Exact Solutions Modelling Nonlinear Atmospheric Gravity Waves
Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow character...
Saved in:
Published in | Journal of mathematical fluid mechanics Vol. 26; no. 1; p. 6 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial
f
-plane, and vertically propagating mountain waves at general latitudes. |
---|---|
AbstractList | Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial
f
-plane, and vertically propagating mountain waves at general latitudes. Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial f-plane, and vertically propagating mountain waves at general latitudes.Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial f-plane, and vertically propagating mountain waves at general latitudes. Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial f-plane, and vertically propagating mountain waves at general latitudes. Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial -plane, and vertically propagating mountain waves at general latitudes. |
ArticleNumber | 6 |
Author | Henry, David |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0003-2170-822X surname: Henry fullname: Henry, David email: d.henry@ucc.ie organization: Faculty of Mathematics, University of Vienna, School of Mathematical Sciences, University College Cork |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38144908$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtPGzEUhS0E4tX-ARbVSGzYTHv9mNcCIRSltFKABUVdWo7nOhhN7GDPROXf1yGQ0ixYXUv-zvU5Pkdk13mHhJxQ-EoBqm8RABjNgfEcoBYs5zvkkArG8rIp2O7mzOoDchTjIwCtiobtkwNeUyEaqA_J-fiP0n1257uht97F7Nq32HXWzbIb79JEFbLLfu7j4gGD1dlVUEvbP2e_1RLjJ7JnVBfx8-s8Jvffx79GP_LJ7dXP0eUk16Iq-lw3wrTUIDVFMgq8rVrDCo4CS46GGjPFCkFUZdnQViOfCsNLLRhljeC0BX5MLtZ7F8N0jglxfVCdXAQ7V-FZemXl_zfOPsiZX0oKFecMeNpw9roh-KcBYy_nNuqUVDn0Q5SsgaKqaV2UCT3dQh_9EFzKt6IE47yGIlFf3lvaeHn72gSwNaCDjzGg2SAU5Ko_ue5Ppv7kS39yZbPeEmnbq1UzKZbtPpbytTSmd9wMwz_bH6j-AqWSrmA |
CitedBy_id | crossref_primary_10_1016_j_jmaa_2025_129337 crossref_primary_10_1016_j_padiff_2024_100689 crossref_primary_10_1016_j_aml_2024_109435 crossref_primary_10_1016_j_nonrwa_2025_104351 crossref_primary_10_1063_5_0228355 crossref_primary_10_1016_j_jde_2025_02_064 crossref_primary_10_1098_rspa_2024_0202 |
Cites_doi | 10.1017/CBO9780511790447 10.1016/S0065-2687(08)60262-9 10.1137/1.9781611971873 10.1088/1751-8121/acd429 10.1098/rsta.2017.0088 10.1098/rspa.2020.0424 10.1256/qj.03.63 10.1016/j.nonrwa.2015.10.003 10.1016/j.jde.2021.03.019 10.1146/annurev.fl.28.010196.002241 10.1080/03091929.2023.2234597 10.1175/2007JAS2598.1 10.1029/2012JC007879 10.1029/2019JD031662 10.1007/s00021-022-00682-7 10.1007/s00605-022-01741-x 10.1007/s00021-022-00747-7 10.1017/jfm.2017.223 10.1175/AMSMONOGRAPHS-D-18-0022.1 10.1098/rsta.2017.0090 10.1175/1520-0469(1978)035<1395:GAGBSE>2.0.CO;2 10.1093/actrade/9780199572199.001.0001 10.1175/1520-0493(1992)120<2056:OANMSO>2.0.CO;2 10.1098/rspa.2021.0895 10.1002/qj.49707532308 10.1080/14029251.2015.1113046 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s00021-023-00842-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1422-6952 |
