Considering the Influence of Coronary Motion on Artery-Specific Biomechanics Using Fluid–Structure Interaction Simulation
The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid–structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries...
Saved in:
Published in | Annals of biomedical engineering Vol. 51; no. 9; pp. 1950 - 1964 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid–structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (
p
= 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, − 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all
p
< 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics. |
---|---|
AbstractList | The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid–structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (
p
= 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, − 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all
p
< 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics. The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid-structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, - 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics.The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid-structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, - 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics. The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid-structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, - 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics. The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid–structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, − 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics. |
Author | Yang, Pan Fogell, Nicholas A. T. Ruis, Roosje M. de Silva, Ranil Garcia, David B. Naser, Jarka Savvopoulos, Fotios Pedrigi, Ryan M. Davies Taylor, Clint Patel, Miten Post, Anouk L. Krams, Rob |
Author_xml | – sequence: 1 givenname: Nicholas A. T. orcidid: 0000-0001-8372-575X surname: Fogell fullname: Fogell, Nicholas A. T. email: n.fogell@imperial.ac.uk organization: National Heart and Lung Institute, Imperial College London – sequence: 2 givenname: Miten surname: Patel fullname: Patel, Miten organization: National Heart and Lung Institute, Imperial College London – sequence: 3 givenname: Pan surname: Yang fullname: Yang, Pan organization: National Heart and Lung Institute, Imperial College London – sequence: 4 givenname: Roosje M. surname: Ruis fullname: Ruis, Roosje M. organization: National Heart and Lung Institute, Imperial College London – sequence: 5 givenname: David B. surname: Garcia fullname: Garcia, David B. organization: National Heart and Lung Institute, Imperial College London – sequence: 6 givenname: Jarka surname: Naser fullname: Naser, Jarka organization: National Heart and Lung Institute, Imperial College London – sequence: 7 givenname: Fotios surname: Savvopoulos fullname: Savvopoulos, Fotios organization: National Heart and Lung Institute, Imperial College London – sequence: 8 givenname: Clint surname: Davies Taylor fullname: Davies Taylor, Clint organization: Simulia, Dassault Systemes UK Ltd – sequence: 9 givenname: Anouk L. surname: Post fullname: Post, Anouk L. organization: Amsterdam UMC, Department of Biomedical Engineering and Physics, University of Amsterdam – sequence: 10 givenname: Ryan M. surname: Pedrigi fullname: Pedrigi, Ryan M. organization: Mechanical & Materials Engineering, University of Nebraska-Lincoln – sequence: 11 givenname: Ranil surname: de Silva fullname: de Silva, Ranil organization: National Heart and Lung Institute, Imperial College London – sequence: 12 givenname: Rob surname: Krams fullname: Krams, Rob organization: School for Material Sciences and Engineering, Queen Mary University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37436564$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UsFu1DAUtFAR3S78AAcUiQuXwHPsOPEJlRWFSkUclp4tr_PSdZXYi-0gVVz4B_6QL8HZLQV6qGTZT_bM-I3HJ-TIeYeEPKfwmgI0byIFzmQJFSuBVZSX8IgsaN2wUopWHJEFgIRSSMGPyUmM1wCUtqx-Qo5Zw5moBV-Q7yvvou0wWHdVpC0W564fJnQGC98XKx-80-Gm-OST9a7I4zQkDDfleofG9tYU76wf0Wy1syYWl3GWORsm2_368XOdwmTSFGbRTNJmr7G24zTouXxKHvd6iPjsdl2Sy7P3X1Yfy4vPH85Xpxel4U2dStM0PRojdEup4I2o520BTdVX0HYVoyjqDkA3DKSWbac5Q5FL3Wm54RvOluTtQXc3bUbsDLoU9KB2wY7Zm_Laqv9PnN2qK_9N5fcF2XKWFV7dKgT_dcKY1GijwWHQDv0UVdUyUcmqlfNlL-9Br_0UXPaXUXPjLNvIqBf_tnTXy59gMqA6AEzwMQbs7yAU1Jy-OqSvcvpqn36el6S9RzI27Z8627LDw1R2oMbd_BUw_G37AdZv68jGTQ |
