Cytokine Signaling and Matrix Remodeling Pathways Associated with Cardiac Sarcoidosis Disease Activity Defined Using FDG PET Imaging

While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart failure therapies and non-specific anti-inflammatory regimens. The overall goal of this study was to perform high-sensitivity plasma profiling of...

Full description

Saved in:
Bibliographic Details
Published inInternational Heart Journal Vol. 62; no. 5; pp. 1096 - 1105
Main Authors Young, Bryan D., Moreland, Hannah, Oatmen, Kelsie E., Freeburg, Lisa A., Shahab, Zartashia, Herzog, Erica, Miller, Edward J., Spinale, Francis G.
Format Journal Article
LanguageEnglish
Published Tokyo International Heart Journal Association 29.09.2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart failure therapies and non-specific anti-inflammatory regimens. The overall goal of this study was to perform high-sensitivity plasma profiling of specific inflammatory pathways in patients with sarcoidosis and with CS.Specific inflammatory/proteolytic cascades were upregulated in sarcoidosis patients, and certain profiles emerged for CS patients.Plasma samples were collected from patients with biopsy-confirmed sarcoidosis undergoing F-18 fluorodeoxyglucose positron emission tomography (n = 47) and compared to those of referent control subjects (n = 6). Using a high-sensitivity, automated multiplex array, cytokines, soluble cytokine receptor profiles (an index of cytokine activation), as well as matrix metalloproteinase (MMP), and endogenous MMP inhibitors (TIMPs) were examined.The plasma tumor necrosis factor (TNF) and soluble TNF receptors sCD30 and sTNFRI were increased using sarcoidosis, and sTNFRII increased in CS patients (n = 18). The soluble interleukin sIL-2R and vascular endothelial growth factor receptors (sVEGFR2 and sVEGFR3) increased to the greatest degree in CS patients. When computed as a function of referent control values, the majority of soluble cytokine receptors increased in both sarcoidosis and CS groups. Plasma MMP-9 levels increased in sarcoidosis but not in the CS subset. Plasma TIMP levels declined in both groups.The findings from this study were the identification of increased activation of a cluster of soluble cytokine receptors, which augment not only inflammatory cell maturation but also transmigration in patients with sarcoidosis and patients with cardiac involvement.
AbstractList While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart failure therapies and non-specific anti-inflammatory regimens. The overall goal of this study was to perform high-sensitivity plasma profiling of specific inflammatory pathways in patients with sarcoidosis and with CS. Specific inflammatory/proteolytic cascades were upregulated in sarcoidosis patients, and certain profiles emerged for CS patients. Plasma samples were collected from patients with biopsy-confirmed sarcoidosis undergoing F-18 fluorodeoxyglucose positron emission tomography (n = 47) and compared to those of referent control subjects (n = 6). Using a high-sensitivity, automated multiplex array, cytokines, soluble cytokine receptor profiles (an index of cytokine activation), as well as matrix metalloproteinase (MMP), and endogenous MMP inhibitors (TIMPs) were examined. The plasma tumor necrosis factor (TNF) and soluble TNF receptors sCD30 and sTNFRI were increased using sarcoidosis, and sTNFRII increased in CS patients (n = 18). The soluble interleukin sIL-2R and vascular endothelial growth factor receptors (sVEGFR2 and sVEGFR3) increased to the greatest degree in CS patients. When computed as a function of referent control values, the majority of soluble cytokine receptors increased in both sarcoidosis and CS groups. Plasma MMP-9 levels increased in sarcoidosis but not in the CS subset. Plasma TIMP levels declined in both groups. The findings from this study were the identification of increased activation of a cluster of soluble cytokine receptors, which augment not only inflammatory cell maturation but also transmigration in patients with sarcoidosis and patients with cardiac involvement.
ArticleNumber 21-164
Author Young, Bryan D.
Oatmen, Kelsie E.
Herzog, Erica
Miller, Edward J.
Spinale, Francis G.
Shahab, Zartashia
Moreland, Hannah
Freeburg, Lisa A.