ExternalDocumentID | PMC10733203 38144908 10_1007_s00021_023_00842_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Austrian Science Fund grantid: Wittgenstein-Preis Z 387-N funderid: http://dx.doi.org/10.13039/501100002428 – fundername: Austrian Science Fund (FWF) |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0VY 1N0 1SB 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9T PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM ABRTQ 7X8 5PM |
ID | FETCH-LOGICAL-c475t-c94fd1fe1f500803d7df253e4e63ef1ffbe7e0476691dce3b4f36c42129431d03 |
IEDL.DBID | U2A |
ISSN | 1422-6928 1422-6952 |
IngestDate | Thu Aug 21 18:37:29 EDT 2025 Fri Jul 11 10:54:42 EDT 2025 Fri Jul 25 11:01:48 EDT 2025 Thu Apr 03 07:03:48 EDT 2025 Tue Jul 01 01:44:39 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Fri Feb 21 02:42:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 76U60 Mountain waves 35Q86 86A10 Atmospheric waves Exact solution |
Language | English |
License | The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-c94fd1fe1f500803d7df253e4e63ef1ffbe7e0476691dce3b4f36c42129431d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Communicated by A. Constantin. |
ORCID | 0000-0003-2170-822X |
OpenAccessLink | https://link.springer.com/10.1007/s00021-023-00842-3 |
PMID | 38144908 |
PQID | 2904233805 |
PQPubID | 2043894 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10733203 proquest_miscellaneous_2905781856 proquest_journals_2904233805 pubmed_primary_38144908 crossref_primary_10_1007_s00021_023_00842_3 crossref_citationtrail_10_1007_s00021_023_00842_3 springer_journals_10_1007_s00021_023_00842_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: Heidelberg |
PublicationTitle | Journal of mathematical fluid mechanics |
PublicationTitleAbbrev | J. Math. Fluid Mech |
PublicationTitleAlternate | J Math Fluid Mech |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | ConstantinAMonismithSGGerstner waves in the presence of mean currents and rotationJ. Fluid Mech.20178205115282017JFM...820..511C365972010.1017/jfm.2017.223 HoltonJRHakimGJAn Introduction to Dynamic Meteorology2011New YorkAcademic BennettALagrangian Fluid Dynamics2007CambridgeCambridge University Press SmithRBThe influence of mountains on the atmosphereAdv. Geophys.197921872301979AdGeo..21...87S10.1016/S0065-2687(08)60262-9 Smith, R.B.: 100 years of progress on mountain meteorology research, A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteorological Monographs, American Meteorological Society, Boston, MA, pp 20.1–20.73 (2019) HenryDExact equatorial water waves in the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-planeNonlinear Anal. Real World Appl.201628284289342282510.1016/j.nonrwa.2015.10.003 ConstantinANonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics2011PhiladelphiaSIAM10.1137/1.9781611971873 SmithRBWoodsBKJensenJCooperWADoyleJDJiangQGrubišićVMountain waves entering the stratosphereJ. Atmos. Sci.200865254325622008JAtS...65.2543S10.1175/2007JAS2598.1 ConstantinAExact nonlinear mountain waves propagating upwardsJ. Phys. A2023562023JPhA...56x5702C460230910.1088/1751-8121/acd429 MarshallJPlumbRAAtmosphere, Ocean and Climate Dynamics: An Introductory Text2016LondonAcademic Press HenryDInternal equatorial water waves in the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-planeJ. Nonlinear Math. Phys.201522499506343407610.1080/14029251.2015.1113046 ScorerRSTheory of waves in the lee of mountainsQ. J. R. Meteorol. Soc.19497541561949QJRMS..75...41S10.1002/qj.49707532308 