Textural heterogeneity of liver lesions in CT imaging - comparison of colorectal and pancreatic metastases
Purpose Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based a...
Saved in:
Published in | Abdominal imaging Vol. 49; no. 12; pp. 4295 - 4306 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2366-0058 2366-004X 2366-0058 |
DOI | 10.1007/s00261-024-04511-5 |
Cover
Loading…
Abstract | Purpose
Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC).
Materials and methods
In this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases.
Results
In both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference (
p
< 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity.
Conclusions
Radiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown. |
---|---|
AbstractList | PurposeTumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC).Materials and methodsIn this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases.ResultsIn both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference (p < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity.ConclusionsRadiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown. Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC). In this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases. In both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference (p < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity. Radiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown. Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC).PURPOSETumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC).In this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases.MATERIALS AND METHODSIn this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases.In both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference (p < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity.RESULTSIn both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference (p < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity.Radiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown.CONCLUSIONSRadiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown. Purpose Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC). Materials and methods In this retrospective single-center study 73 subjects (42 CRC, 31 PDAC) with 1291 liver metastases (430 CRC, 861 PDAC) were segmented fully automated on contrast-enhanced CT images by a UNet for medical images. Radiomics features were extracted using the Python package Pyradiomics. The mean coefficient of variation (CV) was calculated patient-wise for each feature to quantify the heterogeneity. An unpaired t-test identified features with significant differences in feature variability between CRC and PDAC metastases. Results In both colorectal and pancreatic liver metastases, interlesional heterogeneity in imaging can be observed using quantitative imaging features. 75 second-order features were extracted to compare the varying textural characteristics. In total, 18 radiomics features showed a significant difference ( p < 0.05) in their expression between the two malignancies. Out of these, 16 features showed higher levels of variability within the cohort of pancreatic metastases, which, as illustrated in a radar plot, suggests greater textural heterogeneity for this entity. Conclusions Radiomics has the potential to identify the interlesional heterogeneity of CT texture among individual liver metastases. In this proof-of-concept study for the quantification and comparison of imaging-related heterogeneity in liver metastases a variation in the extent of heterogeneity levels in CRC and PDAC liver metastases was shown. |
Author | Vellala, Abhinay K. Grawe, Freba Tharmaseelan, Hishan Ayx, Isabelle Schoenberg, Stefan O. Haag, Florian Pietsch, Friedrich L. Froelich, Matthias F. |
