Staging of progressive supranuclear palsy-Richardson syndrome using MRI brain charts for the human lifespan

Abstract Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are no...

Full description

Saved in:
Bibliographic Details
Published inBrain communications Vol. 6; no. 2; p. fcae055
Main Authors Planche, Vincent, Mansencal, Boris, Manjon, Jose V, Meissner, Wassilios G, Tourdias, Thomas, Coupé, Pierrick
Format Journal Article
LanguageEnglish
Published US Oxford University Press 2024
Oxford University Press on behalf of the Guarantors of Brain
Subjects
Online AccessGet full text
ISSN2632-1297
2632-1297
DOI10.1093/braincomms/fcae055

Cover

Loading…
Abstract Abstract Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy—Richardson syndrome. We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy—Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy—Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy—Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy—Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP. Planche et al. combined multiple MRI datasets to extrapolate lifetime volumetric models for brain structures in healthy aging and progressive supranuclear palsy—Richardson syndrome. They proposed a descriptive MRI staging scheme for progressive supranuclear palsy—Richardson syndrome, comprising six major consecutive stages of atrophy progression that closely align with the neuropathological staging of tauopathy progression. Graphical Abstract Graphical abstract
AbstractList Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy—Richardson syndrome. We combined multiple datasets ( n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy—Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy—Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy—Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy—Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP. Planche et al . combined multiple MRI datasets to extrapolate lifetime volumetric models for brain structures in healthy aging and progressive supranuclear palsy—Richardson syndrome. They proposed a descriptive MRI staging scheme for progressive supranuclear palsy—Richardson syndrome, comprising six major consecutive stages of atrophy progression that closely align with the neuropathological staging of tauopathy progression. Graphical abstract
Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy—Richardson syndrome. We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy—Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy—Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy—Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy—Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP.
Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy – Richardson syndrome (PSP-RS). We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of PSP-RS patients from the 4 Repeat Tauopathy Neuroimaging Initiative) to extrapolate lifetime volumetric models of healthy and PSP-RS brain structures. We then mapped in time and space the sequential divergence between healthy and PSP-RS charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe and (vi) occipital lobe. The three structures with most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in PSP-RS, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP.
Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy-Richardson syndrome. We combined multiple datasets ( = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and = 62 MRI of progressive supranuclear palsy-Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy-Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy-Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy-Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP.
Abstract Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy—Richardson syndrome. We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy—Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy—Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy—Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy—Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP. Planche et al. combined multiple MRI datasets to extrapolate lifetime volumetric models for brain structures in healthy aging and progressive supranuclear palsy—Richardson syndrome. They proposed a descriptive MRI staging scheme for progressive supranuclear palsy—Richardson syndrome, comprising six major consecutive stages of atrophy progression that closely align with the neuropathological staging of tauopathy progression. Graphical Abstract Graphical abstract
Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy-Richardson syndrome. We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy-Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy-Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy-Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy-Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP.Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy-Richardson syndrome. We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy-Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy-Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy-Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy-Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP.
Author Mansencal, Boris
Planche, Vincent
Coupé, Pierrick
Manjon, Jose V
Meissner, Wassilios G
Tourdias, Thomas
Author_xml – sequence: 1
  givenname: Vincent
  orcidid: 0000-0003-3713-227X
  surname: Planche
  fullname: Planche, Vincent
  email: vincent.planche@u-bordeaux.fr
– sequence: 2
  givenname: Boris
  orcidid: 0000-0002-9190-4819
  surname: Mansencal
  fullname: Mansencal, Boris
– sequence: 3
  givenname: Jose V
  surname: Manjon
  fullname: Manjon, Jose V
– sequence: 4
  givenname: Wassilios G
  surname: Meissner
  fullname: Meissner, Wassilios G
– sequence: 5
  givenname: Thomas
  orcidid: 0000-0002-7151-6325
  surname: Tourdias
  fullname: Tourdias, Thomas
– sequence: 6
  givenname: Pierrick
  surname: Coupé
  fullname: Coupé, Pierrick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38444913$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04474466$$DView record in HAL
BookMark eNqNkUtv1DAUhS1URB_0D7BAXsIi1K849gpVVaGVBiEVWFs3jjNjSOxgJyPNvyfpTKF0gVhdyz7nu8f3nqKjEIND6BUl7yjR_KJO4IONfZ8vWguOlOUzdMIkZwVlujp6dD5G5zl_J4SwUpRcqxfomCshhKb8BP34MsLahzWOLR5SXCeXs986nKchQZhs5yDhAbq8K-683UBqcgw470KTYu_wlBfvp7tbfJ8HL4ox4zYmPG4c3kw9BNz51uUBwkv0vJ1J7vxQz9C3D9dfr26K1eePt1eXq8KKqhyLhhJFLQGo6lrxllSllHKuWupaNbbWVAkA4LIBzfX8zcayVkomy9JVvGb8DL3fc4ep7l1jXRgTdGZIvoe0MxG8-fsl-I1Zx62ZB0vnwdCZ8HZP2Dzx3VyuzHJHhKiEkHK7aN8cuqX4c3J5NL3P1nUdBBenbJjmiilO1SJ9_TjYb_LDOmaB2gtsijkn1xrrRxh9XHL6bg64ZOTmz_LNYfmzlT2xPtD_aSr2pjgN_6P_BXLfyXI
CitedBy_id crossref_primary_10_1007_s00401_024_02816_9
crossref_primary_10_3389_fimmu_2024_1458713
crossref_primary_10_1016_j_compbiomed_2024_109518
Cites_doi 10.1162/imag_a_00010
10.1002/hbm.23743
10.1002/mrm.21521
10.3389/fnins.2012.00171
10.1038/s41467-018-05892-0
10.1002/mds.26987
10.1002/mds.27546
10.1038/s41380-022-01875-2
10.1126/scitranslmed.aau5732
10.1093/braincomms/fcac113
10.1212/01.WNL.0000068011.21396.F4
10.1002/alz.12231
10.1088/1361-6560/abb6be
10.1002/hbm.25850
10.1093/brain/awac428
10.1007/s00401-020-02158-2
10.1002/mds.25437
10.1007/s00401-021-02298-z
10.3389/fneur.2022.814768
10.2967/jnumed.123.265856
10.1002/alz.12975
10.1093/braincomms/fcac109
10.1212/WNL.0000000000003305
10.1093/braincomms/fcac098
10.1109/TMI.2010.2046908
10.1038/s41598-019-39809-8
10.1093/brain/awaa299
10.1038/s41467-022-28896-3
10.1001/jamaneurol.2020.2526
10.1093/braincomms/fcab190
10.1016/j.neuroimage.2010.06.046
10.1093/braincomms/fcad048
10.1016/j.neuroimage.2010.09.025
10.1016/j.neuroimage.2012.01.062
10.1038/s41586-022-04554-y
10.1093/brain/awm032
10.1148/radiol.12112650
10.1212/WNL.47.1.1
10.1002/mds.20877
10.1016/j.neuroimage.2020.117026
10.1093/braincomms/fcac108
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID TOX
AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOI 10.1093/braincomms/fcae055
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2632-1297
ExternalDocumentID PMC10914441
oai_HAL_hal_04474466v1
38444913
10_1093_braincomms_fcae055
10.1093/braincomms/fcae055
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: ANR-10-IDEX-03-02
– fundername: ;
– fundername: ;
  grantid: ANR-18-CE45-0013
– fundername: ;
  grantid: PID2020-118608RB-I00
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMNDL
EBS
EMOBN
GROUPED_DOAJ
KSI
M~E
OK1
RPM
TOX
AAYXX
CITATION
AFULF
NPM
ROX
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c475t-d1081c0aa7bb83f0756663f0969b8dcb9184aaa36da939263dc2f662655e73b23
IEDL.DBID TOX
ISSN 2632-1297
IngestDate Thu Aug 21 18:35:42 EDT 2025
Tue May 27 06:21:04 EDT 2025
Fri Jul 11 15:47:36 EDT 2025
Wed Feb 19 02:02:35 EST 2025
Thu Apr 24 22:53:36 EDT 2025
Tue Jul 01 03:04:02 EDT 2025
Mon Jun 30 08:34:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords brain charts
MRI
staging
progressive supranuclear palsy
Richardson syndrome
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-d1081c0aa7bb83f0756663f0969b8dcb9184aaa36da939263dc2f662655e73b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC10914441
ORCID 0000-0002-9190-4819
0000-0002-7151-6325
0000-0003-3713-227X
0000-0003-2709-3350
0000-0001-6640-927X
0000-0003-2172-7527
OpenAccessLink https://dx.doi.org/10.1093/braincomms/fcae055
PMID 38444913
PQID 2938283181
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10914441
hal_primary_oai_HAL_hal_04474466v1
proquest_miscellaneous_2938283181
pubmed_primary_38444913
crossref_citationtrail_10_1093_braincomms_fcae055
crossref_primary_10_1093_braincomms_fcae055
oup_primary_10_1093_braincomms_fcae055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: England
PublicationTitle Brain communications
PublicationTitleAlternate Brain Commun
PublicationYear 2024
Publisher Oxford University Press
Oxford University Press on behalf of the Guarantors of Brain
Publisher_xml – name: Oxford University Press
– name: Oxford University Press on behalf of the Guarantors of Brain
References Josephs (2024043010140028200_fcae055-B31) 2020; 143
Malarte (2024043010140028200_fcae055-B8) 2023; 28
Manjón (2024043010140028200_fcae055-B25) 2008; 59
Avants (2024043010140028200_fcae055-B24) 2011; 54
Höglinger (2024043010140028200_fcae055-B1) 2017; 32
Paviour (2024043010140028200_fcae055-B41) 2006; 21
Coupé (2024043010140028200_fcae055-B21) 2020; 219
Bethlehem (2024043010140028200_fcae055-B17) 2022; 604
Brendel (2024043010140028200_fcae055-B6) 2020; 77
Planche (2024043010140028200_fcae055-B42) 2021; 17
Blazhenets (2024043010140028200_fcae055-B9) 2023; 64
Franzmeier (2024043010140028200_fcae055-B2) 2022; 13
Kovacs (2024043010140028200_fcae055-B4) 2020; 140
Litvan (2024043010140028200_fcae055-B20) 1996; 47
Carlos (2024043010140028200_fcae055-B33) 2022; 4
Josephs (2024043010140028200_fcae055-B12) 2013; 28
Planche (2024043010140028200_fcae055-B19) 2023; 19
Tustison (2024043010140028200_fcae055-B23) 2010; 29
Scotton (2024043010140028200_fcae055-B13) 2022; 4
Young (2024043010140028200_fcae055-B36) 2018; 9
Dutt (2024043010140028200_fcae055-B11) 2016; 87
Mazère (2024043010140028200_fcae055-B34) 2012; 265
Manjón (2024043010140028200_fcae055-B22) 2010; 53
La Joie (2024043010140028200_fcae055-B32) 2020; 12
Coupé (2024043010140028200_fcae055-B39) 2022; 43
Franzmeier (2024043010140028200_fcae055-B14) 2022; 4
Wijeratne (2024043010140028200_fcae055-B15) 2023; 1
Saito (2024043010140028200_fcae055-B37) 2022; 13
Fonteijn (2024043010140028200_fcae055-B35) 2012; 60
Manjón (2024043010140028200_fcae055-B26)
Tezuka (2024043010140028200_fcae055-B7) 2021; 3
Klein (2024043010140028200_fcae055-B29) 2012; 6
Briggs (2024043010140028200_fcae055-B5) 2021; 141
Planche (2024043010140028200_fcae055-B18) 2022; 4
Darricau (2024043010140028200_fcae055-B3) 2023; 146
Whitwell (2024043010140028200_fcae055-B10) 2019; 34
Scotton (2024043010140028200_fcae055-B38) 2023; 5
Coupé (2024043010140028200_fcae055-B16) 2017; 38
Coupé (2024043010140028200_fcae055-B28) 2019; 9
Golbe (2024043010140028200_fcae055-B30) 2007; 130
Denis de Senneville (2024043010140028200_fcae055-B27) 2020; 65
Tsuboi (2024043010140028200_fcae055-B40) 2003; 60
References_xml – volume: 1
  start-page: 1
  year: 2023
  ident: 2024043010140028200_fcae055-B15
  article-title: The temporal event-based model: Learning event timelines in progressive diseases
  publication-title: Imaging Neurosci (Camb)
  doi: 10.1162/imag_a_00010
– volume: 38
  start-page: 5501
  issue: 11
  year: 2017
  ident: 2024043010140028200_fcae055-B16
  article-title: Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23743
– volume: 59
  start-page: 866
  issue: 4
  year: 2008
  ident: 2024043010140028200_fcae055-B25
  article-title: Robust MRI brain tissue parameter estimation by multistage outlier rejection
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21521
– volume: 6
  start-page: 171
  year: 2012
  ident: 2024043010140028200_fcae055-B29
  article-title: 101 labeled brain images and a consistent human cortical labeling protocol
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00171
– volume: 9
  start-page: 4273
  issue: 1
  year: 2018
  ident: 2024043010140028200_fcae055-B36
  article-title: Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05892-0
– volume: 32
  start-page: 853
  issue: 6
  year: 2017
  ident: 2024043010140028200_fcae055-B1
  article-title: Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria
  publication-title: Mov Disord.
  doi: 10.1002/mds.26987
– volume: 34
  start-page: 105
  issue: 1
  year: 2019
  ident: 2024043010140028200_fcae055-B10
  article-title: MRI outperforms [18F]AV-1451 PET as a longitudinal biomarker in progressive supranuclear palsy
  publication-title: Mov Disord
  doi: 10.1002/mds.27546
– volume: 28
  start-page: 1272
  issue: 3
  year: 2023
  ident: 2024043010140028200_fcae055-B8
  article-title: Discriminative binding of tau PET tracers PI2620, MK6240 and RO948 in Alzheimer’s disease, corticobasal degeneration and progressive supranuclear palsy brains
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-022-01875-2
– volume: 12
  start-page: eaau5732
  issue: 524
  year: 2020
  ident: 2024043010140028200_fcae055-B32
  article-title: Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aau5732
– volume: 4
  start-page: fcac113
  issue: 3
  year: 2022
  ident: 2024043010140028200_fcae055-B14
  article-title: Inferring the sequence of brain volume changes in progressive supranuclear palsy using MRI
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcac113
– volume: 60
  start-page: 1766
  issue: 11
  year: 2003
  ident: 2024043010140028200_fcae055-B40
  article-title: Atrophy of superior cerebellar peduncle in progressive supranuclear palsy
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000068011.21396.F4
– volume: 17
  start-page: 641
  issue: 4
  year: 2021
  ident: 2024043010140028200_fcae055-B42
  article-title: Clinical relevance of brain atrophy subtypes categorization in memory clinics
  publication-title: Alzheimers Dement
  doi: 10.1002/alz.12231
– volume: 65
  start-page: 225022
  issue: 22
  year: 2020
  ident: 2024043010140028200_fcae055-B27
  article-title: RegQCNET: Deep quality control for image-to-template brain MRI affine registration
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/abb6be
– volume: 43
  start-page: 3270
  issue: 10
  year: 2022
  ident: 2024043010140028200_fcae055-B39
  article-title: Hippocampal-amygdalo-ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25850
– volume: 146
  start-page: 2524
  issue: 6
  year: 2023
  ident: 2024043010140028200_fcae055-B3
  article-title: Tau seeds from patients induce progressive supranuclear palsy pathology and symptoms in primates
  publication-title: Brain
  doi: 10.1093/brain/awac428
– volume: 140
  start-page: 99
  issue: 2
  year: 2020
  ident: 2024043010140028200_fcae055-B4
  article-title: Distribution patterns of tau pathology in progressive supranuclear palsy
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-020-02158-2
– volume: 28
  start-page: 1117
  issue: 8
  year: 2013
  ident: 2024043010140028200_fcae055-B12
  article-title: Modeling trajectories of regional volume loss in progressive supranuclear palsy
  publication-title: Mov Disord
  doi: 10.1002/mds.25437
– volume: 141
  start-page: 787
  issue: 5
  year: 2021
  ident: 2024043010140028200_fcae055-B5
  article-title: Validation of the new pathology staging system for progressive supranuclear palsy
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-021-02298-z
– volume: 13
  start-page: 814768
  year: 2022
  ident: 2024043010140028200_fcae055-B37
  article-title: Temporal progression patterns of brain atrophy in corticobasal syndrome and progressive supranuclear palsy revealed by subtype and stage inference (SuStaIn)
  publication-title: Front Neurol
  doi: 10.3389/fneur.2022.814768
– volume: 64
  start-page: 1980
  issue: 12
  year: 2023
  ident: 2024043010140028200_fcae055-B9
  article-title: [18f]PI-2620 binding patterns in patients with suspected Alzheimer disease and frontotemporal lobar degeneration