ConstantinAJohnsonRSOn the propagation of nonlinear waves in the atmosphereProc. R. Soc. A2022478202108952022RSPSA.47810895C441638010.1098/rspa.2021.0895354500218984807 WurteleMGSharmanRDDattaAAtmospheric lee wavesAnnu. Rev. Fluid Mech.199628429761996AnRFM..28..429W137117110.1146/annurev.fl.28.010196.002241 ConstantinAOn Saturn’s six-sided polar jet streamGeophys. Astrophys. Fluid Dyn.20231172792912023GApFD.117..279C466156710.1080/03091929.2023.2234597 Ionescu-KruseDExact viscous compressible flow describing the dynamics of the atmosphereJ. Math. Fluid Mech.202224Paper No. 432022JMFM...24...43I440066310.1007/s00021-022-00682-7 AtkinsPThe Laws of Thermodynamics: A Very Short Introduction2010OxfordOxford University Press10.1093/actrade/9780199572199.001.0001 ConstantinAAn exact solution for equatorially trapped wavesJ. Geophys. Res. Oceans2012117C050292012JGRC..117.5029C10.1029/2012JC007879 ShuttsGObservations and numerical model simulation of a partially trapped lee wave over the Welsh MountainsMon. Weather Rev.2018120205620661992MWRv..120.2056S10.1175/1520-0493(1992)120<2056:OANMSO>2.0.CO;2 DurranDRLee Waves and Mountain Waves. Atmospheric Processes Over Complex Terrain, Meteorological Monographs1990BostonAmerican Meteorological Society5983 HealeCJBossertKVadasSLHoffmannLDörnbrackAStoberGSnivelyJBJacobiCSecondary gravity waves generated by breaking mountain waves over EuropeJ. Geophys. Res. Atmos.202012511810.1029/2019JD031662 CurryJAWebsterPJThermodynamics of Atmospheres and Oceans1999New YorkAcademic MarynetsKSturm-Liouville boundary value problem for a sea-breeze flowJ. Math. Fluid Mech.202325Paper No. 62023JMFM...25....6M451919910.1007/s00021-022-00747-7 Ionescu-KruseDOn the short-wavelength stabilities of some geophysical flowsPhilos. Trans. R. Soc. A2018376201700902018RSPTA.37670090I374421210.1098/rsta.2017.0090 ConstantinAJohnsonRSOn the modelling of large-scale atmospheric flowJ. Differ. Equ.20212857517982021JDE...285..751C423481010.1016/j.jde.2021.03.019 TeixeraMACThe physics of orographic gravity wave dragFront. Phys.20142124 MartinCIOn azimuthally propagating equatorial atmospheric wavesMonatsh. Math.202320111851195460028410.1007/s00605-022-01741-x HenryDOn three-dimensional Gerstner-like equatorial water wavesPhilos. Trans. R. Soc. A2018376201700882018RSPTA.37670088H374420910.1098/rsta.2017.0088 VallisGKAtmospheric and Oceanic Fluid Dynamics2006AmsterdamElsevier10.1017/CBO9780511790447 GrayAModern Differential Geometry of Curves and Surfaces With Mathematica2006Boca RatonChapman & Hall/CRC Mollo-ChristensenEGravitational and geostrophic billows: some exact solutionsJ. Atmos. Sci.197835139513981978JAtS...35.1395M10.1175/1520-0469(1978)035<1395:GAGBSE>2.0.CO;2 VosperSBInversion effects on mountain lee wavesQ. J. R. Meteorol. Soc.20041301723482004QJRMS.130.1723V10.1256/qj.03.63 ConstantinAJohnsonRSOn the propagation of waves in the atmosphereProc. R. Soc. A2021477202004242021RSPSA.47700424C429182610.1098/rspa.2020.0424351535608299551 WallaceJMHobbsPVAtmospheric Science: An Introductory Survey2017CambridgeCambridge University Press J Marshall (842_CR21) 2016 D Ionescu-Kruse (842_CR19) 2018; 376 RB Smith (842_CR27) 1979; 21 CI Martin (842_CR22) 2023; 201 A Constantin (842_CR9) 2022; 478 D Ionescu-Kruse (842_CR20) 