Cytokine Signaling and Matrix Remodeling Pathways Associated with Cardiac Sarcoidosis Disease Activity Defined Using FDG PET Imaging
While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart failure therapies and non-specific anti-inflammatory regimens. The overall goal of this study was to perform high-sensitivity plasma profiling of...
Saved in:
Published in | International Heart Journal Vol. 62; no. 5; pp. 1096 - 1105 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
International Heart Journal Association
29.09.2021
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart failure therapies and non-specific anti-inflammatory regimens. The overall goal of this study was to perform high-sensitivity plasma profiling of specific inflammatory pathways in patients with sarcoidosis and with CS.Specific inflammatory/proteolytic cascades were upregulated in sarcoidosis patients, and certain profiles emerged for CS patients.Plasma samples were collected from patients with biopsy-confirmed sarcoidosis undergoing F-18 fluorodeoxyglucose positron emission tomography (n = 47) and compared to those of referent control subjects (n = 6). Using a high-sensitivity, automated multiplex array, cytokines, soluble cytokine receptor profiles (an index of cytokine activation), as well as matrix metalloproteinase (MMP), and endogenous MMP inhibitors (TIMPs) were examined.The plasma tumor necrosis factor (TNF) and soluble TNF receptors sCD30 and sTNFRI were increased using sarcoidosis, and sTNFRII increased in CS patients (n = 18). The soluble interleukin sIL-2R and vascular endothelial growth factor receptors (sVEGFR2 and sVEGFR3) increased to the greatest degree in CS patients. When computed as a function of referent control values, the majority of soluble cytokine receptors increased in both sarcoidosis and CS groups. Plasma MMP-9 levels increased in sarcoidosis but not in the CS subset. Plasma TIMP levels declined in both groups.The findings from this study were the identification of increased activation of a cluster of soluble cytokine receptors, which augment not only inflammatory cell maturation but also transmigration in patients with sarcoidosis and patients with cardiac involvement. |
---|---|
AbstractList | While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart failure therapies and non-specific anti-inflammatory regimens. The overall goal of this study was to perform high-sensitivity plasma profiling of specific inflammatory pathways in patients with sarcoidosis and with CS. Specific inflammatory/proteolytic cascades were upregulated in sarcoidosis patients, and certain profiles emerged for CS patients. Plasma samples were collected from patients with biopsy-confirmed sarcoidosis undergoing F-18 fluorodeoxyglucose positron emission tomography (n = 47) and compared to those of referent control subjects (n = 6). Using a high-sensitivity, automated multiplex array, cytokines, soluble cytokine receptor profiles (an index of cytokine activation), as well as matrix metalloproteinase (MMP), and endogenous MMP inhibitors (TIMPs) were examined. The plasma tumor necrosis factor (TNF) and soluble TNF receptors sCD30 and sTNFRI were increased using sarcoidosis, and sTNFRII increased in CS patients (n = 18). The soluble interleukin sIL-2R and vascular endothelial growth factor receptors (sVEGFR2 and sVEGFR3) increased to the greatest degree in CS patients. When computed as a function of referent control values, the majority of soluble cytokine receptors increased in both sarcoidosis and CS groups. Plasma MMP-9 levels increased in sarcoidosis but not in the CS subset. Plasma TIMP levels declined in both groups. The findings from this study were the identification of increased activation of a cluster of soluble cytokine receptors, which augment not only inflammatory cell maturation but also transmigration in patients with sarcoidosis and patients with cardiac involvement. |
ArticleNumber | 21-164 |
Author | Young, Bryan D. Oatmen, Kelsie E. Herzog, Erica Miller, Edward J. Spinale, Francis G. Shahab, Zartashia Moreland, Hannah Freeburg, Lisa A. |
Author_xml | – sequence: 1 fullname: Young, Bryan D. organization: Yale University School of Medicine – sequence: 2 fullname: Moreland, Hannah organization: Department of Cell Biology and Anatomy, University of South Carolina School of Medicine – sequence: 3 fullname: Oatmen, Kelsie E. organization: Department of Cell Biology and Anatomy, University of South Carolina School of Medicine – sequence: 4 fullname: Freeburg, Lisa A. organization: Department of Cell Biology and Anatomy, University of South Carolina School of Medicine – sequence: 5 fullname: Shahab, Zartashia organization: Yale University School of Medicine – sequence: 6 fullname: Herzog, Erica organization: Section of Pulmonary, Sleep, and Critical Care Medicine, Yale School of Medicine – sequence: 7 fullname: Miller, Edward J. organization: Yale University School of Medicine – sequence: 8 fullname: Spinale, Francis G. organization: Department of Cell Biology and Anatomy, University of South Carolina School of Medicine |
BookMark | eNptkMtqWzEQhkVJoEmaTZ9A0F3hpLofa1dj5wYpDbmsxRxJtse1j1JJaep9HrzHcciiBAbNaOb7R-g_JHt96iMhnzk74Vqab7hYngjecKM-kAMulW2ksHbvtRbS6I_ksJQlY4pr1h6Q58mmpl_YR3qL8x5W2M8p9IH-gJrxL72J6xTiS_ca6uIJNoWOS0keocZAn7Au6ARyQPD0FrJPGFLBQqdYIpRIx77iH6wbOo2z4ZFA78t219n0nF6f3tHLNcyH-yeyP4NVicev-Yjcn53eTS6aq5_nl5PxVeNVq2sTWGeNBS06CD5GJjToEFtojTS-62wnZDsKYqSsHanAlYlSet9K7plVShp5RL7s9j7k9PsxluqW6TEPvy5O6HakBRtioNiO8jmVkuPMeaxQMfU1A64cZ27rtRu8doK7wetB8vU_yUPGNeTN-_D3HbwsFebxDYVc0a_iC2qE09tjJ3kb-QVkF3v5D1MbmeY |
CitedBy_id | crossref_primary_10_1016_j_amjcard_2023_07_139 crossref_primary_10_1053_j_semnuclmed_2022_08_004 crossref_primary_10_1097_HPC_0000000000000364 |
Cites_doi | 10.1016/j.hrthm.2018.11.026 10.1016/j.amjcard.2018.10.021 10.1046/j.1365-2249.1996.13702.x 10.1007/s12350-016-0490-7 10.2967/jnumed.117.196287 10.1164/rccm.200803-490OC 10.1016/j.cytogfr.2006.07.003 10.1016/j.amjcard.2015.08.025 10.1016/j.jjcc.2018.06.004 10.1161/CIRCIMAGING.110.961854 10.1016/j.ijcard.2016.03.003 10.1111/jdv.13246 10.1182/blood-2004-08-3178 10.1165/rcmb.2016-0162OC 10.12659/MSM.881987 10.1136/thx.2005.051979 10.1161/01.CIR.98.17.1699 10.1159/000095518 10.1161/CIRCIMAGING.117.006764 10.1016/j.jacc.2013.09.019 10.1007/s00259-007-0478-2 10.1111/1346-8138.13792 10.1074/jbc.M110.158196 10.1161/CIRCRESAHA.112.266882 10.1055/s-0034-1376889 10.1038/nri3823 10.2967/jnumed.111.092379 10.1001/jama.2011.10 10.1165/ajrcmb.10.5.8179912 10.1016/j.amjcard.2015.06.021 10.1016/j.jacc.2016.03.605 10.1016/S0002-9149(01)01978-6 10.1007/s12350-017-1043-4 10.1016/j.jcmg.2019.01.011 10.1186/s12948-015-0022-z 10.1007/s12350-014-9901-9 10.1046/j.1365-2796.2000.00685.x 10.1378/chest.124.1.186 10.1161/CIRCULATIONAHA.105.583021 10.1536/ihj.17-695 10.1007/s12350-016-0682-1 10.1053/hupa.2002.129423 10.1016/j.jacc.2013.09.022 10.1536/ihj.53.287 10.1007/s12350-013-9828-6 10.1165/rcmb.2005-0236OC |
ContentType | Journal Article |
Copyright | 2021 by the International Heart Journal Association Copyright Japan Science and Technology Agency 2021 |
Copyright_xml | – notice: 2021 by the International Heart Journal Association – notice: Copyright Japan Science and Technology Agency 2021 |
DBID | AAYXX CITATION 7QP K9. |
DOI | 10.1536/ihj.21-164 |
DatabaseName | CrossRef Calcium & Calcified Tissue Abstracts ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1349-3299 |
EndPage | 1105 |
ExternalDocumentID | 10_1536_ihj_21_164 article_ihj_62_5_62_21_164_article_char_en |
GroupedDBID | --- .55 29J 2WC 53G 5GY ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 OK1 RJT RZJ SDH TR2 X7M AAFWJ AAYXX CITATION 7QP K9. |
ID | FETCH-LOGICAL-c475t-d0b969a52badcee025a5de7a7636cbb9b2378d2849984d146e33cc731c0944363 |
ISSN | 1349-2365 |
IngestDate | Mon Jun 30 08:16:17 EDT 2025 Tue Jul 01 00:56:18 EDT 2025 Thu Apr 24 22:52:09 EDT 2025 Wed Apr 05 06:58:40 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c475t-d0b969a52badcee025a5de7a7636cbb9b2378d2849984d146e33cc731c0944363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ihj/62/5/62_21-164/_article/-char/en |
PQID | 2578520520 |
PQPubID | 2048496 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2578520520 crossref_citationtrail_10_1536_ihj_21_164 crossref_primary_10_1536_ihj_21_164 jstage_primary_article_ihj_62_5_62_21_164_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021/09/29 |
PublicationDateYYYYMMDD | 2021-09-29 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021/09/29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | International Heart Journal |
PublicationTitleAlternate | Int. Heart J. |
PublicationYear | 2021 |
Publisher | International Heart Journal Association Japan Science and Technology Agency |
Publisher_xml | – name: International Heart Journal Association – name: Japan Science and Technology Agency |
References | 25. Ishiguchi H, Kobayashi S, Myoren T, et al. Urinary 8-Hydroxy-2'- deoxyguanosine as a myocardial oxidative stress marker is associated with ventricular tachycardia in patients with active cardiac sarcoidosis. Circ Cardiovasc Imaging 2017; 10. 4. Yazaki Y, Isobe M, Hiroe M, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol 2001; 88: 1006-10. 28. Amber KT, Bloom R, Mrowietz U, Hertl M. TNF-α: a treatment target or cause of sarcoidosis? J Eur Acad Dermatol Venereol 2015; 29: 2104-11. 33. Hong KH, Ryu J, Han KH. Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood 2005; 105: 1405-7. 1. Birnie DH, Nery PB, Ha AC, Beanlands RSB. Cardiac sarcoidosis. J Am Coll Cardiol 2016; 68: 411-21. 11. Facco M, Cabrelle A, Calabrese F, et al. TL1A/DR3 axis involvement in the inflammatory cytokine network during pulmonary sarcoidosis. Clin Mol Allergy 2015; 13: 16. 23. Date T, Shinozaki T, Yamakawa M, et al. Elevated plasma brain natriuretic peptide level in cardiac sarcoidosis patients with preserved ejection fraction. Cardiology 2007; 107: 277-80. 2. Iannuzzi MC, Fontana JR. Sarcoidosis: clinical presentation, immunopathogenesis, and therapeutics. JAMA 2011; 305: 391-9. 15. Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol 2017; 24: 413-24. 19. Simonen P, Lehtonen J, Kandolin R, et al. F-18-fluorodeoxyglucose positron emission tomography-guided sampling of mediastinal lymph nodes in the diagnosis of cardiac sarcoidosis. Am J Cardiol 2015; 116: 1581-5. 36. Grutters JC, Fellrath JM, Mulder L, Janssen R, Van Den Bosch JMM, Van Velzen-Blad H. Serum soluble interleukin-2 receptor measurement in patients with sarcoidosis: a clinical evaluation. Chest 2003; 124: 186-95. 40. Sahul ZH, Mukherjee R, Song J, et al. Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: relationship to myocardial dysfunction. Circ Cardiovasc Imaging 2011; 4: 381-91. 17. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014; 63: 329-36. 9. Elkington PTG, Friedland JS. Matrix metalloproteinases in destructive pulmonary pathology. Thorax 2006; 61: 259-66. 27. Bost TW, Riches DW, Schumacher B, et al. Alveolar macrophages from patients with beryllium disease and sarcoidosis express increased levels of mRNA for tumor necrosis factor-alpha and interleukin-6 but not interleukin-1 beta. Am J Respir Cell Mol Biol 1994; 10: 506-13. 18. Osborne MT, Hulten EA, Singh A, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 166-74. 10. González AA, Segura AM, Horiba K, et al. Matrix metalloproteinases and their tissue inhibitors in the lesions of cardiac and pulmonary sarcoidosis: an immunohistochemical study. Hum Pathol 2002; 33: 1158-64. 41. Spinale FG, Mukherjee R, Zavadzkas JA, et al. Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction. J Biol Chem 2010; 285: 30316-27. 16. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, DaSilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007; 34: 1765-74. 14. Ahmadian A, Brogan A, Berman J, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 925-39. 38. Spinale FG, Janicki JS, Zile MR. Membrane-associated matrix proteolysis and heart failure. Circ Res 2013; 112: 195-208. 46. Brilha S, Sathyamoorthy T, Stuttaford LH, et al. Early secretory antigenic target-6 drives matrix metalloproteinase-10 gene expression and secretion in tuberculosis. Am J Respir Cell Mol Biol 2017; 56: 223-32. 37. Mann DL, Spinale FG. Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds. Circulation 1998; 98: 1699-702. 22. Baba Y, Kubo T, Kitaoka H, et al. Usefulness of high-sensitive cardiac troponin T for evaluating the activity of cardiac sarcoidosis. Int Heart J 2012; 53: 287-92. 30. Ziegenhagen MW, Fitschen J, Martinet N, Schlaak M, Müller-Quernheim J. Serum level of soluble tumour necrosis factor receptor II (75 kDa) indicates inflammatory activity of sarcoidosis. J Intern Med 2000; 248: 33-41. 43. Piotrowski WJ, Górski P, Pietras T, Fendler W, Szemraj J. The selected genetic polymorphisms of metalloproteinases MMP2, 7, 9 and MMP inhibitor TIMP2 in sarcoidosis. Med Sci Monit 2011; 17: CR598-607. 8. Alvi RM, Young BD, Shahab Z, et al. Repeatability and optimization of FDG positron emission tomography for evaluation of cardiac sarcoidosis. JACC Cardiovasc Imaging 2019; 12: 1284-7. 42. Su H, Spinale FG, Dobrucki LW, et al. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 2005; 112: 3157-67. 3. Lynch JP, Hwang J, Bradfield J, Fishbein M, Shivkumar K, Tung R. Cardiac involvement in sarcoidosis: evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2014; 35: 372-90. 7. Lee PI, Cheng G, Alavi A. The role of serial FDG PET for assessing therapeutic response in patients with cardiac sarcoidosis. J Nucl Cardiol 2017; 24: 19-28. 5. Slart RHJA, Glaudemans AWJM, Lancellotti P, et al. A joint procedural position statement on imaging in cardiac sarcoidosis: from the cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. J Nucl Cardiol 2018; 25: 298-319. 29. Nakayama T, Hashimoto S, Amemiya E, Horie T. Elevation of plasma-soluble tumour necrosis factor receptors (TNF-R) in sarcoidosis. Clin Exp Immunol 1996; 104: 318-24. 47. Tan JL, Fong HK, Birati EY, Han Y. Cardiac sarcoidosis. Am J Cardiol 2019; 123: 513-22. 39. Razavian M, Tavakoli S, Zhang J, et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med 2011; 52: 1795-802. 45. Matsuyama W, Mitsuyama H, Watanabe M, et al. Involvement of discoidin domain receptor 1 in the deterioration of pulmonary sarcoidosis. Am J Respir Cell Mol Biol 2005; 33: 565-73. 13. Spinale FG, Meyer TE, Stolen CM, et al. Development of a biomarker panel to predict cardiac resynchronization therapy response: results from the SMART-AV trial. Heart Rhythm 2019; 16: 743-53. 20. Kiko T, Yoshihisa A, Kanno Y, et al. A multiple biomarker approach in patients with cardiac sarcoidosis. Int Heart J 2018; 59: 996-1001. 35. Thi Hong Nguyen C, Kambe N, Kishimoto I, Ueda-Hayakawa I, Okamoto H. Serum soluble interleukin-2 receptor level is more sensitive than angiotensin- converting enzyme or lysozyme for diagnosis of sarcoidosis and may be a marker of multiple organ involvement. J Dermatol 2017; 44: 789-97. 32. Jaipersad AS, Lip GYH, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 2014; 63: 1-11. 21. Kandolin R, Lehtonen J, Airaksinen J, et al. Usefulness of cardiac troponins as markers of early treatment response in cardiac sarcoidosis. Am J Cardiol 2015; 116: 960-4. 34. Kim HP, Imbert J, Leonard WJ. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 2006; 17: 349-66. 12. Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014; 11: 1305-23. 44. Crouser ED, Culver DA, Knox KS, et al. Gene expression profiling identifies MMP-12 and ADAMDEC1 as potential pathogenic mediators of pulmonary sarcoidosis. Am J Respir Crit Care Med 2009; 179: 929-38. 26. Myoren T, Kobayashi S, Oda S, et al. An oxidative stress biomarker, urinary 8-hydroxy-2'-deoxyguanosine, predicts cardiovascular-related death after steroid therapy for patients with active cardiac sarcoidosis. Int J Cardiol 2016; 212: 206-13. 31. Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol 2015; 15: 283-94. 24. Fujiwara W, Kato Y, Hayashi M, et al. Serum microRNA-126 and -223 as new-generation biomarkers for sarcoidosis in patients with heart failure. J Cardiol 2018; 72: 452-7. 6. Chareonthaitawee P, Beanlands RS, Chen W, et al. Joint SNMMI-ASNC expert consensus document on the role of 18 F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Med 2017; 58: 1341-53. 22 44 23 45 24 46 25 47 26 27 28 (12) 2014; 11 30 31 10 32 11 33 34 35 14 36 15 16 38 17 39 18 19 (29) 1996; 104 (13) 2019; 16 (37) 1998; 98 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: 40. Sahul ZH, Mukherjee R, Song J, et al. Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: relationship to myocardial dysfunction. Circ Cardiovasc Imaging 2011; 4: 381-91. – reference: 20. Kiko T, Yoshihisa A, Kanno Y, et al. A multiple biomarker approach in patients with cardiac sarcoidosis. Int Heart J 2018; 59: 996-1001. – reference: 33. Hong KH, Ryu J, Han KH. Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood 2005; 105: 1405-7. – reference: 47. Tan JL, Fong HK, Birati EY, Han Y. Cardiac sarcoidosis. Am J Cardiol 2019; 123: 513-22. – reference: 34. Kim HP, Imbert J, Leonard WJ. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 2006; 17: 349-66. – reference: 12. Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014; 11: 1305-23. – reference: 13. Spinale FG, Meyer TE, Stolen CM, et al. Development of a biomarker panel to predict cardiac resynchronization therapy response: results from the SMART-AV trial. Heart Rhythm 2019; 16: 743-53. – reference: 26. Myoren T, Kobayashi S, Oda S, et al. An oxidative stress biomarker, urinary 8-hydroxy-2'-deoxyguanosine, predicts cardiovascular-related death after steroid therapy for patients with active cardiac sarcoidosis. Int J Cardiol 2016; 212: 206-13. – reference: 27. Bost TW, Riches DW, Schumacher B, et al. Alveolar macrophages from patients with beryllium disease and sarcoidosis express increased levels of mRNA for tumor necrosis factor-alpha and interleukin-6 but not interleukin-1 beta. Am J Respir Cell Mol Biol 1994; 10: 506-13. – reference: 15. Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol 2017; 24: 413-24. – reference: 21. Kandolin R, Lehtonen J, Airaksinen J, et al. Usefulness of cardiac troponins as markers of early treatment response in cardiac sarcoidosis. Am J Cardiol 2015; 116: 960-4. – reference: 45. Matsuyama W, Mitsuyama H, Watanabe M, et al. Involvement of discoidin domain receptor 1 in the deterioration of pulmonary sarcoidosis. Am J Respir Cell Mol Biol 2005; 33: 565-73. – reference: 25. Ishiguchi H, Kobayashi S, Myoren T, et al. Urinary 8-Hydroxy-2'- deoxyguanosine as a myocardial oxidative stress marker is associated with ventricular tachycardia in patients with active cardiac sarcoidosis. Circ Cardiovasc Imaging 2017; 10. – reference: 28. Amber KT, Bloom R, Mrowietz U, Hertl M. TNF-α: a treatment target or cause of sarcoidosis? J Eur Acad Dermatol Venereol 2015; 29: 2104-11. – reference: 11. Facco M, Cabrelle A, Calabrese F, et al. TL1A/DR3 axis involvement in the inflammatory cytokine network during pulmonary sarcoidosis. Clin Mol Allergy 2015; 13: 16. – reference: 38. Spinale FG, Janicki JS, Zile MR. Membrane-associated matrix proteolysis and heart failure. Circ Res 2013; 112: 195-208. – reference: 41. Spinale FG, Mukherjee R, Zavadzkas JA, et al. Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction. J Biol Chem 2010; 285: 30316-27. – reference: 32. Jaipersad AS, Lip GYH, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 2014; 63: 1-11. – reference: 46. Brilha S, Sathyamoorthy T, Stuttaford LH, et al. Early secretory antigenic target-6 drives matrix metalloproteinase-10 gene expression and secretion in tuberculosis. Am J Respir Cell Mol Biol 2017; 56: 223-32. – reference: 42. Su H, Spinale FG, Dobrucki LW, et al. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 2005; 112: 3157-67. – reference: 2. Iannuzzi MC, Fontana JR. Sarcoidosis: clinical presentation, immunopathogenesis, and therapeutics. JAMA 2011; 305: 391-9. – reference: 18. Osborne MT, Hulten EA, Singh A, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 166-74. – reference: 36. Grutters JC, Fellrath JM, Mulder L, Janssen R, Van Den Bosch JMM, Van Velzen-Blad H. Serum soluble interleukin-2 receptor measurement in patients with sarcoidosis: a clinical evaluation. Chest 2003; 124: 186-95. – reference: 44. Crouser ED, Culver DA, Knox KS, et al. Gene expression profiling identifies MMP-12 and ADAMDEC1 as potential pathogenic mediators of pulmonary sarcoidosis. Am J Respir Crit Care Med 2009; 179: 929-38. – reference: 5. Slart RHJA, Glaudemans AWJM, Lancellotti P, et al. A joint procedural position statement on imaging in cardiac sarcoidosis: from the cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. J Nucl Cardiol 2018; 25: 298-319. – reference: 22. Baba Y, Kubo T, Kitaoka H, et al. Usefulness of high-sensitive cardiac troponin T for evaluating the activity of cardiac sarcoidosis. Int Heart J 2012; 53: 287-92. – reference: 29. Nakayama T, Hashimoto S, Amemiya E, Horie T. Elevation of plasma-soluble tumour necrosis factor receptors (TNF-R) in sarcoidosis. Clin Exp Immunol 1996; 104: 318-24. – reference: 8. Alvi RM, Young BD, Shahab Z, et al. Repeatability and optimization of FDG positron emission tomography for evaluation of cardiac sarcoidosis. JACC Cardiovasc Imaging 2019; 12: 1284-7. – reference: 14. Ahmadian A, Brogan A, Berman J, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 925-39. – reference: 30. Ziegenhagen MW, Fitschen J, Martinet N, Schlaak M, Müller-Quernheim J. Serum level of soluble tumour necrosis factor receptor II (75 kDa) indicates inflammatory activity of sarcoidosis. J Intern Med 2000; 248: 33-41. – reference: 10. González AA, Segura AM, Horiba K, et al. Matrix metalloproteinases and their tissue inhibitors in the lesions of cardiac and pulmonary sarcoidosis: an immunohistochemical study. Hum Pathol 2002; 33: 1158-64. – reference: 24. Fujiwara W, Kato Y, Hayashi M, et al. Serum microRNA-126 and -223 as new-generation biomarkers for sarcoidosis in patients with heart failure. J Cardiol 2018; 72: 452-7. – reference: 43. Piotrowski WJ, Górski P, Pietras T, Fendler W, Szemraj J. The selected genetic polymorphisms of metalloproteinases MMP2, 7, 9 and MMP inhibitor TIMP2 in sarcoidosis. Med Sci Monit 2011; 17: CR598-607. – reference: 39. Razavian M, Tavakoli S, Zhang J, et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med 2011; 52: 1795-802. – reference: 1. Birnie DH, Nery PB, Ha AC, Beanlands RSB. Cardiac sarcoidosis. J Am Coll Cardiol 2016; 68: 411-21. – reference: 35. Thi Hong Nguyen C, Kambe N, Kishimoto I, Ueda-Hayakawa I, Okamoto H. Serum soluble interleukin-2 receptor level is more sensitive than angiotensin- converting enzyme or lysozyme for diagnosis of sarcoidosis and may be a marker of multiple organ involvement. J Dermatol 2017; 44: 789-97. – reference: 23. Date T, Shinozaki T, Yamakawa M, et al. Elevated plasma brain natriuretic peptide level in cardiac sarcoidosis patients with preserved ejection fraction. Cardiology 2007; 107: 277-80. – reference: 3. Lynch JP, Hwang J, Bradfield J, Fishbein M, Shivkumar K, Tung R. Cardiac involvement in sarcoidosis: evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2014; 35: 372-90. – reference: 37. Mann DL, Spinale FG. Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds. Circulation 1998; 98: 1699-702. – reference: 4. Yazaki Y, Isobe M, Hiroe M, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol 2001; 88: 1006-10. – reference: 7. Lee PI, Cheng G, Alavi A. The role of serial FDG PET for assessing therapeutic response in patients with cardiac sarcoidosis. J Nucl Cardiol 2017; 24: 19-28. – reference: 9. Elkington PTG, Friedland JS. Matrix metalloproteinases in destructive pulmonary pathology. Thorax 2006; 61: 259-66. – reference: 6. Chareonthaitawee P, Beanlands RS, Chen W, et al. Joint SNMMI-ASNC expert consensus document on the role of 18 F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Med 2017; 58: 1341-53. – reference: 17. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014; 63: 329-36. – reference: 19. Simonen P, Lehtonen J, Kandolin R, et al. F-18-fluorodeoxyglucose positron emission tomography-guided sampling of mediastinal lymph nodes in the diagnosis of cardiac sarcoidosis. Am J Cardiol 2015; 116: 1581-5. – reference: 31. Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol 2015; 15: 283-94. – reference: 16. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, DaSilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007; 34: 1765-74. – volume: 16 start-page: 743 issn: 1547-5271 year: 2019 ident: 13 publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2018.11.026 – ident: 47 doi: 10.1016/j.amjcard.2018.10.021 – volume: 104 start-page: 318 issn: 0009-9104 year: 1996 ident: 29 publication-title: Clinical & Experimental Immunology doi: 10.1046/j.1365-2249.1996.13702.x – ident: 15 doi: 10.1007/s12350-016-0490-7 – ident: 6 doi: 10.2967/jnumed.117.196287 – ident: 44 doi: 10.1164/rccm.200803-490OC – ident: 34 doi: 10.1016/j.cytogfr.2006.07.003 – ident: 19 doi: 10.1016/j.amjcard.2015.08.025 – ident: 24 doi: 10.1016/j.jjcc.2018.06.004 – ident: 40 doi: 10.1161/CIRCIMAGING.110.961854 – ident: 26 doi: 10.1016/j.ijcard.2016.03.003 – ident: 28 doi: 10.1111/jdv.13246 – ident: 33 doi: 10.1182/blood-2004-08-3178 – ident: 46 doi: 10.1165/rcmb.2016-0162OC – ident: 43 doi: 10.12659/MSM.881987 – ident: 9 doi: 10.1136/thx.2005.051979 – volume: 98 start-page: 1699 issn: 0009-7322 year: 1998 ident: 37 publication-title: Circulation doi: 10.1161/01.CIR.98.17.1699 – ident: 23 doi: 10.1159/000095518 – ident: 25 doi: 10.1161/CIRCIMAGING.117.006764 – ident: 32 doi: 10.1016/j.jacc.2013.09.019 – ident: 16 doi: 10.1007/s00259-007-0478-2 – ident: 35 doi: 10.1111/1346-8138.13792 – volume: 11 start-page: 1305 issn: 1547-5271 year: 2014 ident: 12 publication-title: Heart Rhythm – ident: 41 doi: 10.1074/jbc.M110.158196 – ident: 38 doi: 10.1161/CIRCRESAHA.112.266882 – ident: 3 doi: 10.1055/s-0034-1376889 – ident: 31 doi: 10.1038/nri3823 – ident: 39 doi: 10.2967/jnumed.111.092379 – ident: 2 doi: 10.1001/jama.2011.10 – ident: 27 doi: 10.1165/ajrcmb.10.5.8179912 – ident: 21 doi: 10.1016/j.amjcard.2015.06.021 – ident: 1 doi: 10.1016/j.jacc.2016.03.605 – ident: 4 doi: 10.1016/S0002-9149(01)01978-6 – ident: 5 doi: 10.1007/s12350-017-1043-4 – ident: 8 doi: 10.1016/j.jcmg.2019.01.011 – ident: 11 doi: 10.1186/s12948-015-0022-z – ident: 14 doi: 10.1007/s12350-014-9901-9 – ident: 30 doi: 10.1046/j.1365-2796.2000.00685.x – ident: 36 doi: 10.1378/chest.124.1.186 – ident: 42 doi: 10.1161/CIRCULATIONAHA.105.583021 – ident: 20 doi: 10.1536/ihj.17-695 – ident: 7 doi: 10.1007/s12350-016-0682-1 – ident: 10 doi: 10.1053/hupa.2002.129423 – ident: 17 doi: 10.1016/j.jacc.2013.09.022 – ident: 22 doi: 10.1536/ihj.53.287 – ident: 18 doi: 10.1007/s12350-013-9828-6 – ident: 45 doi: 10.1165/rcmb.2005-0236OC |
SSID | ssj0041507 |
Score | 2.2658403 |
Snippet | While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1096 |
SubjectTerms | Biomarkers Biopsy Congestive heart failure Coronary artery disease Cytokine receptors Cytokines FDG PET/CT Gelatinase B Growth factor receptors IL-2 Inflammation Matrix metalloproteinase Metalloproteinase MMP Patients Plasma Positron emission tomography Proteases Proteolysis Receptor mechanisms Risk assessment Sarcoidosis TIMP Tissue inhibitor of metalloproteinases TNFα Tumor necrosis factor Tumor necrosis factor receptors Tumor necrosis factor-TNF Vascular endothelial growth factor Vascular endothelial growth factor receptors |
Title | Cytokine Signaling and Matrix Remodeling Pathways Associated with Cardiac Sarcoidosis Disease Activity Defined Using FDG PET Imaging |
URI | https://www.jstage.jst.go.jp/article/ihj/62/5/62_21-164/_article/-char/en https://www.proquest.com/docview/2578520520 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Heart Journal, 2021/09/29, Vol.62(5), pp.1096-1105 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCQYgL4ikCBVmCC1ptSPzYzR5DHg1IhUqkUm4r2-uWlJKgZCsIZ_4Tf4-ZtfdRmkPhYkWOva_57Pk8nvEQ8ioBnXMirQiNVlEoenEWamOh4DG3iTCMZxjvfPghmh6L93M5b7V-N7yWLnLdMT93xpX8j1ShDuSKUbL_INnqolABv0G-UIKEobyWjIfbfPUFaeKnxSkSah9veIjH7v-AL1ekucHaI-B539V2U0mjdDofFgAxaBg2q0W2wuNJRm7PJhgYn1liZE_gJlng3Asmo4PgaDwL3n0tEhw12e1l8yLmys6D5os0Z5e36y1MLaNOJfEVhtU4M_dULZe1nfpj4QnvgojONwsbjKtOk7W1uE_krAsbFQw6TTMG66HPhbd1uJmXC6jgLnFEx9Z1nLkMSuV0HbEGLGVj7u11k6ihx4HXyJ06QhZJbBafzzoMc2SLWhOWu_9_KcjKbREXTNA7hb4p66XQ9wa5yWB9gqkzDuaVb5FAll2s9P07-XNxoe-b-r6XmNCtM1gMnF5lBAXNmd0jd_36hA4c2O6Tll0-ILcPvQfGQ_KrxBytMEdBatRhjtaYoyXmaI05ipijHnO0gTnqMUdLzFGPOVpgjgLmKGCOesw9IseT8Ww4DX0mj9CIWOZh1tVJlCjJtMqAlQHPVjKzsQLlFhmtE8143M-AKcHiX2SgvC3nxsS8Z7qJEDzij8necrW0TwgVfQ0XM5JlXSOYUYpZq7SNgCf3E6VEm7wuv2pq_DH3mG3lPL0qvTZ5WbX95g532dkqccKp2vgBX7SJWCqxcG2rvzBmEqaoNtkv5Zn68bZJUUtKhg5oT6_1AM_InXrE7JO9fH1hnwMVzvWLAnZ_ALRLuac |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytokine+Signaling+and+Matrix+Remodeling+Pathways+Associated+with+Cardiac+Sarcoidosis+Disease+Activity+Defined+Using+FDG+PET+Imaging&rft.jtitle=International+heart+journal&rft.au=Young%2C+Bryan+D.&rft.au=Moreland%2C+Hannah&rft.au=Oatmen%2C+Kelsie+E.&rft.au=Freeburg%2C+Lisa+A.&rft.date=2021-09-29&rft.issn=1349-2365&rft.eissn=1349-3299&rft.volume=62&rft.issue=5&rft.spage=1096&rft.epage=1105&rft_id=info:doi/10.1536%2Fihj.21-164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1536_ihj_21_164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1349-2365&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1349-2365&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1349-2365&client=summon |