Sneaky emotions: impact of data partitions in affective computing experiments with brain-computer interfacing

Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues....

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering letters Vol. 14; no. 1; pp. 103 - 113
Main Authors Moreno-Alcayde, Yoelvis, Traver, V. Javier, Leiva, Luis A.
Format Journal Article
LanguageEnglish
Published Korea The Korean Society of Medical and Biological Engineering 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the “data transfer rate” construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported.
AbstractList Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the “data transfer rate” construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported.
Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the “data transfer rate” construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported.
Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the "data transfer rate" construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported.Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the "data transfer rate" construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported.
Author Leiva, Luis A.
Traver, V. Javier
Moreno-Alcayde, Yoelvis
Author_xml – sequence: 1
  givenname: Yoelvis
  surname: Moreno-Alcayde
  fullname: Moreno-Alcayde, Yoelvis
  organization: Institute of New Imaging Technologies, Universitat Jaume I
– sequence: 2
  givenname: V. Javier
  orcidid: 0000-0002-1596-8466
  surname: Traver
  fullname: Traver, V. Javier
  email: vtraver@uji.es
  organization: Institute of New Imaging Technologies, Universitat Jaume I
– sequence: 3
  givenname: Luis A.
  surname: Leiva
  fullname: Leiva, Luis A.
  organization: University of Luxembourg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38186953$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URMvSL8ABWeLCJWDH8SbmgqqKf1IlDvTAzZpM7K3Lxg62U-i3x7spC_RQH2xL83vjN35PyZEP3hDynLPXnLH2TeJCiqZitagYE3xdyUfkpGZKVKqT344O93V3TE5TumZlSS6VEE_Iseh4t1ZSnJDxqzfw_ZaaMWQXfHpL3TgBZhosHSADnSBmty9R5ylYazC7G0MxjNOcnd9Q82sy0Y3G50R_unxF-wjOVwtgYpGV3QIW9hl5bGGbzOnduSKXH95fnn-qLr58_Hx-dlFh08pcYQ04YAfDANCKvuWgEPoWUPTY4CCZHequt03DaomNRdao3hZOGKN6bsWKvFvaTnM_mgGLtQhbPRWXEG91AKf_r3h3pTfhRnPWrpUqn7Qir-46xPBjNinr0SU02y14E-aka8V517SqfP2KvLyHXoc5-jLenuJCyHbX8MW_lg5e_iRRgHoBMIaUorEHhDO9S1wvieuSuN4nrmURdfdE6DLs0ipjue3DUrFIU3nHb0z8a_sB1W8GzsPT
CitedBy_id crossref_primary_10_1007_s11760_024_03360_5
Cites_doi 10.1016/j.eswa.2015.10.049
10.1111/j.1469-8986.1980.tb00117.x
10.1016/j.procs.2016.04.062
10.1016/j.asoc.2020.106954
10.1007/s13755-023-00226-x
10.1007/s11517-022-02686-x
10.1093/scan/nst164
10.1109/JSEN.2018.2883497
10.1109/TCYB.2016.2582918
10.1007/s11263-014-0733-5
10.1016/j.inffus.2022.03.009
10.1002/jdn.10166
10.1109/TBME.2021.3137184
10.1155/2021/8896062
10.3390/s21103414
10.1016/j.neulet.2018.10.062
10.26599/BSA.2022.9050013
10.1016/j.compbiomed.2020.103927
10.1016/j.neucom.2021.03.105
10.1016/j.isprsjprs.2023.03.002
10.1109/TAFFC.2020.3013711
10.1109/T-AFFC.2011.15
10.1016/j.bspc.2023.104928
10.1016/j.bspc.2021.103289
10.1016/0013-4694(70)90143-4
10.1016/j.neuroimage.2018.03.032
10.1145/3581783.3613442
10.1109/CVPR.2016.85
10.1109/CASP.2016.7746209
10.1145/3539618.3591946
10.1109/TAFFC.2022.3164516
10.1109/CSPA.2019.8696054
10.1109/NER49283.2021.9441368
10.1155/2017/8317357
10.1109/TAFFC.2023.3273916
10.1145/3442479
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s13534-023-00316-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-985X
EndPage 113
ExternalDocumentID PMC10769959
38186953
10_1007_s13534_023_00316_5
Genre Journal Article
GrantInformation_xml – fundername: Horizon 2020
  grantid: CHIST-ERA-20-BCI-001
  funderid: http://dx.doi.org/10.13039/501100007601
– fundername: Agencia Estatal de Investigación
  grantid: PCI2021-122036-2A
  funderid: http://dx.doi.org/10.13039/501100011033
– fundername: HORIZON EUROPE European Innovation Council
  grantid: SYMBIOTIK project, grant 101071147
  funderid: http://dx.doi.org/10.13039/100018703
– fundername: Universitat Jaume I
GroupedDBID -EM
0R~
0VY
203
29~
2VQ
30V
4.4
406
408
53G
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACPRK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AUKKA
AXYYD
AYJHY
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
HF~
HMJXF
HRMNR
HYE
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
PT4
RLLFE
ROL
RPM
RSV
S27
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7X
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
NPM
7X8
5PM
ID FETCH-LOGICAL-c475t-c2acdc8addaa73b71a9cab7ac3bc4cd50fd28bf44025c4fc049bf3b73ee9b1f3
IEDL.DBID C6C
ISSN 2093-9868
2093-985X
IngestDate Thu Aug 21 18:42:17 EDT 2025
Fri Jul 11 09:22:24 EDT 2025
Fri Jul 25 11:13:00 EDT 2025
Mon Jul 21 05:56:17 EDT 2025
Thu Apr 24 23:13:54 EDT 2025
Tue Jul 01 01:04:54 EDT 2025
Fri Feb 21 02:40:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Emotion recognition
BCI
EEG
Data splits
Videos
Language English
License The Author(s) 2023.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-c2acdc8addaa73b71a9cab7ac3bc4cd50fd28bf44025c4fc049bf3b73ee9b1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1596-8466
OpenAccessLink https://doi.org/10.1007/s13534-023-00316-5
PMID 38186953
PQID 2911133579
PQPubID 2043953
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10769959
proquest_miscellaneous_2911847900
proquest_journals_2911133579
pubmed_primary_38186953
crossref_primary_10_1007_s13534_023_00316_5
crossref_citationtrail_10_1007_s13534_023_00316_5
springer_journals_10_1007_s13534_023_00316_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Korea
PublicationPlace_xml – name: Korea
– name: Germany
– name: Heidelberg
PublicationTitle Biomedical engineering letters
PublicationTitleAbbrev Biomed. Eng. Lett
PublicationTitleAlternate Biomed Eng Lett
PublicationYear 2024
Publisher The Korean Society of Medical and Biological Engineering
Springer Nature B.V
Publisher_xml – name: The Korean Society of Medical and Biological Engineering
– name: Springer Nature B.V
References Kumar, Khaund, Hazarika (CR20) 2016; 84
Xiang, Yazhou, Prayag, Dawei, Bin, Meihong, Zhigang, Neeraj, Pekka (CR22) 2022; 55
Marelli, Morelli, Farella, Bianco, Ciocca, Remondino (CR26) 2023; 198
Devi, Sophia, Boselin Prabhu, Mittal, Shah, Roy (CR7) 2021
Autthasan (CR2) 2022; 69
CR17
CR34
CR33
CR10
CR32
Fasil, Rajesh (CR11) 2019; 694
CR31
Kim, Jo (CR18) 2020; 11
Liu, Ding, Li, Cheng, Song, Wan, Chen (CR25) 2020; 123
Ruchilekha, Singh, Singh (CR30) 2023; 84
Zabcikova, Koudelkova, Jasek, Navarro (CR40) 2022; 82
Annushree, Reddy, Diwakar, Ramalingaswamy (CR3) 2019; 52
Everingham, Eslami, Gool, Williams, Winn, Zisserman (CR9) 2015; 111
Wei, Lin, Wang, Lin, Jung (CR37) 2018; 174
Yin, Zheng, Bin, Zhang, Cui (CR39) 2021; 100
Liu, Ning, Nie, Yu-Ting, Wong, Kankanhalli (CR23) 2017; 47
Galvão, Alarcão, Fonseca (CR13) 2021; 21
Gupta, Chopda, Pachori (CR14) 2019; 19
Fowles (CR12) 1980; 17
CR28
Atkinson, Campos (CR1) 2016; 47
CR27
Bhosale, Chakraborty, Kopparapu (CR4) 2022; 72
Li, Ren, Zhang, Yang, Zhao, Hou, Yuan, Zhang, Bin (CR21) 2023; 11
CR24
Du, Ma, Zhang, Li, Lai, Zhao, Deng, Liu, Wang (CR8) 2022; 13
Rosalind (CR29) 2000
CR41
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (CR19) 2012; 3
Xu, Guo, Wang (CR38) 2023; 61
Chen, Rui, Jifeng (CR5) 2021
Wang, Song, Tao, Liotta, Yang, Li, Gao, Sun, Ge, Zhang, Zhang (CR36) 2022; 83–84
Huang, Chen, Liu, Zheng, Tian, Jiang (CR16) 2021; 448
Hjorth (CR15) 1970; 29
Costa, Cauda, Crini, Tatu, Celeghin, de Gelder, Tamietto (CR6) 2014; 9
Tang, Li, Chen (CR35) 2022; 8
J Atkinson (316_CR1) 2016; 47
S Bhosale (316_CR4) 2022; 72
C Tang (316_CR35) 2022; 8
G Xu (316_CR38) 2023; 61
Y Wang (316_CR36) 2022; 83–84
P Autthasan (316_CR2) 2022; 69
D Devi (316_CR7) 2021
F Galvão (316_CR13) 2021; 21
316_CR28
R Li (316_CR21) 2023; 11
WP Rosalind (316_CR29) 2000
C-S Wei (316_CR37) 2018; 174
316_CR24
316_CR27
Yu Chen (316_CR5) 2021
S Koelstra (316_CR19) 2012; 3
A-A Liu (316_CR23) 2017; 47
316_CR41
D Marelli (316_CR26) 2023; 198
Y Yin (316_CR39) 2021; 100
Ruchilekha (316_CR30) 2023; 84
M Zabcikova (316_CR40) 2022; 82
316_CR17
B Annushree (316_CR3) 2019; 52
T Costa (316_CR6) 2014; 9
OK Fasil (316_CR11) 2019; 694
M Everingham (316_CR9) 2015; 111
D Huang (316_CR16) 2021; 448
B Hjorth (316_CR15) 1970; 29
BH Kim (316_CR18) 2020; 11
X Du (316_CR8) 2022; 13
316_CR10
Yu Liu (316_CR25) 2020; 123
316_CR32
DC Fowles (316_CR12) 1980; 17
N Kumar (316_CR20) 2016; 84
Li Xiang (316_CR22) 2022; 55
316_CR31
316_CR34
316_CR33
V Gupta (316_CR14) 2019; 19
References_xml – volume: 47
  start-page: 35
  year: 2016
  end-page: 41
  ident: CR1
  article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.10.049
– volume: 17
  start-page: 87
  issue: 2
  year: 1980
  end-page: 104
  ident: CR12
  article-title: The three arousal model: implications of gray’s two-factor learning theory for heart rate, electrodermal activity, and psychopathy
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1980.tb00117.x
– ident: CR10
– volume: 84
  start-page: 31
  year: 2016
  end-page: 35
  ident: CR20
  article-title: Bispectral analysis of EEG for emotion recognition
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.04.062
– ident: CR33
– volume: 100
  start-page: 106954
  year: 2021
  ident: CR39
  article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106954
– start-page: 69
  year: 2021
  end-page: 84
  ident: CR7
  article-title: Chapter 4 - deep learning-based cognitive state prediction analysis using brain wave signal
  publication-title: Cognitive Computing for Human-Robot Interaction, Cognitive Data Science in Sustainable Computing
– volume: 11
  start-page: 25
  issue: 1
  year: 2023
  ident: CR21
  article-title: STSNet: a novel spatio-temporal-spectral network for subject-independent EEG-based emotion recognition
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-023-00226-x
– volume: 61
  start-page: 61
  issue: 1
  year: 2023
  end-page: 73
  ident: CR38
  article-title: Subject-independent EEG emotion recognition with hybrid spatio-temporal GRU-conv architecture
  publication-title: Med Biol Eng Comput.
  doi: 10.1007/s11517-022-02686-x
– ident: CR27
– volume: 9
  start-page: 1690
  issue: 11
  year: 2014
  end-page: 1703
  ident: CR6
  article-title: Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes
  publication-title: Soc Cogn Affect Neurosci
  doi: 10.1093/scan/nst164
– volume: 19
  start-page: 2266
  issue: 6
  year: 2019
  end-page: 2274
  ident: CR14
  article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2883497
– volume: 47
  start-page: 1781
  issue: 7
  year: 2017
  end-page: 1794
  ident: CR23
  article-title: Benchmarking a multimodal and multiview and interactive dataset for human action recognition
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2016.2582918
– year: 2000
  ident: CR29
  publication-title: Affective computing
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  end-page: 136
  ident: CR9
  article-title: The Pascal visual object classes challenge: a retrospective
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-014-0733-5
– volume: 83–84
  start-page: 19
  year: 2022
  end-page: 52
  ident: CR36
  article-title: A systematic review on affective computing: emotion models, databases, and recent advances
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2022.03.009
– volume: 82
  start-page: 107
  issue: 2
  year: 2022
  end-page: 123
  ident: CR40
  article-title: Recent advances and current trends in brain-computer interface research and their applications
  publication-title: Int J Dev Neurosci
  doi: 10.1002/jdn.10166
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  end-page: 32
  ident: CR3
  article-title: Survey on brain-computer interface: an emerging computational intelligence paradigm
  publication-title: ACM Comput Surv
– volume: 69
  start-page: 2105
  issue: 6
  year: 2022
  end-page: 2118
  ident: CR2
  article-title: MIN2Net: end-to-end multi-task learning for subject-independent motor imagery EEG classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2021.3137184
– year: 2021
  ident: CR5
  article-title: Emotion recognition of EEG signals based on the ensemble learning method: Adaboost
  publication-title: Math Problems Eng
  doi: 10.1155/2021/8896062
– volume: 21
  start-page: 3414
  issue: 10
  year: 2021
  end-page: 3414
  ident: CR13
  article-title: Predicting exact valence and arousal values from EEG
  publication-title: Sensors
  doi: 10.3390/s21103414
– volume: 694
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR11
  article-title: Time-domain exponential energy for epileptic eeg signal classification
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2018.10.062
– ident: CR17
– ident: CR31
– volume: 8
  start-page: 142
  issue: 2
  year: 2022
  end-page: 152
  ident: CR35
  article-title: Comparison of cross-subject EEG emotion recognition algorithms in the BCI controlled robot contest in world robot contest 2021
  publication-title: Brain Sci Adv
  doi: 10.26599/BSA.2022.9050013
– volume: 123
  start-page: 103927
  year: 2020
  ident: CR25
  article-title: Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103927
– volume: 448
  start-page: 140
  year: 2021
  end-page: 151
  ident: CR16
  article-title: Differences first in asymmetric brain: a bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.105
– ident: CR32
– ident: CR34
– volume: 198
  start-page: 84
  year: 2023
  end-page: 98
  ident: CR26
  article-title: ENRICH: Multi-purposE dataset for beNchmaRking In Computer vision and pHotogrammetry
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2023.03.002
– volume: 13
  start-page: 1528
  issue: 3
  year: 2022
  end-page: 40
  ident: CR8
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Trans Affect Comput.
  doi: 10.1109/TAFFC.2020.3013711
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  end-page: 31
  ident: CR19
  article-title: DEAP: a database for emotion analysis using physiological signals
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2011.15
– volume: 55
  start-page: 1
  issue: 4
  year: 2022
  end-page: 57
  ident: CR22
  article-title: EEG based emotion recognition: a tutorial and review
  publication-title: ACM Comput Surv
– volume: 84
  start-page: 104928
  year: 2023
  ident: CR30
  article-title: A deep learning approach for subject-dependent & subject-independent emotion recognition using brain signals with dimensional emotion model
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104928
– volume: 72
  start-page: 103289
  year: 2022
  ident: CR4
  article-title: Calibration free meta learning based approach for subject independent EEG emotion recognition
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103289
– ident: CR28
– ident: CR41
– volume: 29
  start-page: 306
  issue: 3
  year: 1970
  end-page: 310
  ident: CR15
  article-title: Eeg analysis based on time domain properties
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(70)90143-4
– ident: CR24
– volume: 174
  start-page: 407
  year: 2018
  end-page: 419
  ident: CR37
  article-title: A subject-transfer framework for obviating inter- and intra-subject variability in EEG-based drowsiness detection
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.032
– volume: 11
  start-page: 230
  issue: 2
  year: 2020
  end-page: 243
  ident: CR18
  article-title: Deep physiological affect network for the recognition of human emotions
  publication-title: IEEE Trans Affect Comput
– volume: 83–84
  start-page: 19
  year: 2022
  ident: 316_CR36
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2022.03.009
– ident: 316_CR33
  doi: 10.1145/3581783.3613442
– volume: 84
  start-page: 104928
  year: 2023
  ident: 316_CR30
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104928
– volume: 61
  start-page: 61
  issue: 1
  year: 2023
  ident: 316_CR38
  publication-title: Med Biol Eng Comput.
  doi: 10.1007/s11517-022-02686-x
– start-page: 69
  volume-title: Cognitive Computing for Human-Robot Interaction, Cognitive Data Science in Sustainable Computing
  year: 2021
  ident: 316_CR7
– ident: 316_CR28
  doi: 10.1109/CVPR.2016.85
– ident: 316_CR27
  doi: 10.1109/CASP.2016.7746209
– volume: 448
  start-page: 140
  year: 2021
  ident: 316_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.105
– volume: 47
  start-page: 1781
  issue: 7
  year: 2017
  ident: 316_CR23
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2016.2582918
– volume: 174
  start-page: 407
  year: 2018
  ident: 316_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.032
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  ident: 316_CR3
  publication-title: ACM Comput Surv
– volume: 123
  start-page: 103927
  year: 2020
  ident: 316_CR25
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103927
– volume: 82
  start-page: 107
  issue: 2
  year: 2022
  ident: 316_CR40
  publication-title: Int J Dev Neurosci
  doi: 10.1002/jdn.10166
– ident: 316_CR32
  doi: 10.1145/3539618.3591946
– volume: 100
  start-page: 106954
  year: 2021
  ident: 316_CR39
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106954
– volume: 69
  start-page: 2105
  issue: 6
  year: 2022
  ident: 316_CR2
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2021.3137184
– volume: 19
  start-page: 2266
  issue: 6
  year: 2019
  ident: 316_CR14
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2883497
– volume-title: Affective computing
  year: 2000
  ident: 316_CR29
– ident: 316_CR10
– ident: 316_CR34
  doi: 10.1109/TAFFC.2022.3164516
– volume: 72
  start-page: 103289
  year: 2022
  ident: 316_CR4
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103289
– volume: 84
  start-page: 31
  year: 2016
  ident: 316_CR20
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.04.062
– ident: 316_CR17
  doi: 10.1109/CSPA.2019.8696054
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  ident: 316_CR19
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2011.15
– volume: 8
  start-page: 142
  issue: 2
  year: 2022
  ident: 316_CR35
  publication-title: Brain Sci Adv
  doi: 10.26599/BSA.2022.9050013
– volume: 9
  start-page: 1690
  issue: 11
  year: 2014
  ident: 316_CR6
  publication-title: Soc Cogn Affect Neurosci
  doi: 10.1093/scan/nst164
– year: 2021
  ident: 316_CR5
  publication-title: Math Problems Eng
  doi: 10.1155/2021/8896062
– volume: 21
  start-page: 3414
  issue: 10
  year: 2021
  ident: 316_CR13
  publication-title: Sensors
  doi: 10.3390/s21103414
– ident: 316_CR24
  doi: 10.1109/NER49283.2021.9441368
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 316_CR9
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-014-0733-5
– volume: 694
  start-page: 1
  year: 2019
  ident: 316_CR11
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2018.10.062
– volume: 29
  start-page: 306
  issue: 3
  year: 1970
  ident: 316_CR15
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(70)90143-4
– volume: 198
  start-page: 84
  year: 2023
  ident: 316_CR26
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2023.03.002
– volume: 47
  start-page: 35
  year: 2016
  ident: 316_CR1
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.10.049
– volume: 17
  start-page: 87
  issue: 2
  year: 1980
  ident: 316_CR12
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1980.tb00117.x
– ident: 316_CR41
  doi: 10.1155/2017/8317357
– ident: 316_CR31
  doi: 10.1109/TAFFC.2023.3273916
– volume: 13
  start-page: 1528
  issue: 3
  year: 2022
  ident: 316_CR8
  publication-title: IEEE Trans Affect Comput.
  doi: 10.1109/TAFFC.2020.3013711
– volume: 11
  start-page: 230
  issue: 2
  year: 2020
  ident: 316_CR18
  publication-title: IEEE Trans Affect Comput
– volume: 11
  start-page: 25
  issue: 1
  year: 2023
  ident: 316_CR21
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-023-00226-x
– volume: 55
  start-page: 1
  issue: 4
  year: 2022
  ident: 316_CR22
  publication-title: ACM Comput Surv
  doi: 10.1145/3442479
SSID ssj0000515933
Score 2.296198
Snippet Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103
SubjectTerms Affective computing
Annotations
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Brain
Classification
Computer applications
Data points
Data transfer (computers)
EEG
Electroencephalography
Emotion recognition
Emotions
Engineering
Feature extraction
Human-computer interface
Implants
Machine learning
Medical and Radiation Physics
Original
Original Article
Partitioning
Segments
Video
Title Sneaky emotions: impact of data partitions in affective computing experiments with brain-computer interfacing
URI https://link.springer.com/article/10.1007/s13534-023-00316-5
https://www.ncbi.nlm.nih.gov/pubmed/38186953
https://www.proquest.com/docview/2911133579
https://www.proquest.com/docview/2911847900
https://pubmed.ncbi.nlm.nih.gov/PMC10769959
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5Be4EDKu_QUhmJG1gk8SMxt9WqpQLBhVYqp8ietUUFZKvu9sC_ZybJZtm2VOKSiyfOY_yYh-f7AF5br9HZupAWC5SciJPBVVHqyAGHEDCvuBr58xd7dKI_nprTASaHa2Gu5O_fLZiXQUvaWSSPPyvNXdg2haqYpmFqp2M8hblKeub4kpx06WpbDzUyN3ezuQ9dMy6vn5G8kijt9p_DHXgwGI5i0mv6IdyJ7SO4_xec4GP49bWN_sdvEXtqnsV70ddAinkSfBJUnPM46ZrEWSt8d5SDVjuBHbUD9SHWgP8LwSFaEZhCQuLA_SAYXeIieSTZJ3B8eHA8PZIDnYJEXZmlxNLjDGta0LyvVKgK79CHyqMKqHFm8jQr65A0eZQGdULyHUIiORWjC0VST2GrnbfxOQif26DJrkrBKW3ZSaxtrmodlU3KW51Bsfq3DQ5Q48x48bNZgySzPhrSRwdOahuTwZvxnvMeaONW6b2Vypph0i2akhdupUzlMng1NtN04RyIb-P8spehDdnleQbPeg2Pj2PjxTqjMqg3dD8KMBT3Zkt79r2D5CYn2jJyWwZvV8Nk_V7__owX_ye-C_dKsqn6CNAebC0vLuNLsomWYR-2Jx--fTrY7yYFXU_KyR-kuQZ_
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiHcDBYwEJ7CUxI5jI3GogGpLHxe2Um-R7bVF1TZbdbdC_T39o53Ja1kKSBx69uTl8cSf7ZnvA3irrPRG6Ywrn3lOB3HcmTJwGWjDwTmfllSNvLunRvvy20FxsAKXfS1Mk-3eH0k2f-pFsZsohOQ4x3AaiYr3qZTb4eInLtRmn7a-oFff5fnm1_HnEe-0BLiXZTHnPrd-4jVGs7WlcGVmjbeutF44L_2kSOMk1y5KXE4VXkaPwNlFtBMhGJdFgbe9BbcRe2gKnf18Y9jIIZGUVrI-T43gRivdFef8-a2XJ8BrqPZ6cuZvJ7TNxLf5AO53iJVttEPsIayE-hHc-4XH8DGcfK-DPbpgodUEmn1kbfElm0ZGKajslAZo08QOa2abHBL8zTLfaErgPdhCaWDGaG-YOdKu4L4TnWBEa3EWrUfbJzC-ib5_Cqv1tA5rwGyqnERAF50RUtHqVKtUaBmEisIqmUDW923lO45zkto4rhbszOSPCv3RsKKqqkjg_XDNacvw8U_r9d5lVRftsyqnGUOIojQJvBmaMU7p8MXWYXre2iASMGmawLPWw8PjCDUpU4gE9JLvBwPiAF9uqQ9_NFzguHpXRBmXwId-mCze6--f8fz_zF_DndF4d6fa2drbfgF3cwR27TbUOqzOz87DSwRmc_eqCQwG1Q0H4hWboEh3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiE4VHyWlAJGghNYTWLHiZE4oC2rlkKFRJF6i2yvLSogu-puhfqr-IvMxEmWpYDEoWdPHMfjiWfsmfcAniojnVZVxpXLHKeLOG516bn0dOBgrUtLqkZ-f6j2Psm3x8XxGvzoa2HabPf-SjLWNBBKU7PYmU3CzrLwTRRCctxvOK1Kxfu0ygN__h2Dtvmr_V3U8LM8H785Gu3xjleAO1kWC-5y4yauQss2phS2zIx2xpbGCeukmxRpmOSVDRJDq8LJ4NCJtgHlhPfaZkFgt1fgKgZGGUV7IzUaDnWIMCXS1-epFlxXquoKdf486tXN8IKHezFR87fb2nYTHN-Ejc57Za_jcrsFa765DTd-wTS8A98-Nt58OWc-8gPNX7JYiMmmgVE6KpvRYm2b2EnDTJtPgr9c5lp-CeyDLVkH5ozOiZklHgvuOgIKRhAXp8E4lL0LR5cx9_dgvZk2_j4wkyor0bkLVgupKFKtVCoq6YUKwiiZQNbPbe06vHOi3fhaL5GaSR816qNFSFV1kcDz4ZlZRPv4p_R2r7K6s_x5ndPuIURR6gSeDM1os3QRYxo_PYsy6BXoNE1gM2p4eB15UEoXIoFqRfeDAOGBr7Y0J59bXHCM5BXBxyXwol8my3H9_TO2_k_8MVz7sDuu3-0fHjyA6zn6ePFEahvWF6dn_iH6aAv7qLULBvUl2-FPAexMnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sneaky+emotions%3A+impact+of+data+partitions+in+affective+computing+experiments+with+brain-computer+interfacing&rft.jtitle=Biomedical+engineering+letters&rft.au=Moreno-Alcayde%2C+Yoelvis&rft.au=Traver%2C+V.+Javier&rft.au=Leiva%2C+Luis+A.&rft.date=2024-01-01&rft.pub=The+Korean+Society+of+Medical+and+Biological+Engineering&rft.issn=2093-9868&rft.eissn=2093-985X&rft.volume=14&rft.issue=1&rft.spage=103&rft.epage=113&rft_id=info:doi/10.1007%2Fs13534-023-00316-5&rft.externalDocID=10_1007_s13534_023_00316_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-9868&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-9868&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-9868&client=summon