2022; 24 D Henry (842_CR16) 2016; 28 JR Holton (842_CR18) 2011 K Marynets (842_CR23) 2023; 25 A Constantin (842_CR8) 2021; 477 SB Vosper (842_CR32) 2004; 130 A Constantin (842_CR3) 2011 A Bennett (842_CR2) 2007 A Constantin (842_CR4) 2012; 117 A Gray (842_CR13) 2006 A Constantin (842_CR5) 2023; 117 GK Vallis (842_CR31) 2006 P Atkins (842_CR1) 2010 DR Durran (842_CR12) 1990 RS Scorer (842_CR25) 1949; 75 JA Curry (842_CR11) 1999 A Constantin (842_CR7) 2021; 285 E Mollo-Christensen (842_CR24) 1978; 35 A Constantin (842_CR10) 2017; 820 CJ Heale (842_CR14) 2020; 125 D Henry (842_CR15) 2015; 22 A Constantin (842_CR6) 2023; 56 842_CR28 MAC Teixera (842_CR30) 2014; 2 JM Wallace (842_CR33) 2017 MG Wurtele (842_CR34) 1996; 28 G Shutts (842_CR26) 2018; 120 RB Smith (842_CR29) 2008; 65 D Henry (842_CR17) 2018; 376 |
References_xml | – reference: ShuttsGObservations and numerical model simulation of a partially trapped lee wave over the Welsh MountainsMon. Weather Rev.2018120205620661992MWRv..120.2056S10.1175/1520-0493(1992)120<2056:OANMSO>2.0.CO;2 – reference: ConstantinAMonismithSGGerstner waves in the presence of mean currents and rotationJ. Fluid Mech.20178205115282017JFM...820..511C365972010.1017/jfm.2017.223 – reference: ConstantinAJohnsonRSOn the modelling of large-scale atmospheric flowJ. Differ. Equ.20212857517982021JDE...285..751C423481010.1016/j.jde.2021.03.019 – reference: GrayAModern Differential Geometry of Curves and Surfaces With Mathematica2006Boca RatonChapman & Hall/CRC – reference: Ionescu-KruseDExact viscous compressible flow describing the dynamics of the atmosphereJ. Math. Fluid Mech.202224Paper No. 432022JMFM...24...43I440066310.1007/s00021-022-00682-7 – reference: HealeCJBossertKVadasSLHoffmannLDörnbrackAStoberGSnivelyJBJacobiCSecondary gravity waves generated by breaking mountain waves over EuropeJ. Geophys. Res. Atmos.202012511810.1029/2019JD031662 – reference: ScorerRSTheory of waves in the lee of mountainsQ. J. R. Meteorol. Soc.19497541561949QJRMS..75...41S10.1002/qj.49707532308 – reference: SmithRBThe influence of mountains on the atmosphereAdv. Geophys.197921872301979AdGeo..21...87S10.1016/S0065-2687(08)60262-9 – reference: MarshallJPlumbRAAtmosphere, Ocean and Climate Dynamics: An Introductory Text2016LondonAcademic Press – reference: BennettALagrangian Fluid Dynamics2007CambridgeCambridge University Press – reference: HenryDExact equatorial water waves in the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-planeNonlinear Anal. Real World Appl.201628284289342282510.1016/j.nonrwa.2015.10.003 – reference: ConstantinAExact nonlinear mountain waves propagating upwardsJ. Phys. A2023562023JPhA...56x5702C460230910.1088/1751-8121/acd429 – reference: HenryDInternal equatorial water waves in the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-planeJ. Nonlinear Math. Phys.201522499506343407610.1080/14029251.2015.1113046 – reference: VosperSBInversion effects on mountain lee wavesQ. J. R. Meteorol. Soc.20041301723482004QJRMS.130.1723V10.1256/qj.03.63 – reference: HoltonJRHakimGJAn Introduction to Dynamic Meteorology2011New YorkAcademic – reference: Smith, R.B.: 100 years of progress on mountain meteorology research, A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteorological Monographs, American Meteorological Society, Boston, MA, pp 20.1–20.73 (2019) – reference: Mollo-ChristensenEGravitational and geostrophic billows: some exact solutionsJ. Atmos. Sci.197835139513981978JAtS...35.1395M10.1175/1520-0469(1978)035<1395:GAGBSE>2.0.CO;2 – reference: ConstantinAAn exact solution for equatorially trapped wavesJ. Geophys. Res. Oceans2012117C050292012JGRC..117.5029C10.1029/2012JC007879 – reference: HenryDOn three-dimensional Gerstner-like equatorial water wavesPhilos. Trans. R. Soc. A2018376201700882018RSPTA.37670088H374420910.1098/rsta.2017.0088 – reference: ConstantinANonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics2011PhiladelphiaSIAM10.1137/1.9781611971873 – reference: MartinCIOn azimuthally propagating equatorial atmospheric wavesMonatsh. Math.202320111851195460028410.1007/s00605-022-01741-x – reference: Ionescu-KruseDOn the short-wavelength stabilities of some geophysical flowsPhilos. Trans. R. Soc. A2018376201700902018RSPTA.37670090I374421210.1098/rsta.2017.0090 – reference: SmithRBWoodsBKJensenJCooperWADoyleJDJiangQGrubišićVMountain waves entering the stratosphereJ. Atmos. Sci.200865254325622008JAtS...65.2543S10.1175/2007JAS2598.1 – reference: WurteleMGSharmanRDDattaAAtmospheric lee wavesAnnu. Rev. Fluid Mech.199628429761996AnRFM..28..429W137117110.1146/annurev.fl.28.010196.002241 – reference: ConstantinAOn Saturn’s six-sided polar jet streamGeophys. Astrophys. Fluid Dyn.20231172792912023GApFD.117..279C466156710.1080/03091929.2023.2234597 – reference: DurranDRLee Waves and Mountain Waves. Atmospheric Processes Over Complex Terrain, Meteorological Monographs1990BostonAmerican Meteorological Society5983 – reference: CurryJAWebsterPJThermodynamics of Atmospheres and Oceans1999New YorkAcademic – reference: ConstantinAJohnsonRSOn the propagation of waves in the atmosphereProc. R. Soc. A2021477202004242021RSPSA.47700424C429182610.1098/rspa.2020.0424351535608299551 – reference: VallisGKAtmospheric and Oceanic Fluid Dynamics2006AmsterdamElsevier10.1017/CBO9780511790447 – reference: TeixeraMACThe physics of orographic gravity wave dragFront. Phys.20142124 – reference: ConstantinAJohnsonRSOn the propagation of nonlinear waves in the atmosphereProc. R. Soc. A2022478202108952022RSPSA.47810895C441638010.1098/rspa.2021.0895354500218984807 – reference: WallaceJMHobbsPVAtmospheric Science: An Introductory Survey2017CambridgeCambridge University Press – reference: MarynetsKSturm-Liouville boundary value problem for a sea-breeze flowJ. Math. Fluid Mech.202325Paper No. 62023JMFM...25....6M451919910.1007/s00021-022-00747-7 – reference: AtkinsPThe Laws of Thermodynamics: A Very Short Introduction2010OxfordOxford University Press10.1093/actrade/9780199572199.001.0001 – volume-title: Atmospheric and Oceanic Fluid Dynamics year: 2006 ident: 842_CR31 doi: 10.1017/CBO9780511790447 – volume: 2 start-page: 1 year: 2014 ident: 842_CR30 publication-title: Front. Phys. – volume-title: An Introduction to Dynamic Meteorology year: 2011 ident: 842_CR18 – volume: 21 start-page: 87 year: 1979 ident: 842_CR27 publication-title: Adv. Geophys. doi: 10.1016/S0065-2687(08)60262-9 – volume-title: Atmosphere, Ocean and Climate Dynamics: An Introductory Text year: 2016 ident: 842_CR21 – volume-title: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics year: 2011 ident: 842_CR3 doi: 10.1137/1.9781611971873 – volume: 56 year: 2023 ident: 842_CR6 publication-title: J. Phys. A doi: 10.1088/1751-8121/acd429 – volume: 376 start-page: 20170088 year: 2018 ident: 842_CR17 publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2017.0088 – volume: 477 start-page: 20200424 year: 2021 ident: 842_CR8 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2020.0424 – volume: 130 start-page: 1723 year: 2004 ident: 842_CR32 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/qj.03.63 – volume: 28 start-page: 284 year: 2016 ident: 842_CR16 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2015.10.003 – volume: 285 start-page: 751 year: 2021 ident: 842_CR7 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2021.03.019 – volume: 28 start-page: 429 year: 1996 ident: 842_CR34 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.28.010196.002241 – volume: 117 start-page: 279 year: 2023 ident: 842_CR5 publication-title: Geophys. Astrophys. Fluid Dyn. doi: 10.1080/03091929.2023.2234597 – start-page: 59 volume-title: Lee Waves and Mountain Waves. Atmospheric Processes Over Complex Terrain, Meteorological Monographs year: 1990 ident: 842_CR12 – volume: 65 start-page: 2543 year: 2008 ident: 842_CR29 publication-title: J. Atmos. Sci. doi: 10.1175/2007JAS2598.1 – volume-title: Atmospheric Science: An Introductory Survey year: 2017 ident: 842_CR33 – volume: 117 start-page: C05029 year: 2012 ident: 842_CR4 publication-title: J. Geophys. Res. Oceans doi: 10.1029/2012JC007879 – volume-title: Lagrangian Fluid Dynamics year: 2007 ident: 842_CR2 – volume: 125 start-page: 1 year: 2020 ident: 842_CR14 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2019JD031662 – volume: 24 start-page: Paper No. 43 year: 2022 ident: 842_CR20 publication-title: J. Math. Fluid Mech. doi: 10.1007/s00021-022-00682-7 – volume-title: Thermodynamics of Atmospheres and Oceans year: 1999 ident: 842_CR11 – volume: 201 start-page: 1185 year: 2023 ident: 842_CR22 publication-title: Monatsh. Math. doi: 10.1007/s00605-022-01741-x – volume: 25 start-page: Paper No. 6 year: 2023 ident: 842_CR23 publication-title: J. Math. Fluid Mech. doi: 10.1007/s00021-022-00747-7 – volume: 820 start-page: 511 year: 2017 ident: 842_CR10 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.223 – ident: 842_CR28 doi: 10.1175/AMSMONOGRAPHS-D-18-0022.1 – volume: 376 start-page: 20170090 year: 2018 ident: 842_CR19 publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2017.0090 – volume: 35 start-page: 1395 year: 1978 ident: 842_CR24 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1978)035<1395:GAGBSE>2.0.CO;2 – volume-title: The Laws of Thermodynamics: A Very Short Introduction year: 2010 ident: 842_CR1 doi: 10.1093/actrade/9780199572199.001.0001 – volume: 120 start-page: 2056 year: 2018 ident: 842_CR26 publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1992)120<2056:OANMSO>2.0.CO;2 – volume: 478 start-page: 20210895 year: 2022 ident: 842_CR9 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2021.0895 – volume: 75 start-page: 41 year: 1949 ident: 842_CR25 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49707532308 – volume-title: Modern Differential Geometry of Curves and Surfaces With Mathematica year: 2006 ident: 842_CR13 – volume: 22 start-page: 499 year: 2015 ident: 842_CR15 publication-title: J. Nonlinear Math. Phys. doi: 10.1080/14029251.2015.1113046 |
SSID | ssj0017592 |
Score | 2.366793 |
Snippet | Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6 |
SubjectTerms | Atmospheric models Classical and Continuum Physics Exact solutions Flow characteristics Fluid mechanics Fluid- and Aerodynamics Gravity waves Lee waves Mathematical Methods in Physics Mountains Physics Physics and Astronomy Theoretical mathematics Wave propagation |
Title | Exact Solutions Modelling Nonlinear Atmospheric Gravity Waves |
URI | https://link.springer.com/article/10.1007/s00021-023-00842-3 https://www.ncbi.nlm.nih.gov/pubmed/38144908 https://www.proquest.com/docview/2904233805 https://www.proquest.com/docview/2905781856 https://pubmed.ncbi.nlm.nih.gov/PMC10733203 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VUCUuhdLSpsDKSNyopSR-JDlwWFa7IBB7YgWcosSxxUptttqEqj-_HueBlpfEKQc7Tjwztsee8fcBHEljLUMzSU3BBeVRgWyAKqYGkUdyHquGi-BqKs9n_OJW3LaXwqou270LSbqZur_s5rt0ArvGUASBDylbgw2Be3drxbNw2McOIuGokPFwg8okjNurMi-3sbocPfMxn6dKPomXumVosg2fWv-RDBuFf4YPutyBrdaXJO1IrXbgo0vtVNUXOBn_y1RN-vMvgvRnDombTBucjGxJhvXvRYUIA3NFzpYZEkqQm-yvrr7CbDK-Hp3TljSBKh6JmqqEmyIwOjACvUFWRIUJBdNcS6ZNYEyuI-3zSMoksL1iOTdMKowLJ9aXKHy2C-vlotTfgfBM5YGITKyVlRWLsyDjdkOFyMa-bYd7EHSyS1WLKI7EFr_SHgvZyTu18k6dvFPmwXH_zp8GT-PN2vudStJ2bFVpmGAuD4t94cFhX2xHBYY6slIvHlwdOxVZX0R68K3RYP8566NwDHd6EK_otq-AiNurJeX83iFvB0hxGfr2v352ZvD4X69348f7qu_BpjVr3uSG78N6vXzQB9b1qfMBbAwnp6dTfJ7dXY4HsDaSo4Gz___YGfuq |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT4QwFH5xidGL-4JrTbxpE6ClwMGDmajjNieN3giUNk6ijBnQ-PPtKwxm3BLPfZTy2tKvfa_fB3AgtBkZigmqcx5QHuaoBigjqpF5JOORrLUIbnqie8cvH4KHhiYH78J8id8j2ScmEZiVhSL1u0_ZJExzs1PG9L2O6LQRgzCwAsh4pEFF7EfNBZmf6xhfhL4hy-8Jkl-ipHbxOVuE-QY1kpO6m5dgQhXLsNAgSNLMz3IZZmxCpyxX4Pj0PZUVaU-9CIqeWf5t0qvZMdIhOameByXyCvQlOR-mKCNB7tM3Va7C3dnpbadLG6kEKnkYVFTGXOeeVp4OEAOyPMy1HzDFlWBKe1pnKlQuD4WIPfNVLOOaCYnR4NggiNxlazBVDAq1AYSnMvOCUEdKGl-xKPVSbrZRyGfsmnq4A97Id4lseMRRzuIpaRmQrb8T4-_E-jthDhy2z7zULBp_Wm-PuiRpZlSZ-DFm8LDIDRzYb4vNXMAAR1qowau1MT8gg0CEA-t1D7avM8iEY5DTgWisb1sD5NkeLyn6j5Zv20NhS9817ToaDYPPdv3-GZv_M9-D2e7tzXVyfdG72oI534CnOjt8G6aq4avaMeCnynbtqP8As8D2jw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5BJ9Be2FZ-hXXMSLyBtSR2nORhD1XX0g2oeKCib1Hi2KISS6smnfbn43PSbKUDiWdfHOfOjj_77r4DeC-0mRmKCapzHlAe5lgNUEZUI_NIxiNZ1yL4OhHjKb-aBbN7Wfw22n3jkqxzGpClqajOlrk-axPfXBtaYPYbioTwPmWPYc-cVKyjdiAGrR8hDGxZZLzooCL2oyZt5uE-tremHby5Gzb5h-_UbkmjQ3jWYEnSr41_BI9U0YWDBleSZtWWXXhiwzxl-RzOh7eprEh7F0awFJpl5SaTmjMjXZF-db0okW1gLsmnVYrFJciP9EaVL2A6Gn4fjGlTQIFKHgYVlTHXuaeVpwNEhiwPc-0HTHElmNKe1pkKlctDIWLPfBXLuGZCoo84Nrgid9lL6BSLQr0GwlOZeUGoIyWNrliUeik3hytkOXZNP9wBb6O7RDbs4ljk4lfS8iJbfSdG34nVd8Ic-NA-s6y5Nf4p3duYJGnWWZn4Mcb1sMgNHHjXNpsVgm6PtFCLtZUxvyWDS4QDr2oLtq8zeIWj69OBaMu2rQCyb2-3FPOfloXbw3KXvmvG9XEzDe7G9ffPePN_4qfw9NvFKPlyOfl8DPu-QVR1yHgPOtVqrU4MIqqyt3bS_waQsP7W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Solutions+Modelling+Nonlinear+Atmospheric+Gravity+Waves&rft.jtitle=Journal+of+mathematical+fluid+mechanics&rft.au=Henry%2C+David&rft.date=2024-02-01&rft.issn=1422-6928&rft.eissn=1422-6952&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1007%2Fs00021-023-00842-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00021_023_00842_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6928&client=summon |