Functional genomic screens with death rate analyses reveal mechanisms of drug action

A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because ‘chemo-genetic profiles’ are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation...

Full description

Saved in:
Bibliographic Details
Published inNature chemical biology Vol. 20; no. 11; pp. 1443 - 1452
Main Authors Honeywell, Megan E., Isidor, Marie S., Harper, Nicholas W., Fontana, Rachel E., Birdsall, Gavin A., Cruz-Gordillo, Peter, Porto, Sydney A., Jerome, Madison, Fraser, Cameron S., Sarosiek, Kristopher A., Guertin, David A., Spinelli, Jessica B., Lee, Michael J.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.11.2024
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because ‘chemo-genetic profiles’ are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response. MEDUSA is uniquely effective at identifying death regulatory genes. We apply MEDUSA to characterize DNA damage-induced lethality in the presence and absence of p53. Loss of p53 switches the mechanism of DNA damage-induced death from apoptosis to a non-apoptotic death that requires high respiration. These findings demonstrate the utility of MEDUSA both for determining the genetic dependencies of lethality and for revealing opportunities to potentiate chemo-efficacy in a cancer-specific manner. A method called MEDUSA was developed for identifying death regulatory genes in chemo-genetic profiling data, which enables characterization of a previously unappreciated mechanism of death induced by DNA damage in p53-deficient cells.
AbstractList A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because ‘chemo-genetic profiles’ are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response. MEDUSA is uniquely effective at identifying death regulatory genes. We apply MEDUSA to characterize DNA damage-induced lethality in the presence and absence of p53. Loss of p53 switches the mechanism of DNA damage-induced death from apoptosis to a non-apoptotic death that requires high respiration. These findings demonstrate the utility of MEDUSA both for determining the genetic dependencies of lethality and for revealing opportunities to potentiate chemo-efficacy in a cancer-specific manner.A method called MEDUSA was developed for identifying death regulatory genes in chemo-genetic profiling data, which enables characterization of a previously unappreciated mechanism of death induced by DNA damage in p53-deficient cells.
A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because 'chemo-genetic profiles' are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response. MEDUSA is uniquely effective at identifying death regulatory genes. We apply MEDUSA to characterize DNA damage-induced lethality in the presence and absence of p53. Loss of p53 switches the mechanism of DNA damage-induced death from apoptosis to a non-apoptotic death that requires high respiration. These findings demonstrate the utility of MEDUSA both for determining the genetic dependencies of lethality and for revealing opportunities to potentiate chemo-efficacy in a cancer-specific manner.
A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because ‘chemo-genetic profiles’ are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response. MEDUSA is uniquely effective at identifying death regulatory genes. We apply MEDUSA to characterize DNA damage-induced lethality in the presence and absence of p53. Loss of p53 switches the mechanism of DNA damage-induced death from apoptosis to a non-apoptotic death that requires high respiration. These findings demonstrate the utility of MEDUSA both for determining the genetic dependencies of lethality and for revealing opportunities to potentiate chemo-efficacy in a cancer-specific manner. A method called MEDUSA was developed for identifying death regulatory genes in chemo-genetic profiling data, which enables characterization of a previously unappreciated mechanism of death induced by DNA damage in p53-deficient cells.
A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because “chemo-genetic profiles” are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. We developed M ethod for E valuating D eath U sing a S imulation-assisted A pproach ( MEDUSA ), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response. MEDUSA is uniquely effective at identifying death-regulatory genes. We apply MEDUSA to characterize DNA damage-induced lethality in the presence and absence of p53. Loss of p53 switches the mechanism of DNA damage-induced death from apoptosis to a non-apoptotic death that requires high respiration. These findings demonstrate the utility of MEDUSA, both for determining the genetic dependencies of lethality, and for revealing opportunities to potentiate chemo-efficacy in a cancer-specific manner.
A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because 'chemo-genetic profiles' are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response. MEDUSA is uniquely effective at identifying death regulatory genes. We apply MEDUSA to characterize DNA damage-induced lethality in the presence and absence of p53. Loss of p53 switches the mechanism of DNA damage-induced death from apoptosis to a non-apoptotic death that requires high respiration. These findings demonstrate the utility of MEDUSA both for determining the genetic dependencies of lethality and for revealing opportunities to potentiate chemo-efficacy in a cancer-specific manner.A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because 'chemo-genetic profiles' are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response. MEDUSA is uniquely effective at identifying death regulatory genes. We apply MEDUSA to characterize DNA damage-induced lethality in the presence and absence of p53. Loss of p53 switches the mechanism of DNA damage-induced death from apoptosis to a non-apoptotic death that requires high respiration. These findings demonstrate the utility of MEDUSA both for determining the genetic dependencies of lethality and for revealing opportunities to potentiate chemo-efficacy in a cancer-specific manner.
Author Porto, Sydney A.
Honeywell, Megan E.
Spinelli, Jessica B.
Guertin, David A.
Isidor, Marie S.
Harper, Nicholas W.
Cruz-Gordillo, Peter
Jerome, Madison
Fontana, Rachel E.
Fraser, Cameron S.
Sarosiek, Kristopher A.
Birdsall, Gavin A.
Lee, Michael J.
AuthorAffiliation 2 Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605 USA
1 Department of Systems Biology, UMass Chan Medical School, Worcester, MA, 01605 USA
4 John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115 USA
3 Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
AuthorAffiliation_xml – name: 1 Department of Systems Biology, UMass Chan Medical School, Worcester, MA, 01605 USA
– name: 2 Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605 USA
– name: 4 John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115 USA
– name: 3 Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Author_xml – sequence: 1
  givenname: Megan E.
  orcidid: 0000-0002-4894-8672
  surname: Honeywell
  fullname: Honeywell, Megan E.
  organization: Department of Systems Biology, UMass Chan Medical School
– sequence: 2
  givenname: Marie S.
  orcidid: 0000-0003-3396-5389
  surname: Isidor
  fullname: Isidor, Marie S.
  organization: Program in Molecular Medicine, UMass Chan Medical School, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 3
  givenname: Nicholas W.
  orcidid: 0000-0002-4037-7473
  surname: Harper
  fullname: Harper, Nicholas W.
  organization: Department of Systems Biology, UMass Chan Medical School
– sequence: 4
  givenname: Rachel E.
  surname: Fontana
  fullname: Fontana, Rachel E.
  organization: Department of Systems Biology, UMass Chan Medical School
– sequence: 5
  givenname: Gavin A.
  surname: Birdsall
  fullname: Birdsall, Gavin A.
  organization: Department of Systems Biology, UMass Chan Medical School
– sequence: 6
  givenname: Peter
  orcidid: 0000-0002-0264-7348
  surname: Cruz-Gordillo
  fullname: Cruz-Gordillo, Peter
  organization: Department of Systems Biology, UMass Chan Medical School
– sequence: 7
  givenname: Sydney A.
  orcidid: 0009-0009-7329-404X
  surname: Porto
  fullname: Porto, Sydney A.
  organization: Department of Systems Biology, UMass Chan Medical School
– sequence: 8
  givenname: Madison
  surname: Jerome
  fullname: Jerome, Madison
  organization: Program in Molecular Medicine, UMass Chan Medical School
– sequence: 9
  givenname: Cameron S.
  orcidid: 0000-0002-8180-5913
  surname: Fraser
  fullname: Fraser, Cameron S.
  organization: John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health
– sequence: 10
  givenname: Kristopher A.
  orcidid: 0000-0002-4618-5085
  surname: Sarosiek
  fullname: Sarosiek, Kristopher A.
  organization: John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health
– sequence: 11
  givenname: David A.
  surname: Guertin
  fullname: Guertin, David A.
  organization: Program in Molecular Medicine, UMass Chan Medical School
– sequence: 12
  givenname: Jessica B.
  surname: Spinelli
  fullname: Spinelli, Jessica B.
  organization: Program in Molecular Medicine, UMass Chan Medical School
– sequence: 13
  givenname: Michael J.
  orcidid: 0000-0003-3378-6196
  surname: Lee
  fullname: Lee, Michael J.
  email: michael.lee@umassmed.edu
  organization: Department of Systems Biology, UMass Chan Medical School, Program in Molecular Medicine, UMass Chan Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38480981$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LHTEUxYNY6uc_0EUZ6MbNtPn-WJUi1RaEbuw65GVu3ovMJDaZUfzvG31qrQs3yYX7O4fDPQdoN-UECH0g-DPBTH-pnAhtekx5j9vEe7WD9okQtOdcmt3nWeA9dFDrFcZMSqLfoz2mucZGk310ebYkP8ec3NitIeUp-q76ApBqdxvnTTeAa29xM3SuQXcValfgBho_gd-4FOtUuxy6oSzrzj14HaF3wY0Vjh__Q_T77Pvl6Y_-4tf5z9NvF73nSsy9D2TwlPiWkkOgcuXN4J1UPmCiGNdGCimAaqMD83oVVkQHLZ1XijpHBGeH6OvW93pZTTB4SHNxo70ucXLlzmYX7f-bFDd2nW8sIcwwollzOHl0KPnPAnW2U6wextElyEu11AhFpBQKN_TTK_QqL6WdpFpGKJaGM6wb9fFlpOcsTxdvgN4CvuRaCwTr4-zur9YSxtESbO_LtdtybSvXPpRrVZPSV9In9zdFbCuqDU5rKP9iv6H6C4aZt7s
CitedBy_id crossref_primary_10_1016_j_devcel_2024_09_004
crossref_primary_10_1007_s10120_024_01537_y
crossref_primary_10_1038_s41589_024_01594_5
Cites_doi 10.1016/j.cell.2015.11.015
10.15252/embr.202051015
10.1074/jbc.M408388200
10.1186/s13059-021-02540-7
10.1038/s41586-022-04475-w
10.1126/science.1092734
10.1038/s41590-017-0013-y
10.1016/j.xpro.2021.100327
10.1186/s12864-020-6714-x
10.1038/s41556-020-0565-1
10.1038/nmeth.3853
10.1158/1078-0432.CCR-08-0399
10.1016/j.ccell.2018.11.004
10.1016/j.molcel.2018.01.023
10.1016/j.cell.2008.03.037
10.1126/science.1206727
10.1007/978-1-4939-8861-7_4
10.1126/science.288.5468.1053
10.1158/1541-7786.MCR-14-0177
10.1016/j.csbj.2019.09.006
10.3389/fphar.2022.970553
10.1126/science.aam6468
10.1016/j.celrep.2020.107845
10.1038/s41418-017-0012-4
10.1101/gad.10.15.1945
10.1016/j.molcel.2019.02.012
10.1126/science.1247005
10.1016/S1097-2765(01)00214-3
10.1002/9780470942390.mo150182
10.1016/j.cell.2012.05.014
10.1126/science.1090072
10.1038/nature14344
10.1016/j.cmet.2016.08.017
10.1186/s13073-019-0665-3
10.1126/science.abf0529
10.1016/j.trecan.2019.07.008
10.1016/j.cell.2016.03.025
10.1016/j.ajpath.2014.02.028
10.1016/j.molcel.2007.11.015
10.1038/s41589-020-0510-4
10.1126/science.7973635
10.1038/s41576-021-00409-w
10.1016/0092-8674(93)90719-7
10.1016/j.celrep.2020.107800
10.1016/j.cmet.2023.08.008
10.1016/j.cels.2017.05.002
10.1042/BST0370483
10.1016/j.cell.2020.05.040
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1038/s41589-024-01584-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1552-4469
EndPage 1452
ExternalDocumentID PMC11393183
38480981
10_1038_s41589_024_01584_7
Genre Journal Article
GrantInformation_xml – fundername: Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
  grantid: NNF18CC0034900
  funderid: https://doi.org/10.13039/501100011747
– fundername: American Cancer Society (American Cancer Society, Inc.)
  grantid: RSG-17-011-01
  funderid: https://doi.org/10.13039/100000048
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: F31 CA268847
  funderid: https://doi.org/10.13039/100000054
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R01 GM127559
  funderid: https://doi.org/10.13039/100000057
– fundername: JKTG Foundation
– fundername: Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
  grantid: NNF18CC0034900
– fundername: NCI NIH HHS
  grantid: R37 CA248565
– fundername: American Cancer Society (American Cancer Society, Inc.)
  grantid: RSG-17-011-01
– fundername: EPA
  grantid: EP-W-17-011
– fundername: NIGMS NIH HHS
  grantid: R01 GM127559
– fundername: NCI NIH HHS
  grantid: F31 CA268847
GroupedDBID ---
0R~
123
29M
39C
3V.
4.4
53G
5BI
70F
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
KB.
KC.
LK5
LK8
M0L
M1P
M2P
M7P
M7R
NACWA
NNMJJ
O9-
ODYON
P2P
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
ADXHL
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
PJZUB
PPXIY
PQGLB
ID FETCH-LOGICAL-c475t-cf1dc21c5524ef26bc9dca67cf01734896565e2898f3c8bfb18f86ac772aa1543
ISSN 1552-4450
1552-4469
IngestDate Thu Aug 21 18:26:12 EDT 2025
Fri Jul 11 08:16:03 EDT 2025
Sat Aug 23 12:43:27 EDT 2025
Sat May 31 02:13:10 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Tue Jul 01 01:27:51 EDT 2025
Fri Feb 21 02:37:17 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c475t-cf1dc21c5524ef26bc9dca67cf01734896565e2898f3c8bfb18f86ac772aa1543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AUTHOR CONTRIBUTIONS
This project was conceived by MEH and MJL. MEH performed all experiments and analyses in this study, including all drug sensitivity studies, cell and reagent development, biochemical evaluation of mitochondrial function, genetic evaluation of mechanisms of cell death, and the execution and analysis of chemo-genetic profiling. MEDUSA was developed and validated by MEH. GRADE-based evaluation of growth and death rates was performed by MEH and MJL. NWH assisted with modeling error types in conventional chemo-genetic profiling. REF assisted with screen parameterization. GAB assisted with profiling DNA damage signaling in U2OS and p53KO cells. PCG assisted with cell line selection and evaluation of DNA damage sensitivity. SAP assisted with evaluating morphology and stability of non-apoptotic and apoptotic cells. BH3 profiling experiments were designed, executed, and analyzed by CSF and KAS. Seahorse experiments were performed by MSI and MEH, with DAG assisting with design, interpretation, and analysis. Metabolomic profiling experiments were designed and analyzed by MEH and JBS, and performed by MEH, JBS, and MJ. JBS assisted with the design, interpretation, and analysis of assays to assess mitochondrial abundance and ETC protein composition. Meta-analysis of published screens was performed by MJL. All other experiments, statistical analyses, and modeling were conducted by MEH. MEH and MJL wrote and edited the manuscript.
ORCID 0000-0002-0264-7348
0000-0002-4618-5085
0000-0002-4037-7473
0000-0002-4894-8672
0000-0002-8180-5913
0000-0003-3396-5389
0000-0003-3378-6196
0009-0009-7329-404X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11393183
PMID 38480981
PQID 3120694308
PQPubID 29034
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11393183
proquest_miscellaneous_2957166570
proquest_journals_3120694308
pubmed_primary_38480981
crossref_citationtrail_10_1038_s41589_024_01584_7
crossref_primary_10_1038_s41589_024_01584_7
springer_journals_10_1038_s41589_024_01584_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Cambridge
PublicationTitle Nature chemical biology
PublicationTitleAbbrev Nat Chem Biol
PublicationTitleAlternate Nat Chem Biol
PublicationYear 2024
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Arroyo (CR31) 2016; 24
Chonghaile (CR5) 2011; 334
Sidi (CR41) 2008; 133
Fraser, Ryan, Sarosiek (CR48) 2018; 1877
Berndtsson (CR36) 2020; 21
Tabe (CR46) 2009; 15
Arena (CR34) 2018; 69
Holze (CR4) 2018; 19
Harper, Elledge (CR12) 2007; 28
Shalem (CR28) 2014; 343
Schellenberg (CR33) 2017; 357
Jha, Wang, Auwerx (CR50) 2016; 6
Elkholi (CR35) 2019; 74
Jiang (CR44) 2015; 520
Galluzzi (CR1) 2018; 25
Maltese, Overmeyer (CR3) 2014; 184
Villunger (CR14) 2003; 302
Richards, Honeywell, Lee (CR16) 2021; 2
Tsvetkov (CR2) 2022; 375
Revollo, Grimm, Imai (CR38) 2004; 279
Richards (CR17) 2020; 16
Schwartz (CR11) 2020; 31
Przybyla, Gilbert (CR7) 2021; 23
Hafner, Niepel, Chung, Sorger (CR9) 2016; 13
Wei, Xiang, Zhang (CR39) 2022; 13
Forcina, Conlon, Wells, Cao, Dixon (CR20) 2017; 4
Oda (CR24) 2000; 288
Merino (CR6) 2018; 34
Lowe, Ruley, Jacks, Housman (CR18) 1993; 74
Hart (CR30) 2015; 163
Colic (CR27) 2019; 11
Lowe (CR40) 1994; 266
Fraser, Ryan, Sarosiek (CR49) 2019; 1877
Riegman, Bradbury, Overholtzer (CR23) 2019; 5
Paek, Liu, Loewer, Forrester, Lahav (CR19) 2016; 165
Jackson (CR13) 2009; 37
Riegman (CR22) 2020; 22
Chipuk (CR26) 2004; 303
Yukselen, Turkyilmaz, Ozturk, Garber, Kucukural (CR47) 2020; 21
Nakano, Vousden (CR25) 2001; 7
Dempster (CR10) 2021; 22
Arnold (CR37) 2022; 603
Lukin, Carvajal, Liu, Resnick-Silverman, Manfredi (CR42) 2015; 13
Vaseva (CR45) 2012; 149
Polyak, Waldman, He, Kinzler, Vogelstein (CR15) 1996; 10
Olivieri (CR29) 2020; 182
Colville (CR32) 2023; 35
Colic, Hart (CR8) 2019; 17
Subramanian, Tarodi, Chinnadurai (CR43) 1995; 6
Inde, Forcina, Denton, Dixon (CR21) 2020; 32
M Riegman (1584_CR22) 2020; 22
JE Chipuk (1584_CR26) 2004; 303
MJ Schellenberg (1584_CR33) 2017; 357
SW Lowe (1584_CR40) 1994; 266
WA Maltese (1584_CR3) 2014; 184
M Hafner (1584_CR9) 2016; 13
T Subramanian (1584_CR43) 1995; 6
C Fraser (1584_CR48) 2018; 1877
R Richards (1584_CR16) 2021; 2
O Yukselen (1584_CR47) 2020; 21
DJ Lukin (1584_CR42) 2015; 13
S Sidi (1584_CR41) 2008; 133
SW Lowe (1584_CR18) 1993; 74
A Villunger (1584_CR14) 2003; 302
M Colic (1584_CR27) 2019; 11
T Hart (1584_CR30) 2015; 163
JM Dempster (1584_CR10) 2021; 22
R Elkholi (1584_CR35) 2019; 74
M Colic (1584_CR8) 2019; 17
M Riegman (1584_CR23) 2019; 5
P Tsvetkov (1584_CR2) 2022; 375
Y Tabe (1584_CR46) 2009; 15
L Galluzzi (1584_CR1) 2018; 25
JD Arroyo (1584_CR31) 2016; 24
M Olivieri (1584_CR29) 2020; 182
TN Chonghaile (1584_CR5) 2011; 334
E Oda (1584_CR24) 2000; 288
A Colville (1584_CR32) 2023; 35
G Arena (1584_CR34) 2018; 69
SP Jackson (1584_CR13) 2009; 37
K Nakano (1584_CR25) 2001; 7
C Fraser (1584_CR49) 2019; 1877
P Jha (1584_CR50) 2016; 6
JW Harper (1584_CR12) 2007; 28
R Richards (1584_CR17) 2020; 16
J Berndtsson (1584_CR36) 2020; 21
PK Arnold (1584_CR37) 2022; 603
GC Forcina (1584_CR20) 2017; 4
O Shalem (1584_CR28) 2014; 343
C Holze (1584_CR4) 2018; 19
Z Inde (1584_CR21) 2020; 32
Y Wei (1584_CR39) 2022; 13
K Polyak (1584_CR15) 1996; 10
JR Revollo (1584_CR38) 2004; 279
D Merino (1584_CR6) 2018; 34
HR Schwartz (1584_CR11) 2020; 31
AV Vaseva (1584_CR45) 2012; 149
L Przybyla (1584_CR7) 2021; 23
L Jiang (1584_CR44) 2015; 520
AL Paek (1584_CR19) 2016; 165
References_xml – volume: 163
  start-page: 1515
  year: 2015
  end-page: 1526
  ident: CR30
  article-title: High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.015
– volume: 21
  year: 2020
  ident: CR36
  article-title: Respiratory supercomplexes enhance electron transport by decreasing cytochrome diffusion distance
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202051015
– volume: 279
  start-page: 50754
  year: 2004
  end-page: 50763
  ident: CR38
  article-title: The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408388200
– volume: 22
  year: 2021
  ident: CR10
  article-title: Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02540-7
– volume: 603
  start-page: 477
  year: 2022
  end-page: 481
  ident: CR37
  article-title: A non-canonical tricarboxylic acid cycle underlies cellular identity
  publication-title: Nature
  doi: 10.1038/s41586-022-04475-w
– volume: 303
  start-page: 1010
  year: 2004
  end-page: 1014
  ident: CR26
  article-title: Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis
  publication-title: Science
  doi: 10.1126/science.1092734
– volume: 19
  start-page: 130
  year: 2018
  end-page: 140
  ident: CR4
  article-title: Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-017-0013-y
– volume: 2
  start-page: 100327
  year: 2021
  ident: CR16
  article-title: FLICK: an optimized plate reader-based assay to infer cell death kinetics
  publication-title: STAR Protoc.
  doi: 10.1016/j.xpro.2021.100327
– volume: 21
  year: 2020
  ident: CR47
  article-title: DolphinNext: a distributed data processing platform for high throughput genomics
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-6714-x
– volume: 22
  start-page: 1042
  year: 2020
  end-page: 1048
  ident: CR22
  article-title: Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-0565-1
– volume: 13
  start-page: 521
  year: 2016
  end-page: 527
  ident: CR9
  article-title: Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3853
– volume: 15
  start-page: 933
  year: 2009
  end-page: 942
  ident: CR46
  article-title: MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-0399
– volume: 34
  start-page: 879
  year: 2018
  end-page: 891
  ident: CR6
  article-title: BH3-mimetic drugs: blazing the trail for new cancer medicines
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.11.004
– volume: 69
  start-page: 594
  year: 2018
  end-page: 609
  ident: CR34
  article-title: Mitochondrial MDM2 regulates respiratory complex I activity independently of p53
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.01.023
– volume: 133
  start-page: 864
  year: 2008
  end-page: 877
  ident: CR41
  article-title: Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.037
– volume: 334
  start-page: 1129
  year: 2011
  end-page: 1133
  ident: CR5
  article-title: Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy
  publication-title: Science
  doi: 10.1126/science.1206727
– volume: 1877
  start-page: 61
  year: 2019
  end-page: 76
  ident: CR49
  article-title: BH3 profiling: a functional assay to measure apoptotic priming and dependencies
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8861-7_4
– volume: 288
  start-page: 1053
  year: 2000
  end-page: 1058
  ident: CR24
  article-title: Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-Induced apoptosis
  publication-title: Science
  doi: 10.1126/science.288.5468.1053
– volume: 13
  start-page: 16
  year: 2015
  end-page: 28
  ident: CR42
  article-title: p53 promotes cell survival due to the reversibility of its cell-cycle checkpoints
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-14-0177
– volume: 17
  start-page: 1318
  year: 2019
  end-page: 1325
  ident: CR8
  article-title: Chemo-genetic interactions in human cancer cells
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2019.09.006
– volume: 13
  start-page: 970553
  year: 2022
  ident: CR39
  article-title: Review of various NAMPT inhibitors for the treatment of cancer
  publication-title: Front Pharm.
  doi: 10.3389/fphar.2022.970553
– volume: 357
  start-page: 1412
  year: 2017
  end-page: 1416
  ident: CR33
  article-title: ZATT (ZNF451)–mediated resolution of topoisomerase 2 DNA-protein cross-links
  publication-title: Science
  doi: 10.1126/science.aam6468
– volume: 32
  start-page: 107845
  year: 2020
  ident: CR21
  article-title: Kinetic heterogeneity of cancer cell fractional killing
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.107845
– volume: 25
  start-page: 486
  year: 2018
  end-page: 581
  ident: CR1
  article-title: Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-017-0012-4
– volume: 10
  start-page: 1945
  year: 1996
  end-page: 1952
  ident: CR15
  article-title: Genetic determinants of p53-induced apoptosis and growth arrest
  publication-title: Genes Dev.
  doi: 10.1101/gad.10.15.1945
– volume: 74
  start-page: 452
  year: 2019
  end-page: 465
  ident: CR35
  article-title: MDM2 integrates cellular respiration and apoptotic signaling through NDUFS1 and the mitochondrial network
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.012
– volume: 1877
  start-page: 61
  year: 2018
  end-page: 76
  ident: CR48
  article-title: BCL-2 family proteins, methods and protocols
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8861-7_4
– volume: 343
  start-page: 84
  year: 2014
  end-page: 87
  ident: CR28
  article-title: Genome-scale CRISPR–Cas9 knockout screening in human cells
  publication-title: Science
  doi: 10.1126/science.1247005
– volume: 7
  start-page: 683
  year: 2001
  end-page: 694
  ident: CR25
  article-title: , a novel proapoptotic gene, is induced by p53
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00214-3
– volume: 6
  start-page: 1
  year: 2016
  end-page: 14
  ident: CR50
  article-title: Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE)
  publication-title: Curr. Protoc. Mouse Biol.
  doi: 10.1002/9780470942390.mo150182
– volume: 149
  start-page: 1536
  year: 2012
  end-page: 1548
  ident: CR45
  article-title: p53 opens the mitochondrial permeability transition pore to trigger necrosis
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.014
– volume: 302
  start-page: 1036
  year: 2003
  end-page: 1038
  ident: CR14
  article-title: p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa
  publication-title: Science
  doi: 10.1126/science.1090072
– volume: 520
  start-page: 57
  year: 2015
  end-page: 62
  ident: CR44
  article-title: Ferroptosis as a p53-mediated activity during tumour suppression
  publication-title: Nature
  doi: 10.1038/nature14344
– volume: 24
  start-page: 875
  year: 2016
  end-page: 885
  ident: CR31
  article-title: A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.017
– volume: 11
  year: 2019
  ident: CR27
  article-title: Identifying chemo-genetic interactions from CRISPR screens with drugZ
  publication-title: Genome Med.
  doi: 10.1186/s13073-019-0665-3
– volume: 375
  start-page: 1254
  year: 2022
  end-page: 1261
  ident: CR2
  article-title: Copper induces cell death by targeting lipoylated TCA cycle proteins
  publication-title: Science
  doi: 10.1126/science.abf0529
– volume: 5
  start-page: 558
  year: 2019
  end-page: 568
  ident: CR23
  article-title: Population dynamics in cell death: mechanisms of propagation
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2019.07.008
– volume: 165
  start-page: 631
  year: 2016
  end-page: 642
  ident: CR19
  article-title: Cell-to-cell variation in p53 dynamics leads to fractional killing
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.025
– volume: 184
  start-page: 1630
  year: 2014
  end-page: 1642
  ident: CR3
  article-title: Methuosis nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2014.02.028
– volume: 28
  start-page: 739
  year: 2007
  end-page: 745
  ident: CR12
  article-title: The DNA damage response: ten years after
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.11.015
– volume: 16
  start-page: 791
  year: 2020
  end-page: 800
  ident: CR17
  article-title: Drug antagonism and single-agent dominance result from differences in death kinetics
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0510-4
– volume: 266
  start-page: 807
  year: 1994
  end-page: 810
  ident: CR40
  article-title: p53 status and the efficacy of cancer therapy in vivo
  publication-title: Science
  doi: 10.1126/science.7973635
– volume: 23
  start-page: 89
  year: 2021
  end-page: 103
  ident: CR7
  article-title: A new era in functional genomics screens
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00409-w
– volume: 74
  start-page: 957
  year: 1993
  end-page: 967
  ident: CR18
  article-title: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90719-7
– volume: 31
  year: 2020
  ident: CR11
  article-title: Drug GRADE: an integrated analysis of population growth and cell death reveals drug-specific and cancer subtype-specific response profiles
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.107800
– volume: 6
  start-page: 131
  year: 1995
  end-page: 137
  ident: CR43
  article-title: p53-independent apoptotic and necrotic cell deaths induced by adenovirus infection: suppression by E1B 19K and Bcl-2 proteins
  publication-title: Cell Growth Differ.
– volume: 35
  start-page: 1814
  year: 2023
  end-page: 1829.e6
  ident: CR32
  article-title: Death-seq identifies regulators of cell death and senolytic therapies
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2023.08.008
– volume: 4
  start-page: 600
  year: 2017
  end-page: 610
  ident: CR20
  article-title: Systematic quantification of population cell death kinetics in mammalian cells
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.05.002
– volume: 37
  start-page: 483
  year: 2009
  ident: CR13
  article-title: The DNA-damage response: new molecular insights and new approaches to cancer therapy
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0370483
– volume: 182
  start-page: 481
  year: 2020
  end-page: 496
  ident: CR29
  article-title: A genetic map of the response to DNA damage in human cells
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.040
– volume: 375
  start-page: 1254
  year: 2022
  ident: 1584_CR2
  publication-title: Science
  doi: 10.1126/science.abf0529
– volume: 10
  start-page: 1945
  year: 1996
  ident: 1584_CR15
  publication-title: Genes Dev.
  doi: 10.1101/gad.10.15.1945
– volume: 69
  start-page: 594
  year: 2018
  ident: 1584_CR34
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.01.023
– volume: 7
  start-page: 683
  year: 2001
  ident: 1584_CR25
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00214-3
– volume: 34
  start-page: 879
  year: 2018
  ident: 1584_CR6
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.11.004
– volume: 23
  start-page: 89
  year: 2021
  ident: 1584_CR7
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00409-w
– volume: 184
  start-page: 1630
  year: 2014
  ident: 1584_CR3
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2014.02.028
– volume: 24
  start-page: 875
  year: 2016
  ident: 1584_CR31
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.017
– volume: 520
  start-page: 57
  year: 2015
  ident: 1584_CR44
  publication-title: Nature
  doi: 10.1038/nature14344
– volume: 149
  start-page: 1536
  year: 2012
  ident: 1584_CR45
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.014
– volume: 334
  start-page: 1129
  year: 2011
  ident: 1584_CR5
  publication-title: Science
  doi: 10.1126/science.1206727
– volume: 74
  start-page: 957
  year: 1993
  ident: 1584_CR18
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90719-7
– volume: 603
  start-page: 477
  year: 2022
  ident: 1584_CR37
  publication-title: Nature
  doi: 10.1038/s41586-022-04475-w
– volume: 22
  year: 2021
  ident: 1584_CR10
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02540-7
– volume: 5
  start-page: 558
  year: 2019
  ident: 1584_CR23
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2019.07.008
– volume: 25
  start-page: 486
  year: 2018
  ident: 1584_CR1
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-017-0012-4
– volume: 15
  start-page: 933
  year: 2009
  ident: 1584_CR46
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-0399
– volume: 302
  start-page: 1036
  year: 2003
  ident: 1584_CR14
  publication-title: Science
  doi: 10.1126/science.1090072
– volume: 288
  start-page: 1053
  year: 2000
  ident: 1584_CR24
  publication-title: Science
  doi: 10.1126/science.288.5468.1053
– volume: 163
  start-page: 1515
  year: 2015
  ident: 1584_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.015
– volume: 182
  start-page: 481
  year: 2020
  ident: 1584_CR29
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.040
– volume: 11
  year: 2019
  ident: 1584_CR27
  publication-title: Genome Med.
  doi: 10.1186/s13073-019-0665-3
– volume: 22
  start-page: 1042
  year: 2020
  ident: 1584_CR22
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-0565-1
– volume: 13
  start-page: 16
  year: 2015
  ident: 1584_CR42
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-14-0177
– volume: 303
  start-page: 1010
  year: 2004
  ident: 1584_CR26
  publication-title: Science
  doi: 10.1126/science.1092734
– volume: 1877
  start-page: 61
  year: 2018
  ident: 1584_CR48
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8861-7_4
– volume: 13
  start-page: 521
  year: 2016
  ident: 1584_CR9
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3853
– volume: 35
  start-page: 1814
  year: 2023
  ident: 1584_CR32
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2023.08.008
– volume: 6
  start-page: 131
  year: 1995
  ident: 1584_CR43
  publication-title: Cell Growth Differ.
– volume: 28
  start-page: 739
  year: 2007
  ident: 1584_CR12
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.11.015
– volume: 21
  year: 2020
  ident: 1584_CR36
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202051015
– volume: 17
  start-page: 1318
  year: 2019
  ident: 1584_CR8
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2019.09.006
– volume: 32
  start-page: 107845
  year: 2020
  ident: 1584_CR21
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.107845
– volume: 21
  year: 2020
  ident: 1584_CR47
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-6714-x
– volume: 1877
  start-page: 61
  year: 2019
  ident: 1584_CR49
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8861-7_4
– volume: 266
  start-page: 807
  year: 1994
  ident: 1584_CR40
  publication-title: Science
  doi: 10.1126/science.7973635
– volume: 133
  start-page: 864
  year: 2008
  ident: 1584_CR41
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.037
– volume: 279
  start-page: 50754
  year: 2004
  ident: 1584_CR38
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408388200
– volume: 16
  start-page: 791
  year: 2020
  ident: 1584_CR17
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0510-4
– volume: 165
  start-page: 631
  year: 2016
  ident: 1584_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.025
– volume: 19
  start-page: 130
  year: 2018
  ident: 1584_CR4
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-017-0013-y
– volume: 357
  start-page: 1412
  year: 2017
  ident: 1584_CR33
  publication-title: Science
  doi: 10.1126/science.aam6468
– volume: 37
  start-page: 483
  year: 2009
  ident: 1584_CR13
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0370483
– volume: 4
  start-page: 600
  year: 2017
  ident: 1584_CR20
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.05.002
– volume: 74
  start-page: 452
  year: 2019
  ident: 1584_CR35
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.012
– volume: 31
  year: 2020
  ident: 1584_CR11
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.107800
– volume: 2
  start-page: 100327
  year: 2021
  ident: 1584_CR16
  publication-title: STAR Protoc.
  doi: 10.1016/j.xpro.2021.100327
– volume: 13
  start-page: 970553
  year: 2022
  ident: 1584_CR39
  publication-title: Front Pharm.
  doi: 10.3389/fphar.2022.970553
– volume: 6
  start-page: 1
  year: 2016
  ident: 1584_CR50
  publication-title: Curr. Protoc. Mouse Biol.
  doi: 10.1002/9780470942390.mo150182
– volume: 343
  start-page: 84
  year: 2014
  ident: 1584_CR28
  publication-title: Science
  doi: 10.1126/science.1247005
SSID ssj0036618
Score 2.480735
Snippet A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1443
SubjectTerms 631/67/1059
631/80/82
631/92/360
631/92/609
631/92/93
Antineoplastic Agents - pharmacology
Apoptosis
Apoptosis - drug effects
Apoptosis - genetics
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Cell death
Cell Death - drug effects
Cell Death - genetics
Cell Line, Tumor
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Damage detection
Deoxyribonucleic acid
DNA
DNA damage
DNA Damage - drug effects
DNA fingerprinting
Effectiveness
Genes
Genetic analysis
Genetic diversity
Genomics - methods
Humans
Lethality
Mortality
p53 Protein
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Title Functional genomic screens with death rate analyses reveal mechanisms of drug action
URI https://link.springer.com/article/10.1038/s41589-024-01584-7
https://www.ncbi.nlm.nih.gov/pubmed/38480981
https://www.proquest.com/docview/3120694308
https://www.proquest.com/docview/2957166570
https://pubmed.ncbi.nlm.nih.gov/PMC11393183
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbG9gAvCDYuhYGMhHgJKY2di_PYTasmpPaFTuwtShxnq7SlUy9I4w_xNznHlyRdGWK8RFXs5uLz5Vzscz4T8lEqjrtLF76QZeyHYcV9IWTopxyME0uZKBOsRh5P4tOz8Ot5dL6z86uTtbReFX358491Jf8jVTgHcsUq2QdItrkonIDfIF84goTh-E8yHoFRsnN5yLWKae6gBTAyNfOrJfp3HpJBeLkmH1G4SPBD6YoRLPmdLa91Kke5WF94psSh661ONOunJx2pgGVsaqAwr9Wty6oeqwtQFSf9Fmuz0kwFjDEc9771W2W3uDFAARhiaL30vjeNo3kN7qrxaJFr-spd0s5MsNCW6DWJG-YZ706nNdSKRt9GDBBiuGf7qnvO7ODilDQbdMEYdFQuRIS8Y76D0DDibpkGQwS_BIcFk8QY5t6A8-UnrSFs0hP1wjwXmemcQedMd86SR2SPQTwCCnVvODo6mjijz8HN0VWX7n1sfRZc5cv2LTd9oK3AZjs_984ivfZ9ps_IUxu00KFB4HOyo-p9cjCs89X8-pZ-ojqNWENjnzw-dlsIHpBpC1BqAUotQCkClGqAUgQodQClBqC0BSidVxQBSg1AX5Cz0cn0-NS323j4MkyilS-roJQskDA0oapYXMi0lHmcyAqsAQ9FCiFFpCDwFxWXoqiKQFQiziWMc56Dh89fkt0aAP2aUJx-iNNBVRS8QM-_KKsor1LwWkvwPcugRwI3sJm0HPe41cpVdr9Ie8Rr_nNjGF7-2vvQySuzmmCZ8YBh_TgfiB750DTDWOPiW16r-XqZsTRKAlzmHPTIKyPe5nZchGKQCnh8sSH4pgNywG-21LNLzQUfQASHZrlHPjuMtM91_2u8eVj3t-RJ-4Efkt3VYq3egTO-Kt7bD-E3XvXaug
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+genomic+screens+with+death+rate+analyses+reveal+mechanisms+of+drug+action&rft.jtitle=Nature+chemical+biology&rft.au=Honeywell%2C+Megan+E.&rft.au=Isidor%2C+Marie+S.&rft.au=Harper%2C+Nicholas+W.&rft.au=Fontana%2C+Rachel+E.&rft.date=2024-11-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1552-4450&rft.eissn=1552-4469&rft.volume=20&rft.issue=11&rft.spage=1443&rft.epage=1452&rft_id=info:doi/10.1038%2Fs41589-024-01584-7&rft.externalDocID=10_1038_s41589_024_01584_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4450&client=summon