Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration
We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO supercrit...
Saved in:
Published in | Gels Vol. 9; no. 1; p. 67 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO
supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm
to 0.66 g cm
. Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m
g
), pore volume (1.98-0.89 cm
g
), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB
osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases. |
---|---|
AbstractList | We report the synthesis of mesoporous silica–gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol–gel process followed by CO2 supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm−3 to 0.66 g cm−3. Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651–361 m2 g−1), pore volume (1.98–0.89 cm3 g−1), and pore sizes (10.8–8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB® osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases. We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO2 supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm-3 to 0.66 g cm-3. Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m2 g-1), pore volume (1.98-0.89 cm3 g-1), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB® osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO2 supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm-3 to 0.66 g cm-3. Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m2 g-1), pore volume (1.98-0.89 cm3 g-1), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB® osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases. We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm to 0.66 g cm . Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m g ), pore volume (1.98-0.89 cm g ), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases. We report the synthesis of mesoporous silica–gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol–gel process followed by CO 2 supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm −3 to 0.66 g cm −3 . Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651–361 m 2 g −1 ), pore volume (1.98–0.89 cm 3 g −1 ), and pore sizes (10.8–8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB ® osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases. |
Author | de la Rosa-Fox, Nicolás Vilches-Pérez, José Ignacio Salido, Mercedes Cárdenas-Leal, Jose Luis Mesa-Díaz, María Del Mar Fernández-Montesinos, Rafael Reyes-Peces, María V Piñero, Manuel |
AuthorAffiliation | 2 Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain 5 Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain 1 Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain 6 Departamento de Física Aplicada, Escuela Superior de Ingeniería, Universidad de Cádiz, 11510 Puerto Real, Spain 4 Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain 3 Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain |
AuthorAffiliation_xml | – name: 3 Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain – name: 5 Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain – name: 6 Departamento de Física Aplicada, Escuela Superior de Ingeniería, Universidad de Cádiz, 11510 Puerto Real, Spain – name: 4 Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain – name: 1 Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain – name: 2 Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain |
Author_xml | – sequence: 1 givenname: María V orcidid: 0000-0002-7528-8331 surname: Reyes-Peces fullname: Reyes-Peces, María V organization: Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain – sequence: 2 givenname: Rafael surname: Fernández-Montesinos fullname: Fernández-Montesinos, Rafael organization: Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain – sequence: 3 givenname: María Del Mar orcidid: 0000-0001-7019-3563 surname: Mesa-Díaz fullname: Mesa-Díaz, María Del Mar organization: Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain – sequence: 4 givenname: José Ignacio surname: Vilches-Pérez fullname: Vilches-Pérez, José Ignacio organization: Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain – sequence: 5 givenname: Jose Luis surname: Cárdenas-Leal fullname: Cárdenas-Leal, Jose Luis organization: Departamento de Física Aplicada, Escuela Superior de Ingeniería, Universidad de Cádiz, 11510 Puerto Real, Spain – sequence: 6 givenname: Nicolás orcidid: 0000-0002-7066-5660 surname: de la Rosa-Fox fullname: de la Rosa-Fox, Nicolás organization: Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain – sequence: 7 givenname: Mercedes orcidid: 0000-0001-9070-2257 surname: Salido fullname: Salido, Mercedes organization: Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain – sequence: 8 givenname: Manuel orcidid: 0000-0001-8898-4371 surname: Piñero fullname: Piñero, Manuel organization: Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36661833$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1rGzEQhkVJaVI3p96LoJdC2FYfqw9fCklIk0BKS9Kexax21pFZS452N-B_X7lOg9OThObRwzvDvCUHMUUk5D1nn6Wcsy8L7Ic544xp84ocCclZJazmB3v3Q3I8DEvGGDdKKs7fkEOpteZWyiOS7sY8-XHKWN1iDyO29Dv6e4jBQ09_5rTGPAYcKMSWnoUEfgyPYdzQ1NG70Bequtz-C5FebZocWnqKOW1T0S5lelbS0ltcYMRcoBTfkdcd9AMeP50z8vvbxa_zq-rmx-X1-elN5WujxqrlwjIuuRVSsBas9xoYU7XXRkucS6HAWC64BsFUg50EhUbY2kumuG5Azsj1ztsmWLp1DivIG5cguL8PKS8clMZ8j055YxqwlglkNUoEqSSYuimuhum6Ka6vO9d6albYeoxjhv6F9GUlhnu3SI9ubpU1ShfBpydBTg8TDqNbhcFj30PENA1OGF0a5VqJgn78D12mKccyqi1lBLOmzGVGTnaUz2kYMnbPYThz271we3tR6A_7-Z_Zf1sg_wDdbrTE |
CitedBy_id | crossref_primary_10_3390_gels9050383 crossref_primary_10_1007_s10971_024_06347_3 crossref_primary_10_3390_gels9090746 crossref_primary_10_3390_ma16124483 |
Cites_doi | 10.1039/C6PY01425A 10.3390/biology10111189 10.1016/j.solidstatesciences.2005.04.003 10.1007/s10853-013-7690-1 10.1083/jcb.200703036 10.1016/j.ceramint.2022.06.180 10.1016/j.biomaterials.2013.12.023 10.1016/j.ejcb.2013.10.009 10.1016/S0022-3093(01)00442-2 10.3389/fbioe.2020.591084 10.22203/eCM.v020a27 10.1007/s10971-008-1874-1 10.1007/BF00401034 10.1016/j.ijpharm.2019.01.024 10.1038/s41598-019-52974-0 10.3390/ma14020396 10.3389/fbioe.2019.00027 10.1016/j.colsurfb.2017.01.019 10.1016/j.cis.2016.05.011 10.1007/s12633-010-9064-5 10.1016/S0079-6700(99)00016-7 10.1557/PROC-271-681 10.1007/s10971-017-4378-z 10.1016/j.ijheatmasstransfer.2015.04.046 10.1074/jbc.M600738200 10.1016/S0022-3093(01)00441-0 10.1016/S1369-7021(06)71741-2 10.1016/j.jnoncrysol.2017.07.016 10.1134/S0036024410060270 10.1021/acsanm.9b01903 10.20944/preprints202101.0594.v1 10.3390/pharmaceutics12050449 10.1007/s10971-013-3214-3 10.1016/j.biomaterials.2006.01.039 10.3390/polym12112723 10.1016/j.jnoncrysol.2004.09.017 10.1007/s10971-016-4203-0 10.1016/j.mex.2019.10.018 10.1371/journal.pone.0257495 10.1021/acsami.7b05842 10.1016/j.actbio.2020.01.016 10.1515/pac-2014-1117 10.1155/2012/313961 10.3390/polym12020266 10.1002/jbm.820240607 10.1021/acsabm.9b00680 10.3390/ma11112144 10.1016/j.ijpharm.2015.10.045 10.1016/j.jnoncrysol.2017.11.010 10.1081/PDT-65693 10.1016/j.carbpol.2015.01.022 10.1038/nature09198 10.1002/adfm.201000838 10.1007/s00018-017-2511-3 10.1016/S0142-9612(02)00226-0 10.3390/molecules24091815 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/gels9010067 |
DatabaseName | PubMed CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2310-2861 |
ExternalDocumentID | oai_doaj_org_article_5c77ba8802e04e3ea353a74bc30b064b 10_3390_gels9010067 36661833 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Junta de Andalucía FEDER / ITI grantid: 2014-2020 PI 013/017 – fundername: Junta de Andalucía FEDER grantid: UCA 18_106598 – fundername: CTS 253 PAIDI research groups (Spain) – fundername: Andalucía FEDER/ITI 2014-2020 grantid: PI 013/017 – fundername: Junta de Andalucía grantid: FEDER-UCA18_106598 – fundername: Junta de Andalucía TEP115 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BCNDV BENPR BGLVJ CCPQU D1I GROUPED_DOAJ HCIFZ HYE IAO ITC KB. KQ8 MODMG M~E NPM OK1 PDBOC PGMZT PIMPY PROAC RPM AAYXX CITATION ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3 |
IEDL.DBID | RPM |
ISSN | 2310-2861 |
IngestDate | Tue Oct 22 15:06:43 EDT 2024 Tue Sep 17 21:30:38 EDT 2024 Sat Oct 26 04:01:11 EDT 2024 Thu Oct 10 16:40:03 EDT 2024 Thu Sep 26 20:36:37 EDT 2024 Sat Nov 02 12:11:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | mineralization bioactivity bone tissue engineering cytoskeleton cell adhesion percolation threshold hybrid aerogel osteoblasts gelatin GPTMS |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7066-5660 0000-0001-7019-3563 0000-0001-9070-2257 0000-0002-7528-8331 0000-0001-8898-4371 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858756/ |
PMID | 36661833 |
PQID | 2767208701 |
PQPubID | 2055409 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c77ba8802e04e3ea353a74bc30b064b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9858756 proquest_miscellaneous_2768231652 proquest_journals_2767208701 crossref_primary_10_3390_gels9010067 pubmed_primary_36661833 |
PublicationCentury | 2000 |
PublicationDate | 20230114 |
PublicationDateYYYYMMDD | 2023-01-14 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230114 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Gels |
PublicationTitleAlternate | Gels |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Magdalena (ref_44) 2012; 17 ref_50 Govindarajan (ref_14) 2017; 9 Ayers (ref_9) 2001; 285 Sachithanadam (ref_27) 2014; 49 ref_11 ref_10 Veres (ref_8) 2017; 473 Ciobanasu (ref_60) 2013; 92 Esquivias (ref_36) 2009; 50 Mackenzie (ref_35) 1996; 7 Natale (ref_53) 2014; 35 Maleki (ref_15) 2016; 236 Yun (ref_2) 2017; 83 Doadrio (ref_63) 2005; 7 Cohen (ref_51) 2006; 281 ref_61 Ren (ref_29) 2002; 23 Ramadan (ref_38) 2020; 3 ref_25 ref_24 Humphries (ref_52) 2007; 179 ref_23 Pulat (ref_43) 2012; 2012 Zonderland (ref_55) 2019; 6 Stavinskaya (ref_16) 2010; 84 ref_20 Lamers (ref_58) 2010; 20 Masaro (ref_42) 1999; 24 Salido (ref_56) 2007; 22 Mahesh (ref_19) 2015; 87 Ren (ref_28) 2001; 285 Balavigneswaran (ref_17) 2020; 3 Coyer (ref_48) 2010; 125 Grashoff (ref_49) 2011; 466 Webster (ref_62) 2000; 28 Raucci (ref_46) 2019; 7 Demilecamps (ref_13) 2015; 122 Kokubo (ref_66) 1990; 24 Retuert (ref_33) 2004; 347 Mahony (ref_6) 2010; 20 ref_32 Aldalur (ref_22) 2018; 481 Iv (ref_59) 2021; 8 Connell (ref_21) 2017; 8 Hu (ref_34) 1992; 271 Herman (ref_1) 2020; 3 ref_39 Nagy (ref_4) 2019; 558 Veres (ref_3) 2017; 152 Bays (ref_54) 2017; 74 Papp (ref_18) 2020; 105 Tengroth (ref_41) 2005; 10 Mahony (ref_7) 2014; 69 Delgado (ref_5) 2022; 48 Bittig (ref_47) 2014; 8 Pietras (ref_30) 2013; 57 ref_45 Braza (ref_37) 2017; 81 Rezwan (ref_65) 2006; 27 ref_40 Salido (ref_57) 2009; 24 Veres (ref_26) 2015; 496 Jones (ref_64) 2006; 9 Horvat (ref_12) 2019; 9 Thommes (ref_31) 2015; 87 |
References_xml | – volume: 8 start-page: 1095 year: 2017 ident: ref_21 article-title: Functionalizing natural polymers with alkoxysilane coupling agents: Reacting 3-glycidoxypropyl trimethoxysilane with poly(γ-glutamic acid) and gelatin publication-title: Polym. Chem. doi: 10.1039/C6PY01425A contributor: fullname: Connell – ident: ref_50 doi: 10.3390/biology10111189 – volume: 7 start-page: 983 year: 2005 ident: ref_63 article-title: Tissue regeneration: A new property of mesoporous materials publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2005.04.003 contributor: fullname: Doadrio – ident: ref_32 – volume: 49 start-page: 163 year: 2014 ident: ref_27 article-title: High strain recovery with improved mechanical properties of gelatin-silica aerogel composites post-binding treatment publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7690-1 contributor: fullname: Sachithanadam – volume: 179 start-page: 1043 year: 2007 ident: ref_52 article-title: Vinculin controls focal adhesion formation by direct interactions with talin and actin publication-title: J. Cell Biol. doi: 10.1083/jcb.200703036 contributor: fullname: Humphries – volume: 48 start-page: 28659 year: 2022 ident: ref_5 article-title: Tailorable low temperature silica-gelatin biomaterials for drug delivery publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.06.180 contributor: fullname: Delgado – volume: 35 start-page: 2743 year: 2014 ident: ref_53 article-title: Biomaterials Tuning the material-cytoskeleton crosstalk via nanocon fi nement of focal adhesions publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.12.023 contributor: fullname: Natale – volume: 92 start-page: 339 year: 2013 ident: ref_60 article-title: Le Integrating actin dynamics, mechanotransduction and integrin activation: The multiple functions of actin binding proteins in focal adhesions publication-title: Eur. J. Cell Biol. doi: 10.1016/j.ejcb.2013.10.009 contributor: fullname: Ciobanasu – volume: 285 start-page: 123 year: 2001 ident: ref_9 article-title: Synthesis and properties of chitosan-silica hybrid aerogels publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00442-2 contributor: fullname: Ayers – volume: 8 start-page: 591084 year: 2021 ident: ref_59 article-title: Hydroxyapatite particle density regulates osteoblastic differentiation through β -catenin translocation publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.591084 contributor: fullname: Iv – volume: 20 start-page: 329 year: 2010 ident: ref_58 article-title: The influence of nanoscale topographical cues on initial osteoblast morphology and migration publication-title: Eur. Cells Mater. doi: 10.22203/eCM.v020a27 contributor: fullname: Lamers – volume: 24 start-page: 1275 year: 2009 ident: ref_57 article-title: Mitochondrial bioenergetics and distribution in living human osteoblasts grown on implant surfaces publication-title: Histol Histopathol. contributor: fullname: Salido – volume: 50 start-page: 170 year: 2009 ident: ref_36 article-title: Percolation of the organic phase in hybrid organic-inorganic aerogels publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-008-1874-1 contributor: fullname: Esquivias – volume: 125 start-page: 5110 year: 2010 ident: ref_48 article-title: Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension publication-title: J. Cell Sci. contributor: fullname: Coyer – volume: 7 start-page: 151 year: 1996 ident: ref_35 article-title: Mechanical properties of ormosils publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/BF00401034 contributor: fullname: Mackenzie – volume: 558 start-page: 396 year: 2019 ident: ref_4 article-title: Controlled release of methotrexate from functionalized silica-gelatin aerogel microparticles applied against tumor cell growth publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.01.024 contributor: fullname: Nagy – volume: 22 start-page: 1355 year: 2007 ident: ref_56 article-title: Actin cytoskeletal organization in human osteoblasts grown on different dental titanium implant surfaces publication-title: Histol Histopathol. contributor: fullname: Salido – volume: 9 start-page: 16492 year: 2019 ident: ref_12 article-title: Preparation and characterization of polysaccharide—Silica hybrid aerogels publication-title: Sci. Rep. doi: 10.1038/s41598-019-52974-0 contributor: fullname: Horvat – ident: ref_39 doi: 10.3390/ma14020396 – volume: 7 start-page: 27 year: 2019 ident: ref_46 article-title: Bioactivation routes of gelatin-based scaffolds to enhance at nanoscale level bone tissue regeneration publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00027 contributor: fullname: Raucci – volume: 152 start-page: 229 year: 2017 ident: ref_3 article-title: Mechanism of drug release from silica-gelatin aerogel—Relationship between matrix structure and release kinetics publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2017.01.019 contributor: fullname: Veres – volume: 236 start-page: 1 year: 2016 ident: ref_15 article-title: Synthesis and biomedical applications of aerogels: Possibilities and challenges publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2016.05.011 contributor: fullname: Maleki – volume: 3 start-page: 63 year: 2020 ident: ref_38 article-title: Synthesis and characterization of mesoporous hybrid silica-polyacrylamide aerogels publication-title: Silicon doi: 10.1007/s12633-010-9064-5 contributor: fullname: Ramadan – volume: 24 start-page: 731 year: 1999 ident: ref_42 article-title: Physical models of diffusion for polymer solutions, gels and solids publication-title: Prog. Polym. Sci. doi: 10.1016/S0079-6700(99)00016-7 contributor: fullname: Masaro – volume: 271 start-page: 681 year: 1992 ident: ref_34 article-title: Structure-related mechanical properties of ormosils by sol-gel process publication-title: Mater. Res. Soc. Symp. Proc. doi: 10.1557/PROC-271-681 contributor: fullname: Hu – volume: 83 start-page: 197 year: 2017 ident: ref_2 article-title: Preparation and properties of monolithic and hydrophobic gelatin–silica composite aerogels for oil absorption publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-017-4378-z contributor: fullname: Yun – volume: 87 start-page: 606 year: 2015 ident: ref_19 article-title: Thermal conductivity variations with composition of gelatin-silica aerogel-sodium dodecyl sulfate with functionalized multi-walled carbon nanotube doping in their composites publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.04.046 contributor: fullname: Mahesh – ident: ref_45 – volume: 28 start-page: 1803 year: 2000 ident: ref_62 article-title: Enhanced osteoclast like-cell functions on nanophase ceramics publication-title: Ann. Biomed. Eng. contributor: fullname: Webster – volume: 17 start-page: 59 year: 2012 ident: ref_44 article-title: Mechanism of water diffusion into noncrosslinked and ionically crosslinked chitosan membranes publication-title: Prog. Chem. Appl. Chitin Its Deriv. contributor: fullname: Magdalena – volume: 281 start-page: 16006 year: 2006 ident: ref_51 article-title: A conformational switch in vinculin drives formation and dynamics of a talin-vinculin complex at focal adhesions publication-title: J. Biol. Chem. doi: 10.1074/jbc.M600738200 contributor: fullname: Cohen – volume: 285 start-page: 116 year: 2001 ident: ref_28 article-title: Sol-gel preparation and in vitro deposition of apatite on porous gelatin-siloxane hybrids publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00441-0 contributor: fullname: Ren – ident: ref_20 – volume: 9 start-page: 34 year: 2006 ident: ref_64 article-title: Observing cell response to biomaterials publication-title: Mater. Today doi: 10.1016/S1369-7021(06)71741-2 contributor: fullname: Jones – volume: 473 start-page: 17 year: 2017 ident: ref_8 article-title: Biocompatible silica-gelatin hybrid aerogels covalently labeled with fluorescein publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2017.07.016 contributor: fullname: Veres – volume: 84 start-page: 1045 year: 2010 ident: ref_16 article-title: The properties of silica—Gelatin composites publication-title: Russ. J. Phys. Chem. A doi: 10.1134/S0036024410060270 contributor: fullname: Stavinskaya – volume: 3 start-page: 195 year: 2020 ident: ref_1 article-title: Mesoporous silica-gelatin aerogels for the selective adsorption of aqueous Hg(II) publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01903 contributor: fullname: Herman – ident: ref_23 doi: 10.20944/preprints202101.0594.v1 – ident: ref_25 doi: 10.3390/pharmaceutics12050449 – volume: 69 start-page: 288 year: 2014 ident: ref_7 article-title: Silica—Gelatin hybrids for tissue regeneration: Inter-relationships between the process variables publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-013-3214-3 contributor: fullname: Mahony – volume: 27 start-page: 3413 year: 2006 ident: ref_65 article-title: Biodegradable and bioactive porous polymer / inorganic composite scaffolds for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.039 contributor: fullname: Rezwan – ident: ref_10 doi: 10.3390/polym12112723 – volume: 57 start-page: 58 year: 2013 ident: ref_30 article-title: New approach to preparation of gelatine / SiO2 hybrid systems by the sol-gel process publication-title: Ceramics-Silikáty contributor: fullname: Pietras – volume: 347 start-page: 273 year: 2004 ident: ref_33 article-title: Highly porous silica networks derived from gelatin / siloxane hybrids prepared starting from sodium metasilicate publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2004.09.017 contributor: fullname: Retuert – volume: 81 start-page: 600 year: 2017 ident: ref_37 article-title: Absorption capacity, kinetics and mechanical behaviour in dry and wet states of hydrophobic DEDMS/TEOS-based silica aerogels publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-016-4203-0 contributor: fullname: Braza – volume: 6 start-page: 2562 year: 2019 ident: ref_55 article-title: A quantitative method to analyse F-actin distribution in cells publication-title: MethodsX doi: 10.1016/j.mex.2019.10.018 contributor: fullname: Zonderland – ident: ref_61 doi: 10.1371/journal.pone.0257495 – volume: 9 start-page: 16939 year: 2017 ident: ref_14 article-title: Fabrication of hybrid collagen aerogels reinforced with wheat grass bioactives as instructive scaffolds for collagen turnover and angiogenesis for wound healing applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05842 contributor: fullname: Govindarajan – volume: 105 start-page: 131 year: 2020 ident: ref_18 article-title: Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels—Implications in drug delivery publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.01.016 contributor: fullname: Papp – volume: 87 start-page: 1052 year: 2015 ident: ref_31 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution publication-title: Pure Appl. Chem. doi: 10.1515/pac-2014-1117 contributor: fullname: Thommes – volume: 2012 start-page: 313961 year: 2012 ident: ref_43 article-title: 5-fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: Evaluation of controlled release kinetics publication-title: J. Nanomater. doi: 10.1155/2012/313961 contributor: fullname: Pulat – ident: ref_40 doi: 10.3390/polym12020266 – volume: 24 start-page: 721 year: 1990 ident: ref_66 article-title: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.820240607 contributor: fullname: Kokubo – volume: 3 start-page: 197 year: 2020 ident: ref_17 article-title: Silica release from silane cross-linked gelatin based hybrid scaffold affects cell proliferation publication-title: ACS Appl. Bio. Mater. doi: 10.1021/acsabm.9b00680 contributor: fullname: Balavigneswaran – ident: ref_11 doi: 10.3390/ma11112144 – volume: 496 start-page: 360 year: 2015 ident: ref_26 article-title: Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.10.045 contributor: fullname: Veres – volume: 481 start-page: 368 year: 2018 ident: ref_22 article-title: Design of nanostructured siloxane-gelatin coatings: Immobilization strategies and dissolution properties publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2017.11.010 contributor: fullname: Aldalur – volume: 8 start-page: 106 year: 2014 ident: ref_47 article-title: Membrane related dynamics and the formation of actin in cells growing on micro-topographies: A spatial computational model publication-title: BNC Syst. Biol. contributor: fullname: Bittig – volume: 10 start-page: 405 year: 2005 ident: ref_41 article-title: Cross-linking of gelatin capsules with formaldehyde and other aldehydes: An FTIR spectroscopy study publication-title: Pharm. Dev. Technol. doi: 10.1081/PDT-65693 contributor: fullname: Tengroth – volume: 122 start-page: 293 year: 2015 ident: ref_13 article-title: Cellulose-silica aerogels publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.01.022 contributor: fullname: Demilecamps – volume: 466 start-page: 263 year: 2011 ident: ref_49 article-title: Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics publication-title: Nature doi: 10.1038/nature09198 contributor: fullname: Grashoff – volume: 20 start-page: 3835 year: 2010 ident: ref_6 article-title: Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000838 contributor: fullname: Mahony – volume: 74 start-page: 2999 year: 2017 ident: ref_54 article-title: Vinculin in cell-cell and cell-matrix adhesions publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-017-2511-3 contributor: fullname: Bays – volume: 23 start-page: 4765 year: 2002 ident: ref_29 article-title: Novel approach to fabricate porous gelatin—Siloxane hybrids for bone tissue engineering publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00226-0 contributor: fullname: Ren – ident: ref_24 doi: 10.3390/molecules24091815 |
SSID | ssj0001753511 |
Score | 2.2825835 |
Snippet | We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane... We report the synthesis of mesoporous silica–gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 67 |
SubjectTerms | Aerogels bioactivity Biocompatibility Biological activity Biomedical materials Body fluids Bulk density Cell adhesion Cell adhesion & migration Collagen Coupling agents Experiments Fourier transforms Gelatin GPTMS hybrid aerogel Hydroxyapatite In vitro methods and tests Infrared analysis Mechanical properties Nucleation Oil recovery Percolation percolation threshold Pore size Porous materials Regeneration (physiology) Silicon dioxide Sol-gel processes Swelling ratio Thermodynamic properties Thermogravimetric analysis Tissue engineering Toxicity |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9RADLVQT3BALdCSfqBB6jVqkvnKHruoZYUEQpRKvUWexCl7SWDbHnrrf-g_7C_BnmyXLELi0msSKRO_if0843kGOHRa17Ys85S58iQ1bWA_iAbTttTB5NS4hmK1xRc3OzefLuzFqNWX1IQN8sCD4Y5s7X1AnmUFZYY0obYavQm1zgKH0xC9bzYZJVNxdYVZOFOJ4UCe5rz-6JJDjZQiZLGj_J8QFJX6_0Uv_66SHIWd0014ueSL6ngY5xY8o-4VvBipCL6GX2dRA_ZmQWksbaNGfSY50Cv2V19ltX0hsqkKu0ZN570cZZCOEapv1dlcFu0e7u4_xqK4Ts1u5QiXOqZFL9-imNOqad-R-kaXUaFagHwD56cn3z_M0mUnhbQ23l6nDUchEdYpmT9lDZZ17VDIWu3YvRBTOIueI33usMhsoFajJc-Bi41scxdQb8NGx-96CypHa7BprQ8uMNkrMUykK4KttdFNbjGBw0fjVj8HwYyKEw3BoBphkMBUDL96RFSu4wXGvlpiX_0P-wT2H2Grlr_eVVV454uM3VCewPvVbf5pZCcEO-pv4jOy_elskcDOgPJqJJoTOvZzOgG_hv_aUNfvdPMfUZh7UlpO_9zuU3zbHjyXzvay2pObfdjgmUQHzH-uw7s41X8DkzAFhw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADLbocqGHqoVSQqEaJK4RSeaVPVUsgq4qFSEoErdoXln2ksACh974D_xDfknt2ewLVb1mRsoknrE_e-zPAIeKcyfLMk8RK_dTUVvUg0aYtC65FXnwyoeYbXGuhtfi54286QJuD11a5UwnRkXtW0cx8qNCK11kuLvy73f3KXWNotvVroXGO1gv0FMoerA-OD2_uFxEWRCNI6SYFuZx9O-PRmhyKCUhi53lF6YoMvb_C2a-zZZcMj9nH-FDhxvZ8VTQn2AtNJvwfolNcAvuryIX7NMkpDHFLXj2K1BhL8mBXVDUfUL0qcw0ng3GLZU0UOcI1tbsakzBu9fnlx8xOa5hwz9UysWOw6Slb2GIbdmgbQK7DKPIVE0C_QzXZ6e_T4Zp11EhdULLx9SjNSKCnRJxVOZN6ZwyBNqcQjUTEMpJo9Hi58oUmbSh5kYGjQbMoVbIlTV8G3oNvmsHWG6kML6W2iqLoK80tk_dEaTjgvtcmgQOZz-3upsSZ1TocJAMqiUZJDCgHz-fQmzX8UE7GVXd4amk09oa1DRFyETgwXDJjRYWl2URUtkE9mZiq7oj-FAtNkwCB_NhPDx0I2Ka0D7FOXQNqmSRwJeplOcr4ejYob7jCegV-a8sdXWkGd9Ggu5-KdENVLv_X9ZX2KDe9RTPycUe9HCPhH1EOI_2W7eN_wLCIf5c priority: 102 providerName: ProQuest |
Title | Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36661833 https://www.proquest.com/docview/2767208701 https://www.proquest.com/docview/2768231652 https://pubmed.ncbi.nlm.nih.gov/PMC9858756 https://doaj.org/article/5c77ba8802e04e3ea353a74bc30b064b |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5RVlrBYbVvsstWXolraBO_0iNFlGolUMVD4hbZjlMqQcIWOHDjP_AP95fsjJtULdrTXmNHcTzjmc_jmc8Ae4pzJ7MsiRErD2JRWrSDRpi4zLgViS9U4UO2xakaX4pfV_JqA2RbCxOS9p2d7Vc3t_vV7DrkVt7dul6bJ9abnBwOMokwW_U60EEFXdmih8AKAnBEEYtaPI5b-t4UvQxlIaBh3oK3HAE76jFfc0SBr_9fIPN1ruSK8xm9h3cNamQHi9F9gA1ffYTtFS7BT_D7PDDBPs59HBLcfMFOPJX1khTYhGLucyJPZaYq2HBWU0ED3RvB6pKdzyh09-f55TikxlVs_ESFXOzAz2v6LYbIlg3ryrMzPw081STOz3A5Oro4HMfNfQqxE1o-xAX6IqLXyRBF9QuTOacMQTan0Mh4BHLSaPT3iTJpX1pfciO9Rvfl0CYkyhr-BTYr_NYOsMRIYYpSaqssQr7M2AHdjSAdF7xIpIlgr53c_G5Bm5HjdoPEka-II4IhTfyyC3Fdhwf1fJo3Es-l09oatDOp7wvPveGSGy0sDssioLIR7LZiy5sFeJ-nWum0j8YoieDnshmXDp2HmMrXj6EPHYIqmUbwdSHl5UhaLYlAr8l_bajrLaitgZ670c5v__3md9iiS-0p0JOIXdhE9fE_EPo82C50stFxF94Mj04nZ90QQOgG9f8LiAcJnw |
link.rule.ids | 230,315,730,783,787,867,888,2109,12779,21402,27938,27939,33387,33388,33758,33759,43614,43819,53806,53808,74371,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADLaAHkoPVd9NS2EqcY1IMq_sqWKrLgsFVBWQuEXzynYvCSxw4MZ_6D_sL6k9m31VFdfMSJnEHvsbj_0ZYFdx7mRZ5ili5V4qaot20AiT1iW3Ig9e-RCzLU7V8EIcXcrLLuB206VVzmxiNNS-dRQj3yu00kWG2pV_ubpOqWsU3a52LTTW4Yng6GioUnxwsIixIBZHQDEty-N4ut8bocOhhIQs9pVfOKLI1_8_kPlvruSS8xm8gOcdamT7UzG_hLXQvIJnS1yCr-H6LDLB3k1CGhPcgmcngcp6SQrsB8XcJ0SeykzjWX_cUkED9Y1gbc3OxhS6-_Pw-yCmxjVseE-FXGw_TFr6FobIlvXbJrCfYRR5qkmcb-Bi8O386zDt-imkTmh5m3r0RUSvUyKKyrwpnVOGIJtTaGQCAjlpNPr7XJkikzbU3Mig0X05tAm5soa_hY0G3_UeWG6kML6W2iqLkK80tke9EaTjgvtcmgR2Zz-3uprSZlR43CAZVEsySKBPP34-hbiu44N2Mqq6rVNJp7U1aGeKkInAg-GSGy0sLssioLIJbM3EVnUb8KZaqEsCn-fDuHXoPsQ0ob2Lc-gSVMkigXdTKc9XwvFYh9aOJ6BX5L-y1NWRZvwr0nP3SomHQPXh8WXtwNPh-clxdXx4-v0jbFIXe4rs5GILNlBfwifEOrd2Oyr0X6BO_-c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLZKKyE4IMqjDZQySL1Gm2Re2RPqAtstj6qiVOotmle2e0nabXvgxn_gH_JLsGezL4R6zYyUSeyxv_HYnwEOFOdOlmWeIlbup6K2aAeNMGldcivy4JUPMdviRI3OxecLedHlP910aZVzmxgNtW8dxch7hVa6yFC78l7dpUWcfhy-v7pOqYMU3bR27TQewBZ6RU2btBweLeMtiMsRXMxK9Die9HtjdD6UnJDFHvNLpxS5-_8HOP_Nm1xxRMOn8KRDkOxwJvJt2AjNM3i8wiv4HK7PIivs3TSkMdktePYtUIkvSYSdUvx9SkSqzDSeDSYtFTdQDwnW1uxsQmG8P79-H8U0uYaNflJRFzsM05a-hSHKZYO2Cex7GEfOahLtCzgffvrxYZR2vRVSJ7S8TT36JaLaKRFRZd6UzilD8M0pNDgBQZ00Gn1_rkyRSRtqbmTQ6Moc2odcWcNfwmaD79oFlhspjK-ltsoi_CuN7VOfBOm44D6XJoGD-c-trmYUGhUePUgG1YoMEhjQj19MId7r-KCdjqtuG1XSaW0N2pwiZCLwYLjkRguLy7IIrmwCe3OxVd1mvKmWqpPAu8UwbiO6GzFNaO_iHLoQVbJIYGcm5cVKOB7x0PLxBPSa_NeWuj7STC4jVXe_lHggVK_uX9ZbeIi6XH09PvnyGh5RQ3sK8uRiDzZRXcIbhD23dj_q819wfAQr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-Related+Mechanical+Properties+and+Bioactivity+of+Silica%E2%80%93Gelatin+Hybrid+Aerogels+for+Bone+Regeneration&rft.jtitle=Gels&rft.au=Mar%C3%ADa+V.+Reyes-Peces&rft.au=Rafael+Fern%C3%A1ndez-Montesinos&rft.au=Mar%C3%ADa+del+Mar+Mesa-D%C3%ADaz&rft.au=Jos%C3%A9+Ignacio+Vilches-P%C3%A9rez&rft.date=2023-01-14&rft.pub=MDPI+AG&rft.eissn=2310-2861&rft.volume=9&rft.issue=1&rft.spage=67&rft_id=info:doi/10.3390%2Fgels9010067&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c77ba8802e04e3ea353a74bc30b064b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2310-2861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2310-2861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2310-2861&client=summon |