Considering the Influence of Coronary Motion on Artery-Specific Biomechanics Using Fluid–Structure Interaction Simulation

The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid–structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 51; no. 9; pp. 1950 - 1964
Main Authors Fogell, Nicholas A. T., Patel, Miten, Yang, Pan, Ruis, Roosje M., Garcia, David B., Naser, Jarka, Savvopoulos, Fotios, Davies Taylor, Clint, Post, Anouk L., Pedrigi, Ryan M., de Silva, Ranil, Krams, Rob
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid–structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD ( p  = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, − 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p  < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics.
AbstractList The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid–structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD ( p  = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, − 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p  < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics.
The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid-structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, - 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics.The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid-structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, - 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics.
The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid-structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, - 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics.
The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid–structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, − 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics.
Author Yang, Pan
Fogell, Nicholas A. T.
Ruis, Roosje M.
de Silva, Ranil
Garcia, David B.
Naser, Jarka
Savvopoulos, Fotios
Pedrigi, Ryan M.
Davies Taylor, Clint
Patel, Miten
Post, Anouk L.
Krams, Rob
Author_xml – sequence: 1
  givenname: Nicholas A. T.
  orcidid: 0000-0001-8372-575X
  surname: Fogell
  fullname: Fogell, Nicholas A. T.
  email: n.fogell@imperial.ac.uk
  organization: National Heart and Lung Institute, Imperial College London
– sequence: 2
  givenname: Miten
  surname: Patel
  fullname: Patel, Miten
  organization: National Heart and Lung Institute, Imperial College London
– sequence: 3
  givenname: Pan
  surname: Yang
  fullname: Yang, Pan
  organization: National Heart and Lung Institute, Imperial College London
– sequence: 4
  givenname: Roosje M.
  surname: Ruis
  fullname: Ruis, Roosje M.
  organization: National Heart and Lung Institute, Imperial College London
– sequence: 5
  givenname: David B.
  surname: Garcia
  fullname: Garcia, David B.
  organization: National Heart and Lung Institute, Imperial College London
– sequence: 6
  givenname: Jarka
  surname: Naser
  fullname: Naser, Jarka
  organization: National Heart and Lung Institute, Imperial College London
– sequence: 7
  givenname: Fotios
  surname: Savvopoulos
  fullname: Savvopoulos, Fotios
  organization: National Heart and Lung Institute, Imperial College London
– sequence: 8
  givenname: Clint
  surname: Davies Taylor
  fullname: Davies Taylor, Clint
  organization: Simulia, Dassault Systemes UK Ltd
– sequence: 9
  givenname: Anouk L.
  surname: Post
  fullname: Post, Anouk L.
  organization: Amsterdam UMC, Department of Biomedical Engineering and Physics, University of Amsterdam
– sequence: 10
  givenname: Ryan M.
  surname: Pedrigi
  fullname: Pedrigi, Ryan M.
  organization: Mechanical & Materials Engineering, University of Nebraska-Lincoln
– sequence: 11
  givenname: Ranil
  surname: de Silva
  fullname: de Silva, Ranil
  organization: National Heart and Lung Institute, Imperial College London
– sequence: 12
  givenname: Rob
  surname: Krams