CitedBy_id | crossref_primary_10_1038_s41598_025_85781_x crossref_primary_10_1007_s10439_024_03607_9 crossref_primary_10_1063_5_0226743 crossref_primary_10_1080_10255842_2024_2310747 crossref_primary_10_3389_fcvm_2023_1221541 |
Cites_doi | 10.1115/1.3127253 10.1093/cvr/cvz212 10.1016/j.radonc.2016.08.006 10.1152/ajpheart.00872.2012 10.1115/1.4051923 10.1016/j.jbiomech.2004.01.021 10.1114/1.1467679 10.1016/j.jbiomech.2004.06.015 10.1016/j.jbiomech.2016.11.035 10.1114/1.1560631 10.1161/01.CIR.102.5.511 10.1007/s10439-016-1750-z 10.1016/0021-9290(95)00082-8 10.1152/ajpheart.01323.2005 10.1016/0002-8703(95)90234-1 10.3389/fphys.2021.734215 10.1007/s10237-022-01677-z 10.1016/j.jbiomech.2011.07.004 10.1016/j.icheatmasstransfer.2012.04.009 10.4244/EIJ-D-18-00529 10.1080/10255842.2016.1215439 10.1007/s10439-010-0008-4 10.1114/1.113 10.1093/cvr/cvt044 10.1109/TBME.2009.2025658 10.1114/1.1467926 10.1016/S0021-9290(98)00012-8 10.1016/0021-9290(95)00096-8 10.1253/circj.67.846 10.1364/OSAC.401599 10.1016/j.jbiomech.2003.09.016 10.1016/j.jbiomech.2021.110720 10.1161/CIRCULATIONAHA.107.730309 10.1115/1.4025335 10.1016/j.jbiomech.2006.04.019 10.1115/1.4007863 10.1161/ATVBAHA.114.303426 10.1115/1.1289989 10.1016/j.jbiomech.2013.08.003 10.1016/j.jbiomech.2017.12.007 10.1007/s10439-004-7816-3 10.1114/1.1467925 10.1016/j.atherosclerosis.2020.04.011 10.1152/ajplung.00317.2015 10.1161/CIRCULATIONAHA.115.016270 10.1115/1.1351806 10.1259/bjr/62450556 10.1115/1.2895734 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM |
DOI | 10.1007/s10439-023-03214-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
EndPage | 1964 |
ExternalDocumentID | PMC10409843 37436564 10_1007_s10439_023_03214_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/R502352/1 – fundername: British Heart Foundation grantid: SP/17/1/32702 – fundername: ; grantid: MR/R502352/1 – fundername: ; grantid: SP/17/1/32702 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c475t-c77fecc6a81164765c4756072f208d231e65d00a7309a98da43e609aada9b4b43 |
IEDL.DBID | U2A |
ISSN | 0090-6964 1573-9686 |
IngestDate | Thu Aug 21 18:41:38 EDT 2025 Fri Jul 11 15:39:40 EDT 2025 Fri Jul 25 19:18:50 EDT 2025 Mon Jul 21 06:07:10 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Tue Jul 01 00:38:23 EDT 2025 Fri Feb 21 02:42:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Coronary bending Shear stress Endothelial strain Coronary biomechanics Computational fluid dynamics |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-c77fecc6a81164765c4756072f208d231e65d00a7309a98da43e609aada9b4b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Associate Editor Estefanía Peña oversaw the review of this article. |
ORCID | 0000-0001-8372-575X |
OpenAccessLink | https://link.springer.com/10.1007/s10439-023-03214-0 |
PMID | 37436564 |
PQID | 2847563811 |
PQPubID | 54090 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10409843 proquest_miscellaneous_2836292894 proquest_journals_2847563811 pubmed_primary_37436564 crossref_primary_10_1007_s10439_023_03214_0 crossref_citationtrail_10_1007_s10439_023_03214_0 springer_journals_10_1007_s10439_023_03214_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States – name: New York |