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.123.265856
– volume: 19
  start-page: 3283
  year: 2023
  ident: 2024043010140028200_fcae055-B19
  article-title: Anatomical MRI staging of frontotemporal dementia variants
  publication-title: Alzheimers Dement
  doi: 10.1002/alz.12975
– volume: 4
  start-page: fcac109
  issue: 3
  year: 2022
  ident: 2024043010140028200_fcae055-B18
  article-title: Structural progression of Alzheimer’s disease over decades: The MRI staging scheme
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcac109
– volume: 87
  start-page: 2016
  issue: 19
  year: 2016
  ident: 2024043010140028200_fcae055-B11
  article-title: Progression of brain atrophy in PSP and CBS over 6 months and 1 year
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003305
– volume: 4
  start-page: fcac098
  issue: 3
  year: 2022
  ident: 2024043010140028200_fcae055-B13
  article-title: A data-driven model of brain volume changes in progressive supranuclear palsy
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcac098
– ident: 2024043010140028200_fcae055-B26
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 2024043010140028200_fcae055-B23
  article-title: N4ITK: Improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 9
  start-page: 3998
  issue: 1
  year: 2019
  ident: 2024043010140028200_fcae055-B28
  article-title: Lifespan changes of the human brain in Alzheimer’s disease
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-39809-8
– volume: 143
  start-page: 3463
  issue: 11
  year: 2020
  ident: 2024043010140028200_fcae055-B31
  article-title: Protein contributions to brain atrophy acceleration in Alzheimer’s disease and primary age-related tauopathy
  publication-title: Brain
  doi: 10.1093/brain/awaa299
– volume: 13
  start-page: 1362
  issue: 1
  year: 2022
  ident: 2024043010140028200_fcae055-B2
  article-title: Tau deposition patterns are associated with functional connectivity in primary tauopathies
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28896-3
– volume: 77
  start-page: 1408
  issue: 11
  year: 2020
  ident: 2024043010140028200_fcae055-B6
  article-title: Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2020.2526
– volume: 3
  start-page: fcab190
  issue: 4
  year: 2021
  ident: 2024043010140028200_fcae055-B7
  article-title: Evaluation of [18F]PI-2620, a second-generation selective tau tracer, for assessing four-repeat tauopathies
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcab190
– volume: 53
  start-page: 480
  issue: 2
  year: 2010
  ident: 2024043010140028200_fcae055-B22
  article-title: Improved estimates of partial volume coefficients from noisy brain MRI using spatial context
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.046
– volume: 5
  start-page: fcad048
  issue: 2
  year: 2023
  ident: 2024043010140028200_fcae055-B38
  article-title: Uncovering spatiotemporal patterns of atrophy in progressive supranuclear palsy using unsupervised machine learning
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcad048
– volume: 54
  start-page: 2033
  issue: 3
  year: 2011
  ident: 2024043010140028200_fcae055-B24
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 60
  start-page: 1880
  issue: 3
  year: 2012
  ident: 2024043010140028200_fcae055-B35
  article-title: An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.062
– volume: 604
  start-page: 525
  issue: 7906
  year: 2022
  ident: 2024043010140028200_fcae055-B17
  article-title: Brain charts for the human lifespan
  publication-title: Nature
  doi: 10.1038/s41586-022-04554-y
– volume: 130
  start-page: 1552
  issue: Pt 6
  year: 2007
  ident: 2024043010140028200_fcae055-B30
  article-title: A clinical rating scale for progressive supranuclear palsy
  publication-title: Brain
  doi: 10.1093/brain/awm032
– volume: 265
  start-page: 537
  issue: 2
  year: 2012
  ident: 2024043010140028200_fcae055-B34
  article-title: Progressive supranuclear palsy: In vivo SPECT imaging of presynaptic vesicular acetylcholine transporter with [123I]-iodobenzovesamicol
  publication-title: Radiology
  doi: 10.1148/radiol.12112650
– volume: 47
  start-page: 1
  issue: 1
  year: 1996
  ident: 2024043010140028200_fcae055-B20
  article-title: Clinical research criteria for the diagnosis of progressive supranuclear palsy (steele-richardson-olszewski syndrome): Report of the NINDS-SPSP international workshop
  publication-title: Neurology
  doi: 10.1212/WNL.47.1.1
– volume: 21
  start-page: 989
  issue: 7
  year: 2006
  ident: 2024043010140028200_fcae055-B41
  article-title: Regional brain volumes distinguish PSP, MSA-P, and PD: MRI-based clinico-radiological correlations
  publication-title: Mov Disord
  doi: 10.1002/mds.20877
– volume: 219
  start-page: 117026
  year: 2020
  ident: 2024043010140028200_fcae055-B21
  article-title: AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117026
– volume: 4
  start-page: fcac108
  issue: 3
  year: 2022
  ident: 2024043010140028200_fcae055-B33
  article-title: Histologic lesion type correlates of magnetic resonance imaging biomarkers in four-repeat tauopathies
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcac108
SSID ssj0002545398
Score 2.2769747
Snippet Abstract Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological...
Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions....
SourceID pubmedcentral
hal
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage fcae055
SubjectTerms Bioengineering
Imaging
Life Sciences
Neurons and Cognition
Original
Title Staging of progressive supranuclear palsy-Richardson syndrome using MRI brain charts for the human lifespan
URI https://www.ncbi.nlm.nih.gov/pubmed/38444913
https://www.proquest.com/docview/2938283181
https://hal.science/hal-04474466
https://pubmed.ncbi.nlm.nih.gov/PMC10914441
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66B_FFvDsvI4r4IsV2SdrkcYhjihcQB3srp22iQ-2G3Qb-e0_arloZ4lOhTUKak-R8507IaRIhhjVSOYGKJAooRjgQJK4D4MrAcONKnXtb3Pu9Pr8ZiEEZrJ4tMOErdhHZWgm4_O_ZhYlBu8KGlCMXtrv66WFQaVRQ1BFMyTIyZnHPGvdZfrG-j7W4th_w8reX5A-2010nayVepJ2CwBtkSaebZOWutIhvkVdEi7bOEB0ZmvtaWbfWmabZdIxcyCYrhg86xj326TxWIVZ0nqeAWrf3Z3r3eE3zv6C2xSSjiGQpIkOaV_Cjb0Oj8eJJt0m_e_V02XPKAgpOzAMxcRIPGX7sAgRRJJlBdIDCCj6Vj4RJ4kiheAcAzE9AIU7yWRK3jY8ijhA6YFGb7ZBGOkr1HqFtwKa-ksBRAIlFAh7Y3HNaG-6CEbxJvPnChnGZXdwWuXgLCys3C7-JEZbEaJLzqs-4yK3xZ-sTpFfV0KbF7nVuQ_vO5TywdumZ1yRnSM5_jXY8p3iIB8paSSDVo2kWIv5BKRSvOhxst9gB1XhMcs6Vx5pE1vZGbVb1L-nwJU_abROwYmdv_78zPCCrbQRQhbrnkDQmH1N9hABoErVyxUEr10y18jPwBdZCDQc
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Staging+of+progressive+supranuclear+palsy-Richardson+syndrome+using+MRI+brain+charts+for+the+human+lifespan&rft.jtitle=Brain+communications&rft.au=Planche%2C+Vincent&rft.au=Mansencal%2C+Boris&rft.au=Manjon%2C+Jose+V&rft.au=Meissner%2C+Wassilios&rft.date=2024&rft.pub=Oxford+University+Press+on+behalf+of+the+Guarantors+of+Brain&rft.issn=2632-1297&rft.eissn=2632-1297&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1093%2Fbraincomms%2Ffcae055&rft_id=info%3Apmid%2F38444913&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04474466v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-1297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-1297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-1297&client=summon