Author_xml | – sequence: 1 givenname: Friedrich L. surname: Pietsch fullname: Pietsch, Friedrich L. organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University – sequence: 2 givenname: Florian surname: Haag fullname: Haag, Florian organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University – sequence: 3 givenname: Isabelle surname: Ayx fullname: Ayx, Isabelle organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University – sequence: 4 givenname: Freba surname: Grawe fullname: Grawe, Freba organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, DKFZ Hector Cancer Institute at the University Medical Center Mannheim – sequence: 5 givenname: Abhinay K. surname: Vellala fullname: Vellala, Abhinay K. organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University – sequence: 6 givenname: Stefan O. surname: Schoenberg fullname: Schoenberg, Stefan O. organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University – sequence: 7 givenname: Matthias F. orcidid: 0000-0001-8501-2147 surname: Froelich fullname: Froelich, Matthias F. email: matthias.froelich@medma.uni-heidelberg.de organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University – sequence: 8 givenname: Hishan surname: Tharmaseelan fullname: Tharmaseelan, Hishan organization: Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39115682$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEYhYNUbK39Ay4k4MbNaL4nsxK5-AUFN9d1yGTemeYyk1yTTGn_vbneVmsXhUACec7hvO95iU5CDIDQa0reU0LaD5kQpmhDmGiIkJQ28hk6Y1yphhCpTx68T9FFzjtCCFWVY_IFOuUdpVJpdoZ2W7gpa7IzvoICKU4QwJdbHEc8-2tIeIbsY8jYB7zZYr_YyYcJN9jFZW-TzzEcWBfnmMCV6mPDgPc2uAS2eIcXKDbXA_kVej7aOcPF3X2Ofn75vN18ay5_fP2--XTZONHK0gyqdQKcppazUfdajT3pO06Jaznnkloh-q5zVLO2o9IJ3g9CtnbkchjHTll-jj4effdrv8DgIJQ6n9mnGj7dmmi9-f8n-CszxWtTd8IYpbo6vLtzSPHXCrmYxWcH82wDxDUbTjqieMuYqOjbR-gurinU-QynjLYd10xV6s3DSH-z3PdQAX0EXIo5JxiN86XuLx4S-tlQYg6tm2PrprZu_rRuZJWyR9J79ydF_CjKFQ4TpH-xn1D9Blacv1w |
CitedBy_id | crossref_primary_10_16899_jcm_1611569 |
Cites_doi | 10.1146/annurev-pathmechdis-031621-024600 10.1007/s00330-022-08922-0 10.3322/caac.21660 10.1080/02664763.2020.1808599 10.4161/hv.19643 10.2214/AJR.20.23490 10.1186/s41747-018-0068-z 10.1158/2159-8290.CD-15-1283 10.1016/j.trecan.2023.03.002 10.1002/med.21809 10.1016/j.critrevonc.2023.104242 10.1038/s41598-020-64068-3 10.3390/tomography7020022 10.1148/radiol.2019190794 10.1186/s40644-023-00612-4 10.1016/j.ejca.2011.11.036 10.1038/nrclinonc.2017.166 10.1102/1470-7330.2013.0015 10.1056/NEJMoa1113205 10.1016/j.ccr.2013.12.015 10.3389/fonc.2021.633176 10.1126/sciadv.adf5464 10.1038/s41598-021-98445-3 10.1038/s41467-021-26870-z 10.1038/s41568-019-0199-4 10.1038/s41422-019-0195-y 10.3748/wjg.v28.i32.4698 10.1148/radiol.212579 10.3748/wjg.v24.i19.2047 10.1016/S2214-109X(23)00406-0 10.1007/s00330-018-5454-7 10.1038/s41572-021-00261-6 10.1038/s41598-022-22877-8 10.1007/s00330-022-08628-3 10.1038/s41592-020-01008-z 10.1038/s41598-022-20931-z 10.1136/gutjnl-2022-327736 10.1038/s41598-023-31711-8 10.1007/s13244-012-0196-6 10.1038/s43018-023-00526-x 10.1136/jitc-2022-004867 10.3390/cancers14133293 10.1148/radiol.2015151169 10.3390/cancers14246224 10.1148/radiol.13131184 10.1016/j.ccell.2018.06.004 10.3390/cancers14071646 10.1158/0008-5472.CAN-17-0339 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 JQ2 K9. M7Z NAPCQ P64 7X8 5PM |
DOI | 10.1007/s00261-024-04511-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database ProQuest Computer Science Collection Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2366-0058 |
EndPage | 4306 |
ExternalDocumentID | PMC11522118 39115682 10_1007_s00261_024_04511_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: Medizinische Fakultät Mannheim der Universität Heidelberg (8990) |
GroupedDBID | -EM 04C 0R~ 29~ 2J2 2JN 2JY 2KG 2KM 2LR 406 53G 5VS 7RV 7X7 88E 8AO 8FH 8FI 8FJ 95- AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHVE ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACUDM ACZOJ ADBBV ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWZB AGYKE AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJOOF AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AZFZN B-. BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BMSDO BSONS C6C CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIHBH EIOEI EJD EMB EMOBN FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GNWQR GRRUI H13 HCIFZ HMCUK IKXTQ IMOTQ ITM IWAJR J-C JZLTJ K7- KOV LK8 LLZTM M1P M4Y M7P NAPCQ NPVJJ NQJWS NU0 O9J PQQKQ PROAC PSQYO PT4 QOR R89 ROL RSV S16 SCLPG SDE SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN TSG UG4 UKHRP UOJIU UTJUX UZXMN VFIZW W23 YLTOR Z7X Z83 Z87 Z8V Z8W Z91 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM PHGZT --- .86 .VR 06C 06D 0VY 1N0 23M 2~H 30V 36B 4.4 408 409 40D 40E 5GY 5RE 67Z 6NX 8FD 8TC 95. 95~ 96X AAWCG AAWTL AAYQN ABBXA ABOCM ACOMO ADHIR ADIMF AEGAL AENEX AEPYU AETLH AFWTZ AHAVH AIIXL AKMHD ALWAN BA0 CS3 DL5 ESBYG F5P FEDTE FR3 G-Y G-Z GGRSB GJIRD GQ7 GQ8 GXS HF~ HG5 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IXC IZIGR IZQ I~Z J0Z JQ2 K9. KDC KPH LAS M7Z MA- N9A NB0 O93 O9I OAM OVD P19 P64 P9S PF0 QOK QOS R9I RHV RPX RRX S27 S37 S3B SAP SDH SHX SMD T13 TSV TT1 TUC U2A U9L VC2 WH7 WJK WK8 Z45 ZOVNA 7X8 5PM ABRTQ |
ID | FETCH-LOGICAL-c475t-d67c4ec81a32f8b86fb0b9310c733351a44b99c1827915c43bd457af35dff96a3 |
IEDL.DBID | AGYKE |
ISSN | 2366-0058 2366-004X |
IngestDate | Thu Aug 21 18:43:55 EDT 2025 Fri Jul 11 09:56:07 EDT 2025 Fri Jul 25 19:38:50 EDT 2025 Thu Apr 03 07:03:27 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 Tue Jul 01 02:07:07 EDT 2025 Fri Feb 21 02:36:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Tumor/Oncology Computed tomography Pancreas Colorectum Tumoral Heterogeneity Radiomics |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-d67c4ec81a32f8b86fb0b9310c733351a44b99c1827915c43bd457af35dff96a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8501-2147 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00261-024-04511-5 |
PMID | 39115682 |
PQID | 3121793826 |
PQPubID | 31175 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11522118 proquest_miscellaneous_3090637224 proquest_journals_3121793826 pubmed_primary_39115682 crossref_citationtrail_10_1007_s00261_024_04511_5 crossref_primary_10_1007_s00261_024_04511_5 springer_journals_10_1007_s00261_024_04511_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Abdominal imaging |
PublicationTitleAbbrev | Abdom Radiol |
PublicationTitleAlternate | Abdom Radiol (NY) |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Gao, Cheng, Zhu, Wang, Deng, Sun, Wang, Xue (CR29) 2022; 32 Khan, Albalawi, Pottoo (CR9) 2022; 42 Ganeshan, Miles (CR16) 2013; 13 Flohr, Schmidt (CR40) 2023; 58 Chen, Zhong, Wang, Shi, Lu, Li, Feng, Xia, Chang, Fan, Chen, Zhu, Yan, Yao, Zhang (CR46) 2022; 32 Zhao (CR47) 2021; 11 Davnall, Yip, Ljungqvist, Selmi, Ng, Sanghera, Ganeshan, Miles, Cook, Goh (CR18) 2012; 3 Rizzo, Botta, Raimondi, Origgi, Fanciullo, Morganti, Bellomi (CR32) 2018; 2 Jensen, Kim, Elgeti, Steffen, Hamm, Nagel (CR49) 2021; 7 CR34 CR33 Tharmaseelan, Vellala, Hertel, Tollens, Rotkopf, Rink, Woznicki, Ayx, Bartling, Norenberg, Schoenberg, Froelich (CR25) 2023; 23 Korte, Cardenas, Hardcastle, Kron, Wang, Bahig, Elgohari, Ger, Court, Fuller, Ng (CR48) 2021; 11 Ilic, Ilic (CR4) 2022; 28 Gerlinger, Rowan, Horswell, Math, Larkin, Endesfelder, Gronroos, Martinez, Matthews, Stewart, Tarpey, Varela, Phillimore, Begum, McDonald, Butler, Jones, Raine, Latimer, Santos, Nohadani, Eklund, Spencer-Dene, Clark, Pickering, Stamp, Gore, Szallasi, Downward, Futreal, Swanton (CR13) 2012; 366 Iacobuzio-Donahue, Michael, Baez, Kappagantula, Hooper, Hollman (CR42) 2019; 19 Rajendran, Petersilka, Henning, Shanblatt, Schmidt, Flohr, Ferrero, Baffour, Diehn, Yu, Rajiah, Fletcher, Leng, McCollough (CR39) 2022; 303 Park, Sham, Kawamoto, Blair, Rozich, Fouladi, Shayesteh, Hruban, He, Wolfgang, Yuille, Fishman, Chu (CR27) 2021; 217 Froelich, Heinemann, Sommer, Holch, Schoeppe, Hesse, Baumann, Kunz, Reiser, Ricke, D’Anastasi, Stintzing, Modest, Kazmierczak, Hofmann (CR44) 2018; 28 Wang, Long, Li, Wu, Da, Wang, Huang, Jiang, Yao, Ma, Lian, Zhao, Cao (CR17) 2023; 9 Torresan, de Scordilli, Bortolot, Di Nardo, Foltran, Fumagalli, Guardascione, Ongaro, Puglisi (CR43) 2023; 194 Bärthel, Falcomatà, Rad, Theis, Saur (CR11) 2023; 4 CR6 CR5 Fidler (CR14) 2012; 8 CR45 Tharmaseelan, Rotkopf, Ayx, Hertel, Nörenberg, Schoenberg, Froelich (CR41) 2022; 12 Sherman, Beatty (CR10) 2023; 18 Tsilimigras, Brodt, Clavien, Muschel, D’Angelica, Endo, Parks, Doyle, de Santibañes (CR8) 2021; 7 Morgan, Arnold, Gini, Lorenzoni, Cabasag, Laversanne, Vignat, Ferlay, Murphy, Bray (CR3) 2023; 72 Lohr, Stojanov, Carter, Cruz-Gordillo, Lawrence, Auclair, Sougnez, Knoechel, Gould, Saksena, Cibulskis, McKenna, Chapman, Straussman, Levy, Perkins, Keats, Schumacher, Rosenberg, Getz, Golub (CR36) 2014; 25 Peng, Sun, Chen, Zhou, Chen, Chen, Liu, Huang, Jiang, Cui, Yang, Wang, Guo, Dai, Guo, Zhang, Liao, Liu, Zhao, Han, Zhao, Yang, Wu (CR12) 2019; 29 Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (CR2) 2021; 71 van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (CR31) 2017; 77 Lambin, Rios-Velazquez, Leijenaar, Carvalho, van Stiphout, Granton, Zegers, Gillies, Boellard, Dekker, Aerts (CR23) 2012; 48 