PublicationSubtitle | The Journal of the Biomedical Engineering Society |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAbbrev | Ann Biomed Eng |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Javadzadegan, Yong, Chang, Ng, Behnia, Kritharides (CR16) 2017; 20 Cameron, Mehta, Michail, Chan, Nicholls, Bennett, Brown (CR2) 2020; 302 Guo, Liu, Kassab (CR10) 1985; 112 Hoogendoorn, Kok, Hartman, de Nisco, Casadonte, Chiastra, Coenen, Korteland, Van der Heiden, Gijsen, Duncker, van der Steen, Wentzel (CR14) 2020; 116 Prosi, Perktold, Ding, Friedman (CR35) 2004; 37 CR39 Annette, David, Lucas, Yi-An, Eric, Parham, Jolanda, Habib (CR1) 2019; 15 CR30 Ramaswamy, Vigmostad, Wahle, Lai, Olszewski, Braddy, Brennan, Rossen, Sonka, Chandran (CR36) 2004; 32 Helmke, Davies (CR12) 2002; 30 Kwak, Back, Bochaton-Piallat, Caligiuri, Daemen, Davies, Hoefer, Holvoet, Jo, Krams, Lehoux, Monaco, Steffens, Virmani, Weber, Wentzel, Evans (CR21) 2014; 35 Islam, Boström, Di Carlo, Simmons, Tintut, Yao, Hsu (CR15) 2021; 12 Du, Mills, Sumpio (CR6) 1995; 28 CR8 Freidoonimehr, Chin, Zander, Arjomandi (CR7) 2022; 144 Peiffer, Sherwin, Weinberg (CR32) 2013; 99 CR45 Pedrigi, de Silva, Bovens, Mehta, Petretto, Krams (CR28) 2014; 34 Yang, Bach, Zheng, Naqa, Woodard, Teng, Billiar, Tang (CR51) 2009; 56 Zeng, Ding, Friedman, Ethier (CR53) 2003; 31 Korff, Aufgebauer, Hecker (CR20) 2007; 116 Schilt, Moore, Delfino, Meister (CR38) 1996; 29 Weissman, Palacios, Weyman (CR50) 1995; 130 Holzapfel (CR13) 2000 Takamizawa, Nakayama (CR43) 2013; 80 Post, Cernohorsky, Pedrigi, Streekstra, D'Hooghe, Annema, Strackee, Krams, van Leeuwen, de Bruin, Faber (CR34) 2020; 3 Hasan, Rubenstein, Yin (CR11) 2013; 135 Torii, Keegan, Wood, Dowsey, Hughes, Yang, Firmin, Thom, Xu (CR46) 2010; 38 Johnston, Johnston, Corney, Kilpatrick (CR17) 2004; 37 Tang, Yang, Kobayashi, Zheng, Woodard, Teng, Billiar, Bach, Ku (CR44) 2009; 131 Pedrigi, Papadimitriou, Kondiboyina, Sidhu, Chau, Patel, Baeriswyl, Drakakis, Krams (CR29) 2017; 45 Ding, Zhu, Friedman (CR5) 2002; 30 Patel, Savvopoulos, Berggren, Aslanidou, Timmins, de Silva, Pedrigi, Krams (CR27) 2021; 128 Wang, Tang, Maehara, Wu, Yang, Muccigrosso, Zheng, Bach, Billiar, Mintz (CR49) 2018; 68 Pivkin, Richardson, Laidlaw, Karniadakis (CR33) 2005; 38 Kataria, Bisht, Gupta, Abhishek, Basu, Narang, Goyal, Shukla, Bansal, Grewal, Ahlawat, Banarjee, Tayal (CR18) 2016; 121 Santamarina, Weydahl, Siegel, Moore (CR37) 1998; 26 Peiffer, Sherwin, Weinberg (CR31) 2013; 46 Malve, Garcia, Ohayon, Martinez (CR23) 2012; 39 Slager, Wentzel, Schuurbiers, Oomen, Kloet, Krams, von Birgelen, van der Giessen, Serruys, de Feyter (CR40) 2000; 102 Wang, Fang, Wu, Xiang, Mendieta, Paritala, Fan, Anbananthan, Amaya Catano, Raffel, Li (CR48) 2023; 22 Steinman (CR42) 2002; 30 Yang, Tang, Kobayashi, Zheng, Woodard, Teng, Bach, Ku (CR52) 2008; 5 Gross, Friedman (CR9) 1998; 31 CR26 Wang, Garcia, Lu, Lanir, Kassab (CR47) 2006; 291 CR25 Konta, Bett (CR19) 2003; 67 Speelman, Akyildiz, den Adel, Wentzel, van der Steen, Virmani, van der Weerd, Jukema, Poelmann, van Brummelen, Gijsen (CR41) 2011; 44 Mohamied, Sherwin, Weinberg (CR24) 2017; 50 de Putter, Wolters, Rutten, Breeuwer, Gerritsen, van de Vosse (CR3) 2007; 40 Ding, Friedman (CR4) 2000; 122 Liu, Peyton, Durante (CR22) 2013; 304 W Du (3214_CR6) 1995; 28 M Malve (3214_CR23) 2012; 39 K Takamizawa (3214_CR43) 2013; 80 3214_CR25 XM Liu (3214_CR22) 2013; 304 AL Post (3214_CR34) 2020; 3 Z Ding (3214_CR5) 2002; 30 3214_CR26 BP Helmke (3214_CR12) 2002; 30 M Patel (3214_CR27) 2021; 128 BR Kwak (3214_CR21) 2014; 35 CJ Slager (3214_CR40) 2000; 102 S de Putter (3214_CR3) 2007; 40 SD Ramaswamy (3214_CR36) 2004; 32 M Prosi (3214_CR35) 2004; 37 A Hoogendoorn (3214_CR14) 2020; 116 V Peiffer (3214_CR31) 2013; 46 MF Gross (3214_CR9) 1998; 31 3214_CR30 DA Steinman (3214_CR42) 2002; 30 3214_CR39 M Hasan (3214_CR11) 2013; 135 J Wang (3214_CR48) 2023; 22 C Yang (3214_CR51) 2009; 56 L Speelman (3214_CR41) 2011; 44 D Tang (3214_CR44) 2009; 131 IV Pivkin (3214_CR33) 2005; 38 3214_CR45 Z Ding (3214_CR4) 2000; 122 T Korff (3214_CR20) 2007; 116 D Zeng (3214_CR53) 2003; 31 A Santamarina (3214_CR37) 1998; 26 S Islam (3214_CR15) 2021; 12 3214_CR8 MK Annette (3214_CR1) 2019; 15 BM Johnston (3214_CR17) 2004; 37 T Konta (3214_CR19) 2003; 67 T Kataria (3214_CR18) 2016; 121 X Guo (3214_CR10) 1985; 112 A Javadzadegan (3214_CR16) 2017; 20 N Freidoonimehr (3214_CR7) 2022; 144 Y Mohamied (3214_CR24) 2017; 50 GA Holzapfel (3214_CR13) 2000 S Schilt (3214_CR38) 1996; 29 NJ Weissman (3214_CR50) 1995; 130 RM Pedrigi (3214_CR29) 2017; 45 V Peiffer (3214_CR32) 2013; 99 RM Pedrigi (3214_CR28) 2014; 34 C Yang (3214_CR52) 2008; 5 JN Cameron (3214_CR2) 2020; 302 R Torii (3214_CR46) 2010; 38 C Wang (3214_CR47) 2006; 291 L Wang (3214_CR49) 2018; 68 |
References_xml | – volume: 131 issue: 6 year: 2009 ident: CR44 article-title: 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis publication-title: J. Biomech. Eng. doi: 10.1115/1.3127253 – ident: CR45 – volume: 116 start-page: 1136 year: 2020 end-page: 1146 ident: CR14 article-title: Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvz212 – volume: 121 start-page: 59 year: 2016 end-page: 63 ident: CR18 article-title: Quantification of coronary artery motion and internal risk volume from ECG gated radiotherapy planning scans publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2016.08.006 – volume: 304 start-page: H1634 year: 2013 end-page: 1643 ident: CR22 article-title: Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00872.2012 – volume: 144 start-page: 010801 issue: 1 year: 2022 ident: CR7 article-title: A review on the effect of temporal geometric variations of the coronary arteries on the wall shear stress and pressure drop publication-title: J. Biomech. Eng. doi: 10.1115/1.4051923 – volume: 37 start-page: 1767 year: 2004 end-page: 1775 ident: CR35 article-title: Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.01.021 – volume: 30 start-page: 483 year: 2002 end-page: 497 ident: CR42 article-title: Image-based computational fluid dynamics modeling in realistic arterial geometries publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1467679 – volume: 38 start-page: 1283 year: 2005 end-page: 1290 ident: CR33 article-title: Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.06.015 – volume: 50 start-page: 102 year: 2017 end-page: 109 ident: CR24 article-title: Understanding the fluid mechanics behind transverse wall shear stress publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.11.035 – ident: CR39 – volume: 31 start-page: 420 year: 2003 end-page: 429 ident: CR53 article-title: Effects of cardiac motion on right coronary artery hemodynamics publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1560631 – volume: 102 start-page: 511 year: 2000 end-page: 516 ident: CR40 article-title: True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation publication-title: Circulation doi: 10.1161/01.CIR.102.5.511 – ident: CR8 – volume: 45 start-page: 898 year: 2017 end-page: 909 ident: CR29 article-title: Disturbed cyclical stretch of endothelial cells promotes nuclear expression of the pro-atherogenic transcription factor NF-kappaB publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1750-z – ident: CR25 – volume: 29 start-page: 469 year: 1996 end-page: 474 ident: CR38 article-title: The effects of time-varying curvature on velocity profiles in a model of the coronary arteries publication-title: J. Biomech. doi: 10.1016/0021-9290(95)00082-8 – volume: 291 start-page: H1200 year: 2006 end-page: 1209 ident: CR47 article-title: Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01323.2005 – volume: 130 start-page: 46 year: 1995 end-page: 51 ident: CR50 article-title: Dynamic expansion of the coronary arteries: implications for intravascular ultrasound measurements publication-title: Am. Heart J. doi: 10.1016/0002-8703(95)90234-1 – volume: 12 start-page: 734215 year: 2021 ident: CR15 article-title: The mechanobiology of endothelial-to-mesenchymal transition in cardiovascular disease publication-title: Front. Physiol. doi: 10.3389/fphys.2021.734215 – volume: 22 start-page: 729 issue: 2 year: 2023 end-page: 738 ident: CR48 article-title: Impact of cyclic bending on coronary hemodynamics publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-022-01677-z – volume: 44 start-page: 2376 year: 2011 end-page: 2382 ident: CR41 article-title: Initial stress in biomechanical models of atherosclerotic plaques publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.07.004 – volume: 39 start-page: 745 year: 2012 end-page: 751 ident: CR23 article-title: Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs CFD publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2012.04.009 – volume: 15 start-page: 692 year: 2019 end-page: 699 ident: CR1 article-title: The influence of multidirectional shear stress on plaque progression and composition changes in human coronary arteries publication-title: EuroIntervention doi: 10.4244/EIJ-D-18-00529 – ident: CR26 – volume: 20 start-page: 260 year: 2017 end-page: 272 ident: CR16 article-title: Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2016.1215439 – ident: CR30 – volume: 38 start-page: 2606 year: 2010 end-page: 2620 ident: CR46 article-title: MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0008-4 – volume: 26 start-page: 944 year: 1998 end-page: 954 ident: CR37 article-title: Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature publication-title: Ann. Biomed. Eng. doi: 10.1114/1.113 – volume: 99 start-page: 242 year: 2013 end-page: 250 ident: CR32 article-title: Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvt044 – volume: 56 start-page: 2420 year: 2009 end-page: 2428 ident: CR51 article-title: In vivo IVUS-based 3-D fluid–structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2025658 – volume: 30 start-page: 284 year: 2002 end-page: 296 ident: CR12 article-title: The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1467926 – volume: 31 start-page: 479 year: 1998 end-page: 484 ident: CR9 article-title: Dynamics of coronary artery curvature obtained from biplane cineangiograms publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00012-8 – start-page: 455 year: 2000 ident: CR13 publication-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering – volume: 28 start-page: 1485 year: 1995 end-page: 1491 ident: CR6 article-title: Cyclic strain causes heterogeneous induction of transcription factors, AP-1, CRE binding protein and NF-kB, in endothelial cells: species and vascular bed diversity publication-title: J. Biomech. doi: 10.1016/0021-9290(95)00096-8 – volume: 67 start-page: 846 year: 2003 end-page: 850 ident: CR19 article-title: Patterns of coronary artery movement and the development of coronary atherosclerosis publication-title: Circ. J. doi: 10.1253/circj.67.846 – volume: 3 start-page: 2707 year: 2020 end-page: 2721 ident: CR34 article-title: 3D co-registration algorithm for catheter-based optical coherence tomography publication-title: Osa Continuum doi: 10.1364/OSAC.401599 – volume: 37 start-page: 709 year: 2004 end-page: 720 ident: CR17 article-title: Non-Newtonian blood flow in human right coronary arteries: steady state simulations publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2003.09.016 – volume: 128 year: 2021 ident: CR27 article-title: Considerations for analysis of endothelial shear stress and strain in FSI models of atherosclerosis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110720 – volume: 116 start-page: 2288 year: 2007 end-page: 2297 ident: CR20 article-title: Cyclic stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-beta1 response publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.730309 – volume: 135 year: 2013 ident: CR11 article-title: Effects of cyclic motion on coronary blood flow publication-title: J. Biomech. Eng. doi: 10.1115/1.4025335 – volume: 40 start-page: 1081 year: 2007 end-page: 1090 ident: CR3 article-title: Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.04.019 – volume: 80 start-page: 041006 year: 2013 ident: CR43 article-title: Stress distribution in a bilayer elastic model of a coronary artery publication-title: J. Appl. Mech. doi: 10.1115/1.4007863 – volume: 34 start-page: 2224 year: 2014 end-page: 2231 ident: CR28 article-title: Thin-cap fibroatheroma rupture is associated with a fine interplay of shear and wall stress publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.303426 – volume: 122 start-page: 488 year: 2000 end-page: 492 ident: CR4 article-title: Dynamics of human coronary arterial motion and its potential role in coronary atherogenesis publication-title: J. Biomech. Eng. doi: 10.1115/1.1289989 – volume: 46 start-page: 2651 year: 2013 end-page: 2658 ident: CR31 article-title: Computation in the rabbit aorta of a new metric—the transverse wall shear stress—to quantify the multidirectional character of disturbed blood flow publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.08.003 – volume: 112 start-page: 2012 issue: 982–989 year: 1985 ident: CR10 article-title: Diameter-dependent axial prestretch of porcine coronary arteries and veins publication-title: J. Appl. Physiol. – volume: 68 start-page: 43 year: 2018 end-page: 50 ident: CR49 article-title: Fluid–structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: a preliminary study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.12.007 – volume: 32 start-page: 1628 year: 2004 end-page: 1641 ident: CR36 article-title: Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-004-7816-3 – volume: 30 start-page: 419 year: 2002 end-page: 429 ident: CR5 article-title: Coronary artery dynamics in vivo publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1467925 – volume: 35 start-page: 3020a issue: 3013–3020 year: 2014 end-page: 3020d ident: CR21 article-title: Biomechanical factors in atherosclerosis: mechanisms and clinical implications publication-title: Eur. Heart J. – volume: 302 start-page: 43 year: 2020 end-page: 51 ident: CR2 article-title: Exploring the relationship between biomechanical stresses and coronary atherosclerosis publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2020.04.011 – volume: 5 start-page: 259 year: 2008 end-page: 274 ident: CR52 article-title: Cyclic bending contributes to high stress in a human coronary atherosclerotic plaque and rupture risk: in vitro experimental modeling and ex vivo MRI-based computational modeling approach publication-title: Mol. Cell Biomech. – volume: 31 start-page: 479 year: 1998 ident: 3214_CR9 publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00012-8 – volume: 304 start-page: H1634 year: 2013 ident: 3214_CR22 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00872.2012 – volume: 131 issue: 6 year: 2009 ident: 3214_CR44 publication-title: J. Biomech. Eng. doi: 10.1115/1.3127253 – volume: 144 start-page: 010801 issue: 1 year: 2022 ident: 3214_CR7 publication-title: J. Biomech. Eng. doi: 10.1115/1.4051923 – volume: 130 start-page: 46 year: 1995 ident: 3214_CR50 publication-title: Am. Heart J. doi: 10.1016/0002-8703(95)90234-1 – volume: 39 start-page: 745 year: 2012 ident: 3214_CR23 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2012.04.009 – ident: 3214_CR8 doi: 10.1152/ajplung.00317.2015 – volume: 22 start-page: 729 issue: 2 year: 2023 ident: 3214_CR48 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-022-01677-z – volume: 34 start-page: 2224 year: 2014 ident: 3214_CR28 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.303426 – volume: 45 start-page: 898 year: 2017 ident: 3214_CR29 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1750-z – volume: 50 start-page: 102 year: 2017 ident: 3214_CR24 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.11.035 – volume: 38 start-page: 2606 year: 2010 ident: 3214_CR46 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0008-4 – volume: 122 start-page: 488 year: 2000 ident: 3214_CR4 publication-title: J. Biomech. Eng. doi: 10.1115/1.1289989 – volume: 112 start-page: 2012 issue: 982–989 year: 1985 ident: 3214_CR10 publication-title: J. Appl. Physiol. – volume: 35 start-page: 3020a issue: 3013–3020 year: 2014 ident: 3214_CR21 publication-title: Eur. Heart J. – volume: 56 start-page: 2420 year: 2009 ident: 3214_CR51 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2025658 – volume: 38 start-page: 1283 year: 2005 ident: 3214_CR33 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.06.015 – volume: 40 start-page: 1081 year: 2007 ident: 3214_CR3 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.04.019 – volume: 67 start-page: 846 year: 2003 ident: 3214_CR19 publication-title: Circ. J. doi: 10.1253/circj.67.846 – volume: 46 start-page: 2651 year: 2013 ident: 3214_CR31 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.08.003 – volume: 28 start-page: 