Author_xml – sequence: 1
  fullname: Young, Bryan D.
  organization: Yale University School of Medicine
– sequence: 2
  fullname: Moreland, Hannah
  organization: Department of Cell Biology and Anatomy, University of South Carolina School of Medicine
– sequence: 3
  fullname: Oatmen, Kelsie E.
  organization: Department of Cell Biology and Anatomy, University of South Carolina School of Medicine
– sequence: 4
  fullname: Freeburg, Lisa A.
  organization: Department of Cell Biology and Anatomy, University of South Carolina School of Medicine
– sequence: 5
  fullname: Shahab, Zartashia
  organization: Yale University School of Medicine
– sequence: 6
  fullname: Herzog, Erica
  organization: Section of Pulmonary, Sleep, and Critical Care Medicine, Yale School of Medicine
– sequence: 7
  fullname: Miller, Edward J.
  organization: Yale University School of Medicine
– sequence: 8
  fullname: Spinale, Francis G.
  organization: Department of Cell Biology and Anatomy, University of South Carolina School of Medicine
BookMark eNptkMtqWzEQhkVJoEmaTZ9A0F3hpLofa1dj5wYpDbmsxRxJtse1j1JJaep9HrzHcciiBAbNaOb7R-g_JHt96iMhnzk74Vqab7hYngjecKM-kAMulW2ksHbvtRbS6I_ksJQlY4pr1h6Q58mmpl_YR3qL8x5W2M8p9IH-gJrxL72J6xTiS_ca6uIJNoWOS0keocZAn7Au6ARyQPD0FrJPGFLBQqdYIpRIx77iH6wbOo2z4ZFA78t219n0nF6f3tHLNcyH-yeyP4NVicev-Yjcn53eTS6aq5_nl5PxVeNVq2sTWGeNBS06CD5GJjToEFtojTS-62wnZDsKYqSsHanAlYlSet9K7plVShp5RL7s9j7k9PsxluqW6TEPvy5O6HakBRtioNiO8jmVkuPMeaxQMfU1A64cZ27rtRu8doK7wetB8vU_yUPGNeTN-_D3HbwsFebxDYVc0a_iC2qE09tjJ3kb-QVkF3v5D1MbmeY
CitedBy_id crossref_primary_10_1016_j_amjcard_2023_07_139
crossref_primary_10_1053_j_semnuclmed_2022_08_004
crossref_primary_10_1097_HPC_0000000000000364
Cites_doi 10.1016/j.hrthm.2018.11.026
10.1016/j.amjcard.2018.10.021
10.1046/j.1365-2249.1996.13702.x
10.1007/s12350-016-0490-7
10.2967/jnumed.117.196287
10.1164/rccm.200803-490OC
10.1016/j.cytogfr.2006.07.003
10.1016/j.amjcard.2015.08.025
10.1016/j.jjcc.2018.06.004
10.1161/CIRCIMAGING.110.961854
10.1016/j.ijcard.2016.03.003
10.1111/jdv.13246
10.1182/blood-2004-08-3178
10.1165/rcmb.2016-0162OC
10.12659/MSM.881987
10.1136/thx.2005.051979
10.1161/01.CIR.98.17.1699
10.1159/000095518
10.1161/CIRCIMAGING.117.006764
10.1016/j.jacc.2013.09.019
10.1007/s00259-007-0478-2
10.1111/1346-8138.13792
10.1074/jbc.M110.158196
10.1161/CIRCRESAHA.112.266882
10.1055/s-0034-1376889
10.1038/nri3823
10.2967/jnumed.111.092379
10.1001/jama.2011.10
10.1165/ajrcmb.10.5.8179912
10.1016/j.amjcard.2015.06.021
10.1016/j.jacc.2016.03.605
10.1016/S0002-9149(01)01978-6
10.1007/s12350-017-1043-4
10.1016/j.jcmg.2019.01.011
10.1186/s12948-015-0022-z
10.1007/s12350-014-9901-9
10.1046/j.1365-2796.2000.00685.x
10.1378/chest.124.1.186
10.1161/CIRCULATIONAHA.105.583021
10.1536/ihj.17-695
10.1007/s12350-016-0682-1
10.1053/hupa.2002.129423
10.1016/j.jacc.2013.09.022
10.1536/ihj.53.287
10.1007/s12350-013-9828-6
10.1165/rcmb.2005-0236OC
ContentType Journal Article
Copyright 2021 by the International Heart Journal Association
Copyright Japan Science and Technology Agency 2021
Copyright_xml – notice: 2021 by the International Heart Journal Association
– notice: Copyright Japan Science and Technology Agency 2021
DBID AAYXX
CITATION
7QP
K9.
DOI 10.1536/ihj.21-164
DatabaseName CrossRef
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1349-3299
EndPage 1105
ExternalDocumentID 10_1536_ihj_21_164
article_ihj_62_5_62_21_164_article_char_en
GroupedDBID ---
.55
29J
2WC
53G
5GY
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
OK1
RJT
RZJ
SDH
TR2
X7M
AAFWJ
AAYXX
CITATION
7QP
K9.
ID FETCH-LOGICAL-c475t-d0b969a52badcee025a5de7a7636cbb9b2378d2849984d146e33cc731c0944363
ISSN 1349-2365
IngestDate Mon Jun 30 08:16:17 EDT 2025
Tue Jul 01 00:56:18 EDT 2025
Thu Apr 24 22:52:09 EDT 2025
Wed Apr 05 06:58:40 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c475t-d0b969a52badcee025a5de7a7636cbb9b2378d2849984d146e33cc731c0944363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/ihj/62/5/62_21-164/_article/-char/en
PQID 2578520520
PQPubID 2048496
PageCount 10
ParticipantIDs proquest_journals_2578520520
crossref_citationtrail_10_1536_ihj_21_164
crossref_primary_10_1536_ihj_21_164
jstage_primary_article_ihj_62_5_62_21_164_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021/09/29
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 09
  year: 2021
  text: 2021/09/29
  day: 29
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle International Heart Journal
PublicationTitleAlternate Int. Heart J.
PublicationYear 2021
Publisher International Heart Journal Association
Japan Science and Technology Agency
Publisher_xml – name: International Heart Journal Association
– name: Japan Science and Technology Agency
References 25. Ishiguchi H, Kobayashi S, Myoren T, et al. Urinary 8-Hydroxy-2'- deoxyguanosine as a myocardial oxidative stress marker is associated with ventricular tachycardia in patients with active cardiac sarcoidosis. Circ Cardiovasc Imaging 2017; 10.
4. Yazaki Y, Isobe M, Hiroe M, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol 2001; 88: 1006-10.
28. Amber KT, Bloom R, Mrowietz U, Hertl M. TNF-α: a treatment target or cause of sarcoidosis? J Eur Acad Dermatol Venereol 2015; 29: 2104-11.
33. Hong KH, Ryu J, Han KH. Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood 2005; 105: 1405-7.
1. Birnie DH, Nery PB, Ha AC, Beanlands RSB. Cardiac sarcoidosis. J Am Coll Cardiol 2016; 68: 411-21.
11. Facco M, Cabrelle A, Calabrese F, et al. TL1A/DR3 axis involvement in the inflammatory cytokine network during pulmonary sarcoidosis. Clin Mol Allergy 2015; 13: 16.
23. Date T, Shinozaki T, Yamakawa M, et al. Elevated plasma brain natriuretic peptide level in cardiac sarcoidosis patients with preserved ejection fraction. Cardiology 2007; 107: 277-80.
2. Iannuzzi MC, Fontana JR. Sarcoidosis: clinical presentation, immunopathogenesis, and therapeutics. JAMA 2011; 305: 391-9.
15. Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol 2017; 24: 413-24.
19. Simonen P, Lehtonen J, Kandolin R, et al. F-18-fluorodeoxyglucose positron emission tomography-guided sampling of mediastinal lymph nodes in the diagnosis of cardiac sarcoidosis. Am J Cardiol 2015; 116: 1581-5.
36. Grutters JC, Fellrath JM, Mulder L, Janssen R, Van Den Bosch JMM, Van Velzen-Blad H. Serum soluble interleukin-2 receptor measurement in patients with sarcoidosis: a clinical evaluation. Chest 2003; 124: 186-95.
40. Sahul ZH, Mukherjee R, Song J, et al. Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: relationship to myocardial dysfunction. Circ Cardiovasc Imaging 2011; 4: 381-91.
17. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014; 63: 329-36.
9. Elkington PTG, Friedland JS. Matrix metalloproteinases in destructive pulmonary pathology. Thorax 2006; 61: 259-66.
27. Bost TW, Riches DW, Schumacher B, et al. Alveolar macrophages from patients with beryllium disease and sarcoidosis express increased levels of mRNA for tumor necrosis factor-alpha and interleukin-6 but not interleukin-1 beta. Am J Respir Cell Mol Biol 1994; 10: 506-13.
18. Osborne MT, Hulten EA, Singh A, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 166-74.
10. González AA, Segura AM, Horiba K, et al. Matrix metalloproteinases and their tissue inhibitors in the lesions of cardiac and pulmonary sarcoidosis: an immunohistochemical study. Hum Pathol 2002; 33: 1158-64.
41. Spinale FG, Mukherjee R, Zavadzkas JA, et al. Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction. J Biol Chem 2010; 285: 30316-27.
16. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, DaSilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007; 34: 1765-74.
14. Ahmadian A, Brogan A, Berman J, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 925-39.
38. Spinale FG, Janicki JS, Zile MR. Membrane-associated matrix proteolysis and heart failure. Circ Res 2013; 112: 195-208.
46. Brilha S, Sathyamoorthy T, Stuttaford LH, et al. Early secretory antigenic target-6 drives matrix metalloproteinase-10 gene expression and secretion in tuberculosis. Am J Respir Cell Mol Biol 2017; 56: 223-32.
37. Mann DL, Spinale FG. Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds. Circulation 1998; 98: 1699-702.
22. Baba Y, Kubo T, Kitaoka H, et al. Usefulness of high-sensitive cardiac troponin T for evaluating the activity of cardiac sarcoidosis. Int Heart J 2012; 53: 287-92.
30. Ziegenhagen MW, Fitschen J, Martinet N, Schlaak M, Müller-Quernheim J. Serum level of soluble tumour necrosis factor receptor II (75 kDa) indicates inflammatory activity of sarcoidosis. J Intern Med 2000; 248: 33-41.
43. Piotrowski WJ, Górski P, Pietras T, Fendler W, Szemraj J. The selected genetic polymorphisms of metalloproteinases MMP2, 7, 9 and MMP inhibitor TIMP2 in sarcoidosis. Med Sci Monit 2011; 17: CR598-607.
8. Alvi RM, Young BD, Shahab Z, et al. Repeatability and optimization of FDG positron emission tomography for evaluation of cardiac sarcoidosis. JACC Cardiovasc Imaging 2019; 12: 1284-7.
42. Su H, Spinale FG, Dobrucki LW, et al. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 2005; 112: 3157-67.
3. Lynch JP, Hwang J, Bradfield J, Fishbein M, Shivkumar K, Tung R. Cardiac involvement in sarcoidosis: evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2014; 35: 372-90.
7. Lee PI, Cheng G, Alavi A. The role of serial FDG PET for assessing therapeutic response in patients with cardiac sarcoidosis. J Nucl Cardiol 2017; 24: 19-28.
5. Slart RHJA, Glaudemans AWJM, Lancellotti P, et al. A joint procedural position statement on imaging in cardiac sarcoidosis: from the cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. J Nucl Cardiol 2018; 25: 298-319.
29. Nakayama T, Hashimoto S, Amemiya E, Horie T. Elevation of plasma-soluble tumour necrosis factor receptors (TNF-R) in sarcoidosis. Clin Exp Immunol 1996; 104: 318-24.
47. Tan JL, Fong HK, Birati EY, Han Y. Cardiac sarcoidosis. Am J Cardiol 2019; 123: 513-22.
39. Razavian M, Tavakoli S, Zhang J, et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med 2011; 52: 1795-802.
45. Matsuyama W, Mitsuyama H, Watanabe M, et al. Involvement of discoidin domain receptor 1 in the deterioration of pulmonary sarcoidosis. Am J Respir Cell Mol Biol 2005; 33: 565-73.
13. Spinale FG, Meyer TE, Stolen CM, et al. Development of a biomarker panel to predict cardiac resynchronization therapy response: results from the SMART-AV trial. Heart Rhythm 2019; 16: 743-53.
20. Kiko T, Yoshihisa A, Kanno Y, et al. A multiple biomarker approach in patients with cardiac sarcoidosis. Int Heart J 2018; 59: 996-1001.
35. Thi Hong Nguyen C, Kambe N, Kishimoto I, Ueda-Hayakawa I, Okamoto H. Serum soluble interleukin-2 receptor level is more sensitive than angiotensin- converting enzyme or lysozyme for diagnosis of sarcoidosis and may be a marker of multiple organ involvement. J Dermatol 2017; 44: 789-97.
32. Jaipersad AS, Lip GYH, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 2014; 63: 1-11.
21. Kandolin R, Lehtonen J, Airaksinen J, et al. Usefulness of cardiac troponins as markers of early treatment response in cardiac sarcoidosis. Am J Cardiol 2015; 116: 960-4.
34. Kim HP, Imbert J, Leonard WJ. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 2006; 17: 349-66.
12. Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014; 11: 1305-23.
44. Crouser ED, Culver DA, Knox KS, et al. Gene expression profiling identifies MMP-12 and ADAMDEC1 as potential pathogenic mediators of pulmonary sarcoidosis. Am J Respir Crit Care Med 2009; 179: 929-38.
26. Myoren T, Kobayashi S, Oda S, et al. An oxidative stress biomarker, urinary 8-hydroxy-2'-deoxyguanosine, predicts cardiovascular-related death after steroid therapy for patients with active cardiac sarcoidosis. Int J Cardiol 2016; 212: 206-13.
31. Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol 2015; 15: 283-94.
24. Fujiwara W, Kato Y, Hayashi M, et al. Serum microRNA-126 and -223 as new-generation biomarkers for sarcoidosis in patients with heart failure. J Cardiol 2018; 72: 452-7.
6. Chareonthaitawee P, Beanlands RS, Chen W, et al. Joint SNMMI-ASNC expert consensus document on the role of 18 F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Med 2017; 58: 1341-53.
22
44
23
45
24
46
25
47
26
27
28
(12) 2014; 11
30
31
10
32
11
33
34
35
14
36
15
16
38
17
39
18
19
(29) 1996; 104
(13) 2019; 16
(37) 1998; 98
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 40. Sahul ZH, Mukherjee R, Song J, et al. Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: relationship to myocardial dysfunction. Circ Cardiovasc Imaging 2011; 4: 381-91.
– reference: 20. Kiko T, Yoshihisa A, Kanno Y, et al. A multiple biomarker approach in patients with cardiac sarcoidosis. Int Heart J 2018; 59: 996-1001.
– reference: 33. Hong KH, Ryu J, Han KH. Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood 2005; 105: 1405-7.
– reference: 47. Tan JL, Fong HK, Birati EY, Han Y. Cardiac sarcoidosis. Am J Cardiol 2019; 123: 513-22.
– reference: 34. Kim HP, Imbert J, Leonard WJ. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 2006; 17: 349-66.
– reference: 12. Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014; 11: 1305-23.
– reference: 13. Spinale FG, Meyer TE, Stolen CM, et al. Development of a biomarker panel to predict cardiac resynchronization therapy response: results from the SMART-AV trial. Heart Rhythm 2019; 16: 743-53.
– reference: 26. Myoren T, Kobayashi S, Oda S, et al. An oxidative stress biomarker, urinary 8-hydroxy-2'-deoxyguanosine, predicts cardiovascular-related death after steroid therapy for patients with active cardiac sarcoidosis. Int J Cardiol 2016; 212: 206-13.
– reference: 27. Bost TW, Riches DW, Schumacher B, et al. Alveolar macrophages from patients with beryllium disease and sarcoidosis express increased levels of mRNA for tumor necrosis factor-alpha and interleukin-6 but not interleukin-1 beta. Am J Respir Cell Mol Biol 1994; 10: 506-13.
– reference: 15. Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol 2017; 24: 413-24.
– reference: 21. Kandolin R, Lehtonen J, Airaksinen J, et al. Usefulness of cardiac troponins as markers of early treatment response in cardiac sarcoidosis. Am J Cardiol 2015; 116: 960-4.
– reference: 45. Matsuyama W, Mitsuyama H, Watanabe M, et al. Involvement of discoidin domain receptor 1 in the deterioration of pulmonary sarcoidosis. Am J Respir Cell Mol Biol 2005; 33: 565-73.
– reference: 25. Ishiguchi H, Kobayashi S, Myoren T, et al. Urinary 8-Hydroxy-2'- deoxyguanosine as a myocardial oxidative stress marker is associated with ventricular tachycardia in patients with active cardiac sarcoidosis. Circ Cardiovasc Imaging 2017; 10.
– reference: 28. Amber KT, Bloom R, Mrowietz U, Hertl M. TNF-α: a treatment target or cause of sarcoidosis? J Eur Acad Dermatol Venereol 2015; 29: 2104-11.
– reference: 11. Facco M, Cabrelle A, Calabrese F, et al. TL1A/DR3 axis involvement in the inflammatory cytokine network during pulmonary sarcoidosis. Clin Mol Allergy 2015; 13: 16.
– reference: 38. Spinale FG, Janicki JS, Zile MR. Membrane-associated matrix proteolysis and heart failure. Circ Res 2013; 112: 195-208.
– reference: 41. Spinale FG, Mukherjee R, Zavadzkas JA, et al. Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction. J Biol Chem 2010; 285: 30316-27.
– reference: 32. Jaipersad AS, Lip GYH, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 2014; 63: 1-11.
– reference: 46. Brilha S, Sathyamoorthy T, Stuttaford LH, et al. Early secretory antigenic target-6 drives matrix metalloproteinase-10 gene expression and secretion in tuberculosis. Am J Respir Cell Mol Biol 2017; 56: 223-32.
– reference: 42. Su H, Spinale FG, Dobrucki LW, et al. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 2005; 112: 3157-67.
– reference: 2. Iannuzzi MC, Fontana JR. Sarcoidosis: clinical presentation, immunopathogenesis, and therapeutics. JAMA 2011; 305: 391-9.
– reference: 18. Osborne MT, Hulten EA, Singh A, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 166-74.
– reference: 36. Grutters JC, Fellrath JM, Mulder L, Janssen R, Van Den Bosch JMM, Van Velzen-Blad H. Serum soluble interleukin-2 receptor measurement in patients with sarcoidosis: a clinical evaluation. Chest 2003; 124: 186-95.
– reference: 44. Crouser ED, Culver DA, Knox KS, et al. Gene expression profiling identifies MMP-12 and ADAMDEC1 as potential pathogenic mediators of pulmonary sarcoidosis. Am J Respir Crit Care Med 2009; 179: 929-38.
– reference: 5. Slart RHJA, Glaudemans AWJM, Lancellotti P, et al. A joint procedural position statement on imaging in cardiac sarcoidosis: from the cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. J Nucl Cardiol 2018; 25: 298-319.
– reference: 22. Baba Y, Kubo T, Kitaoka H, et al. Usefulness of high-sensitive cardiac troponin T for evaluating the activity of cardiac sarcoidosis. Int Heart J 2012; 53: 287-92.
– reference: 29. Nakayama T, Hashimoto S, Amemiya E, Horie T. Elevation of plasma-soluble tumour necrosis factor receptors (TNF-R) in sarcoidosis. Clin Exp Immunol 1996; 104: 318-24.
– reference: 8. Alvi RM, Young BD, Shahab Z, et al. Repeatability and optimization of FDG positron emission tomography for evaluation of cardiac sarcoidosis. JACC Cardiovasc Imaging 2019; 12: 1284-7.
– reference: 14. Ahmadian A, Brogan A, Berman J, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 925-39.
– reference: 30. Ziegenhagen MW, Fitschen J, Martinet N, Schlaak M, Müller-Quernheim J. Serum level of soluble tumour necrosis factor receptor II (75 kDa) indicates inflammatory activity of sarcoidosis. J Intern Med 2000; 248: 33-41.
– reference: 10. González AA, Segura AM, Horiba K, et al. Matrix metalloproteinases and their tissue inhibitors in the lesions of cardiac and pulmonary sarcoidosis: an immunohistochemical study. Hum Pathol 2002; 33: 1158-64.
– reference: 24. Fujiwara W, Kato Y, Hayashi M, et al. Serum microRNA-126 and -223 as new-generation biomarkers for sarcoidosis in patients with heart failure. J Cardiol 2018; 72: 452-7.
– reference: 43. Piotrowski WJ, Górski P, Pietras T, Fendler W, Szemraj J. The selected genetic polymorphisms of metalloproteinases MMP2, 7, 9 and MMP inhibitor TIMP2 in sarcoidosis. Med Sci Monit 2011; 17: CR598-607.
– reference: 39. Razavian M, Tavakoli S, Zhang J, et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med 2011; 52: 1795-802.
– reference: 1. Birnie DH, Nery PB, Ha AC, Beanlands RSB. Cardiac sarcoidosis. J Am Coll Cardiol 2016; 68: 411-21.
– reference: 35. Thi Hong Nguyen C, Kambe N, Kishimoto I, Ueda-Hayakawa I, Okamoto H. Serum soluble interleukin-2 receptor level is more sensitive than angiotensin- converting enzyme or lysozyme for diagnosis of sarcoidosis and may be a marker of multiple organ involvement. J Dermatol 2017; 44: 789-97.
– reference: 23. Date T, Shinozaki T, Yamakawa M, et al. Elevated plasma brain natriuretic peptide level in cardiac sarcoidosis patients with preserved ejection fraction. Cardiology 2007; 107: 277-80.
– reference: 3. Lynch JP, Hwang J, Bradfield J, Fishbein M, Shivkumar K, Tung R. Cardiac involvement in sarcoidosis: evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2014; 35: 372-90.
– reference: 37. Mann DL, Spinale FG. Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds. Circulation 1998; 98: 1699-702.
– reference: 4. Yazaki Y, Isobe M, Hiroe M, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol 2001; 88: 1006-10.
– reference: 7. Lee PI, Cheng G, Alavi A. The role of serial FDG PET for assessing therapeutic response in patients with cardiac sarcoidosis. J Nucl Cardiol 2017; 24: 19-28.
– reference: 9. Elkington PTG, Friedland JS. Matrix metalloproteinases in destructive pulmonary pathology. Thorax 2006; 61: 259-66.
– reference: 6. Chareonthaitawee P, Beanlands RS, Chen W, et al. Joint SNMMI-ASNC expert consensus document on the role of 18 F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Med 2017; 58: 1341-53.
– reference: 17. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014; 63: 329-36.
– reference: 19. Simonen P, Lehtonen J, Kandolin R, et al. F-18-fluorodeoxyglucose positron emission tomography-guided sampling of mediastinal lymph nodes in the diagnosis of cardiac sarcoidosis. Am J Cardiol 2015; 116: 1581-5.
– reference: 31. Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol 2015; 15: 283-94.
– reference: 16. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, DaSilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007; 34: 1765-74.
– volume: 16
  start-page: 743
  issn: 1547-5271
  year: 2019
  ident: 13
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2018.11.026
– ident: 47
  doi: 10.1016/j.amjcard.2018.10.021
– volume: 104
  start-page: 318
  issn: 0009-9104
  year: 1996
  ident: 29
  publication-title: Clinical & Experimental Immunology
  doi: 10.1046/j.1365-2249.1996.13702.x
– ident: 15
  doi: 10.1007/s12350-016-0490-7
– ident: 6
  doi: 10.2967/jnumed.117.196287
– ident: 44
  doi: 10.1164/rccm.200803-490OC
– ident: 34
  doi: 10.1016/j.cytogfr.2006.07.003
– ident: 19
  doi: 10.1016/j.amjcard.2015.08.025
– ident: 24
  doi: 10.1016/j.jjcc.2018.06.004
– ident: 40
  doi: 10.1161/CIRCIMAGING.110.961854
– ident: 26
  doi: 10.1016/j.ijcard.2016.03.003
– ident: 28
  doi: 10.1111/jdv.13246
– ident: 33
  doi: 10.1182/blood-2004-08-3178
– ident: 46
  doi: 10.1165/rcmb.2016-0162OC
– ident: 43
  doi: 10.12659/MSM.881987
– ident: 9
  doi: 10.1136/thx.2005.051979
– volume: 98
  start-page: 1699
  issn: 0009-7322
  year: 1998
  ident: 37
  publication-title: Circulation
  doi: 10.1161/01.CIR.98.17.1699
– ident: 23
  doi: 10.1159/000095518
– ident: 25
  doi: 10.1161/CIRCIMAGING.117.006764
– ident: 32
  doi: 10.1016/j.jacc.2013.09.019
– ident: 16
  doi: 10.1007/s00259-007-0478-2
– ident: 35
  doi: 10.1111/1346-8138.13792
– volume: 11
  start-page: 1305
  issn: 1547-5271
  year: 2014
  ident: 12
  publication-title: Heart Rhythm
– ident: 41
  doi: 10.1074/jbc.M110.158196
– ident: 38
  doi: 10.1161/CIRCRESAHA.112.266882
– ident: 3
  doi: 10.1055/s-0034-1376889
– ident: 31
  doi: 10.1038/nri3823
– ident: 39
  doi: 10.2967/jnumed.111.092379
– ident: 2
  doi: 10.1001/jama.2011.10
– ident: 27
  doi: 10.1165/ajrcmb.10.5.8179912
– ident: 21
  doi: 10.1016/j.amjcard.2015.06.021
– ident: 1
  doi: 10.1016/j.jacc.2016.03.605
– ident: 4
  doi: 10.1016/S0002-9149(01)01978-6
– ident: 5
  doi: 10.1007/s12350-017-1043-4
– ident: 8
  doi: 10.1016/j.jcmg.2019.01.011
– ident: 11
  doi: 10.1186/s12948-015-0022-z
– ident: 14
  doi: 10.1007/s12350-014-9901-9
– ident: 30
  doi: 10.1046/j.1365-2796.2000.00685.x
– ident: 36
  doi: 10.1378/chest.124.1.186
– ident: 42
  doi: 10.1161/CIRCULATIONAHA.105.583021
– ident: 20
  doi: 10.1536/ihj.17-695
– ident: 7
  doi: 10.1007/s12350-016-0682-1
– ident: 10
  doi: 10.1053/hupa.2002.129423
– ident: 17
  doi: 10.1016/j.jacc.2013.09.022
– ident: 22
  doi: 10.1536/ihj.53.287
– ident: 18
  doi: 10.1007/s12350-013-9828-6
– ident: 45
  doi: 10.1165/rcmb.2005-0236OC
SSID ssj0041507
Score 2.2658403
Snippet While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1096
SubjectTerms Biomarkers
Biopsy
Congestive heart failure
Coronary artery disease
Cytokine receptors
Cytokines
FDG PET/CT
Gelatinase B
Growth factor receptors
IL-2
Inflammation
Matrix metalloproteinase
Metalloproteinase
MMP
Patients
Plasma
Positron emission tomography
Proteases
Proteolysis
Receptor mechanisms
Risk assessment
Sarcoidosis
TIMP
Tissue inhibitor of metalloproteinases
TNFα
Tumor necrosis factor
Tumor necrosis factor receptors
Tumor necrosis factor-TNF
Vascular endothelial growth factor
Vascular endothelial growth factor receptors
Title Cytokine Signaling and Matrix Remodeling Pathways Associated with Cardiac Sarcoidosis Disease Activity Defined Using FDG PET Imaging
URI https://www.jstage.jst.go.jp/article/ihj/62/5/62_21-164/_article/-char/en
https://www.proquest.com/docview/2578520520
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Heart Journal, 2021/09/29, Vol.62(5), pp.1096-1105
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCQYgL4ikCBVmCC1ptSPzYzR5DHg1IhUqkUm4r2-uWlJKgZCsIZ_4Tf4-ZtfdRmkPhYkWOva_57Pk8nvEQ8ioBnXMirQiNVlEoenEWamOh4DG3iTCMZxjvfPghmh6L93M5b7V-N7yWLnLdMT93xpX8j1ShDuSKUbL_INnqolABv0G-UIKEobyWjIfbfPUFaeKnxSkSah9veIjH7v-AL1ekucHaI-B539V2U0mjdDofFgAxaBg2q0W2wuNJRm7PJhgYn1liZE_gJlng3Asmo4PgaDwL3n0tEhw12e1l8yLmys6D5os0Z5e36y1MLaNOJfEVhtU4M_dULZe1nfpj4QnvgojONwsbjKtOk7W1uE_krAsbFQw6TTMG66HPhbd1uJmXC6jgLnFEx9Z1nLkMSuV0HbEGLGVj7u11k6ihx4HXyJ06QhZJbBafzzoMc2SLWhOWu_9_KcjKbREXTNA7hb4p66XQ9wa5yWB9gqkzDuaVb5FAll2s9P07-XNxoe-b-r6XmNCtM1gMnF5lBAXNmd0jd_36hA4c2O6Tll0-ILcPvQfGQ_KrxBytMEdBatRhjtaYoyXmaI05ipijHnO0gTnqMUdLzFGPOVpgjgLmKGCOesw9IseT8Ww4DX0mj9CIWOZh1tVJlCjJtMqAlQHPVjKzsQLlFhmtE8143M-AKcHiX2SgvC3nxsS8Z7qJEDzij8necrW0TwgVfQ0XM5JlXSOYUYpZq7SNgCf3E6VEm7wuv2pq_DH3mG3lPL0qvTZ5WbX95g532dkqccKp2vgBX7SJWCqxcG2rvzBmEqaoNtkv5Zn68bZJUUtKhg5oT6_1AM_InXrE7JO9fH1hnwMVzvWLAnZ_ALRLuac
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytokine+Signaling+and+Matrix+Remodeling+Pathways+Associated+with+Cardiac+Sarcoidosis+Disease+Activity+Defined+Using+FDG+PET+Imaging&rft.jtitle=International+heart+journal&rft.au=Young%2C+Bryan+D.&rft.au=Moreland%2C+Hannah&rft.au=Oatmen%2C+Kelsie+E.&rft.au=Freeburg%2C+Lisa+A.&rft.date=2021-09-29&rft.issn=1349-2365&rft.eissn=1349-3299&rft.volume=62&rft.issue=5&rft.spage=1096&rft.epage=1105&rft_id=info:doi/10.1536%2Fihj.21-164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1536_ihj_21_164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1349-2365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1349-2365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1349-2365&client=summon