Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration

We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO supercrit...

Full description

Saved in:
Bibliographic Details
Published inGels Vol. 9; no. 1; p. 67
Main Authors Reyes-Peces, María V, Fernández-Montesinos, Rafael, Mesa-Díaz, María Del Mar, Vilches-Pérez, José Ignacio, Cárdenas-Leal, Jose Luis, de la Rosa-Fox, Nicolás, Salido, Mercedes, Piñero, Manuel
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm to 0.66 g cm . Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m g ), pore volume (1.98-0.89 cm g ), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.
AbstractList We report the synthesis of mesoporous silica–gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol–gel process followed by CO2 supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm−3 to 0.66 g cm−3. Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651–361 m2 g−1), pore volume (1.98–0.89 cm3 g−1), and pore sizes (10.8–8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB® osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.
We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO2 supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm-3 to 0.66 g cm-3. Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m2 g-1), pore volume (1.98-0.89 cm3 g-1), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB® osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO2 supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm-3 to 0.66 g cm-3. Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m2 g-1), pore volume (1.98-0.89 cm3 g-1), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB® osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.
We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm to 0.66 g cm . Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m g ), pore volume (1.98-0.89 cm g ), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.
We report the synthesis of mesoporous silica–gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol–gel process followed by CO 2 supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm −3 to 0.66 g cm −3 . Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651–361 m 2 g −1 ), pore volume (1.98–0.89 cm 3 g −1 ), and pore sizes (10.8–8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB ® osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.
Author de la Rosa-Fox, Nicolás
Vilches-Pérez, José Ignacio
Salido, Mercedes
Cárdenas-Leal, Jose Luis
Mesa-Díaz, María Del Mar
Fernández-Montesinos, Rafael
Reyes-Peces, María V
Piñero, Manuel
AuthorAffiliation 2 Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain
5 Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain
1 Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
6 Departamento de Física Aplicada, Escuela Superior de Ingeniería, Universidad de Cádiz, 11510 Puerto Real, Spain
4 Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
3 Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain
AuthorAffiliation_xml – name: 3 Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain
– name: 5 Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain
– name: 6 Departamento de Física Aplicada, Escuela Superior de Ingeniería, Universidad de Cádiz, 11510 Puerto Real, Spain
– name: 4 Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
– name: 1 Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
– name: 2 Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain
Author_xml – sequence: 1
  givenname: María V
  orcidid: 0000-0002-7528-8331
  surname: Reyes-Peces
  fullname: Reyes-Peces, María V
  organization: Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
– sequence: 2
  givenname: Rafael
  surname: Fernández-Montesinos
  fullname: Fernández-Montesinos, Rafael
  organization: Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain
– sequence: 3
  givenname: María Del Mar
  orcidid: 0000-0001-7019-3563
  surname: Mesa-Díaz
  fullname: Mesa-Díaz, María Del Mar
  organization: Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain
– sequence: 4
  givenname: José Ignacio
  surname: Vilches-Pérez
  fullname: Vilches-Pérez, José Ignacio
  organization: Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain
– sequence: 5
  givenname: Jose Luis
  surname: Cárdenas-Leal
  fullname: Cárdenas-Leal, Jose Luis
  organization: Departamento de Física Aplicada, Escuela Superior de Ingeniería, Universidad de Cádiz, 11510 Puerto Real, Spain
– sequence: 6
  givenname: Nicolás
  orcidid: 0000-0002-7066-5660
  surname: de la Rosa-Fox
  fullname: de la Rosa-Fox, Nicolás
  organization: Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain
– sequence: 7
  givenname: Mercedes
  orcidid: 0000-0001-9070-2257
  surname: Salido
  fullname: Salido, Mercedes
  organization: Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain
– sequence: 8
  givenname: Manuel
  orcidid: 0000-0001-8898-4371
  surname: Piñero
  fullname: Piñero, Manuel
  organization: Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36661833$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1rGzEQhkVJaVI3p96LoJdC2FYfqw9fCklIk0BKS9Kexax21pFZS452N-B_X7lOg9OThObRwzvDvCUHMUUk5D1nn6Wcsy8L7Ic544xp84ocCclZJazmB3v3Q3I8DEvGGDdKKs7fkEOpteZWyiOS7sY8-XHKWN1iDyO29Dv6e4jBQ09_5rTGPAYcKMSWnoUEfgyPYdzQ1NG70Bequtz-C5FebZocWnqKOW1T0S5lelbS0ltcYMRcoBTfkdcd9AMeP50z8vvbxa_zq-rmx-X1-elN5WujxqrlwjIuuRVSsBas9xoYU7XXRkucS6HAWC64BsFUg50EhUbY2kumuG5Azsj1ztsmWLp1DivIG5cguL8PKS8clMZ8j055YxqwlglkNUoEqSSYuimuhum6Ka6vO9d6albYeoxjhv6F9GUlhnu3SI9ubpU1ShfBpydBTg8TDqNbhcFj30PENA1OGF0a5VqJgn78D12mKccyqi1lBLOmzGVGTnaUz2kYMnbPYThz271we3tR6A_7-Z_Zf1sg_wDdbrTE
CitedBy_id crossref_primary_10_3390_gels9050383
crossref_primary_10_1007_s10971_024_06347_3
crossref_primary_10_3390_gels9090746
crossref_primary_10_3390_ma16124483
Cites_doi 10.1039/C6PY01425A
10.3390/biology10111189
10.1016/j.solidstatesciences.2005.04.003
10.1007/s10853-013-7690-1
10.1083/jcb.200703036
10.1016/j.ceramint.2022.06.180
10.1016/j.biomaterials.2013.12.023
10.1016/j.ejcb.2013.10.009
10.1016/S0022-3093(01)00442-2
10.3389/fbioe.2020.591084
10.22203/eCM.v020a27
10.1007/s10971-008-1874-1
10.1007/BF00401034
10.1016/j.ijpharm.2019.01.024
10.1038/s41598-019-52974-0
10.3390/ma14020396
10.3389/fbioe.2019.00027
10.1016/j.colsurfb.2017.01.019
10.1016/j.cis.2016.05.011
10.1007/s12633-010-9064-5
10.1016/S0079-6700(99)00016-7
10.1557/PROC-271-681
10.1007/s10971-017-4378-z
10.1016/j.ijheatmasstransfer.2015.04.046
10.1074/jbc.M600738200
10.1016/S0022-3093(01)00441-0
10.1016/S1369-7021(06)71741-2
10.1016/j.jnoncrysol.2017.07.016
10.1134/S0036024410060270
10.1021/acsanm.9b01903
10.20944/preprints202101.0594.v1
10.3390/pharmaceutics12050449
10.1007/s10971-013-3214-3
10.1016/j.biomaterials.2006.01.039
10.3390/polym12112723
10.1016/j.jnoncrysol.2004.09.017
10.1007/s10971-016-4203-0
10.1016/j.mex.2019.10.018
10.1371/journal.pone.0257495
10.1021/acsami.7b05842
10.1016/j.actbio.2020.01.016
10.1515/pac-2014-1117
10.1155/2012/313961
10.3390/polym12020266
10.1002/jbm.820240607
10.1021/acsabm.9b00680
10.3390/ma11112144
10.1016/j.ijpharm.2015.10.045
10.1016/j.jnoncrysol.2017.11.010
10.1081/PDT-65693
10.1016/j.carbpol.2015.01.022
10.1038/nature09198
10.1002/adfm.201000838
10.1007/s00018-017-2511-3
10.1016/S0142-9612(02)00226-0
10.3390/molecules24091815
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/gels9010067
DatabaseName PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2310-2861
ExternalDocumentID oai_doaj_org_article_5c77ba8802e04e3ea353a74bc30b064b
10_3390_gels9010067
36661833
Genre Journal Article
GrantInformation_xml – fundername: Junta de Andalucía FEDER / ITI
  grantid: 2014-2020 PI 013/017
– fundername: Junta de Andalucía FEDER
  grantid: UCA 18_106598
– fundername: CTS 253 PAIDI research groups (Spain)
– fundername: Andalucía FEDER/ITI 2014-2020
  grantid: PI 013/017
– fundername: Junta de Andalucía
  grantid: FEDER-UCA18_106598
– fundername: Junta de Andalucía TEP115
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
D1I
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KB.