1485 year: 1995 ident: 3214_CR6 publication-title: J. Biomech. doi: 10.1016/0021-9290(95)00096-8 – volume: 68 start-page: 43 year: 2018 ident: 3214_CR49 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.12.007 – volume: 116 start-page: 1136 year: 2020 ident: 3214_CR14 publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvz212 – volume: 12 start-page: 734215 year: 2021 ident: 3214_CR15 publication-title: Front. Physiol. doi: 10.3389/fphys.2021.734215 – volume: 30 start-page: 419 year: 2002 ident: 3214_CR5 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1467925 – volume: 102 start-page: 511 year: 2000 ident: 3214_CR40 publication-title: Circulation doi: 10.1161/01.CIR.102.5.511 – volume: 20 start-page: 260 year: 2017 ident: 3214_CR16 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2016.1215439 – volume: 37 start-page: 1767 year: 2004 ident: 3214_CR35 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.01.021 – volume: 29 start-page: 469 year: 1996 ident: 3214_CR38 publication-title: J. Biomech. doi: 10.1016/0021-9290(95)00082-8 – volume: 121 start-page: 59 year: 2016 ident: 3214_CR18 publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2016.08.006 – volume: 37 start-page: 709 year: 2004 ident: 3214_CR17 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2003.09.016 – ident: 3214_CR30 doi: 10.1161/CIRCULATIONAHA.115.016270 – volume: 30 start-page: 284 year: 2002 ident: 3214_CR12 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1467926 – volume: 26 start-page: 944 year: 1998 ident: 3214_CR37 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.113 – volume: 302 start-page: 43 year: 2020 ident: 3214_CR2 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2020.04.011 – volume: 99 start-page: 242 year: 2013 ident: 3214_CR32 publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvt044 – volume: 30 start-page: 483 year: 2002 ident: 3214_CR42 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1467679 – ident: 3214_CR25 doi: 10.1115/1.1351806 – volume: 44 start-page: 2376 year: 2011 ident: 3214_CR41 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.07.004 – volume: 128 year: 2021 ident: 3214_CR27 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110720 – volume: 116 start-page: 2288 year: 2007 ident: 3214_CR20 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.730309 – volume: 3 start-page: 2707 year: 2020 ident: 3214_CR34 publication-title: Osa Continuum doi: 10.1364/OSAC.401599 – volume: 32 start-page: 1628 year: 2004 ident: 3214_CR36 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-004-7816-3 – volume: 80 start-page: 041006 year: 2013 ident: 3214_CR43 publication-title: J. Appl. Mech. doi: 10.1115/1.4007863 – volume: 291 start-page: H1200 year: 2006 ident: 3214_CR47 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01323.2005 – volume: 5 start-page: 259 year: 2008 ident: 3214_CR52 publication-title: Mol. Cell Biomech. – ident: 3214_CR45 doi: 10.1259/bjr/62450556 – start-page: 455 volume-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering year: 2000 ident: 3214_CR13 – volume: 135 year: 2013 ident: 3214_CR11 publication-title: J. Biomech. Eng. doi: 10.1115/1.4025335 – volume: 31 start-page: 420 year: 2003 ident: 3214_CR53 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1560631 – ident: 3214_CR39 – volume: 15 start-page: 692 year: 2019 ident: 3214_CR1 publication-title: EuroIntervention doi: 10.4244/EIJ-D-18-00529 – ident: 3214_CR26 doi: 10.1115/1.2895734 |
SSID | ssj0011835 |
Score | 2.4458776 |
Snippet | The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1950 |