  fullname: Krams, Rob
  organization: School for Material Sciences and Engineering, Queen Mary University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37436564$$D View this record in MEDLINE/PubMed
BookMark eNp9UsFu1DAUtFAR3S78AAcUiQuXwHPsOPEJlRWFSkUclp4tr_PSdZXYi-0gVVz4B_6QL8HZLQV6qGTZT_bM-I3HJ-TIeYeEPKfwmgI0byIFzmQJFSuBVZSX8IgsaN2wUopWHJEFgIRSSMGPyUmM1wCUtqx-Qo5Zw5moBV-Q7yvvou0wWHdVpC0W564fJnQGC98XKx-80-Gm-OST9a7I4zQkDDfleofG9tYU76wf0Wy1syYWl3GWORsm2_368XOdwmTSFGbRTNJmr7G24zTouXxKHvd6iPjsdl2Sy7P3X1Yfy4vPH85Xpxel4U2dStM0PRojdEup4I2o520BTdVX0HYVoyjqDkA3DKSWbac5Q5FL3Wm54RvOluTtQXc3bUbsDLoU9KB2wY7Zm_Laqv9PnN2qK_9N5fcF2XKWFV7dKgT_dcKY1GijwWHQDv0UVdUyUcmqlfNlL-9Br_0UXPaXUXPjLNvIqBf_tnTXy59gMqA6AEzwMQbs7yAU1Jy-OqSvcvpqn36el6S9RzI27Z8627LDw1R2oMbd_BUw_G37AdZv68jGTQ
CitedBy_id crossref_primary_10_1038_s41598_025_85781_x
crossref_primary_10_1007_s10439_024_03607_9
crossref_primary_10_1063_5_0226743
crossref_primary_10_1080_10255842_2024_2310747
crossref_primary_10_3389_fcvm_2023_1221541
Cites_doi 10.1115/1.3127253
10.1093/cvr/cvz212
10.1016/j.radonc.2016.08.006
10.1152/ajpheart.00872.2012
10.1115/1.4051923
10.1016/j.jbiomech.2004.01.021
10.1114/1.1467679
10.1016/j.jbiomech.2004.06.015
10.1016/j.jbiomech.2016.11.035
10.1114/1.1560631
10.1161/01.CIR.102.5.511
10.1007/s10439-016-1750-z
10.1016/0021-9290(95)00082-8
10.1152/ajpheart.01323.2005
10.1016/0002-8703(95)90234-1
10.3389/fphys.2021.734215
10.1007/s10237-022-01677-z
10.1016/j.jbiomech.2011.07.004
10.1016/j.icheatmasstransfer.2012.04.009
10.4244/EIJ-D-18-00529
10.1080/10255842.2016.1215439
10.1007/s10439-010-0008-4
10.1114/1.113
10.1093/cvr/cvt044
10.1109/TBME.2009.2025658
10.1114/1.1467926
10.1016/S0021-9290(98)00012-8
10.1016/0021-9290(95)00096-8
10.1253/circj.67.846
10.1364/OSAC.401599
10.1016/j.jbiomech.2003.09.016
10.1016/j.jbiomech.2021.110720
10.1161/CIRCULATIONAHA.107.730309
10.1115/1.4025335
10.1016/j.jbiomech.2006.04.019
10.1115/1.4007863
10.1161/ATVBAHA.114.303426
10.1115/1.1289989
10.1016/j.jbiomech.2013.08.003
10.1016/j.jbiomech.2017.12.007
10.1007/s10439-004-7816-3
10.1114/1.1467925
10.1016/j.atherosclerosis.2020.04.011
10.1152/ajplung.00317.2015
10.1161/CIRCULATIONAHA.115.016270
10.1115/1.1351806
10.1259/bjr/62450556
10.1115/1.2895734
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOI 10.1007/s10439-023-03214-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 1964
ExternalDocumentID PMC10409843
37436564
10_1007_s10439_023_03214_0
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/R502352/1
– fundername: British Heart Foundation
  grantid: SP/17/1/32702
– fundername: ;
  grantid: MR/R502352/1
– fundername: ;
  grantid: SP/17/1/32702
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c475t-c77fecc6a81164765c4756072f208d231e65d00a7309a98da43e609aada9b4b43
IEDL.DBID U2A
ISSN 0090-6964
1573-9686
IngestDate Thu Aug 21 18:41:38 EDT 2025
Fri Jul 11 15:39:40 EDT 2025
Fri Jul 25 19:18:50 EDT 2025
Mon Jul 21 06:07:10 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Tue Jul 01 00:38:23 EDT 2025
Fri Feb 21 02:42:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Coronary bending
Shear stress
Endothelial strain
Coronary biomechanics
Computational fluid dynamics
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-c77fecc6a81164765c4756072f208d231e65d00a7309a98da43e609aada9b4b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Associate Editor Estefanía Peña oversaw the review of this article.
ORCID 0000-0001-8372-575X
OpenAccessLink https://link.springer.com/10.1007/s10439-023-03214-0
PMID 37436564
PQID 2847563811
PQPubID 54090
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10409843
proquest_miscellaneous_2836292894
proquest_journals_2847563811
pubmed_primary_37436564
crossref_primary_10_1007_s10439_023_03214_0
crossref_citationtrail_10_1007_s10439_023_03214_0
springer_journals_10_1007_s10439_023_03214_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Javadzadegan, Yong, Chang, Ng, Behnia, Kritharides (CR16) 2017; 20
Cameron, Mehta, Michail, Chan, Nicholls, Bennett, Brown (CR2) 2020; 302
Guo, Liu, Kassab (CR10) 1985; 112
Hoogendoorn, Kok, Hartman, de Nisco, Casadonte, Chiastra, Coenen, Korteland, Van der Heiden, Gijsen, Duncker, van der Steen, Wentzel (CR14) 2020; 116
Prosi, Perktold, Ding, Friedman (CR35) 2004; 37
CR39
Annette, David, Lucas, Yi-An, Eric, Parham, Jolanda, Habib (CR1) 2019; 15
CR30
Ramaswamy, Vigmostad, Wahle, Lai, Olszewski, Braddy, Brennan, Rossen, Sonka, Chandran (CR36) 2004; 32
Helmke, Davies (CR12) 2002; 30
Kwak, Back, Bochaton-Piallat, Caligiuri, Daemen, Davies, Hoefer, Holvoet, Jo, Krams, Lehoux, Monaco, Steffens, Virmani, Weber, Wentzel, Evans (CR21) 2014; 35
Islam, Boström, Di Carlo, Simmons, Tintut, Yao, Hsu (CR15) 2021; 12
Du, Mills, Sumpio (CR6) 1995; 28
CR8
Freidoonimehr, Chin, Zander, Arjomandi (CR7) 2022; 144
Peiffer, Sherwin, Weinberg (CR32) 2013; 99
CR45
Pedrigi, de Silva, Bovens, Mehta, Petretto, Krams (CR28) 2014; 34
Yang, Bach, Zheng, Naqa, Woodard, Teng, Billiar, Tang (CR51) 2009; 56
Zeng, Ding, Friedman, Ethier (CR53) 2003; 31
Korff, Aufgebauer, Hecker (CR20) 2007; 116
Schilt, Moore, Delfino, Meister (CR38) 1996; 29
Weissman, Palacios, Weyman (CR50) 1995; 130
Holzapfel (CR13) 2000
Takamizawa, Nakayama (CR43) 2013; 80
Post, Cernohorsky, Pedrigi, Streekstra, D'Hooghe, Annema, Strackee, Krams, van Leeuwen, de Bruin, Faber (CR34) 2020; 3
Hasan, Rubenstein, Yin (CR11) 2013; 135
Torii, Keegan, Wood, Dowsey, Hughes, Yang, Firmin, Thom, Xu (CR46) 2010; 38
Johnston, Johnston, Corney, Kilpatrick (CR17) 2004; 37
Tang, Yang, Kobayashi, Zheng, Woodard, Teng, Billiar, Bach, Ku (CR44) 2009; 131
Pedrigi, Papadimitriou, Kondiboyina, Sidhu, Chau, Patel, Baeriswyl, Drakakis, Krams (CR29) 2017; 45
Ding, Zhu, Friedman (CR5) 2002; 30
Patel, Savvopoulos, Berggren, Aslanidou, Timmins, de Silva, Pedrigi, Krams (CR27) 2021; 128
Wang, Tang, Maehara, Wu, Yang, Muccigrosso, Zheng, Bach, Billiar, Mintz (CR49) 2018; 68
Pivkin, Richardson, Laidlaw, Karniadakis (CR33) 2005; 38
Kataria, Bisht, Gupta, Abhishek, Basu, Narang, Goyal, Shukla, Bansal, Grewal, Ahlawat, Banarjee, Tayal (CR18) 2016; 121
Santamarina, Weydahl, Siegel, Moore (CR37) 1998; 26
Peiffer, Sherwin, Weinberg (CR31) 2013; 46
Malve, Garcia, Ohayon, Martinez (CR23) 2012; 39
Slager, Wentzel, Schuurbiers, Oomen, Kloet, Krams, von Birgelen, van der Giessen, Serruys, de Feyter (CR40) 2000; 102
Wang, Fang, Wu, Xiang, Mendieta, Paritala, Fan, Anbananthan, Amaya Catano, Raffel, Li (CR48) 2023; 22
Steinman (CR42) 2002; 30
Yang, Tang, Kobayashi, Zheng, Woodard, Teng, Bach, Ku (CR52) 2008; 5
Gross, Friedman (CR9) 1998; 31
CR26
Wang, Garcia, Lu, Lanir, Kassab (CR47) 2006; 291
CR25
Konta, Bett (CR19) 2003; 67
Speelman, Akyildiz, den Adel, Wentzel, van der Steen, Virmani, van der Weerd, Jukema, Poelmann, van Brummelen, Gijsen (CR41) 2011; 44
Mohamied, Sherwin, Weinberg (CR24) 2017; 50
de Putter, Wolters, Rutten, Breeuwer, Gerritsen, van de Vosse (CR3) 2007; 40
Ding, Friedman (CR4) 2000; 122
Liu, Peyton, Durante (CR22) 2013; 304
W Du (3214_CR6) 1995; 28
M Malve (3214_CR23) 2012; 39
K Takamizawa (3214_CR43) 2013; 80
3214_CR25
XM Liu (3214_CR22) 2013; 304
AL Post (3214_CR34) 2020; 3
Z Ding (3214_CR5) 2002; 30
3214_CR26
BP Helmke (3214_CR12) 2002; 30
M Patel (3214_CR27) 2021; 128
BR Kwak (3214_CR21) 2014; 35
CJ Slager (3214_CR40) 2000; 102
S de Putter (3214_CR3) 2007; 40
SD Ramaswamy (3214_CR36) 2004; 32
M Prosi (3214_CR35) 2004; 37
A Hoogendoorn (3214_CR14) 2020; 116
V Peiffer (3214_CR31) 2013; 46
MF Gross (3214_CR9) 1998; 31
3214_CR30
DA Steinman (3214_CR42) 2002; 30
3214_CR39
M Hasan (3214_CR11) 2013; 135
J Wang (3214_CR48) 2023; 22
C Yang (3214_CR51) 2009; 56
L Speelman (3214_CR41) 2011; 44
D Tang (3214_CR44) 2009; 131
IV Pivkin (3214_CR33) 2005; 38
3214_CR45
Z Ding (3214_CR4) 2000; 122
T Korff (3214_CR20) 2007; 116
D Zeng (3214_CR53) 2003; 31
A Santamarina (3214_CR37) 1998; 26
S Islam (3214_CR15) 2021; 12
3214_CR8
MK Annette (3214_CR1) 2019; 15
BM Johnston (3214_CR17) 2004; 37
T Konta (3214_CR19) 2003; 67
T Kataria (3214_CR18) 2016; 121
X Guo (3214_CR10) 1985; 112
A Javadzadegan (3214_CR16) 2017; 20
N Freidoonimehr (3214_CR7) 2022; 144
Y Mohamied (3214_CR24) 2017; 50
GA Holzapfel (3214_CR13) 2000
S Schilt (3214_CR38) 1996; 29
NJ Weissman (3214_CR50) 1995; 130
RM Pedrigi (3214_CR29) 2017; 45
V Peiffer (3214_CR32) 2013; 99
RM Pedrigi (3214_CR28) 2014; 34
C Yang (3214_CR52) 2008; 5
JN Cameron (3214_CR2) 2020; 302
R Torii (3214_CR46) 2010; 38
C Wang (3214_CR47) 2006; 291
L Wang (3214_CR49) 2018; 68
References_xml – volume: 131
  issue: 6
  year: 2009
  ident: CR44
  article-title: 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3127253
– ident: CR45
– volume: 116
  start-page: 1136
  year: 2020
  end-page: 1146
  ident: CR14
  article-title: Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvz212
– volume: 121
  start-page: 59
  year: 2016
  end-page: 63
  ident: CR18
  article-title: Quantification of coronary artery motion and internal risk volume from ECG gated radiotherapy planning scans
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2016.08.006
– volume: 304
  start-page: H1634
  year: 2013
  end-page: 1643
  ident: CR22
  article-title: Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00872.2012
– volume: 144
  start-page: 010801
  issue: 1
  year: 2022
  ident: CR7
  article-title: A review on the effect of temporal geometric variations of the coronary arteries on the wall shear stress and pressure drop
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4051923
– volume: 37
  start-page: 1767
  year: 2004
  end-page: 1775
  ident: CR35
  article-title: Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.01.021
– volume: 30
  start-page: 483
  year: 2002
  end-page: 497
  ident: CR42
  article-title: Image-based computational fluid dynamics modeling in realistic arterial geometries
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1467679
– volume: 38
  start-page: 1283
  year: 2005
  end-page: 1290
  ident: CR33
  article-title: Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.06.015
– volume: 50
  start-page: 102
  year: 2017
  end-page: 109
  ident: CR24
  article-title: Understanding the fluid mechanics behind transverse wall shear stress
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.11.035
– ident: CR39
– volume: 31
  start-page: 420
  year: 2003
  end-page: 429
  ident: CR53
  article-title: Effects of cardiac motion on right coronary artery hemodynamics
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1560631
– volume: 102
  start-page: 511
  year: 2000
  end-page: 516
  ident: CR40
  article-title: True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation
  publication-title: Circulation
  doi: 10.1161/01.CIR.102.5.511
– ident: CR8
– volume: 45
  start-page: 898
  year: 2017
  end-page: 909
  ident: CR29
  article-title: Disturbed cyclical stretch of endothelial cells promotes nuclear expression of the pro-atherogenic transcription factor NF-kappaB
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1750-z
– ident: CR25
– volume: 29
  start-page: 469
  year: 1996
  end-page: 474
  ident: CR38
  article-title: The effects of time-varying curvature on velocity profiles in a model of the coronary arteries
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00082-8
– volume: 291
  start-page: H1200
  year: 2006
  end-page: 1209
  ident: CR47
  article-title: Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01323.2005
– volume: 130
  start-page: 46
  year: 1995
  end-page: 51
  ident: CR50
  article-title: Dynamic expansion of the coronary arteries: implications for intravascular ultrasound measurements
  publication-title: Am. Heart J.
  doi: 10.1016/0002-8703(95)90234-1
– volume: 12
  start-page: 734215
  year: 2021
  ident: CR15
  article-title: The mechanobiology of endothelial-to-mesenchymal transition in cardiovascular disease
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.734215
– volume: 22
  start-page: 729
  issue: 2
  year: 2023
  end-page: 738
  ident: CR48
  article-title: Impact of cyclic bending on coronary hemodynamics
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-022-01677-z
– volume: 44
  start-page: 2376
  year: 2011
  end-page: 2382
  ident: CR41
  article-title: Initial stress in biomechanical models of atherosclerotic plaques
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.07.004
– volume: 39
  start-page: 745
  year: 2012
  end-page: 751
  ident: CR23
  article-title: Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs CFD
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2012.04.009
– volume: 15
  start-page: 692
  year: 2019
  end-page: 699
  ident: CR1
  article-title: The influence of multidirectional shear stress on plaque progression and composition changes in human coronary arteries
  publication-title: EuroIntervention
  doi: 10.4244/EIJ-D-18-00529
– ident: CR26
– volume: 20
  start-page: 260
  year: 2017
  end-page: 272
  ident: CR16
  article-title: Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2016.1215439
– ident: CR30
– volume: 38
  start-page: 2606
  year: 2010
  end-page: 2620
  ident: CR46
  article-title: MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0008-4
– volume: 26
  start-page: 944
  year: 1998
  end-page: 954
  ident: CR37
  article-title: Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.113
– volume: 99
  start-page: 242
  year: 2013
  end-page: 250
  ident: CR32
  article-title: Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvt044
– volume: 56
  start-page: 2420
  year: 2009
  end-page: 2428
  ident: CR51
  article-title: In vivo IVUS-based 3-D fluid–structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2025658
– volume: 30
  start-page: 284
  year: 2002
  end-page: 296
  ident: CR12
  article-title: The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1467926
– volume: 31
  start-page: 479
  year: 1998
  end-page: 484
  ident: CR9
  article-title: Dynamics of coronary artery curvature obtained from biplane cineangiograms
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00012-8
– start-page: 455
  year: 2000
  ident: CR13
  publication-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering
– volume: 28
  start-page: 1485
  year: 1995
  end-page: 1491
  ident: CR6
  article-title: Cyclic strain causes heterogeneous induction of transcription factors, AP-1, CRE binding protein and NF-kB, in endothelial cells: species and vascular bed diversity
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00096-8
– volume: 67
  start-page: 846
  year: 2003
  end-page: 850
  ident: CR19
  article-title: Patterns of coronary artery movement and the development of coronary atherosclerosis
  publication-title: Circ. J.
  doi: 10.1253/circj.67.846
– volume: 3
  start-page: 2707
  year: 2020
  end-page: 2721
  ident: CR34
  article-title: 3D co-registration algorithm for catheter-based optical coherence tomography
  publication-title: Osa Continuum
  doi: 10.1364/OSAC.401599
– volume: 37
  start-page: 709
  year: 2004
  end-page: 720
  ident: CR17
  article-title: Non-Newtonian blood flow in human right coronary arteries: steady state simulations
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.09.016
– volume: 128
  year: 2021
  ident: CR27
  article-title: Considerations for analysis of endothelial shear stress and strain in FSI models of atherosclerosis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110720
– volume: 116
  start-page: 2288
  year: 2007
  end-page: 2297
  ident: CR20
  article-title: Cyclic stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-beta1 response
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.730309
– volume: 135
  year: 2013
  ident: CR11
  article-title: Effects of cyclic motion on coronary blood flow
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4025335
– volume: 40
  start-page: 1081
  year: 2007
  end-page: 1090
  ident: CR3
  article-title: Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.04.019
– volume: 80
  start-page: 041006
  year: 2013
  ident: CR43
  article-title: Stress distribution in a bilayer elastic model of a coronary artery
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4007863
– volume: 34
  start-page: 2224
  year: 2014
  end-page: 2231
  ident: CR28
  article-title: Thin-cap fibroatheroma rupture is associated with a fine interplay of shear and wall stress
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.114.303426
– volume: 122
  start-page: 488
  year: 2000
  end-page: 492
  ident: CR4
  article-title: Dynamics of human coronary arterial motion and its potential role in coronary atherogenesis
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1289989
– volume: 46
  start-page: 2651
  year: 2013
  end-page: 2658
  ident: CR31
  article-title: Computation in the rabbit aorta of a new metric—the transverse wall shear stress—to quantify the multidirectional character of disturbed blood flow
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.08.003
– volume: 112
  start-page: 2012
  issue: 982–989
  year: 1985
  ident: CR10
  article-title: Diameter-dependent axial prestretch of porcine coronary arteries and veins
  publication-title: J. Appl. Physiol.
– volume: 68
  start-page: 43
  year: 2018
  end-page: 50
  ident: CR49
  article-title: Fluid–structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: a preliminary study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.12.007
– volume: 32
  start-page: 1628
  year: 2004
  end-page: 1641
  ident: CR36
  article-title: Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-004-7816-3
– volume: 30
  start-page: 419
  year: 2002
  end-page: 429
  ident: CR5
  article-title: Coronary artery dynamics in vivo
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1467925
– volume: 35
  start-page: 3020a
  issue: 3013–3020
  year: 2014
  end-page: 3020d
  ident: CR21
  article-title: Biomechanical factors in atherosclerosis: mechanisms and clinical implications
  publication-title: Eur. Heart J.
– volume: 302
  start-page: 43
  year: 2020
  end-page: 51
  ident: CR2
  article-title: Exploring the relationship between biomechanical stresses and coronary atherosclerosis
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2020.04.011
– volume: 5
  start-page: 259
  year: 2008
  end-page: 274
  ident: CR52
  article-title: Cyclic bending contributes to high stress in a human coronary atherosclerotic plaque and rupture risk: in vitro experimental modeling and ex vivo MRI-based computational modeling approach
  publication-title: Mol. Cell Biomech.
– volume: 31
  start-page: 479
  year: 1998
  ident: 3214_CR9
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00012-8
– volume: 304
  start-page: H1634
  year: 2013
  ident: 3214_CR22
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00872.2012
– volume: 131
  issue: 6
  year: 2009
  ident: 3214_CR44
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3127253
– volume: 144
  start-page: 010801
  issue: 1
  year: 2022
  ident: 3214_CR7
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4051923
– volume: 130
  start-page: 46
  year: 1995
  ident: 3214_CR50
  publication-title: Am. Heart J.
  doi: 10.1016/0002-8703(95)90234-1
– volume: 39
  start-page: 745
  year: 2012
  ident: 3214_CR23
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2012.04.009
– ident: 3214_CR8
  doi: 10.1152/ajplung.00317.2015
– volume: 22
  start-page: 729
  issue: 2
  year: 2023
  ident: 3214_CR48
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-022-01677-z
– volume: 34
  start-page: 2224
  year: 2014
  ident: 3214_CR28
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.114.303426
– volume: 45
  start-page: 898
  year: 2017
  ident: 3214_CR29
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1750-z
– volume: 50
  start-page: 102
  year: 2017
  ident: 3214_CR24
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.11.035
– volume: 38
  start-page: 2606
  year: 2010
  ident: 3214_CR46
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0008-4
– volume: 122
  start-page: 488
  year: 2000
  ident: 3214_CR4
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1289989
– volume: 112
  start-page: 2012
  issue: 982–989
  year: 1985
  ident: 3214_CR10
  publication-title: J. Appl. Physiol.
– volume: 35
  start-page: 3020a
  issue: 3013–3020
  year: 2014
  ident: 3214_CR21
  publication-title: Eur. Heart J.
– volume: 56
  start-page: 2420
  year: 2009
  ident: 3214_CR51
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2025658
– volume: 38
  start-page: 1283
  year: 2005
  ident: 3214_CR33
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.06.015
– volume: 40
  start-page: 1081
  year: 2007
  ident: 3214_CR3
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.04.019
– volume: 67
  start-page: 846
  year: 2003
  ident: 3214_CR19
  publication-title: Circ. J.
  doi: 10.1253/circj.67.846
– volume: 46
  start-page: 2651
  year: 2013
  ident: 3214_CR31
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.08.003
– volume: 28
  start-page: 1485
  year: 1995
  ident: 3214_CR6
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00096-8
– volume: 68
  start-page: 43
  year: 2018
  ident: 3214_CR49
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.12.007
– volume: 116
  start-page: 1136
  year: 2020
  ident: 3214_CR14
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvz212
– volume: 12
  start-page: 734215
  year: 2021
  ident: 3214_CR15
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.734215
– volume: 30
  start-page: 419
  year: 2002
  ident: 3214_CR5
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1467925
– volume: 102
  start-page: 511
  year: 2000
  ident: 3214_CR40
  publication-title: Circulation
  doi: 10.1161/01.CIR.102.5.511
– volume: 20
  start-page: 260
  year: 2017
  ident: 3214_CR16
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2016.1215439
– volume: 37
  start-page: 1767
  year: 2004
  ident: 3214_CR35
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.01.021
– volume: 29
  start-page: 469
  year: 1996
  ident: 3214_CR38
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00082-8
– volume: 121
  start-page: 59
  year: 2016
  ident: 3214_CR18
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2016.08.006
– volume: 37
  start-page: 709
  year: 2004
  ident: 3214_CR17
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.09.016
– ident: 3214_CR30
  doi: 10.1161/CIRCULATIONAHA.115.016270
– volume: 30
  start-page: 284
  year: 2002
  ident: 3214_CR12
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1467926
– volume: 26
  start-page: 944
  year: 1998
  ident: 3214_CR37
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.113
– volume: 302
  start-page: 43
  year: 2020
  ident: 3214_CR2
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2020.04.011
– volume: 99
  start-page: 242
  year: 2013
  ident: 3214_CR32
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvt044
– volume: 30
  start-page: 483
  year: 2002
  ident: 3214_CR42
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1467679
– ident: 3214_CR25
  doi: 10.1115/1.1351806
– volume: 44
  start-page: 2376
  year: 2011
  ident: 3214_CR41
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.07.004
– volume: 128
  year: 2021
  ident: 3214_CR27
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110720
– volume: 116
  start-page: 2288
  year: 2007
  ident: 3214_CR20
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.730309
– volume: 3
  start-page: 2707
  year: 2020
  ident: 3214_CR34
  publication-title: Osa Continuum
  doi: 10.1364/OSAC.401599
– volume: 32
  start-page: 1628
  year: 2004
  ident: 3214_CR36
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-004-7816-3
– volume: 80
  start-page: 041006
  year: 2013
  ident: 3214_CR43
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4007863
– volume: 291
  start-page: H1200
  year: 2006
  ident: 3214_CR47
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01323.2005
– volume: 5
  start-page: 259
  year: 2008
  ident: 3214_CR52
  publication-title: Mol. Cell Biomech.
– ident: 3214_CR45
  doi: 10.1259/bjr/62450556
– start-page: 455
  volume-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering
  year: 2000
  ident: 3214_CR13
– volume: 135
  year: 2013
  ident: 3214_CR11
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4025335
– volume: 31
  start-page: 420
  year: 2003
  ident: 3214_CR53
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1560631
– ident: 3214_CR39
– volume: 15
  start-page: 692
  year: 2019
  ident: 3214_CR1
  publication-title: EuroIntervention
  doi: 10.4244/EIJ-D-18-00529
– ident: 3214_CR26
  doi: 10.1115/1.2895734
SSID ssj0011835
Score 2.4458776
Snippet The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1950
SubjectTerms Arteries
Bending
Biochemistry
Biological and Medical Physics
Biomechanical Phenomena
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Boundary conditions
Classical Mechanics
Computer Simulation
Coronary artery
Coronary vessels
Coronary Vessels - physiology
Endothelium
Fluid-structure interaction
Heart
Hemodynamics
Models, Cardiovascular
Original
Original Article
Shear stress
Strain
Stress, Mechanical
Veins & arteries
Wall shear stresses
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB1BkRAcEJSvhYKMxA0snF2v7T2hUhEVpHAplXJbee21WKndlKY5VFz4D_xDfgkzjndDqKiUQxQ7ya7f2DNez7wH8NrnbuKUy3lVNJpL60reOASEqLwL47WUkYlp9kUdHsvP83KeHrgtU1rlsCbGhdovHD0jf0fLaInGMpm8P_vOSTWKTleThMZNuEXUZZTSpefjhgtj57XApqhwi1QpmYpmUukcumKOHosL0urhYtsxXYk2ryZN_nNyGh3S9D7cS5Ek219D_wButP0u3P2LX3AXbs_SyflD-DEoc2IDw6CPfRrUSdgisAPiMbDnl2wWRX0YvvYp1_OSR3360Dn2ger0qUy4c0sWEw3Y9GTV-d8_fx1FDtrVOf0oFTTHUgl21J0mabBHcDz9-PXgkCfhBe5wkC-40zogtMriaCupVUkfK6HzkAvjMSJsVemFsLg6VLYy3sqiVfjWels1spHFY9jpF337FJgMuKHTUhXeCRlCwK5GN6YJRheulSaDyTDqtUus5CSOcVJv-JQJqRqRqiNStcjgzfidszUnx7W99wYw6zQ_l_XGmjJ4NTbjzKLjEtu3ixX1Qede4YZUZvBkjf34dwUGXhgJY4vZsoqxA7F2b7f03bfI3o0XKCojiwzeDga0ua7_38az62_jOdzJozFT9tse7CDw7QsMly6al3FO_AE6mBIW
  priority: 102
  providerName: ProQuest
Title Considering the Influence of Coronary Motion on Artery-Specific Biomechanics Using Fluid–Structure Interaction Simulation
URI https://link.springer.com/article/10.1007/s10439-023-03214-0
https://www.ncbi.nlm.nih.gov/pubmed/37436564
https://www.proquest.com/docview/2847563811
https://www.proquest.com/docview/2836292894
https://pubmed.ncbi.nlm.nih.gov/PMC10409843
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9NADLdgkxA8IBh_FhjVIfEGJ-XP5e7y2FbNBqgVYlQqT9HlkohIW4rW9WHihe_AN-STYF-TbN0GElLVVLGbpLXvbMv2zwBvitAGVtqQJ1GuuDA25rlFgRCUd6QLJYRDYprO5NFcfFjEi7YpbNVVu3cpSbdTX2l2Q-PJ0cZwn6brcAzUd2OK3VGL5-Gwzx2gkm7mFiQYGCVStK0yt19j2xzd8DFvlkpey5c6M5Q-goet_8iGG4E_hjtlswcPrqAK7sG9aZsvfwI_unmcSGDo6rH33UwStqzYmNALzNkFm7pRPgxfQ6rwvOBuKn1VWzai7nxqDq7tirnyApaerOvi989fxw55dn1GF6U2ZtcgwY7r03Yg2FOYp5Mv4yPejlvgVqj4nFulKhSoNDogkDEZ02npq7AKfV2gH1jKuPB9g3tCYhJdGBGVEj-awiS5yEX0DHaaZVPuAxMVhnFKyKiwvqiqClm1ynVeaRXZUmgPgu5fz2yLRU4jMU6ySxRlklSGksqcpDLfg7f9d75vkDj-yX3QCTNrV-UqI1Mc44YTBB687sm4nihJYppyuSYeNOkJhqHCg-cb2fe3i9DdQv8XKXpLK3oGwurepjT1N4fZjQ_oJ1pEHrzrFOjyuf7-M178H_tLuB865aYauAPYQUUoX6HTdJ4P4K5aKHzX6eEAdofpaDSj4-HXjxM8jiazT5-ROpbjgVtNfwCwBRYx
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQF7QDDYFhhgJHgCCzd2HOcBoTEoLVv30k3aW0icRFTa0m5dhSpe-A58Dz4Un4Q7508pE3ub1Ieodhynd2efe3e_H8CLzLcdq63PI5mGXCU24KlFgRCUtzRZqJRDYhoc6N6R-nwcHK_Ar6YWhtIqmzXRLdTZ2NJ_5G9oGQ1QWTqdd5MzTqxRFF1tKDQqtdjL59_wyDZ92_-A8n3p-92Ph7s9XrMKcIsjXHAbhgXOWyc4lFahDuhrLUK_8IXJ0N3JdZAJkaDqR0lkskTJXONlkiVRqlIlcdwbcFNJGZFFme6nNmqB5lExJkR4JIu0qot06lI93Po57pBcEDcQF8sb4SXv9nKS5j-RWrcBdu_B3dpzZTuVqt2Hlbxch7W_8AzX4dagjtQ_gO8NEyg2MHQyWb9hQ2Hjgu0SbkJyPmcDRyLE8LNDuaVzPpzkLkuQvSdcACpLHtkpc4kNrHsyG2W_f_wcOszb2TkNSgXUrjSDDUenNRXZQzi6FpFswGo5LvMtYKrAA2SotMysUEVRYFcTpiYtTChtrowHneZXj22Ngk5kHCfxAr-ZJBWjpGInqVh48Kq9Z1JhgFzZe7sRZlyvB9N4ob0ePG-b0ZIpPJOU-XhGfdCZiPAArDzYrGTfPk6io4eeN7aYJa1oOxBK-HJLOfrq0MJxgiIySnrwulGgxbz-_xqPrn6NZ3C7dzjYj_f7B3uP4Y7vFJsy77ZhFZUgf4Ku2kX61NkHgy_XbZB_AHF0Tf4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIU3sAcH4FxhgJHgCa07i2MkDQmOjWhmdkMqkvgXHSUSlLS3rKlTxwnfg2_Bx-CTcOX9KmdjbpD5EtePEvTv7d_Xd7wCe54H1rbIBT8JMc2lsxDOLAiEq7zDOtZSOiWlwpA6O5ftRNFqDX20uDIVVtmuiW6jziaX_yHdoGY1QWXx_p2zCIj7u995Mv3KqIEUnrW05jVpFDovFN3TfZq_7-yjrF0HQe_dp74A3FQa4xdHOudW6xDkog8MqqVVEXyuhgzIQcY7Qp1BRLoRBM0hMEudGhoXCS5ObJJOZDHHca3Bdh5FPNqZHnbOHuL0u7ikSdM8SJZuEnSZtD2EAx92SC6oTxMXqpngB6V4M2Pzn1NZthr1bcLNBsWy3VrvbsFZUW7D5F7fhFmwMmlP7O_C9rQqKDQwBJ-u3lVHYpGR7xKFgzhZs4AoKMfzsUpzpgg-nhYsYZG-JI4BSlMd2xlyQA-udzMf57x8_h47_dn5Gg1IytUvTYMPxaVOW7C4cX4lI7sF6NamKB8Bkic6klirMrZBlWWLXWGdxVsY6tIWMPfDbXz21DSM6FeY4SZdcziSpFCWVOkmlwoOX3T3Tmg_k0t7brTDTZm2YpUtN9uBZ14xWTUc1piomc-qDwCJBZ1h6cL-Wffe4EEEfonBsiVe0outAjOGrLdX4i2MOxxcUSSxDD161CrR8r_9P4-Hl03gKG2iK6Yf-0eEjuBE4vaYgvG1YRx0oHiNqO8-eOPNg8Pmq7fEP-FVSKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Considering+the+Influence+of+Coronary+Motion+on+Artery-Specific+Biomechanics+Using+Fluid-Structure+Interaction+Simulation&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Fogell%2C+Nicholas+A+T&rft.au=Patel%2C+Miten&rft.au=Yang%2C+Pan&rft.au=Ruis%2C+Roosje+M&rft.date=2023-09-01&rft.eissn=1573-9686&rft.volume=51&rft.issue=9&rft.spage=1950&rft_id=info:doi/10.1007%2Fs10439-023-03214-0&rft_id=info%3Apmid%2F37436564&rft.externalDocID=37436564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon