start-page: 441
  issue: 4
  year: 2012
  end-page: 6
  ident: CR23
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 15
  start-page: 81
  issue: 2
  year: 2018
  end-page: 94
  ident: CR15
  article-title: Tumour heterogeneity and resistance to cancer therapies
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.166
– volume: 13
  start-page: 140
  issue: 1
  year: 2013
  end-page: 9
  ident: CR16
  article-title: Quantifying tumour heterogeneity with CT
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2013.0015
– volume: 58
  start-page: 441
  issue: 7
  year: 2023
  end-page: 450
  ident: CR40
  article-title: Technical Basics and Clinical Benefits of Photon-Counting CT
  publication-title: Invest Radiol
– volume: 366
  start-page: 883
  issue: 10
  year: 2012
  end-page: 892
  ident: CR13
  article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1113205
– volume: 25
  start-page: 91
  issue: 1
  year: 2014
  end-page: 101
  ident: CR36
  article-title: Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.12.015
– volume: 11
  start-page: 633176
  year: 2021
  ident: CR47
  article-title: Understanding Sources of Variation to Improve the Reproducibility of Radiomics
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.633176
– volume: 9
  start-page: eadf5464
  issue: 24
  year: 2023
  ident: CR17
  article-title: Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer
  publication-title: Sci Adv
  doi: 10.1126/sciadv.adf5464
– ident: CR33
– volume: 11
  start-page: 18908
  issue: 1
  year: 2021
  ident: CR48
  article-title: Author Correction: Radiomics feature stability of open-source software evaluated on apparent diffusion coefficient maps in head and neck cancer
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-98445-3
– ident: CR6
– volume: 12
  start-page: 6804
  issue: 1
  year: 2021
  ident: CR35
  article-title: Spatial and temporal intratumour heterogeneity has potential consequences for single biopsy-based neuroblastoma treatment decisions
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26870-z
– volume: 19
  start-page: 686
  issue: 12
  year: 2019
  end-page: 697
  ident: CR42
  article-title: Cancer biology as revealed by the research autopsy
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-019-0199-4
– volume: 29
  start-page: 725
  issue: 9
  year: 2019
  end-page: 738
  ident: CR12
  article-title: Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma
  publication-title: Cell Res
  doi: 10.1038/s41422-019-0195-y
– volume: 28
  start-page: 4698
  issue: 32
  year: 2022
  end-page: 4715
  ident: CR4
  article-title: International patterns in incidence and mortality trends of pancreatic cancer in the last three decades: A joinpoint regression analysis
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v28.i32.4698
– volume: 303
  start-page: 130
  issue: 1
  year: 2022
  end-page: 138
  ident: CR39
  article-title: First Clinical Photon-counting Detector CT System: Technical Evaluation
  publication-title: Radiology
  doi: 10.1148/radiol.212579
– volume: 24
  start-page: 2047
  issue: 19
  year: 2018
  end-page: 2060
  ident: CR20
  article-title: Challenges in diagnosis of pancreatic cancer
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v24.i19.2047
– volume: 11
  start-page: e1700-e1712
  issue: 11
  year: 2023
  ident: CR1
  article-title: Quantitative estimates of preventable and treatable deaths from 36 cancers worldwide: a population-based study
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(23)00406-0
– volume: 28
  start-page: 5284
  issue: 12
  year: 2018
  end-page: 5292
  ident: CR44
  article-title: CT attenuation of liver metastases before targeted therapy is a prognostic factor of overall survival in colorectal cancer patients. Results from the randomised, open-label FIRE-3/AIO KRK0306 trial
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5454-7
– volume: 7
  start-page: 27
  issue: 1
  year: 2021
  ident: CR8
  article-title: Pawlik, Liver metastases
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/s41572-021-00261-6
– volume: 12
  start-page: 19594
  issue: 1
  year: 2022
  ident: CR41
  article-title: Evaluation of radiomics feature stability in abdominal monoenergetic photon counting CT reconstructions
  publication-title: Scientific reports
  doi: 10.1038/s41598-022-22877-8
– ident: CR52
– volume: 32
  start-page: 5480
  issue: 8
  year: 2022
  end-page: 5490
  ident: CR46
  article-title: Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-08628-3
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  end-page: 211
  ident: CR30
  article-title: Maier-Hein, nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01008-z
– ident: CR34
– volume: 12
  start-page: 17244
  issue: 1
  year: 2022
  ident: CR26
  article-title: Investigation of radiomics based intra-patient inter-tumor heterogeneity and the impact of tumor subsampling strategies
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-20931-z
– volume: 72
  start-page: 338
  issue: 2
  year: 2023
  end-page: 344
  ident: CR3
  article-title: Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN
  publication-title: Gut
  doi: 10.1136/gutjnl-2022-327736
– volume: 13
  start-page: 4671
  issue: 1
  year: 2023
  ident: CR51
  article-title: Quartile coefficient of variation is more robust than CV for traits calculated as a ratio
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-31711-8
– volume: 3
  start-page: 573
  issue: 6
  year: 2012
  end-page: 89
  ident: CR18
  article-title: Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?
  publication-title: Insights Imaging
  doi: 10.1007/s13244-012-0196-6
– ident: CR28
– ident: CR24
– volume: 4
  start-page: 454
  issue: 4
  year: 2023
  end-page: 467
  ident: CR11
  article-title: Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy
  publication-title: Nat Cancer
  doi: 10.1038/s43018-023-00526-x
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: 4511_CR2
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 72
  start-page: 338
  issue: 2
  year: 2023
  ident: 4511_CR3
  publication-title: Gut
  doi: 10.1136/gutjnl-2022-327736
– volume: 7
  start-page: 27
  issue: 1
  year: 2021
  ident: 4511_CR8
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/s41572-021-00261-6
– volume: 303
  start-page: 130
  issue: 1
  year: 2022
  ident: 4511_CR39
  publication-title: Radiology
  doi: 10.1148/radiol.212579
– volume: 366
  start-page: 883
  issue: 10
  year: 2012
  ident: 4511_CR13
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1113205
– volume: 18
  start-page: 123
  year: 2023
  ident: 4511_CR10
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev-pathmechdis-031621-024600
– volume: 217
  start-page: 1104
  issue: 5
  year: 2021
  ident: 4511_CR27
  publication-title: American Journal of Roentgenology
  doi: 10.2214/AJR.20.23490
– volume: 194
  start-page: 104242
  year: 2023
  ident: 4511_CR43
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2023.104242
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  ident: 4511_CR30
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 12
  start-page: 17244
  issue: 1
  year: 2022
  ident: 4511_CR26
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-20931-z
– volume: 8
  start-page: 1141
  issue: 8
  year: 2012
  ident: 4511_CR14
  publication-title: Hum Vaccin Immunother
  doi: 10.4161/hv.19643
– ident: 4511_CR52
  doi: 10.1136/jitc-2022-004867
– volume: 23
  start-page: 95
  issue: 1
  year: 2023
  ident: 4511_CR25
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-023-00612-4
– volume: 42
  start-page: 227
  issue: 1
  year: 2022
  ident: 4511_CR9
  publication-title: Med Res Rev
  doi: 10.1002/med.21809
– volume: 29
  start-page: 725
  issue: 9
  year: 2019
  ident: 4511_CR12
  publication-title: Cell Res
  doi: 10.1038/s41422-019-0195-y
– ident: 4511_CR33
  doi: 10.3390/cancers14133293
– ident: 4511_CR45
– volume: 12
  start-page: 19594
  issue: 1
  year: 2022
  ident: 4511_CR41
  publication-title: Scientific reports
  doi: 10.1038/s41598-022-22877-8
– volume: 49
  start-page: 268
  issue: 2
  year: 2022
  ident: 4511_CR50
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2020.1808599
– ident: 4511_CR22
  doi: 10.1148/radiol.2015151169
– volume: 48
  start-page: 441
  issue: 4
  year: 2012
  ident: 4511_CR23
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 9
  start-page: 490
  issue: 6
  year: 2023
  ident: 4511_CR38
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2023.03.002
– volume: 6
  start-page: 147
  issue: 2
  year: 2016
  ident: 4511_CR37
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-1283
– ident: 4511_CR28
  doi: 10.3390/cancers14246224
– volume: 10
  start-page: 7048
  issue: 1
  year: 2020
  ident: 4511_CR7
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-64068-3
– volume: 32
  start-page: 8443
  issue: 12
  year: 2022
  ident: 4511_CR29
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-08922-0
– volume: 19
  start-page: 686
  issue: 12
  year: 2019
  ident: 4511_CR42
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-019-0199-4
– ident: 4511_CR6
– volume: 4
  start-page: 454
  issue: 4
  year: 2023
  ident: 4511_CR11
  publication-title: Nat Cancer
  doi: 10.1038/s43018-023-00526-x
– ident: 4511_CR21
  doi: 10.1148/radiol.13131184
– volume: 13
  start-page: 4671
  issue: 1
  year: 2023
  ident: 4511_CR51
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-31711-8
– volume: 15
  start-page: 81
  issue: 2
  year: 2018
  ident: 4511_CR15
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.166
– volume: 294
  start-page: 310
  issue: 2
  year: 2020
  ident: 4511_CR19
  publication-title: Radiology
  doi: 10.1148/radiol.2019190794
– ident: 4511_CR34
  doi: 10.1016/j.ccell.2018.06.004
– volume: 2
  start-page: 36
  issue: 1
  year: 2018
  ident: 4511_CR32
  publication-title: Eur Radiol Exp
  doi: 10.1186/s41747-018-0068-z
– volume: 11
  start-page: e1700-e1712
  issue: 11
  year: 2023
  ident: 4511_CR1
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(23)00406-0
– volume: 25
  start-page: 91
  issue: 1
  year: 2014
  ident: 4511_CR36
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.12.015
– volume: 3
  start-page: 573
  issue: 6
  year: 2012
  ident: 4511_CR18
  publication-title: Insights Imaging
  doi: 10.1007/s13244-012-0196-6
– ident: 4511_CR24
  doi: 10.3390/cancers14071646
– volume: 32
  start-page: 5480
  issue: 8
  year: 2022
  ident: 4511_CR46
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-08628-3
– volume: 11
  start-page: 18908
  issue: 1
  year: 2021
  ident: 4511_CR48
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-98445-3
– volume: 12
  start-page: 6804
  issue: 1
  year: 2021
  ident: 4511_CR35
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26870-z
– ident: 4511_CR5
– volume: 9
  start-page: eadf5464
  issue: 24
  year: 2023
  ident: 4511_CR17
  publication-title: Sci Adv
  doi: 10.1126/sciadv.adf5464
– volume: 58
  start-page: 441
  issue: 7
  year: 2023
  ident: 4511_CR40
  publication-title: Invest Radiol
– volume: 28
  start-page: 4698
  issue: 32
  year: 2022
  ident: 4511_CR4
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v28.i32.4698
– volume: 77
  start-page: e104-e107
  issue: 21
  year: 2017
  ident: 4511_CR31
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 7
  start-page: 238
  issue: 2
  year: 2021
  ident: 4511_CR49
  publication-title: Tomography
  doi: 10.3390/tomography7020022
– volume: 13
  start-page: 140
  issue: 1
  year: 2013
  ident: 4511_CR16
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2013.0015
– volume: 11
  start-page: 633176
  year: 2021
  ident: 4511_CR47
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.633176
– volume: 24
  start-page: 2047
  issue: 19
  year: 2018
  ident: 4511_CR20
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v24.i19.2047
– volume: 28
  start-page: 5284
  issue: 12
  year: 2018
  ident: 4511_CR44
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5454-7
SSID ssj0001651125
ssj0008379
Score 2.3962927
Snippet Purpose Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for...
Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful...
PurposeTumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4295
SubjectTerms Adult
Aged
Aged, 80 and over
Cancer
Cancer therapies
Coefficient of variation
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - diagnostic imaging
Colorectal Neoplasms - pathology
Computed tomography
Contrast Media
Drug resistance
Female
Gastroenterology
Hepatobiliary
Hepatology
Heterogeneity
Humans
Image contrast
Image enhancement
Imaging
Lesions
Liver
Liver cancer
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - secondary
Male
Malignancy
Medical imaging
Medicine
Medicine & Public Health
Metastases
Metastasis
Middle Aged
Pancreatic cancer
Pancreatic Neoplasms - diagnostic imaging
Pancreatic Neoplasms - pathology
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology
Radiomics
Retrospective Studies
Tomography, X-Ray Computed - methods
Title Textural heterogeneity of liver lesions in CT imaging - comparison of colorectal and pancreatic metastases
URI https://link.springer.com/article/10.1007/s00261-024-04511-5
https://www.ncbi.nlm.nih.gov/pubmed/39115682
https://www.proquest.com/docview/3121793826
https://www.proquest.com/docview/3090637224
https://pubmed.ncbi.nlm.nih.gov/PMC11522118
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RrYS4UN6ElpWRuIGrTfxIctyuWCpQe9qVyimyHVtd2GYRyV749YydR7stIPWQXDJOHOfz-Jt4_BngfZKVUmmMThQXjiIoSupxQzOrU8N0yZKwfOzsXJ4u-ZcLcdEtCqv7bPd-SjJ46mGxWwgXKI4p1GuixFTswT7yjwkfwf7087evN_6tSE8jRLdG5u-Fd8ehO-Tybo7krYnSMP7MD2DZ17xNO_lxvG30sfl9S9Txvq_2BB53hJRMWwQ9hQe2egYPz7op9-fwfYHu22tzkEufObNBwFlk7mTjyNrndJC19T_carKqyGxBVldh2yNCiRl2OPS2XhzbO1e8j6pKgj6opauGXNlGIUWtbf0ClvNPi9kp7TZooIanoqGlTA23JosVS1ymM-n0ROdIGE3KGBOx4lznucEQJs1jYTh-ey5S5ZgonculYi9hVG0q-xoIsijm0KK0OePacWVVXOZZLPFIueQRxP3nKkynXu430VgXg-5yaMQCG7EIjViICD4MZX622h3_tT7qUVB0_bguWJx4D4YxWATvhsvYA_20iqrsZos2kxx5XopcKIJXLWiGxzEcS4TMkgiyHTgNBl7de_dKtboMKt9YMMHoPIvgYw-a63r9-zXe3M_8EB4lHnchQecIRs2vrX2LNKvRY-xV85OT83HXu8awN5MzPC-T6R9wMiFy
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xkDZeJmCMZcDwpL2BJRJ_xHlE1VAZlKci8RbZji2K2hSt5f_nLk2DCmwSD3nyOV93Pv_Od_4Z4FdmKm0dRidWqsjRKCpOdsNNcLkXrhJZs31scK37N_LPrbptaXJoL8yL_D2RfdIKCc4knJhQUq4-wIbESJnK93q697yeogk6qHZfzNtdV-eeV4DydV3ki-RoM-ecb8HnFiyys4V2t2Et1DvwcdCmw7_A_RBdK_FmsDuqapmiMQRE1Wwa2ZjqLdg40GLYjI1q1huy0aQ5kohx5rvTB0mWiKvJ8eF9bF0x9A8LKOnZJMwtwsdZmO3CzfnvYa_P28MTuJe5mvNK514Gb1Irsmic0dGdugLBnM-FECq1Urqi8Bhe5EWqvES9SJXbKFQVY6Gt-Arr9bQO34AhwhERJapQCOmitMGmVWFSjVcutUwgXf7W0rfM4nTAxbjsOJEbVZSoirJRRakSOO76PCx4Nf4rfbDUVtmOsVkp0oy8C8ZHCfzsmnF0UMrD1mH6iDKnBWKwHHFKAnsL5XaPE-jnlTZZAmZF7Z0AMW-vttSju4aBGztmGDmbBE6WFvL8Xv_-jO_vEz-CT_3h4Kq8uri-3IfNjCy5KaQ5gPX538dwiHBo7n404-AJ1xgAFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RKqFeUOmLtEBdqbfWgsSPOMdqy4rSgjgsErfIT7FoyaJu-P8dO9nQhRaJQ04Z5zXj8TeZmc8AnwvlpDYYnWguAkWjcDTaDVXelJYZx4rUPnZyKo_O-fGFuPiriz9Vuy9Tkl1PQ2Rpatr9Gxf2h8a3FDpQXF9o5EfJqXgGzzFSSYnakRzd_WWREVCIvlvm30NXV6QHMPNhteS9lGlaicYvYbOHkORbp_MtWPPNK9g46ZPkr-Fqgg43smmQy1jrMkcT8Yi1yTyQWazCIDMff5EtyLQhowmZXqeNiggldtiTMMpGOuvoDvE6unEEvUYHMC259q1GULnwizdwPj6cjI5ov6UCtbwULXWytNxblWtWBGWUDObAVAjxbMkYE7nm3FSVxaCjrHJhOWqLi1IHJlwIldTsLaw388ZvA0HcwwJKOF8xbgLXXueuUrnEo-SSZ5AvP2tte77xuO3FrB6YkpMqalRFnVRRiwy-DGNuOraNR6V3ltqq-5m3qFleRJ-DUVMGn4bTOGdiIkQ3fn6LMgcVIrMS0UsG7zrlDrdj6P2FVEUGakXtg0Dk414900wvEy83DiwwnlYZfF1ayN1z_f813j9N_CNsnH0f179-nP78AC-KaMipumYH1tvft34XMVJr9tI0-ANNuwhe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Textural+heterogeneity+of+liver+lesions+in+CT+imaging+-+comparison+of+colorectal+and+pancreatic+metastases&rft.jtitle=Abdominal+imaging&rft.au=Pietsch%2C+Friedrich+L&rft.au=Haag%2C+Florian&rft.au=Ayx%2C+Isabelle&rft.au=Grawe%2C+Freba&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2366-004X&rft.eissn=2366-0058&rft.volume=49&rft.issue=12&rft.spage=4295&rft.epage=4306&rft_id=info:doi/10.1007%2Fs00261-024-04511-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-0058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-0058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-0058&client=summon