KQ8
MODMG
M~E
NPM
OK1
PDBOC
PGMZT
PIMPY
PROAC
RPM
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3
IEDL.DBID RPM
ISSN 2310-2861
IngestDate Tue Oct 22 15:06:43 EDT 2024
Tue Sep 17 21:30:38 EDT 2024
Sat Oct 26 04:01:11 EDT 2024
Thu Oct 10 16:40:03 EDT 2024
Thu Sep 26 20:36:37 EDT 2024
Sat Nov 02 12:11:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords mineralization
bioactivity
bone tissue engineering
cytoskeleton
cell adhesion
percolation threshold
hybrid aerogel
osteoblasts
gelatin
GPTMS
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-d128013182320da8cc6a0054c6763e9325a781216a205bef3a5e7284c30516ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7066-5660
0000-0001-7019-3563
0000-0001-9070-2257
0000-0002-7528-8331
0000-0001-8898-4371
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858756/
PMID 36661833
PQID 2767208701
PQPubID 2055409
ParticipantIDs doaj_primary_oai_doaj_org_article_5c77ba8802e04e3ea353a74bc30b064b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9858756
proquest_miscellaneous_2768231652
proquest_journals_2767208701
crossref_primary_10_3390_gels9010067
pubmed_primary_36661833
PublicationCentury 2000
PublicationDate 20230114
PublicationDateYYYYMMDD 2023-01-14
PublicationDate_xml – month: 1
  year: 2023
  text: 20230114
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Gels
PublicationTitleAlternate Gels
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Magdalena (ref_44) 2012; 17
ref_50
Govindarajan (ref_14) 2017; 9
Ayers (ref_9) 2001; 285
Sachithanadam (ref_27) 2014; 49
ref_11
ref_10
Veres (ref_8) 2017; 473
Ciobanasu (ref_60) 2013; 92
Esquivias (ref_36) 2009; 50
Mackenzie (ref_35) 1996; 7
Natale (ref_53) 2014; 35
Maleki (ref_15) 2016; 236
Yun (ref_2) 2017; 83
Doadrio (ref_63) 2005; 7
Cohen (ref_51) 2006; 281
ref_61
Ren (ref_29) 2002; 23
Ramadan (ref_38) 2020; 3
ref_25
ref_24
Humphries (ref_52) 2007; 179
ref_23
Pulat (ref_43) 2012; 2012
Zonderland (ref_55) 2019; 6
Stavinskaya (ref_16) 2010; 84
ref_20
Lamers (ref_58) 2010; 20
Masaro (ref_42) 1999; 24
Salido (ref_56) 2007; 22
Mahesh (ref_19) 2015; 87
Ren (ref_28) 2001; 285
Balavigneswaran (ref_17) 2020; 3
Coyer (ref_48) 2010; 125
Grashoff (ref_49) 2011; 466
Webster (ref_62) 2000; 28
Raucci (ref_46) 2019; 7
Demilecamps (ref_13) 2015; 122
Kokubo (ref_66) 1990; 24
Retuert (ref_33) 2004; 347
Mahony (ref_6) 2010; 20
ref_32
Aldalur (ref_22) 2018; 481
Iv (ref_59) 2021; 8
Connell (ref_21) 2017; 8
Hu (ref_34) 1992; 271
Herman (ref_1) 2020; 3
ref_39
Nagy (ref_4) 2019; 558
Veres (ref_3) 2017; 152
Bays (ref_54) 2017; 74
Papp (ref_18) 2020; 105
Tengroth (ref_41) 2005; 10
Mahony (ref_7) 2014; 69
Delgado (ref_5) 2022; 48
Bittig (ref_47) 2014; 8
Pietras (ref_30) 2013; 57
ref_45
Braza (ref_37) 2017; 81
Rezwan (ref_65) 2006; 27
ref_40
Salido (ref_57) 2009; 24
Veres (ref_26) 2015; 496
Jones (ref_64) 2006; 9
Horvat (ref_12) 2019; 9
Thommes (ref_31) 2015; 87
References_xml – volume: 8
  start-page: 1095
  year: 2017
  ident: ref_21
  article-title: Functionalizing natural polymers with alkoxysilane coupling agents: Reacting 3-glycidoxypropyl trimethoxysilane with poly(γ-glutamic acid) and gelatin
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY01425A
  contributor:
    fullname: Connell
– ident: ref_50
  doi: 10.3390/biology10111189
– volume: 7
  start-page: 983
  year: 2005
  ident: ref_63
  article-title: Tissue regeneration: A new property of mesoporous materials
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2005.04.003
  contributor:
    fullname: Doadrio
– ident: ref_32
– volume: 49
  start-page: 163
  year: 2014
  ident: ref_27
  article-title: High strain recovery with improved mechanical properties of gelatin-silica aerogel composites post-binding treatment
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7690-1
  contributor:
    fullname: Sachithanadam
– volume: 179
  start-page: 1043
  year: 2007
  ident: ref_52
  article-title: Vinculin controls focal adhesion formation by direct interactions with talin and actin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200703036
  contributor:
    fullname: Humphries
– volume: 48
  start-page: 28659
  year: 2022
  ident: ref_5
  article-title: Tailorable low temperature silica-gelatin biomaterials for drug delivery
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2022.06.180
  contributor:
    fullname: Delgado
– volume: 35
  start-page: 2743
  year: 2014
  ident: ref_53
  article-title: Biomaterials Tuning the material-cytoskeleton crosstalk via nanocon fi nement of focal adhesions
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.12.023
  contributor:
    fullname: Natale
– volume: 92
  start-page: 339
  year: 2013
  ident: ref_60
  article-title: Le Integrating actin dynamics, mechanotransduction and integrin activation: The multiple functions of actin binding proteins in focal adhesions
  publication-title: Eur. J. Cell Biol.
  doi: 10.1016/j.ejcb.2013.10.009
  contributor:
    fullname: Ciobanasu
– volume: 285
  start-page: 123
  year: 2001
  ident: ref_9
  article-title: Synthesis and properties of chitosan-silica hybrid aerogels
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00442-2
  contributor:
    fullname: Ayers
– volume: 8
  start-page: 591084
  year: 2021
  ident: ref_59
  article-title: Hydroxyapatite particle density regulates osteoblastic differentiation through β -catenin translocation
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.591084
  contributor:
    fullname: Iv
– volume: 20
  start-page: 329
  year: 2010
  ident: ref_58
  article-title: The influence of nanoscale topographical cues on initial osteoblast morphology and migration
  publication-title: Eur. Cells Mater.
  doi: 10.22203/eCM.v020a27
  contributor:
    fullname: Lamers
– volume: 24
  start-page: 1275
  year: 2009
  ident: ref_57
  article-title: Mitochondrial bioenergetics and distribution in living human osteoblasts grown on implant surfaces
  publication-title: Histol Histopathol.
  contributor:
    fullname: Salido
– volume: 50
  start-page: 170
  year: 2009
  ident: ref_36
  article-title: Percolation of the organic phase in hybrid organic-inorganic aerogels
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-008-1874-1
  contributor:
    fullname: Esquivias
– volume: 125
  start-page: 5110
  year: 2010
  ident: ref_48
  article-title: Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension
  publication-title: J. Cell Sci.
  contributor:
    fullname: Coyer
– volume: 7
  start-page: 151
  year: 1996
  ident: ref_35
  article-title: Mechanical properties of ormosils
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/BF00401034
  contributor:
    fullname: Mackenzie
– volume: 558
  start-page: 396
  year: 2019
  ident: ref_4
  article-title: Controlled release of methotrexate from functionalized silica-gelatin aerogel microparticles applied against tumor cell growth
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.01.024
  contributor:
    fullname: Nagy
– volume: 22
  start-page: 1355
  year: 2007
  ident: ref_56
  article-title: Actin cytoskeletal organization in human osteoblasts grown on different dental titanium implant surfaces
  publication-title: Histol Histopathol.
  contributor:
    fullname: Salido
– volume: 9
  start-page: 16492
  year: 2019
  ident: ref_12
  article-title: Preparation and characterization of polysaccharide—Silica hybrid aerogels
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-52974-0
  contributor:
    fullname: Horvat
– ident: ref_39
  doi: 10.3390/ma14020396
– volume: 7
  start-page: 27
  year: 2019
  ident: ref_46
  article-title: Bioactivation routes of gelatin-based scaffolds to enhance at nanoscale level bone tissue regeneration
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00027
  contributor:
    fullname: Raucci
– volume: 152
  start-page: 229
  year: 2017
  ident: ref_3
  article-title: Mechanism of drug release from silica-gelatin aerogel—Relationship between matrix structure and release kinetics
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2017.01.019
  contributor:
    fullname: Veres
– volume: 236
  start-page: 1
  year: 2016
  ident: ref_15
  article-title: Synthesis and biomedical applications of aerogels: Possibilities and challenges
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2016.05.011
  contributor:
    fullname: Maleki
– volume: 3
  start-page: 63
  year: 2020
  ident: ref_38
  article-title: Synthesis and characterization of mesoporous hybrid silica-polyacrylamide aerogels
  publication-title: Silicon
  doi: 10.1007/s12633-010-9064-5
  contributor:
    fullname: Ramadan
– volume: 24
  start-page: 731
  year: 1999
  ident: ref_42
  article-title: Physical models of diffusion for polymer solutions, gels and solids
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(99)00016-7
  contributor:
    fullname: Masaro
– volume: 271
  start-page: 681
  year: 1992
  ident: ref_34
  article-title: Structure-related mechanical properties of ormosils by sol-gel process
  publication-title: Mater. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-271-681
  contributor:
    fullname: Hu
– volume: 83
  start-page: 197
  year: 2017
  ident: ref_2
  article-title: Preparation and properties of monolithic and hydrophobic gelatin–silica composite aerogels for oil absorption
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-017-4378-z
  contributor:
    fullname: Yun
– volume: 87
  start-page: 606
  year: 2015
  ident: ref_19
  article-title: Thermal conductivity variations with composition of gelatin-silica aerogel-sodium dodecyl sulfate with functionalized multi-walled carbon nanotube doping in their composites
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.04.046
  contributor:
    fullname: Mahesh
– ident: ref_45
– volume: 28
  start-page: 1803
  year: 2000
  ident: ref_62
  article-title: Enhanced osteoclast like-cell functions on nanophase ceramics
  publication-title: Ann. Biomed. Eng.
  contributor:
    fullname: Webster
– volume: 17
  start-page: 59
  year: 2012
  ident: ref_44
  article-title: Mechanism of water diffusion into noncrosslinked and ionically crosslinked chitosan membranes
  publication-title: Prog. Chem. Appl. Chitin Its Deriv.
  contributor:
    fullname: Magdalena
– volume: 281
  start-page: 16006
  year: 2006
  ident: ref_51
  article-title: A conformational switch in vinculin drives formation and dynamics of a talin-vinculin complex at focal adhesions
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M600738200
  contributor:
    fullname: Cohen
– volume: 285
  start-page: 116
  year: 2001
  ident: ref_28
  article-title: Sol-gel preparation and in vitro deposition of apatite on porous gelatin-siloxane hybrids
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00441-0
  contributor:
    fullname: Ren
– ident: ref_20
– volume: 9
  start-page: 34
  year: 2006
  ident: ref_64
  article-title: Observing cell response to biomaterials
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(06)71741-2
  contributor:
    fullname: Jones
– volume: 473
  start-page: 17
  year: 2017
  ident: ref_8
  article-title: Biocompatible silica-gelatin hybrid aerogels covalently labeled with fluorescein
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2017.07.016
  contributor:
    fullname: Veres
– volume: 84
  start-page: 1045
  year: 2010
  ident: ref_16
  article-title: The properties of silica—Gelatin composites
  publication-title: Russ. J. Phys. Chem. A
  doi: 10.1134/S0036024410060270
  contributor:
    fullname: Stavinskaya
– volume: 3
  start-page: 195
  year: 2020
  ident: ref_1
  article-title: Mesoporous silica-gelatin aerogels for the selective adsorption of aqueous Hg(II)
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01903
  contributor:
    fullname: Herman
– ident: ref_23
  doi: 10.20944/preprints202101.0594.v1
– ident: ref_25
  doi: 10.3390/pharmaceutics12050449
– volume: 69
  start-page: 288
  year: 2014
  ident: ref_7
  article-title: Silica—Gelatin hybrids for tissue regeneration: Inter-relationships between the process variables
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-013-3214-3
  contributor:
    fullname: Mahony
– volume: 27
  start-page: 3413
  year: 2006
  ident: ref_65
  article-title: Biodegradable and bioactive porous polymer / inorganic composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.039
  contributor:
    fullname: Rezwan
– ident: ref_10
  doi: 10.3390/polym12112723
– volume: 57
  start-page: 58
  year: 2013
  ident: ref_30
  article-title: New approach to preparation of gelatine / SiO2 hybrid systems by the sol-gel process
  publication-title: Ceramics-Silikáty
  contributor:
    fullname: Pietras
– volume: 347
  start-page: 273
  year: 2004
  ident: ref_33
  article-title: Highly porous silica networks derived from gelatin / siloxane hybrids prepared starting from sodium metasilicate
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2004.09.017
  contributor:
    fullname: Retuert
– volume: 81
  start-page: 600
  year: 2017
  ident: ref_37
  article-title: Absorption capacity, kinetics and mechanical behaviour in dry and wet states of hydrophobic DEDMS/TEOS-based silica aerogels
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-016-4203-0
  contributor:
    fullname: Braza
– volume: 6
  start-page: 2562
  year: 2019
  ident: ref_55
  article-title: A quantitative method to analyse F-actin distribution in cells
  publication-title: MethodsX
  doi: 10.1016/j.mex.2019.10.018
  contributor:
    fullname: Zonderland
– ident: ref_61
  doi: 10.1371/journal.pone.0257495
– volume: 9
  start-page: 16939
  year: 2017
  ident: ref_14
  article-title: Fabrication of hybrid collagen aerogels reinforced with wheat grass bioactives as instructive scaffolds for collagen turnover and angiogenesis for wound healing applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05842
  contributor:
    fullname: Govindarajan
– volume: 105
  start-page: 131
  year: 2020
  ident: ref_18
  article-title: Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels—Implications in drug delivery
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.01.016
  contributor:
    fullname: Papp
– volume: 87
  start-page: 1052
  year: 2015
  ident: ref_31
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2014-1117
  contributor:
    fullname: Thommes
– volume: 2012
  start-page: 313961
  year: 2012
  ident: ref_43
  article-title: 5-fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: Evaluation of controlled release kinetics
  publication-title: J. Nanomater.
  doi: 10.1155/2012/313961
  contributor:
    fullname: Pulat
– ident: ref_40
  doi: 10.3390/polym12020266
– volume: 24
  start-page: 721
  year: 1990
  ident: ref_66
  article-title: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.820240607
  contributor:
    fullname: Kokubo
– volume: 3
  start-page: 197
  year: 2020
  ident: ref_17
  article-title: Silica release from silane cross-linked gelatin based hybrid scaffold affects cell proliferation
  publication-title: ACS Appl. Bio. Mater.
  doi: 10.1021/acsabm.9b00680
  contributor:
    fullname: Balavigneswaran
– ident: ref_11
  doi: 10.3390/ma11112144
– volume: 496
  start-page: 360
  year: 2015
  ident: ref_26
  article-title: Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.10.045
  contributor:
    fullname: Veres
– volume: 481
  start-page: 368
  year: 2018
  ident: ref_22
  article-title: Design of nanostructured siloxane-gelatin coatings: Immobilization strategies and dissolution properties
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2017.11.010
  contributor:
    fullname: Aldalur
– volume: 8
  start-page: 106
  year: 2014
  ident: ref_47
  article-title: Membrane related dynamics and the formation of actin in cells growing on micro-topographies: A spatial computational model
  publication-title: BNC Syst. Biol.
  contributor:
    fullname: Bittig
– volume: 10
  start-page: 405
  year: 2005
  ident: ref_41
  article-title: Cross-linking of gelatin capsules with formaldehyde and other aldehydes: An FTIR spectroscopy study
  publication-title: Pharm. Dev. Technol.
  doi: 10.1081/PDT-65693
  contributor:
    fullname: Tengroth
– volume: 122
  start-page: 293
  year: 2015
  ident: ref_13
  article-title: Cellulose-silica aerogels
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.01.022
  contributor:
    fullname: Demilecamps
– volume: 466
  start-page: 263
  year: 2011
  ident: ref_49
  article-title: Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics
  publication-title: Nature
  doi: 10.1038/nature09198
  contributor:
    fullname: Grashoff
– volume: 20
  start-page: 3835
  year: 2010
  ident: ref_6
  article-title: Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000838
  contributor:
    fullname: Mahony
– volume: 74
  start-page: 2999
  year: 2017
  ident: ref_54
  article-title: Vinculin in cell-cell and cell-matrix adhesions
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-017-2511-3
  contributor:
    fullname: Bays
– volume: 23
  start-page: 4765
  year: 2002
  ident: ref_29
  article-title: Novel approach to fabricate porous gelatin—Siloxane hybrids for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00226-0
  contributor:
    fullname: Ren
– ident: ref_24
  doi: 10.3390/molecules24091815
SSID ssj0001753511
Score 2.2825835
Snippet We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane...
We report the synthesis of mesoporous silica–gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 67
SubjectTerms Aerogels
bioactivity
Biocompatibility
Biological activity
Biomedical materials
Body fluids
Bulk density
Cell adhesion
Cell adhesion & migration
Collagen
Coupling agents
Experiments
Fourier transforms
Gelatin
GPTMS
hybrid aerogel
Hydroxyapatite
In vitro methods and tests
Infrared analysis
Mechanical properties
Nucleation
Oil recovery
Percolation
percolation threshold
Pore size
Porous materials
Regeneration (physiology)
Silicon dioxide
Sol-gel processes
Swelling ratio
Thermodynamic properties
Thermogravimetric analysis
Tissue engineering
Toxicity
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9RADLVQT3BALdCSfqBB6jVqkvnKHruoZYUEQpRKvUWexCl7SWDbHnrrf-g_7C_BnmyXLELi0msSKRO_if0843kGOHRa17Ys85S58iQ1bWA_iAbTttTB5NS4hmK1xRc3OzefLuzFqNWX1IQN8sCD4Y5s7X1AnmUFZYY0obYavQm1zgKH0xC9bzYZJVNxdYVZOFOJ4UCe5rz-6JJDjZQiZLGj_J8QFJX6_0Uv_66SHIWd0014ueSL6ngY5xY8o-4VvBipCL6GX2dRA_ZmQWksbaNGfSY50Cv2V19ltX0hsqkKu0ZN570cZZCOEapv1dlcFu0e7u4_xqK4Ts1u5QiXOqZFL9-imNOqad-R-kaXUaFagHwD56cn3z_M0mUnhbQ23l6nDUchEdYpmT9lDZZ17VDIWu3YvRBTOIueI33usMhsoFajJc-Bi41scxdQb8NGx-96CypHa7BprQ8uMNkrMUykK4KttdFNbjGBw0fjVj8HwYyKEw3BoBphkMBUDL96RFSu4wXGvlpiX_0P-wT2H2Grlr_eVVV454uM3VCewPvVbf5pZCcEO-pv4jOy_elskcDOgPJqJJoTOvZzOgG_hv_aUNfvdPMfUZh7UlpO_9zuU3zbHjyXzvay2pObfdjgmUQHzH-uw7s41X8DkzAFhw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADLbocqGHqoVSQqEaJK4RSeaVPVUsgq4qFSEoErdoXln2ksACh974D_xDfknt2ewLVb1mRsoknrE_e-zPAIeKcyfLMk8RK_dTUVvUg0aYtC65FXnwyoeYbXGuhtfi54286QJuD11a5UwnRkXtW0cx8qNCK11kuLvy73f3KXWNotvVroXGO1gv0FMoerA-OD2_uFxEWRCNI6SYFuZx9O-PRmhyKCUhi53lF6YoMvb_C2a-zZZcMj9nH-FDhxvZ8VTQn2AtNJvwfolNcAvuryIX7NMkpDHFLXj2K1BhL8mBXVDUfUL0qcw0ng3GLZU0UOcI1tbsakzBu9fnlx8xOa5hwz9UysWOw6Slb2GIbdmgbQK7DKPIVE0C_QzXZ6e_T4Zp11EhdULLx9SjNSKCnRJxVOZN6ZwyBNqcQjUTEMpJo9Hi58oUmbSh5kYGjQbMoVbIlTV8G3oNvmsHWG6kML6W2iqLoK80tk_dEaTjgvtcmgQOZz-3upsSZ1TocJAMqiUZJDCgHz-fQmzX8UE7GVXd4amk09oa1DRFyETgwXDJjRYWl2URUtkE9mZiq7oj-FAtNkwCB_NhPDx0I2Ka0D7FOXQNqmSRwJeplOcr4ejYob7jCegV-a8sdXWkGd9Ggu5-KdENVLv_X9ZX2KDe9RTPycUe9HCPhH1EOI_2W7eN_wLCIf5c
  priority: 102
  providerName: ProQuest
Title Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/36661833
https://www.proquest.com/docview/2767208701
https://www.proquest.com/docview/2768231652
https://pubmed.ncbi.nlm.nih.gov/PMC9858756
https://doaj.org/article/5c77ba8802e04e3ea353a74bc30b064b
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5RVlrBYbVvsstWXolraBO_0iNFlGolUMVD4hbZjlMqQcIWOHDjP_AP95fsjJtULdrTXmNHcTzjmc_jmc8Ae4pzJ7MsiRErD2JRWrSDRpi4zLgViS9U4UO2xakaX4pfV_JqA2RbCxOS9p2d7Vc3t_vV7DrkVt7dul6bJ9abnBwOMokwW_U60EEFXdmih8AKAnBEEYtaPI5b-t4UvQxlIaBh3oK3HAE76jFfc0SBr_9fIPN1ruSK8xm9h3cNamQHi9F9gA1ffYTtFS7BT_D7PDDBPs59HBLcfMFOPJX1khTYhGLucyJPZaYq2HBWU0ED3RvB6pKdzyh09-f55TikxlVs_ESFXOzAz2v6LYbIlg3ryrMzPw081STOz3A5Oro4HMfNfQqxE1o-xAX6IqLXyRBF9QuTOacMQTan0Mh4BHLSaPT3iTJpX1pfciO9Rvfl0CYkyhr-BTYr_NYOsMRIYYpSaqssQr7M2AHdjSAdF7xIpIlgr53c_G5Bm5HjdoPEka-II4IhTfyyC3Fdhwf1fJo3Es-l09oatDOp7wvPveGSGy0sDssioLIR7LZiy5sFeJ-nWum0j8YoieDnshmXDp2HmMrXj6EPHYIqmUbwdSHl5UhaLYlAr8l_bajrLaitgZ670c5v__3md9iiS-0p0JOIXdhE9fE_EPo82C50stFxF94Mj04nZ90QQOgG9f8LiAcJnw
link.rule.ids 230,315,730,783,787,867,888,2109,12779,21402,27938,27939,33387,33388,33758,33759,43614,43819,53806,53808,74371,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADLaAHkoPVd9NS2EqcY1IMq_sqWKrLgsFVBWQuEXzynYvCSxw4MZ_6D_sL6k9m31VFdfMSJnEHvsbj_0ZYFdx7mRZ5ili5V4qaot20AiT1iW3Ig9e-RCzLU7V8EIcXcrLLuB206VVzmxiNNS-dRQj3yu00kWG2pV_ubpOqWsU3a52LTTW4Yng6GioUnxwsIixIBZHQDEty-N4ut8bocOhhIQs9pVfOKLI1_8_kPlvruSS8xm8gOcdamT7UzG_hLXQvIJnS1yCr-H6LDLB3k1CGhPcgmcngcp6SQrsB8XcJ0SeykzjWX_cUkED9Y1gbc3OxhS6-_Pw-yCmxjVseE-FXGw_TFr6FobIlvXbJrCfYRR5qkmcb-Bi8O386zDt-imkTmh5m3r0RUSvUyKKyrwpnVOGIJtTaGQCAjlpNPr7XJkikzbU3Mig0X05tAm5soa_hY0G3_UeWG6kML6W2iqLkK80tke9EaTjgvtcmgR2Zz-3uprSZlR43CAZVEsySKBPP34-hbiu44N2Mqq6rVNJp7U1aGeKkInAg-GSGy0sLssioLIJbM3EVnUb8KZaqEsCn-fDuHXoPsQ0ob2Lc-gSVMkigXdTKc9XwvFYh9aOJ6BX5L-y1NWRZvwr0nP3SomHQPXh8WXtwNPh-clxdXx4-v0jbFIXe4rs5GILNlBfwifEOrd2Oyr0X6BO_-c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLZKKyE4IMqjDZQySL1Gm2Re2RPqAtstj6qiVOotmle2e0nabXvgxn_gH_JLsGezL4R6zYyUSeyxv_HYnwEOFOdOlmWeIlbup6K2aAeNMGldcivy4JUPMdviRI3OxecLedHlP910aZVzmxgNtW8dxch7hVa6yFC78l7dpUWcfhy-v7pOqYMU3bR27TQewBZ6RU2btBweLeMtiMsRXMxK9Die9HtjdD6UnJDFHvNLpxS5-_8HOP_Nm1xxRMOn8KRDkOxwJvJt2AjNM3i8wiv4HK7PIivs3TSkMdktePYtUIkvSYSdUvx9SkSqzDSeDSYtFTdQDwnW1uxsQmG8P79-H8U0uYaNflJRFzsM05a-hSHKZYO2Cex7GEfOahLtCzgffvrxYZR2vRVSJ7S8TT36JaLaKRFRZd6UzilD8M0pNDgBQZ00Gn1_rkyRSRtqbmTQ6Moc2odcWcNfwmaD79oFlhspjK-ltsoi_CuN7VOfBOm44D6XJoGD-c-trmYUGhUePUgG1YoMEhjQj19MId7r-KCdjqtuG1XSaW0N2pwiZCLwYLjkRguLy7IIrmwCe3OxVd1mvKmWqpPAu8UwbiO6GzFNaO_iHLoQVbJIYGcm5cVKOB7x0PLxBPSa_NeWuj7STC4jVXe_lHggVK_uX9ZbeIi6XH09PvnyGh5RQ3sK8uRiDzZRXcIbhD23dj_q819wfAQr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-Related+Mechanical+Properties+and+Bioactivity+of+Silica%E2%80%93Gelatin+Hybrid+Aerogels+for+Bone+Regeneration&rft.jtitle=Gels&rft.au=Mar%C3%ADa+V.+Reyes-Peces&rft.au=Rafael+Fern%C3%A1ndez-Montesinos&rft.au=Mar%C3%ADa+del+Mar+Mesa-D%C3%ADaz&rft.au=Jos%C3%A9+Ignacio+Vilches-P%C3%A9rez&rft.date=2023-01-14&rft.pub=MDPI+AG&rft.eissn=2310-2861&rft.volume=9&rft.issue=1&rft.spage=67&rft_id=info:doi/10.3390%2Fgels9010067&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c77ba8802e04e3ea353a74bc30b064b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2310-2861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2310-2861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2310-2861&client=summon