Exact Solutions Modelling Nonlinear Atmospheric Gravity Waves

Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow character...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical fluid mechanics Vol. 26; no. 1; p. 6
Main Author Henry, David
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial f -plane, and vertically propagating mountain waves at general latitudes.
AbstractList Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial f -plane, and vertically propagating mountain waves at general latitudes.
Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial f-plane, and vertically propagating mountain waves at general latitudes.Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial f-plane, and vertically propagating mountain waves at general latitudes.
Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial f-plane, and vertically propagating mountain waves at general latitudes.
Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial -plane, and vertically propagating mountain waves at general latitudes.
ArticleNumber 6
Author Henry, David
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0003-2170-822X
  surname: Henry
  fullname: Henry, David
  email: d.henry@ucc.ie
  organization: Faculty of Mathematics, University of Vienna, School of Mathematical Sciences, University College Cork
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38144908$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUhS0E4tX-ARbVSGzYTHv9mNcCIRSltFKABUVdWo7nOhhN7GDPROXf1yGQ0ixYXUv-zvU5Pkdk13mHhJxQ-EoBqm8RABjNgfEcoBYs5zvkkArG8rIp2O7mzOoDchTjIwCtiobtkwNeUyEaqA_J-fiP0n1257uht97F7Nq32HXWzbIb79JEFbLLfu7j4gGD1dlVUEvbP2e_1RLjJ7JnVBfx8-s8Jvffx79GP_LJ7dXP0eUk16Iq-lw3wrTUIDVFMgq8rVrDCo4CS46GGjPFCkFUZdnQViOfCsNLLRhljeC0BX5MLtZ7F8N0jglxfVCdXAQ7V-FZemXl_zfOPsiZX0oKFecMeNpw9roh-KcBYy_nNuqUVDn0Q5SsgaKqaV2UCT3dQh_9EFzKt6IE47yGIlFf3lvaeHn72gSwNaCDjzGg2SAU5Ko_ue5Ppv7kS39yZbPeEmnbq1UzKZbtPpbytTSmd9wMwz_bH6j-AqWSrmA
CitedBy_id crossref_primary_10_1016_j_jmaa_2025_129337
crossref_primary_10_1016_j_padiff_2024_100689
crossref_primary_10_1016_j_aml_2024_109435
crossref_primary_10_1016_j_nonrwa_2025_104351
crossref_primary_10_1063_5_0228355
crossref_primary_10_1016_j_jde_2025_02_064
crossref_primary_10_1098_rspa_2024_0202
Cites_doi 10.1017/CBO9780511790447
10.1016/S0065-2687(08)60262-9
10.1137/1.9781611971873
10.1088/1751-8121/acd429
10.1098/rsta.2017.0088
10.1098/rspa.2020.0424
10.1256/qj.03.63
10.1016/j.nonrwa.2015.10.003
10.1016/j.jde.2021.03.019
10.1146/annurev.fl.28.010196.002241
10.1080/03091929.2023.2234597
10.1175/2007JAS2598.1
10.1029/2012JC007879
10.1029/2019JD031662
10.1007/s00021-022-00682-7
10.1007/s00605-022-01741-x
10.1007/s00021-022-00747-7
10.1017/jfm.2017.223
10.1175/AMSMONOGRAPHS-D-18-0022.1
10.1098/rsta.2017.0090
10.1175/1520-0469(1978)035<1395:GAGBSE>2.0.CO;2
10.1093/actrade/9780199572199.001.0001
10.1175/1520-0493(1992)120<2056:OANMSO>2.0.CO;2
10.1098/rspa.2021.0895
10.1002/qj.49707532308
10.1080/14029251.2015.1113046
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s00021-023-00842-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic



PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1422-6952
ExternalDocumentID PMC10733203
38144908
10_1007_s00021_023_00842_3
Genre Journal Article
GrantInformation_xml – fundername: Austrian Science Fund
  grantid: Wittgenstein-Preis Z 387-N
  funderid: http://dx.doi.org/10.13039/501100002428
– fundername: Austrian Science Fund (FWF)
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0VY
1N0
1SB
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9T
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
ABRTQ
7X8
5PM
ID FETCH-LOGICAL-c475t-c94fd1fe1f500803d7df253e4e63ef1ffbe7e0476691dce3b4f36c42129431d03
IEDL.DBID U2A
ISSN 1422-6928
1422-6952
IngestDate Thu Aug 21 18:37:29 EDT 2025
Fri Jul 11 10:54:42 EDT 2025
Fri Jul 25 11:01:48 EDT 2025
Thu Apr 03 07:03:48 EDT 2025
Tue Jul 01 01:44:39 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Fri Feb 21 02:42:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 76U60
Mountain waves
35Q86
86A10
Atmospheric waves
Exact solution
Language English
License The Author(s) 2023.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-c94fd1fe1f500803d7df253e4e63ef1ffbe7e0476691dce3b4f36c42129431d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by A. Constantin.
ORCID 0000-0003-2170-822X
OpenAccessLink https://link.springer.com/10.1007/s00021-023-00842-3
PMID 38144908
PQID 2904233805
PQPubID 2043894
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10733203
proquest_miscellaneous_2905781856
proquest_journals_2904233805
pubmed_primary_38144908
crossref_primary_10_1007_s00021_023_00842_3
crossref_citationtrail_10_1007_s00021_023_00842_3
springer_journals_10_1007_s00021_023_00842_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Heidelberg
PublicationTitle Journal of mathematical fluid mechanics
PublicationTitleAbbrev J. Math. Fluid Mech
PublicationTitleAlternate J Math Fluid Mech
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References ConstantinAMonismithSGGerstner waves in the presence of mean currents and rotationJ. Fluid Mech.20178205115282017JFM...820..511C365972010.1017/jfm.2017.223
HoltonJRHakimGJAn Introduction to Dynamic Meteorology2011New YorkAcademic
BennettALagrangian Fluid Dynamics2007CambridgeCambridge University Press
SmithRBThe influence of mountains on the atmosphereAdv. Geophys.197921872301979AdGeo..21...87S10.1016/S0065-2687(08)60262-9
Smith, R.B.: 100 years of progress on mountain meteorology research, A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteorological Monographs, American Meteorological Society, Boston, MA, pp 20.1–20.73 (2019)
HenryDExact equatorial water waves in the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-planeNonlinear Anal. Real World Appl.201628284289342282510.1016/j.nonrwa.2015.10.003
ConstantinANonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics2011PhiladelphiaSIAM10.1137/1.9781611971873
SmithRBWoodsBKJensenJCooperWADoyleJDJiangQGrubišićVMountain waves entering the stratosphereJ. Atmos. Sci.200865254325622008JAtS...65.2543S10.1175/2007JAS2598.1
ConstantinAExact nonlinear mountain waves propagating upwardsJ. Phys. A2023562023JPhA...56x5702C460230910.1088/1751-8121/acd429
MarshallJPlumbRAAtmosphere, Ocean and Climate Dynamics: An Introductory Text2016LondonAcademic Press
HenryDInternal equatorial water waves in the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-planeJ. Nonlinear Math. Phys.201522499506343407610.1080/14029251.2015.1113046
ScorerRSTheory of waves in the lee of mountainsQ. J. R. Meteorol. Soc.19497541561949QJRMS..75...41S10.1002/qj.49707532308
ConstantinAJohnsonRSOn the propagation of nonlinear waves in the atmosphereProc. R. Soc. A2022478202108952022RSPSA.47810895C441638010.1098/rspa.2021.0895354500218984807
WurteleMGSharmanRDDattaAAtmospheric lee wavesAnnu. Rev. Fluid Mech.199628429761996AnRFM..28..429W137117110.1146/annurev.fl.28.010196.002241
ConstantinAOn Saturn’s six-sided polar jet streamGeophys. Astrophys. Fluid Dyn.20231172792912023GApFD.117..279C466156710.1080/03091929.2023.2234597
Ionescu-KruseDExact viscous compressible flow describing the dynamics of the atmosphereJ. Math. Fluid Mech.202224Paper No. 432022JMFM...24...43I440066310.1007/s00021-022-00682-7
AtkinsPThe Laws of Thermodynamics: A Very Short Introduction2010OxfordOxford University Press10.1093/actrade/9780199572199.001.0001
ConstantinAAn exact solution for equatorially trapped wavesJ. Geophys. Res. Oceans2012117C050292012JGRC..117.5029C10.1029/2012JC007879
ShuttsGObservations and numerical model simulation of a partially trapped lee wave over the Welsh MountainsMon. Weather Rev.2018120205620661992MWRv..120.2056S10.1175/1520-0493(1992)120<2056:OANMSO>2.0.CO;2
DurranDRLee Waves and Mountain Waves. Atmospheric Processes Over Complex Terrain, Meteorological Monographs1990BostonAmerican Meteorological Society5983
HealeCJBossertKVadasSLHoffmannLDörnbrackAStoberGSnivelyJBJacobiCSecondary gravity waves generated by breaking mountain waves over EuropeJ. Geophys. Res. Atmos.202012511810.1029/2019JD031662
CurryJAWebsterPJThermodynamics of Atmospheres and Oceans1999New YorkAcademic
MarynetsKSturm-Liouville boundary value problem for a sea-breeze flowJ. Math. Fluid Mech.202325Paper No. 62023JMFM...25....6M451919910.1007/s00021-022-00747-7
Ionescu-KruseDOn the short-wavelength stabilities of some geophysical flowsPhilos. Trans. R. Soc. A2018376201700902018RSPTA.37670090I374421210.1098/rsta.2017.0090
ConstantinAJohnsonRSOn the modelling of large-scale atmospheric flowJ. Differ. Equ.20212857517982021JDE...285..751C423481010.1016/j.jde.2021.03.019
TeixeraMACThe physics of orographic gravity wave dragFront. Phys.20142124
MartinCIOn azimuthally propagating equatorial atmospheric wavesMonatsh. Math.202320111851195460028410.1007/s00605-022-01741-x
HenryDOn three-dimensional Gerstner-like equatorial water wavesPhilos. Trans. R. Soc. A2018376201700882018RSPTA.37670088H374420910.1098/rsta.2017.0088
VallisGKAtmospheric and Oceanic Fluid Dynamics2006AmsterdamElsevier10.1017/CBO9780511790447
GrayAModern Differential Geometry of Curves and Surfaces With Mathematica2006Boca RatonChapman & Hall/CRC
Mollo-ChristensenEGravitational and geostrophic billows: some exact solutionsJ. Atmos. Sci.197835139513981978JAtS...35.1395M10.1175/1520-0469(1978)035<1395:GAGBSE>2.0.CO;2
VosperSBInversion effects on mountain lee wavesQ. J. R. Meteorol. Soc.20041301723482004QJRMS.130.1723V10.1256/qj.03.63
ConstantinAJohnsonRSOn the propagation of waves in the atmosphereProc. R. Soc. A2021477202004242021RSPSA.47700424C429182610.1098/rspa.2020.0424351535608299551
WallaceJMHobbsPVAtmospheric Science: An Introductory Survey2017CambridgeCambridge University Press
J Marshall (842_CR21) 2016
D Ionescu-Kruse (842_CR19) 2018; 376
RB Smith (842_CR27) 1979; 21
CI Martin (842_CR22) 2023; 201
A Constantin (842_CR9) 2022; 478
D Ionescu-Kruse (842_CR20) 2022; 24
D Henry (842_CR16) 2016; 28
JR Holton (842_CR18) 2011
K Marynets (842_CR23) 2023; 25
A Constantin (842_CR8) 2021; 477
SB Vosper (842_CR32) 2004; 130
A Constantin (842_CR3) 2011
A Bennett (842_CR2) 2007
A Constantin (842_CR4) 2012; 117
A Gray (842_CR13) 2006
A Constantin (842_CR5) 2023; 117
GK Vallis (842_CR31) 2006
P Atkins (842_CR1) 2010
DR Durran (842_CR12) 1990
RS Scorer (842_CR25) 1949; 75
JA Curry (842_CR11) 1999
A Constantin (842_CR7) 2021; 285
E Mollo-Christensen (842_CR24) 1978; 35
A Constantin (842_CR10) 2017; 820
CJ Heale (842_CR14) 2020; 125
D Henry (842_CR15) 2015; 22
A Constantin (842_CR6) 2023; 56
842_CR28
MAC Teixera (842_CR30) 2014; 2
JM Wallace (842_CR33) 2017
MG Wurtele (842_CR34) 1996; 28
G Shutts (842_CR26) 2018; 120
RB Smith (842_CR29) 2008; 65
D Henry (842_CR17) 2018; 376
References_xml – reference: ShuttsGObservations and numerical model simulation of a partially trapped lee wave over the Welsh MountainsMon. Weather Rev.2018120205620661992MWRv..120.2056S10.1175/1520-0493(1992)120<2056:OANMSO>2.0.CO;2
– reference: ConstantinAMonismithSGGerstner waves in the presence of mean currents and rotationJ. Fluid Mech.20178205115282017JFM...820..511C365972010.1017/jfm.2017.223
– reference: ConstantinAJohnsonRSOn the modelling of large-scale atmospheric flowJ. Differ. Equ.20212857517982021JDE...285..751C423481010.1016/j.jde.2021.03.019
– reference: GrayAModern Differential Geometry of Curves and Surfaces With Mathematica2006Boca RatonChapman & Hall/CRC
– reference: Ionescu-KruseDExact viscous compressible flow describing the dynamics of the atmosphereJ. Math. Fluid Mech.202224Paper No. 432022JMFM...24...43I440066310.1007/s00021-022-00682-7
– reference: HealeCJBossertKVadasSLHoffmannLDörnbrackAStoberGSnivelyJBJacobiCSecondary gravity waves generated by breaking mountain waves over EuropeJ. Geophys. Res. Atmos.202012511810.1029/2019JD031662
– reference: ScorerRSTheory of waves in the lee of mountainsQ. J. R. Meteorol. Soc.19497541561949QJRMS..75...41S10.1002/qj.49707532308
– reference: SmithRBThe influence of mountains on the atmosphereAdv. Geophys.197921872301979AdGeo..21...87S10.1016/S0065-2687(08)60262-9
– reference: MarshallJPlumbRAAtmosphere, Ocean and Climate Dynamics: An Introductory Text2016LondonAcademic Press
– reference: BennettALagrangian Fluid Dynamics2007CambridgeCambridge University Press
– reference: HenryDExact equatorial water waves in the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-planeNonlinear Anal. Real World Appl.201628284289342282510.1016/j.nonrwa.2015.10.003
– reference: ConstantinAExact nonlinear mountain waves propagating upwardsJ. Phys. A2023562023JPhA...56x5702C460230910.1088/1751-8121/acd429
– reference: HenryDInternal equatorial water waves in the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-planeJ. Nonlinear Math. Phys.201522499506343407610.1080/14029251.2015.1113046
– reference: VosperSBInversion effects on mountain lee wavesQ. J. R. Meteorol. Soc.20041301723482004QJRMS.130.1723V10.1256/qj.03.63
– reference: HoltonJRHakimGJAn Introduction to Dynamic Meteorology2011New YorkAcademic
– reference: Smith, R.B.: 100 years of progress on mountain meteorology research, A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteorological Monographs, American Meteorological Society, Boston, MA, pp 20.1–20.73 (2019)
– reference: Mollo-ChristensenEGravitational and geostrophic billows: some exact solutionsJ. Atmos. Sci.197835139513981978JAtS...35.1395M10.1175/1520-0469(1978)035<1395:GAGBSE>2.0.CO;2
– reference: ConstantinAAn exact solution for equatorially trapped wavesJ. Geophys. Res. Oceans2012117C050292012JGRC..117.5029C10.1029/2012JC007879
– reference: HenryDOn three-dimensional Gerstner-like equatorial water wavesPhilos. Trans. R. Soc. A2018376201700882018RSPTA.37670088H374420910.1098/rsta.2017.0088
– reference: ConstantinANonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics2011PhiladelphiaSIAM10.1137/1.9781611971873
– reference: MartinCIOn azimuthally propagating equatorial atmospheric wavesMonatsh. Math.202320111851195460028410.1007/s00605-022-01741-x
– reference: Ionescu-KruseDOn the short-wavelength stabilities of some geophysical flowsPhilos. Trans. R. Soc. A2018376201700902018RSPTA.37670090I374421210.1098/rsta.2017.0090
– reference: SmithRBWoodsBKJensenJCooperWADoyleJDJiangQGrubišićVMountain waves entering the stratosphereJ. Atmos. Sci.200865254325622008JAtS...65.2543S10.1175/2007JAS2598.1
– reference: WurteleMGSharmanRDDattaAAtmospheric lee wavesAnnu. Rev. Fluid Mech.199628429761996AnRFM..28..429W137117110.1146/annurev.fl.28.010196.002241
– reference: ConstantinAOn Saturn’s six-sided polar jet streamGeophys. Astrophys. Fluid Dyn.20231172792912023GApFD.117..279C466156710.1080/03091929.2023.2234597
– reference: DurranDRLee Waves and Mountain Waves. Atmospheric Processes Over Complex Terrain, Meteorological Monographs1990BostonAmerican Meteorological Society5983
– reference: CurryJAWebsterPJThermodynamics of Atmospheres and Oceans1999New YorkAcademic
– reference: ConstantinAJohnsonRSOn the propagation of waves in the atmosphereProc. R. Soc. A2021477202004242021RSPSA.47700424C429182610.1098/rspa.2020.0424351535608299551
– reference: VallisGKAtmospheric and Oceanic Fluid Dynamics2006AmsterdamElsevier10.1017/CBO9780511790447
– reference: TeixeraMACThe physics of orographic gravity wave dragFront. Phys.20142124
– reference: ConstantinAJohnsonRSOn the propagation of nonlinear waves in the atmosphereProc. R. Soc. A2022478202108952022RSPSA.47810895C441638010.1098/rspa.2021.0895354500218984807
– reference: WallaceJMHobbsPVAtmospheric Science: An Introductory Survey2017CambridgeCambridge University Press
– reference: MarynetsKSturm-Liouville boundary value problem for a sea-breeze flowJ. Math. Fluid Mech.202325Paper No. 62023JMFM...25....6M451919910.1007/s00021-022-00747-7
– reference: AtkinsPThe Laws of Thermodynamics: A Very Short Introduction2010OxfordOxford University Press10.1093/actrade/9780199572199.001.0001
– volume-title: Atmospheric and Oceanic Fluid Dynamics
  year: 2006
  ident: 842_CR31
  doi: 10.1017/CBO9780511790447
– volume: 2
  start-page: 1
  year: 2014
  ident: 842_CR30
  publication-title: Front. Phys.
– volume-title: An Introduction to Dynamic Meteorology
  year: 2011
  ident: 842_CR18
– volume: 21
  start-page: 87
  year: 1979
  ident: 842_CR27
  publication-title: Adv. Geophys.
  doi: 10.1016/S0065-2687(08)60262-9
– volume-title: Atmosphere, Ocean and Climate Dynamics: An Introductory Text
  year: 2016
  ident: 842_CR21
– volume-title: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics
  year: 2011
  ident: 842_CR3
  doi: 10.1137/1.9781611971873
– volume: 56
  year: 2023
  ident: 842_CR6
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/acd429
– volume: 376
  start-page: 20170088
  year: 2018
  ident: 842_CR17
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2017.0088
– volume: 477
  start-page: 20200424
  year: 2021
  ident: 842_CR8
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2020.0424
– volume: 130
  start-page: 1723
  year: 2004
  ident: 842_CR32
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1256/qj.03.63
– volume: 28
  start-page: 284
  year: 2016
  ident: 842_CR16
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2015.10.003
– volume: 285
  start-page: 751
  year: 2021
  ident: 842_CR7
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2021.03.019
– volume: 28
  start-page: 429
  year: 1996
  ident: 842_CR34
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.28.010196.002241
– volume: 117
  start-page: 279
  year: 2023
  ident: 842_CR5
  publication-title: Geophys. Astrophys. Fluid Dyn.
  doi: 10.1080/03091929.2023.2234597
– start-page: 59
  volume-title: Lee Waves and Mountain Waves. Atmospheric Processes Over Complex Terrain, Meteorological Monographs
  year: 1990
  ident: 842_CR12
– volume: 65
  start-page: 2543
  year: 2008
  ident: 842_CR29
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2007JAS2598.1
– volume-title: Atmospheric Science: An Introductory Survey
  year: 2017
  ident: 842_CR33
– volume: 117
  start-page: C05029
  year: 2012
  ident: 842_CR4
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2012JC007879
– volume-title: Lagrangian Fluid Dynamics
  year: 2007
  ident: 842_CR2
– volume: 125
  start-page: 1
  year: 2020
  ident: 842_CR14
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2019JD031662
– volume: 24
  start-page: Paper No. 43
  year: 2022
  ident: 842_CR20
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-022-00682-7
– volume-title: Thermodynamics of Atmospheres and Oceans
  year: 1999
  ident: 842_CR11
– volume: 201
  start-page: 1185
  year: 2023
  ident: 842_CR22
  publication-title: Monatsh. Math.
  doi: 10.1007/s00605-022-01741-x
– volume: 25
  start-page: Paper No. 6
  year: 2023
  ident: 842_CR23
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-022-00747-7
– volume: 820
  start-page: 511
  year: 2017
  ident: 842_CR10
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.223
– ident: 842_CR28
  doi: 10.1175/AMSMONOGRAPHS-D-18-0022.1
– volume: 376
  start-page: 20170090
  year: 2018
  ident: 842_CR19
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2017.0090
– volume: 35
  start-page: 1395
  year: 1978
  ident: 842_CR24
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1978)035<1395:GAGBSE>2.0.CO;2
– volume-title: The Laws of Thermodynamics: A Very Short Introduction
  year: 2010
  ident: 842_CR1
  doi: 10.1093/actrade/9780199572199.001.0001
– volume: 120
  start-page: 2056
  year: 2018
  ident: 842_CR26
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1992)120<2056:OANMSO>2.0.CO;2
– volume: 478
  start-page: 20210895
  year: 2022
  ident: 842_CR9
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2021.0895
– volume: 75
  start-page: 41
  year: 1949
  ident: 842_CR25
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49707532308
– volume-title: Modern Differential Geometry of Curves and Surfaces With Mathematica
  year: 2006
  ident: 842_CR13
– volume: 22
  start-page: 499
  year: 2015
  ident: 842_CR15
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.1080/14029251.2015.1113046
SSID ssj0017592
Score 2.366793
Snippet Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6
SubjectTerms Atmospheric models
Classical and Continuum Physics
Exact solutions
Flow characteristics
Fluid mechanics
Fluid- and Aerodynamics
Gravity waves
Lee waves
Mathematical Methods in Physics
Mountains
Physics
Physics and Astronomy
Theoretical mathematics
Wave propagation
Title Exact Solutions Modelling Nonlinear Atmospheric Gravity Waves
URI https://link.springer.com/article/10.1007/s00021-023-00842-3
https://www.ncbi.nlm.nih.gov/pubmed/38144908
https://www.proquest.com/docview/2904233805
https://www.proquest.com/docview/2905781856
https://pubmed.ncbi.nlm.nih.gov/PMC10733203
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VUCUuhdLSpsDKSNyopSR-JDlwWFa7IBB7YgWcosSxxUptttqEqj-_HueBlpfEKQc7Tjwztsee8fcBHEljLUMzSU3BBeVRgWyAKqYGkUdyHquGi-BqKs9n_OJW3LaXwqou270LSbqZur_s5rt0ArvGUASBDylbgw2Be3drxbNw2McOIuGokPFwg8okjNurMi-3sbocPfMxn6dKPomXumVosg2fWv-RDBuFf4YPutyBrdaXJO1IrXbgo0vtVNUXOBn_y1RN-vMvgvRnDombTBucjGxJhvXvRYUIA3NFzpYZEkqQm-yvrr7CbDK-Hp3TljSBKh6JmqqEmyIwOjACvUFWRIUJBdNcS6ZNYEyuI-3zSMoksL1iOTdMKowLJ9aXKHy2C-vlotTfgfBM5YGITKyVlRWLsyDjdkOFyMa-bYd7EHSyS1WLKI7EFr_SHgvZyTu18k6dvFPmwXH_zp8GT-PN2vudStJ2bFVpmGAuD4t94cFhX2xHBYY6slIvHlwdOxVZX0R68K3RYP8566NwDHd6EK_otq-AiNurJeX83iFvB0hxGfr2v352ZvD4X69348f7qu_BpjVr3uSG78N6vXzQB9b1qfMBbAwnp6dTfJ7dXY4HsDaSo4Gz___YGfuq
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT4QwFH5xidGL-4JrTbxpE6ClwMGDmajjNieN3giUNk6ijBnQ-PPtKwxm3BLPfZTy2tKvfa_fB3AgtBkZigmqcx5QHuaoBigjqpF5JOORrLUIbnqie8cvH4KHhiYH78J8id8j2ScmEZiVhSL1u0_ZJExzs1PG9L2O6LQRgzCwAsh4pEFF7EfNBZmf6xhfhL4hy-8Jkl-ipHbxOVuE-QY1kpO6m5dgQhXLsNAgSNLMz3IZZmxCpyxX4Pj0PZUVaU-9CIqeWf5t0qvZMdIhOameByXyCvQlOR-mKCNB7tM3Va7C3dnpbadLG6kEKnkYVFTGXOeeVp4OEAOyPMy1HzDFlWBKe1pnKlQuD4WIPfNVLOOaCYnR4NggiNxlazBVDAq1AYSnMvOCUEdKGl-xKPVSbrZRyGfsmnq4A97Id4lseMRRzuIpaRmQrb8T4-_E-jthDhy2z7zULBp_Wm-PuiRpZlSZ-DFm8LDIDRzYb4vNXMAAR1qowau1MT8gg0CEA-t1D7avM8iEY5DTgWisb1sD5NkeLyn6j5Zv20NhS9817ToaDYPPdv3-GZv_M9-D2e7tzXVyfdG72oI534CnOjt8G6aq4avaMeCnynbtqP8As8D2jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5BJ9Be2FZ-hXXMSLyBtSR2nORhD1XX0g2oeKCib1Hi2KISS6smnfbn43PSbKUDiWdfHOfOjj_77r4DeC-0mRmKCapzHlAe5lgNUEZUI_NIxiNZ1yL4OhHjKb-aBbN7Wfw22n3jkqxzGpClqajOlrk-axPfXBtaYPYbioTwPmWPYc-cVKyjdiAGrR8hDGxZZLzooCL2oyZt5uE-tremHby5Gzb5h-_UbkmjQ3jWYEnSr41_BI9U0YWDBleSZtWWXXhiwzxl-RzOh7eprEh7F0awFJpl5SaTmjMjXZF-db0okW1gLsmnVYrFJciP9EaVL2A6Gn4fjGlTQIFKHgYVlTHXuaeVpwNEhiwPc-0HTHElmNKe1pkKlctDIWLPfBXLuGZCoo84Nrgid9lL6BSLQr0GwlOZeUGoIyWNrliUeik3hytkOXZNP9wBb6O7RDbs4ljk4lfS8iJbfSdG34nVd8Ic-NA-s6y5Nf4p3duYJGnWWZn4Mcb1sMgNHHjXNpsVgm6PtFCLtZUxvyWDS4QDr2oLtq8zeIWj69OBaMu2rQCyb2-3FPOfloXbw3KXvmvG9XEzDe7G9ffPePN_4qfw9NvFKPlyOfl8DPu-QVR1yHgPOtVqrU4MIqqyt3bS_waQsP7W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Solutions+Modelling+Nonlinear+Atmospheric+Gravity+Waves&rft.jtitle=Journal+of+mathematical+fluid+mechanics&rft.au=Henry%2C+David&rft.date=2024-02-01&rft.issn=1422-6928&rft.eissn=1422-6952&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1007%2Fs00021-023-00842-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00021_023_00842_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6928&client=summon