Yoon, Lee, Chang, Kang, Bandos, Lim, Kang, Kang, Ryoo, Jeong, Park (CR19) 2020; 294 CR52 Zhang, Sanagapalli, Stoita (CR20) 2018; 24 Henry, Sun, Lerousseau, Estienne, Robert, Besse, Robert, Paragios, Deutsch (CR26) 2022; 12 Frick, Rumgay, Vignat, Ginsburg, Nolte, Bray, Soerjomataram (CR1) 2023; 11 Schmelz, Toedling, Huska, Cwikla, Kruetzfeldt, Proba, Ambros, Ambros, Boral, Lodrini, Chen, Burkert, Guergen, Szymansky, Astrahantseff, Kuenkele, Haase, Fischer, Deubzer, Hertwig, Hundsdoerfer, Henssen, Schwarz, Schulte, Eggert (CR35) 2021; 12 CR28 Botta-Dukát (CR51) 2023; 13 CR24 CR22 CR21 Wang, Liu, Xia, Lei, Huang, Huang (CR7) 2020; 10 Russo, Siravegna, Blaszkowsky, Corti, Crisafulli, Ahronian, Mussolin, Kwak, Buscarino, Lazzari, Valtorta, Truini, Jessop, Robinson, Hong, Mino-Kenudson, Di Nicolantonio, Thabet, Sartore-Bianchi, Siena, Iafrate, Bardelli, Corcoran (CR37) 2016; 6 Dagogo-Jack, Shaw (CR15) 2018; 15 Isensee, Jaeger, Kohl, Petersen (CR30) 2021; 18 Arachchige, Prendergast, Staudte (CR50) 2022; 49 Hessey, Fessas, Zaccaria, Jamal-Hanjani, Swanton (CR38) 2023; 9 DI Tsilimigras (4511_CR8) 2021; 7 4511_CR24 4511_CR21 4511_CR22 I Ilic (4511_CR4) 2022; 28 J Peng (4511_CR12) 2019; 29 LJ Jensen (4511_CR49) 2021; 7 H Tharmaseelan (4511_CR41) 2022; 12 JH Yoon (4511_CR19) 2020; 294 4511_CR28 FA Khan (4511_CR9) 2022; 42 M Russo (4511_CR37) 2016; 6 4511_CR34 4511_CR33 CA Iacobuzio-Donahue (4511_CR42) 2019; 19 4511_CR6 4511_CR5 I Dagogo-Jack (4511_CR15) 2018; 15 H Tharmaseelan (4511_CR25) 2023; 23 H Sung (4511_CR2) 2021; 71 H Wang (4511_CR7) 2020; 10 4511_CR45 K Rajendran (4511_CR39) 2022; 303 P Lambin (4511_CR23) 2012; 48 K Schmelz (4511_CR35) 2021; 12 C Arachchige (4511_CR50) 2022; 49 F Davnall (4511_CR18) 2012; 3 E Morgan (4511_CR3) 2023; 72 S Bärthel (4511_CR11) 2023; 4 F Wang (4511_CR17) 2023; 9 F Isensee (4511_CR30) 2021; 18 JC Korte (4511_CR48) 2021; 11 MH Sherman (4511_CR10) 2023; 18 T Henry (4511_CR26) 2022; 12 L Zhang (4511_CR20) 2018; 24 S Hessey (4511_CR38) 2023; 9 S Rizzo (4511_CR32) 2018; 2 MF Froelich (4511_CR44) 2018; 28 C Frick (4511_CR1) 2023; 11 4511_CR52 B Ganeshan (4511_CR16) 2013; 13 M Gerlinger (4511_CR13) 2012; 366 S Park (4511_CR27) 2021; 217 IJ Fidler (4511_CR14) 2012; 8 Y Gao (4511_CR29) 2022; 32 JJM van Griethuysen (4511_CR31) 2017; 77 Z Botta-Dukát (4511_CR51) 2023; 13 JG Lohr (4511_CR36) 2014; 25 Y Chen (4511_CR46) 2022; 32 B Zhao (4511_CR47) 2021; 11 T Flohr (4511_CR40) 2023; 58 S Torresan (4511_CR43) 2023; 194 |
References_xml | – ident: CR45 – ident: CR22 – volume: 18 start-page: 123 year: 2023 end-page: 148 ident: CR10 article-title: Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance publication-title: Annu Rev Pathol doi: 10.1146/annurev-pathmechdis-031621-024600 – volume: 32 start-page: 8443 issue: 12 year: 2022 end-page: 8452 ident: CR29 article-title: A systematic review of prognosis predictive role of radiomics in pancreatic cancer: heterogeneity markers or statistical tricks? publication-title: Eur Radiol doi: 10.1007/s00330-022-08922-0 – volume: 71 start-page: 209 issue: 3 year: 2021 end-page: 249 ident: CR2 article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – volume: 49 start-page: 268 issue: 2 year: 2022 end-page: 290 ident: CR50 article-title: Robust analogs to the coefficient of variation publication-title: J Appl Stat doi: 10.1080/02664763.2020.1808599 – volume: 8 start-page: 1141 issue: 8 year: 2012 end-page: 2 ident: CR14 article-title: Biological heterogeneity of cancer: implication to therapy publication-title: Hum Vaccin Immunother doi: 10.4161/hv.19643 – volume: 217 start-page: 1104 issue: 5 year: 2021 end-page: 1112 ident: CR27 article-title: CT Radiomics–Based Preoperative Survival Prediction in Patients with Pancreatic Ductal Adenocarcinoma publication-title: American Journal of Roentgenology doi: 10.2214/AJR.20.23490 – volume: 77 start-page: e104-e107 issue: 21 year: 2017 ident: CR31 article-title: Computational Radiomics System to Decode the Radiographic Phenotype publication-title: Cancer Res – volume: 2 start-page: 36 issue: 1 year: 2018 ident: CR32 article-title: Radiomics: the facts and the challenges of image analysis publication-title: Eur Radiol Exp doi: 10.1186/s41747-018-0068-z – volume: 6 start-page: 147 issue: 2 year: 2016 end-page: 153 ident: CR37 article-title: Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-15-1283 – volume: 9 start-page: 490 issue: 6 year: 2023 end-page: 502 ident: CR38 article-title: Insights into the metastatic cascade through research autopsies publication-title: Trends Cancer doi: 10.1016/j.trecan.2023.03.002 – volume: 42 start-page: 227 issue: 1 year: 2022 end-page: 258 ident: CR9 article-title: Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment publication-title: Med Res Rev doi: 10.1002/med.21809 – ident: CR21 – volume: 194 start-page: 104242 year: 2023 ident: CR43 article-title: Liquid biopsy in colorectal cancer: Onward and upward publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2023.104242 – volume: 10 start-page: 7048 issue: 1 year: 2020 ident: CR7 article-title: Survival of pancreatic cancer patients is negatively correlated with age at diagnosis: a population-based retrospective study publication-title: Sci Rep doi: 10.1038/s41598-020-64068-3 – volume: 7 start-page: 238 issue: 2 year: 2021 end-page: 252 ident: CR49 article-title: Stability of Radiomic Features across Different Region of Interest Sizes-A CT and MR Phantom Study publication-title: Tomography doi: 10.3390/tomography7020022 – volume: 294 start-page: 310 issue: 2 year: 2020 end-page: 319 ident: CR19 article-title: Initial M Staging of Rectal Cancer: FDG PET/MRI with a Hepatocyte-specific Contrast Agent versus Contrast-enhanced CT publication-title: Radiology doi: 10.1148/radiol.2019190794 – ident: CR5 – volume: 23 start-page: 95 issue: 1 year: 2023 ident: CR25 article-title: Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning publication-title: Cancer Imaging doi: 10.1186/s40644-023-00612-4 – volume: 48 start-page: 441 issue: 4 year: 2012 end-page: 6 ident: CR23 article-title: Radiomics: extracting more information from medical images using advanced feature analysis publication-title: Eur J Cancer doi: 10.1016/j.ejca.2011.11.036 – volume: 15 start-page: 81 issue: 2 year: 2018 end-page: 94 ident: CR15 article-title: Tumour heterogeneity and resistance to cancer therapies publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.166 – volume: 13 start-page: 140 issue: 1 year: 2013 end-page: 9 ident: CR16 article-title: Quantifying tumour heterogeneity with CT publication-title: Cancer Imaging doi: 10.1102/1470-7330.2013.0015 – volume: 58 start-page: 441 issue: 7 year: 2023 end-page: 450 ident: CR40 article-title: Technical Basics and Clinical Benefits of Photon-Counting CT publication-title: Invest Radiol – volume: 366 start-page: 883 issue: 10 year: 2012 end-page: 892 ident: CR13 article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing publication-title: N Engl J Med doi: 10.1056/NEJMoa1113205 – volume: 25 start-page: 91 issue: 1 year: 2014 end-page: 101 ident: CR36 article-title: Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.12.015 – volume: 11 start-page: 633176 year: 2021 ident: CR47 article-title: Understanding Sources of Variation to Improve the Reproducibility of Radiomics publication-title: Front Oncol doi: 10.3389/fonc.2021.633176 – volume: 9 start-page: eadf5464 issue: 24 year: 2023 ident: CR17 article-title: Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer publication-title: Sci Adv doi: 10.1126/sciadv.adf5464 – ident: CR33 – volume: 11 start-page: 18908 issue: 1 year: 2021 ident: CR48 article-title: Author Correction: Radiomics feature stability of open-source software evaluated on apparent diffusion coefficient maps in head and neck cancer publication-title: Sci Rep doi: 10.1038/s41598-021-98445-3 – ident: CR6 – volume: 12 start-page: 6804 issue: 1 year: 2021 ident: CR35 article-title: Spatial and temporal intratumour heterogeneity has potential consequences for single biopsy-based neuroblastoma treatment decisions publication-title: Nat Commun doi: 10.1038/s41467-021-26870-z – volume: 19 start-page: 686 issue: 12 year: 2019 end-page: 697 ident: CR42 article-title: Cancer biology as revealed by the research autopsy publication-title: Nat Rev Cancer doi: 10.1038/s41568-019-0199-4 – volume: 29 start-page: 725 issue: 9 year: 2019 end-page: 738 ident: CR12 article-title: Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma publication-title: Cell Res doi: 10.1038/s41422-019-0195-y – volume: 28 start-page: 4698 issue: 32 year: 2022 end-page: 4715 ident: CR4 article-title: International patterns in incidence and mortality trends of pancreatic cancer in the last three decades: A joinpoint regression analysis publication-title: World J Gastroenterol doi: 10.3748/wjg.v28.i32.4698 – volume: 303 start-page: 130 issue: 1 year: 2022 end-page: 138 ident: CR39 article-title: First Clinical Photon-counting Detector CT System: Technical Evaluation publication-title: Radiology doi: 10.1148/radiol.212579 – volume: 24 start-page: 2047 issue: 19 year: 2018 end-page: 2060 ident: CR20 article-title: Challenges in diagnosis of pancreatic cancer publication-title: World J Gastroenterol doi: 10.3748/wjg.v24.i19.2047 – volume: 11 start-page: e1700-e1712 issue: 11 year: 2023 ident: CR1 article-title: Quantitative estimates of preventable and treatable deaths from 36 cancers worldwide: a population-based study publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(23)00406-0 – volume: 28 start-page: 5284 issue: 12 year: 2018 end-page: 5292 ident: CR44 article-title: CT attenuation of liver metastases before targeted therapy is a prognostic factor of overall survival in colorectal cancer patients. Results from the randomised, open-label FIRE-3/AIO KRK0306 trial publication-title: Eur Radiol doi: 10.1007/s00330-018-5454-7 – volume: 7 start-page: 27 issue: 1 year: 2021 ident: CR8 article-title: Pawlik, Liver metastases publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-021-00261-6 – volume: 12 start-page: 19594 issue: 1 year: 2022 ident: CR41 article-title: Evaluation of radiomics feature stability in abdominal monoenergetic photon counting CT reconstructions publication-title: Scientific reports doi: 10.1038/s41598-022-22877-8 – ident: CR52 – volume: 32 start-page: 5480 issue: 8 year: 2022 end-page: 5490 ident: CR46 article-title: Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT publication-title: Eur Radiol doi: 10.1007/s00330-022-08628-3 – volume: 18 start-page: 203 issue: 2 year: 2021 end-page: 211 ident: CR30 article-title: Maier-Hein, nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat Methods doi: 10.1038/s41592-020-01008-z – ident: CR34 – volume: 12 start-page: 17244 issue: 1 year: 2022 ident: CR26 article-title: Investigation of radiomics based intra-patient inter-tumor heterogeneity and the impact of tumor subsampling strategies publication-title: Sci Rep doi: 10.1038/s41598-022-20931-z – volume: 72 start-page: 338 issue: 2 year: 2023 end-page: 344 ident: CR3 article-title: Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN publication-title: Gut doi: 10.1136/gutjnl-2022-327736 – volume: 13 start-page: 4671 issue: 1 year: 2023 ident: CR51 article-title: Quartile coefficient of variation is more robust than CV for traits calculated as a ratio publication-title: Sci Rep doi: 10.1038/s41598-023-31711-8 – volume: 3 start-page: 573 issue: 6 year: 2012 end-page: 89 ident: CR18 article-title: Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? publication-title: Insights Imaging doi: 10.1007/s13244-012-0196-6 – ident: CR28 – ident: CR24 – volume: 4 start-page: 454 issue: 4 year: 2023 end-page: 467 ident: CR11 article-title: Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy publication-title: Nat Cancer doi: 10.1038/s43018-023-00526-x – volume: 71 start-page: 209 issue: 3 year: 2021 ident: 4511_CR2 publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – volume: 72 start-page: 338 issue: 2 year: 2023 ident: 4511_CR3 publication-title: Gut doi: 10.1136/gutjnl-2022-327736 – volume: 7 start-page: 27 issue: 1 year: 2021 ident: 4511_CR8 publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-021-00261-6 – volume: 303 start-page: 130 issue: 1 year: 2022 ident: 4511_CR39 publication-title: Radiology doi: 10.1148/radiol.212579 – volume: 366 start-page: 883 issue: 10 year: 2012 ident: 4511_CR13 publication-title: N Engl J Med doi: 10.1056/NEJMoa1113205 – volume: 18 start-page: 123 year: 2023 ident: 4511_CR10 publication-title: Annu Rev Pathol doi: 10.1146/annurev-pathmechdis-031621-024600 – volume: 217 start-page: 1104 issue: 5 year: 2021 ident: 4511_CR27 publication-title: American Journal of Roentgenology doi: 10.2214/AJR.20.23490 – volume: 194 start-page: 104242 year: 2023 ident: 4511_CR43 publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2023.104242 – volume: 18 start-page: 203 issue: 2 year: 2021 ident: 4511_CR30 publication-title: Nat Methods doi: 10.1038/s41592-020-01008-z – volume: 12 start-page: 17244 issue: 1 year: 2022 ident: 4511_CR26 publication-title: Sci Rep doi: 10.1038/s41598-022-20931-z – volume: 8 start-page: 1141 issue: 8 year: 2012 ident: 4511_CR14 publication-title: Hum Vaccin Immunother doi: 10.4161/hv.19643 – ident: 4511_CR52 doi: 10.1136/jitc-2022-004867 – volume: 23 start-page: 95 issue: 1 year: 2023 ident: 4511_CR25 publication-title: Cancer Imaging doi: 10.1186/s40644-023-00612-4 – volume: 42 start-page: 227 issue: 1 year: 2022 ident: 4511_CR9 publication-title: Med Res Rev doi: 10.1002/med.21809 – volume: 29 start-page: 725 issue: 9 year: 2019 ident: 4511_CR12 publication-title: Cell Res doi: 10.1038/s41422-019-0195-y – ident: 4511_CR33 doi: 10.3390/cancers14133293 – ident: 4511_CR45 – volume: 12 start-page: 19594 issue: 1 year: 2022 ident: 4511_CR41 publication-title: Scientific reports doi: 10.1038/s41598-022-22877-8 – volume: 49 start-page: 268 issue: 2 year: 2022 ident: 4511_CR50 publication-title: J Appl Stat doi: 10.1080/02664763.2020.1808599 – ident: 4511_CR22 doi: 10.1148/radiol.2015151169 – volume: 48 start-page: 441 issue: 4 year: 2012 ident: 4511_CR23 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2011.11.036 – volume: 9 start-page: 490 issue: 6 year: 2023 ident: 4511_CR38 publication-title: Trends Cancer doi: 10.1016/j.trecan.2023.03.002 – volume: 6 start-page: 147 issue: 2 year: 2016 ident: 4511_CR37 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-15-1283 – ident: 4511_CR28 doi: 10.3390/cancers14246224 – volume: 10 start-page: 7048 issue: 1 year: 2020 ident: 4511_CR7 publication-title: Sci Rep doi: 10.1038/s41598-020-64068-3 – volume: 32 start-page: 8443 issue: 12 year: 2022 ident: 4511_CR29 publication-title: Eur Radiol doi: 10.1007/s00330-022-08922-0 – volume: 19 start-page: 686 issue: 12 year: 2019 ident: 4511_CR42 publication-title: Nat Rev Cancer doi: 10.1038/s41568-019-0199-4 – ident: 4511_CR6 – volume: 4 start-page: 454 issue: 4 year: 2023 ident: 4511_CR11 publication-title: Nat Cancer doi: 10.1038/s43018-023-00526-x – ident: 4511_CR21 doi: 10.1148/radiol.13131184 – volume: 13 start-page: 4671 issue: 1 year: 2023 ident: 4511_CR51 publication-title: Sci Rep doi: 10.1038/s41598-023-31711-8 – volume: 15 start-page: 81 issue: 2 year: 2018 ident: 4511_CR15 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.166 – volume: 294 start-page: 310 issue: 2 year: 2020 ident: 4511_CR19 publication-title: Radiology doi: 10.1148/radiol.2019190794 – ident: 4511_CR34 doi: 10.1016/j.ccell.2018.06.004 – volume: 2 start-page: 36 issue: 1 year: 2018 ident: 4511_CR32 publication-title: Eur Radiol Exp doi: 10.1186/s41747-018-0068-z – volume: 11 start-page: e1700-e1712 issue: 11 year: 2023 ident: 4511_CR1 publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(23)00406-0 – volume: 25 start-page: 91 issue: 1 year: 2014 ident: 4511_CR36 publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.12.015 – volume: 3 start-page: 573 issue: 6 year: 2012 ident: 4511_CR18 publication-title: Insights Imaging doi: 10.1007/s13244-012-0196-6 – ident: 4511_CR24 doi: 10.3390/cancers14071646 – volume: 32 start-page: 5480 issue: 8 year: 2022 ident: 4511_CR46 publication-title: Eur Radiol doi: 10.1007/s00330-022-08628-3 – volume: 11 start-page: 18908 issue: 1 year: 2021 ident: 4511_CR48 publication-title: Sci Rep doi: 10.1038/s41598-021-98445-3 – volume: 12 start-page: 6804 issue: 1 year: 2021 ident: 4511_CR35 publication-title: Nat Commun doi: 10.1038/s41467-021-26870-z – ident: 4511_CR5 – volume: 9 start-page: eadf5464 issue: 24 year: 2023 ident: 4511_CR17 publication-title: Sci Adv doi: 10.1126/sciadv.adf5464 – volume: 58 start-page: 441 issue: 7 year: 2023 ident: 4511_CR40 publication-title: Invest Radiol – volume: 28 start-page: 4698 issue: 32 year: 2022 ident: 4511_CR4 publication-title: World J Gastroenterol doi: 10.3748/wjg.v28.i32.4698 – volume: 77 start-page: e104-e107 issue: 21 year: 2017 ident: 4511_CR31 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 – volume: 7 start-page: 238 issue: 2 year: 2021 ident: 4511_CR49 publication-title: Tomography doi: 10.3390/tomography7020022 – volume: 13 start-page: 140 issue: 1 year: 2013 ident: 4511_CR16 publication-title: Cancer Imaging doi: 10.1102/1470-7330.2013.0015 – volume: 11 start-page: 633176 year: 2021 ident: 4511_CR47 publication-title: Front Oncol doi: 10.3389/fonc.2021.633176 – volume: 24 start-page: 2047 issue: 19 year: 2018 ident: 4511_CR20 publication-title: World J Gastroenterol doi: 10.3748/wjg.v24.i19.2047 – volume: 28 start-page: 5284 issue: 12 year: 2018 ident: 4511_CR44 publication-title: Eur Radiol doi: 10.1007/s00330-018-5454-7 |
SSID | ssj0001651125 ssj0008379 |
Score | 2.3962927 |
Snippet | Purpose
Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for... Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful... PurposeTumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4295 |
SubjectTerms | Adult Aged Aged, 80 and over Cancer Cancer therapies Coefficient of variation Colorectal cancer Colorectal carcinoma Colorectal Neoplasms - diagnostic imaging Colorectal Neoplasms - pathology Computed tomography Contrast Media Drug resistance Female Gastroenterology Hepatobiliary Hepatology Heterogeneity Humans Image contrast Image enhancement Imaging Lesions Liver Liver cancer Liver Neoplasms - diagnostic imaging Liver Neoplasms - secondary Male Malignancy Medical imaging Medicine Medicine & Public Health Metastases Metastasis Middle Aged Pancreatic cancer Pancreatic Neoplasms - diagnostic imaging Pancreatic Neoplasms - pathology Radiographic Image Interpretation, Computer-Assisted - methods Radiology Radiomics Retrospective Studies Tomography, X-Ray Computed - methods |
Title | Textural heterogeneity of liver lesions in CT imaging - comparison of colorectal and pancreatic metastases |
URI | https://link.springer.com/article/10.1007/s00261-024-04511-5 https://www.ncbi.nlm.nih.gov/pubmed/39115682 https://www.proquest.com/docview/3121793826 https://www.proquest.com/docview/3090637224 https://pubmed.ncbi.nlm.nih.gov/PMC11522118 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RrYS4UN6ElpWRuIGrTfxIctyuWCpQe9qVyimyHVtd2GYRyV749YydR7stIPWQXDJOHOfz-Jt4_BngfZKVUmmMThQXjiIoSupxQzOrU8N0yZKwfOzsXJ4u-ZcLcdEtCqv7bPd-SjJ46mGxWwgXKI4p1GuixFTswT7yjwkfwf7087evN_6tSE8jRLdG5u-Fd8ehO-Tybo7krYnSMP7MD2DZ17xNO_lxvG30sfl9S9Txvq_2BB53hJRMWwQ9hQe2egYPz7op9-fwfYHu22tzkEufObNBwFlk7mTjyNrndJC19T_carKqyGxBVldh2yNCiRl2OPS2XhzbO1e8j6pKgj6opauGXNlGIUWtbf0ClvNPi9kp7TZooIanoqGlTA23JosVS1ymM-n0ROdIGE3KGBOx4lznucEQJs1jYTh-ey5S5ZgonculYi9hVG0q-xoIsijm0KK0OePacWVVXOZZLPFIueQRxP3nKkynXu430VgXg-5yaMQCG7EIjViICD4MZX622h3_tT7qUVB0_bguWJx4D4YxWATvhsvYA_20iqrsZos2kxx5XopcKIJXLWiGxzEcS4TMkgiyHTgNBl7de_dKtboMKt9YMMHoPIvgYw-a63r9-zXe3M_8EB4lHnchQecIRs2vrX2LNKvRY-xV85OT83HXu8awN5MzPC-T6R9wMiFy |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xkDZeJmCMZcDwpL2BJRJ_xHlE1VAZlKci8RbZji2K2hSt5f_nLk2DCmwSD3nyOV93Pv_Od_4Z4FdmKm0dRidWqsjRKCpOdsNNcLkXrhJZs31scK37N_LPrbptaXJoL8yL_D2RfdIKCc4knJhQUq4-wIbESJnK93q697yeogk6qHZfzNtdV-eeV4DydV3ki-RoM-ecb8HnFiyys4V2t2Et1DvwcdCmw7_A_RBdK_FmsDuqapmiMQRE1Wwa2ZjqLdg40GLYjI1q1huy0aQ5kohx5rvTB0mWiKvJ8eF9bF0x9A8LKOnZJMwtwsdZmO3CzfnvYa_P28MTuJe5mvNK514Gb1Irsmic0dGdugLBnM-FECq1Urqi8Bhe5EWqvES9SJXbKFQVY6Gt-Arr9bQO34AhwhERJapQCOmitMGmVWFSjVcutUwgXf7W0rfM4nTAxbjsOJEbVZSoirJRRakSOO76PCx4Nf4rfbDUVtmOsVkp0oy8C8ZHCfzsmnF0UMrD1mH6iDKnBWKwHHFKAnsL5XaPE-jnlTZZAmZF7Z0AMW-vttSju4aBGztmGDmbBE6WFvL8Xv_-jO_vEz-CT_3h4Kq8uri-3IfNjCy5KaQ5gPX538dwiHBo7n404-AJ1xgAFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RKqFeUOmLtEBdqbfWgsSPOMdqy4rSgjgsErfIT7FoyaJu-P8dO9nQhRaJQ04Z5zXj8TeZmc8AnwvlpDYYnWguAkWjcDTaDVXelJYZx4rUPnZyKo_O-fGFuPiriz9Vuy9Tkl1PQ2Rpatr9Gxf2h8a3FDpQXF9o5EfJqXgGzzFSSYnakRzd_WWREVCIvlvm30NXV6QHMPNhteS9lGlaicYvYbOHkORbp_MtWPPNK9g46ZPkr-Fqgg43smmQy1jrMkcT8Yi1yTyQWazCIDMff5EtyLQhowmZXqeNiggldtiTMMpGOuvoDvE6unEEvUYHMC259q1GULnwizdwPj6cjI5ov6UCtbwULXWytNxblWtWBGWUDObAVAjxbMkYE7nm3FSVxaCjrHJhOWqLi1IHJlwIldTsLaw388ZvA0HcwwJKOF8xbgLXXueuUrnEo-SSZ5AvP2tte77xuO3FrB6YkpMqalRFnVRRiwy-DGNuOraNR6V3ltqq-5m3qFleRJ-DUVMGn4bTOGdiIkQ3fn6LMgcVIrMS0UsG7zrlDrdj6P2FVEUGakXtg0Dk414900wvEy83DiwwnlYZfF1ayN1z_f813j9N_CNsnH0f179-nP78AC-KaMipumYH1tvft34XMVJr9tI0-ANNuwhe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Textural+heterogeneity+of+liver+lesions+in+CT+imaging+-+comparison+of+colorectal+and+pancreatic+metastases&rft.jtitle=Abdominal+imaging&rft.au=Pietsch%2C+Friedrich+L&rft.au=Haag%2C+Florian&rft.au=Ayx%2C+Isabelle&rft.au=Grawe%2C+Freba&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2366-004X&rft.eissn=2366-0058&rft.volume=49&rft.issue=12&rft.spage=4295&rft.epage=4306&rft_id=info:doi/10.1007%2Fs00261-024-04511-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-0058&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-0058&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-0058&client=summon |