SubjectTerms | Arteries Bending Biochemistry Biological and Medical Physics Biomechanical Phenomena Biomechanics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Boundary conditions Classical Mechanics Computer Simulation Coronary artery Coronary vessels Coronary Vessels - physiology Endothelium Fluid-structure interaction Heart Hemodynamics Models, Cardiovascular Original Original Article Shear stress Strain Stress, Mechanical Veins & arteries Wall shear stresses |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB1BkRAcEJSvhYKMxA0snF2v7T2hUhEVpHAplXJbee21WKndlKY5VFz4D_xDfgkzjndDqKiUQxQ7ya7f2DNez7wH8NrnbuKUy3lVNJpL60reOASEqLwL47WUkYlp9kUdHsvP83KeHrgtU1rlsCbGhdovHD0jf0fLaInGMpm8P_vOSTWKTleThMZNuEXUZZTSpefjhgtj57XApqhwi1QpmYpmUukcumKOHosL0urhYtsxXYk2ryZN_nNyGh3S9D7cS5Ek219D_wButP0u3P2LX3AXbs_SyflD-DEoc2IDw6CPfRrUSdgisAPiMbDnl2wWRX0YvvYp1_OSR3360Dn2ger0qUy4c0sWEw3Y9GTV-d8_fx1FDtrVOf0oFTTHUgl21J0mabBHcDz9-PXgkCfhBe5wkC-40zogtMriaCupVUkfK6HzkAvjMSJsVemFsLg6VLYy3sqiVfjWels1spHFY9jpF337FJgMuKHTUhXeCRlCwK5GN6YJRheulSaDyTDqtUus5CSOcVJv-JQJqRqRqiNStcjgzfidszUnx7W99wYw6zQ_l_XGmjJ4NTbjzKLjEtu3ixX1Qede4YZUZvBkjf34dwUGXhgJY4vZsoqxA7F2b7f03bfI3o0XKCojiwzeDga0ua7_38az62_jOdzJozFT9tse7CDw7QsMly6al3FO_AE6mBIW priority: 102 providerName: ProQuest |
Title | Considering the Influence of Coronary Motion on Artery-Specific Biomechanics Using Fluid–Structure Interaction Simulation |
URI | https://link.springer.com/article/10.1007/s10439-023-03214-0 https://www.ncbi.nlm.nih.gov/pubmed/37436564 https://www.proquest.com/docview/2847563811 https://www.proquest.com/docview/2836292894 https://pubmed.ncbi.nlm.nih.gov/PMC10409843 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9NADLdgkxA8IBh_FhjVIfEGJ-XP5e7y2FbNBqgVYlQqT9HlkohIW4rW9WHihe_AN-STYF-TbN0GElLVVLGbpLXvbMv2zwBvitAGVtqQJ1GuuDA25rlFgRCUd6QLJYRDYprO5NFcfFjEi7YpbNVVu3cpSbdTX2l2Q-PJ0cZwn6brcAzUd2OK3VGL5-Gwzx2gkm7mFiQYGCVStK0yt19j2xzd8DFvlkpey5c6M5Q-goet_8iGG4E_hjtlswcPrqAK7sG9aZsvfwI_unmcSGDo6rH33UwStqzYmNALzNkFm7pRPgxfQ6rwvOBuKn1VWzai7nxqDq7tirnyApaerOvi989fxw55dn1GF6U2ZtcgwY7r03Yg2FOYp5Mv4yPejlvgVqj4nFulKhSoNDogkDEZ02npq7AKfV2gH1jKuPB9g3tCYhJdGBGVEj-awiS5yEX0DHaaZVPuAxMVhnFKyKiwvqiqClm1ynVeaRXZUmgPgu5fz2yLRU4jMU6ySxRlklSGksqcpDLfg7f9d75vkDj-yX3QCTNrV-UqI1Mc44YTBB687sm4nihJYppyuSYeNOkJhqHCg-cb2fe3i9DdQv8XKXpLK3oGwurepjT1N4fZjQ_oJ1pEHrzrFOjyuf7-M178H_tLuB865aYauAPYQUUoX6HTdJ4P4K5aKHzX6eEAdofpaDSj4-HXjxM8jiazT5-ROpbjgVtNfwCwBRYx |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQF7QDDYFhhgJHgCCzd2HOcBoTEoLVv30k3aW0icRFTa0m5dhSpe-A58Dz4Un4Q7508pE3ub1Ieodhynd2efe3e_H8CLzLcdq63PI5mGXCU24KlFgRCUtzRZqJRDYhoc6N6R-nwcHK_Ar6YWhtIqmzXRLdTZ2NJ_5G9oGQ1QWTqdd5MzTqxRFF1tKDQqtdjL59_wyDZ92_-A8n3p-92Ph7s9XrMKcIsjXHAbhgXOWyc4lFahDuhrLUK_8IXJ0N3JdZAJkaDqR0lkskTJXONlkiVRqlIlcdwbcFNJGZFFme6nNmqB5lExJkR4JIu0qot06lI93Po57pBcEDcQF8sb4SXv9nKS5j-RWrcBdu_B3dpzZTuVqt2Hlbxch7W_8AzX4dagjtQ_gO8NEyg2MHQyWb9hQ2Hjgu0SbkJyPmcDRyLE8LNDuaVzPpzkLkuQvSdcACpLHtkpc4kNrHsyG2W_f_wcOszb2TkNSgXUrjSDDUenNRXZQzi6FpFswGo5LvMtYKrAA2SotMysUEVRYFcTpiYtTChtrowHneZXj22Ngk5kHCfxAr-ZJBWjpGInqVh48Kq9Z1JhgFzZe7sRZlyvB9N4ob0ePG-b0ZIpPJOU-XhGfdCZiPAArDzYrGTfPk6io4eeN7aYJa1oOxBK-HJLOfrq0MJxgiIySnrwulGgxbz-_xqPrn6NZ3C7dzjYj_f7B3uP4Y7vFJsy77ZhFZUgf4Ku2kX61NkHgy_XbZB_AHF0Tf4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIU3sAcH4FxhgJHgCa07i2MkDQmOjWhmdkMqkvgXHSUSlLS3rKlTxwnfg2_Bx-CTcOX9KmdjbpD5EtePEvTv7d_Xd7wCe54H1rbIBT8JMc2lsxDOLAiEq7zDOtZSOiWlwpA6O5ftRNFqDX20uDIVVtmuiW6jziaX_yHdoGY1QWXx_p2zCIj7u995Mv3KqIEUnrW05jVpFDovFN3TfZq_7-yjrF0HQe_dp74A3FQa4xdHOudW6xDkog8MqqVVEXyuhgzIQcY7Qp1BRLoRBM0hMEudGhoXCS5ObJJOZDHHca3Bdh5FPNqZHnbOHuL0u7ikSdM8SJZuEnSZtD2EAx92SC6oTxMXqpngB6V4M2Pzn1NZthr1bcLNBsWy3VrvbsFZUW7D5F7fhFmwMmlP7O_C9rQqKDQwBJ-u3lVHYpGR7xKFgzhZs4AoKMfzsUpzpgg-nhYsYZG-JI4BSlMd2xlyQA-udzMf57x8_h47_dn5Gg1IytUvTYMPxaVOW7C4cX4lI7sF6NamKB8Bkic6klirMrZBlWWLXWGdxVsY6tIWMPfDbXz21DSM6FeY4SZdcziSpFCWVOkmlwoOX3T3Tmg_k0t7brTDTZm2YpUtN9uBZ14xWTUc1piomc-qDwCJBZ1h6cL-Wffe4EEEfonBsiVe0outAjOGrLdX4i2MOxxcUSSxDD161CrR8r_9P4-Hl03gKG2iK6Yf-0eEjuBE4vaYgvG1YRx0oHiNqO8-eOPNg8Pmq7fEP-FVSKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Considering+the+Influence+of+Coronary+Motion+on+Artery-Specific+Biomechanics+Using+Fluid-Structure+Interaction+Simulation&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Fogell%2C+Nicholas+A+T&rft.au=Patel%2C+Miten&rft.au=Yang%2C+Pan&rft.au=Ruis%2C+Roosje+M&rft.date=2023-09-01&rft.eissn=1573-9686&rft.volume=51&rft.issue=9&rft.spage=1950&rft_id=info:doi/10.1007%2Fs10439-023-03214-0&rft_id=info%3Apmid%2F37436564&rft.externalDocID=37436564 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |