Sneaky emotions: impact of data partitions in affective computing experiments with brain-computer interfacing
Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues....
Saved in:
Published in | Biomedical engineering letters Vol. 14; no. 1; pp. 103 - 113 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Korea
The Korean Society of Medical and Biological Engineering
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the “data transfer rate” construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported. |
---|---|
AbstractList | Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the “data transfer rate” construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported. Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the “data transfer rate” construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported. Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the "data transfer rate" construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported.Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the "data transfer rate" construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported. |
Author | Leiva, Luis A. Traver, V. Javier Moreno-Alcayde, Yoelvis |
Author_xml | – sequence: 1 givenname: Yoelvis surname: Moreno-Alcayde fullname: Moreno-Alcayde, Yoelvis organization: Institute of New Imaging Technologies, Universitat Jaume I – sequence: 2 givenname: V. Javier orcidid: 0000-0002-1596-8466 surname: Traver fullname: Traver, V. Javier email: vtraver@uji.es organization: Institute of New Imaging Technologies, Universitat Jaume I – sequence: 3 givenname: Luis A. surname: Leiva fullname: Leiva, Luis A. organization: University of Luxembourg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38186953$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URMvSL8ABWeLCJWDH8SbmgqqKf1IlDvTAzZpM7K3Lxg62U-i3x7spC_RQH2xL83vjN35PyZEP3hDynLPXnLH2TeJCiqZitagYE3xdyUfkpGZKVKqT344O93V3TE5TumZlSS6VEE_Iseh4t1ZSnJDxqzfw_ZaaMWQXfHpL3TgBZhosHSADnSBmty9R5ylYazC7G0MxjNOcnd9Q82sy0Y3G50R_unxF-wjOVwtgYpGV3QIW9hl5bGGbzOnduSKXH95fnn-qLr58_Hx-dlFh08pcYQ04YAfDANCKvuWgEPoWUPTY4CCZHequt03DaomNRdao3hZOGKN6bsWKvFvaTnM_mgGLtQhbPRWXEG91AKf_r3h3pTfhRnPWrpUqn7Qir-46xPBjNinr0SU02y14E-aka8V517SqfP2KvLyHXoc5-jLenuJCyHbX8MW_lg5e_iRRgHoBMIaUorEHhDO9S1wvieuSuN4nrmURdfdE6DLs0ipjue3DUrFIU3nHb0z8a_sB1W8GzsPT |
CitedBy_id | crossref_primary_10_1007_s11760_024_03360_5 |
Cites_doi | 10.1016/j.eswa.2015.10.049 10.1111/j.1469-8986.1980.tb00117.x 10.1016/j.procs.2016.04.062 10.1016/j.asoc.2020.106954 10.1007/s13755-023-00226-x 10.1007/s11517-022-02686-x 10.1093/scan/nst164 10.1109/JSEN.2018.2883497 10.1109/TCYB.2016.2582918 10.1007/s11263-014-0733-5 10.1016/j.inffus.2022.03.009 10.1002/jdn.10166 10.1109/TBME.2021.3137184 10.1155/2021/8896062 10.3390/s21103414 10.1016/j.neulet.2018.10.062 10.26599/BSA.2022.9050013 10.1016/j.compbiomed.2020.103927 10.1016/j.neucom.2021.03.105 10.1016/j.isprsjprs.2023.03.002 10.1109/TAFFC.2020.3013711 10.1109/T-AFFC.2011.15 10.1016/j.bspc.2023.104928 10.1016/j.bspc.2021.103289 10.1016/0013-4694(70)90143-4 10.1016/j.neuroimage.2018.03.032 10.1145/3581783.3613442 10.1109/CVPR.2016.85 10.1109/CASP.2016.7746209 10.1145/3539618.3591946 10.1109/TAFFC.2022.3164516 10.1109/CSPA.2019.8696054 10.1109/NER49283.2021.9441368 10.1155/2017/8317357 10.1109/TAFFC.2023.3273916 10.1145/3442479 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s13534-023-00316-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2093-985X |
EndPage | 113 |
ExternalDocumentID | PMC10769959 38186953 10_1007_s13534_023_00316_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Horizon 2020 grantid: CHIST-ERA-20-BCI-001 funderid: http://dx.doi.org/10.13039/501100007601 – fundername: Agencia Estatal de Investigación grantid: PCI2021-122036-2A funderid: http://dx.doi.org/10.13039/501100011033 – fundername: HORIZON EUROPE European Innovation Council grantid: SYMBIOTIK project, grant 101071147 funderid: http://dx.doi.org/10.13039/100018703 – fundername: Universitat Jaume I |
GroupedDBID | -EM 0R~ 0VY 203 29~ 2VQ 30V 4.4 406 408 53G 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACPRK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AUKKA AXYYD AYJHY BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 HF~ HMJXF HRMNR HYE HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J OK1 PT4 RLLFE ROL RPM RSV S27 SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7X ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c475t-c2acdc8addaa73b71a9cab7ac3bc4cd50fd28bf44025c4fc049bf3b73ee9b1f3 |
IEDL.DBID | C6C |
ISSN | 2093-9868 2093-985X |
IngestDate | Thu Aug 21 18:42:17 EDT 2025 Fri Jul 11 09:22:24 EDT 2025 Fri Jul 25 11:13:00 EDT 2025 Mon Jul 21 05:56:17 EDT 2025 Thu Apr 24 23:13:54 EDT 2025 Tue Jul 01 01:04:54 EDT 2025 Fri Feb 21 02:40:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | Emotion recognition BCI EEG Data splits Videos |
Language | English |
License | The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-c2acdc8addaa73b71a9cab7ac3bc4cd50fd28bf44025c4fc049bf3b73ee9b1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1596-8466 |
OpenAccessLink | https://doi.org/10.1007/s13534-023-00316-5 |
PMID | 38186953 |
PQID | 2911133579 |
PQPubID | 2043953 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10769959 proquest_miscellaneous_2911847900 proquest_journals_2911133579 pubmed_primary_38186953 crossref_primary_10_1007_s13534_023_00316_5 crossref_citationtrail_10_1007_s13534_023_00316_5 springer_journals_10_1007_s13534_023_00316_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Korea |
PublicationPlace_xml | – name: Korea – name: Germany – name: Heidelberg |
PublicationTitle | Biomedical engineering letters |
PublicationTitleAbbrev | Biomed. Eng. Lett |
PublicationTitleAlternate | Biomed Eng Lett |
PublicationYear | 2024 |
Publisher | The Korean Society of Medical and Biological Engineering Springer Nature B.V |
Publisher_xml | – name: The Korean Society of Medical and Biological Engineering – name: Springer Nature B.V |
References | Kumar, Khaund, Hazarika (CR20) 2016; 84 Xiang, Yazhou, Prayag, Dawei, Bin, Meihong, Zhigang, Neeraj, Pekka (CR22) 2022; 55 Marelli, Morelli, Farella, Bianco, Ciocca, Remondino (CR26) 2023; 198 Devi, Sophia, Boselin Prabhu, Mittal, Shah, Roy (CR7) 2021 Autthasan (CR2) 2022; 69 CR17 CR34 CR33 CR10 CR32 Fasil, Rajesh (CR11) 2019; 694 CR31 Kim, Jo (CR18) 2020; 11 Liu, Ding, Li, Cheng, Song, Wan, Chen (CR25) 2020; 123 Ruchilekha, Singh, Singh (CR30) 2023; 84 Zabcikova, Koudelkova, Jasek, Navarro (CR40) 2022; 82 Annushree, Reddy, Diwakar, Ramalingaswamy (CR3) 2019; 52 Everingham, Eslami, Gool, Williams, Winn, Zisserman (CR9) 2015; 111 Wei, Lin, Wang, Lin, Jung (CR37) 2018; 174 Yin, Zheng, Bin, Zhang, Cui (CR39) 2021; 100 Liu, Ning, Nie, Yu-Ting, Wong, Kankanhalli (CR23) 2017; 47 Galvão, Alarcão, Fonseca (CR13) 2021; 21 Gupta, Chopda, Pachori (CR14) 2019; 19 Fowles (CR12) 1980; 17 CR28 Atkinson, Campos (CR1) 2016; 47 CR27 Bhosale, Chakraborty, Kopparapu (CR4) 2022; 72 Li, Ren, Zhang, Yang, Zhao, Hou, Yuan, Zhang, Bin (CR21) 2023; 11 CR24 Du, Ma, Zhang, Li, Lai, Zhao, Deng, Liu, Wang (CR8) 2022; 13 Rosalind (CR29) 2000 CR41 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (CR19) 2012; 3 Xu, Guo, Wang (CR38) 2023; 61 Chen, Rui, Jifeng (CR5) 2021 Wang, Song, Tao, Liotta, Yang, Li, Gao, Sun, Ge, Zhang, Zhang (CR36) 2022; 83–84 Huang, Chen, Liu, Zheng, Tian, Jiang (CR16) 2021; 448 Hjorth (CR15) 1970; 29 Costa, Cauda, Crini, Tatu, Celeghin, de Gelder, Tamietto (CR6) 2014; 9 Tang, Li, Chen (CR35) 2022; 8 J Atkinson (316_CR1) 2016; 47 S Bhosale (316_CR4) 2022; 72 C Tang (316_CR35) 2022; 8 G Xu (316_CR38) 2023; 61 Y Wang (316_CR36) 2022; 83–84 P Autthasan (316_CR2) 2022; 69 D Devi (316_CR7) 2021 F Galvão (316_CR13) 2021; 21 316_CR28 R Li (316_CR21) 2023; 11 WP Rosalind (316_CR29) 2000 C-S Wei (316_CR37) 2018; 174 316_CR24 316_CR27 Yu Chen (316_CR5) 2021 S Koelstra (316_CR19) 2012; 3 A-A Liu (316_CR23) 2017; 47 316_CR41 D Marelli (316_CR26) 2023; 198 Y Yin (316_CR39) 2021; 100 Ruchilekha (316_CR30) 2023; 84 M Zabcikova (316_CR40) 2022; 82 316_CR17 B Annushree (316_CR3) 2019; 52 T Costa (316_CR6) 2014; 9 OK Fasil (316_CR11) 2019; 694 M Everingham (316_CR9) 2015; 111 D Huang (316_CR16) 2021; 448 B Hjorth (316_CR15) 1970; 29 BH Kim (316_CR18) 2020; 11 X Du (316_CR8) 2022; 13 316_CR10 Yu Liu (316_CR25) 2020; 123 316_CR32 DC Fowles (316_CR12) 1980; 17 N Kumar (316_CR20) 2016; 84 Li Xiang (316_CR22) 2022; 55 316_CR31 316_CR34 316_CR33 V Gupta (316_CR14) 2019; 19 |
References_xml | – volume: 47 start-page: 35 year: 2016 end-page: 41 ident: CR1 article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.10.049 – volume: 17 start-page: 87 issue: 2 year: 1980 end-page: 104 ident: CR12 article-title: The three arousal model: implications of gray’s two-factor learning theory for heart rate, electrodermal activity, and psychopathy publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1980.tb00117.x – ident: CR10 – volume: 84 start-page: 31 year: 2016 end-page: 35 ident: CR20 article-title: Bispectral analysis of EEG for emotion recognition publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.04.062 – ident: CR33 – volume: 100 start-page: 106954 year: 2021 ident: CR39 article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106954 – start-page: 69 year: 2021 end-page: 84 ident: CR7 article-title: Chapter 4 - deep learning-based cognitive state prediction analysis using brain wave signal publication-title: Cognitive Computing for Human-Robot Interaction, Cognitive Data Science in Sustainable Computing – volume: 11 start-page: 25 issue: 1 year: 2023 ident: CR21 article-title: STSNet: a novel spatio-temporal-spectral network for subject-independent EEG-based emotion recognition publication-title: Health Inf Sci Syst doi: 10.1007/s13755-023-00226-x – volume: 61 start-page: 61 issue: 1 year: 2023 end-page: 73 ident: CR38 article-title: Subject-independent EEG emotion recognition with hybrid spatio-temporal GRU-conv architecture publication-title: Med Biol Eng Comput. doi: 10.1007/s11517-022-02686-x – ident: CR27 – volume: 9 start-page: 1690 issue: 11 year: 2014 end-page: 1703 ident: CR6 article-title: Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes publication-title: Soc Cogn Affect Neurosci doi: 10.1093/scan/nst164 – volume: 19 start-page: 2266 issue: 6 year: 2019 end-page: 2274 ident: CR14 article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2883497 – volume: 47 start-page: 1781 issue: 7 year: 2017 end-page: 1794 ident: CR23 article-title: Benchmarking a multimodal and multiview and interactive dataset for human action recognition publication-title: IEEE Trans Cybernet doi: 10.1109/TCYB.2016.2582918 – year: 2000 ident: CR29 publication-title: Affective computing – volume: 111 start-page: 98 issue: 1 year: 2015 end-page: 136 ident: CR9 article-title: The Pascal visual object classes challenge: a retrospective publication-title: Int J Comput Vision doi: 10.1007/s11263-014-0733-5 – volume: 83–84 start-page: 19 year: 2022 end-page: 52 ident: CR36 article-title: A systematic review on affective computing: emotion models, databases, and recent advances publication-title: Inf Fusion doi: 10.1016/j.inffus.2022.03.009 – volume: 82 start-page: 107 issue: 2 year: 2022 end-page: 123 ident: CR40 article-title: Recent advances and current trends in brain-computer interface research and their applications publication-title: Int J Dev Neurosci doi: 10.1002/jdn.10166 – volume: 52 start-page: 1 issue: 1 year: 2019 end-page: 32 ident: CR3 article-title: Survey on brain-computer interface: an emerging computational intelligence paradigm publication-title: ACM Comput Surv – volume: 69 start-page: 2105 issue: 6 year: 2022 end-page: 2118 ident: CR2 article-title: MIN2Net: end-to-end multi-task learning for subject-independent motor imagery EEG classification publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2021.3137184 – year: 2021 ident: CR5 article-title: Emotion recognition of EEG signals based on the ensemble learning method: Adaboost publication-title: Math Problems Eng doi: 10.1155/2021/8896062 – volume: 21 start-page: 3414 issue: 10 year: 2021 end-page: 3414 ident: CR13 article-title: Predicting exact valence and arousal values from EEG publication-title: Sensors doi: 10.3390/s21103414 – volume: 694 start-page: 1 year: 2019 end-page: 8 ident: CR11 article-title: Time-domain exponential energy for epileptic eeg signal classification publication-title: Neurosci Lett doi: 10.1016/j.neulet.2018.10.062 – ident: CR17 – ident: CR31 – volume: 8 start-page: 142 issue: 2 year: 2022 end-page: 152 ident: CR35 article-title: Comparison of cross-subject EEG emotion recognition algorithms in the BCI controlled robot contest in world robot contest 2021 publication-title: Brain Sci Adv doi: 10.26599/BSA.2022.9050013 – volume: 123 start-page: 103927 year: 2020 ident: CR25 article-title: Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103927 – volume: 448 start-page: 140 year: 2021 end-page: 151 ident: CR16 article-title: Differences first in asymmetric brain: a bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.105 – ident: CR32 – ident: CR34 – volume: 198 start-page: 84 year: 2023 end-page: 98 ident: CR26 article-title: ENRICH: Multi-purposE dataset for beNchmaRking In Computer vision and pHotogrammetry publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2023.03.002 – volume: 13 start-page: 1528 issue: 3 year: 2022 end-page: 40 ident: CR8 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans Affect Comput. doi: 10.1109/TAFFC.2020.3013711 – volume: 3 start-page: 18 issue: 1 year: 2012 end-page: 31 ident: CR19 article-title: DEAP: a database for emotion analysis using physiological signals publication-title: IEEE Trans Affect Comput doi: 10.1109/T-AFFC.2011.15 – volume: 55 start-page: 1 issue: 4 year: 2022 end-page: 57 ident: CR22 article-title: EEG based emotion recognition: a tutorial and review publication-title: ACM Comput Surv – volume: 84 start-page: 104928 year: 2023 ident: CR30 article-title: A deep learning approach for subject-dependent & subject-independent emotion recognition using brain signals with dimensional emotion model publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104928 – volume: 72 start-page: 103289 year: 2022 ident: CR4 article-title: Calibration free meta learning based approach for subject independent EEG emotion recognition publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103289 – ident: CR28 – ident: CR41 – volume: 29 start-page: 306 issue: 3 year: 1970 end-page: 310 ident: CR15 article-title: Eeg analysis based on time domain properties publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(70)90143-4 – ident: CR24 – volume: 174 start-page: 407 year: 2018 end-page: 419 ident: CR37 article-title: A subject-transfer framework for obviating inter- and intra-subject variability in EEG-based drowsiness detection publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.032 – volume: 11 start-page: 230 issue: 2 year: 2020 end-page: 243 ident: CR18 article-title: Deep physiological affect network for the recognition of human emotions publication-title: IEEE Trans Affect Comput – volume: 83–84 start-page: 19 year: 2022 ident: 316_CR36 publication-title: Inf Fusion doi: 10.1016/j.inffus.2022.03.009 – ident: 316_CR33 doi: 10.1145/3581783.3613442 – volume: 84 start-page: 104928 year: 2023 ident: 316_CR30 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104928 – volume: 61 start-page: 61 issue: 1 year: 2023 ident: 316_CR38 publication-title: Med Biol Eng Comput. doi: 10.1007/s11517-022-02686-x – start-page: 69 volume-title: Cognitive Computing for Human-Robot Interaction, Cognitive Data Science in Sustainable Computing year: 2021 ident: 316_CR7 – ident: 316_CR28 doi: 10.1109/CVPR.2016.85 – ident: 316_CR27 doi: 10.1109/CASP.2016.7746209 – volume: 448 start-page: 140 year: 2021 ident: 316_CR16 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.105 – volume: 47 start-page: 1781 issue: 7 year: 2017 ident: 316_CR23 publication-title: IEEE Trans Cybernet doi: 10.1109/TCYB.2016.2582918 – volume: 174 start-page: 407 year: 2018 ident: 316_CR37 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.032 – volume: 52 start-page: 1 issue: 1 year: 2019 ident: 316_CR3 publication-title: ACM Comput Surv – volume: 123 start-page: 103927 year: 2020 ident: 316_CR25 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103927 – volume: 82 start-page: 107 issue: 2 year: 2022 ident: 316_CR40 publication-title: Int J Dev Neurosci doi: 10.1002/jdn.10166 – ident: 316_CR32 doi: 10.1145/3539618.3591946 – volume: 100 start-page: 106954 year: 2021 ident: 316_CR39 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106954 – volume: 69 start-page: 2105 issue: 6 year: 2022 ident: 316_CR2 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2021.3137184 – volume: 19 start-page: 2266 issue: 6 year: 2019 ident: 316_CR14 publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2883497 – volume-title: Affective computing year: 2000 ident: 316_CR29 – ident: 316_CR10 – ident: 316_CR34 doi: 10.1109/TAFFC.2022.3164516 – volume: 72 start-page: 103289 year: 2022 ident: 316_CR4 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103289 – volume: 84 start-page: 31 year: 2016 ident: 316_CR20 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.04.062 – ident: 316_CR17 doi: 10.1109/CSPA.2019.8696054 – volume: 3 start-page: 18 issue: 1 year: 2012 ident: 316_CR19 publication-title: IEEE Trans Affect Comput doi: 10.1109/T-AFFC.2011.15 – volume: 8 start-page: 142 issue: 2 year: 2022 ident: 316_CR35 publication-title: Brain Sci Adv doi: 10.26599/BSA.2022.9050013 – volume: 9 start-page: 1690 issue: 11 year: 2014 ident: 316_CR6 publication-title: Soc Cogn Affect Neurosci doi: 10.1093/scan/nst164 – year: 2021 ident: 316_CR5 publication-title: Math Problems Eng doi: 10.1155/2021/8896062 – volume: 21 start-page: 3414 issue: 10 year: 2021 ident: 316_CR13 publication-title: Sensors doi: 10.3390/s21103414 – ident: 316_CR24 doi: 10.1109/NER49283.2021.9441368 – volume: 111 start-page: 98 issue: 1 year: 2015 ident: 316_CR9 publication-title: Int J Comput Vision doi: 10.1007/s11263-014-0733-5 – volume: 694 start-page: 1 year: 2019 ident: 316_CR11 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2018.10.062 – volume: 29 start-page: 306 issue: 3 year: 1970 ident: 316_CR15 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(70)90143-4 – volume: 198 start-page: 84 year: 2023 ident: 316_CR26 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2023.03.002 – volume: 47 start-page: 35 year: 2016 ident: 316_CR1 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.10.049 – volume: 17 start-page: 87 issue: 2 year: 1980 ident: 316_CR12 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1980.tb00117.x – ident: 316_CR41 doi: 10.1155/2017/8317357 – ident: 316_CR31 doi: 10.1109/TAFFC.2023.3273916 – volume: 13 start-page: 1528 issue: 3 year: 2022 ident: 316_CR8 publication-title: IEEE Trans Affect Comput. doi: 10.1109/TAFFC.2020.3013711 – volume: 11 start-page: 230 issue: 2 year: 2020 ident: 316_CR18 publication-title: IEEE Trans Affect Comput – volume: 11 start-page: 25 issue: 1 year: 2023 ident: 316_CR21 publication-title: Health Inf Sci Syst doi: 10.1007/s13755-023-00226-x – volume: 55 start-page: 1 issue: 4 year: 2022 ident: 316_CR22 publication-title: ACM Comput Surv doi: 10.1145/3442479 |
SSID | ssj0000515933 |
Score | 2.296198 |
Snippet | Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103 |
SubjectTerms | Affective computing Annotations Biological and Medical Physics Biomedical Engineering and Bioengineering Biomedicine Biophysics Brain Classification Computer applications Data points Data transfer (computers) EEG Electroencephalography Emotion recognition Emotions Engineering Feature extraction Human-computer interface Implants Machine learning Medical and Radiation Physics Original Original Article Partitioning Segments Video |
Title | Sneaky emotions: impact of data partitions in affective computing experiments with brain-computer interfacing |
URI | https://link.springer.com/article/10.1007/s13534-023-00316-5 https://www.ncbi.nlm.nih.gov/pubmed/38186953 https://www.proquest.com/docview/2911133579 https://www.proquest.com/docview/2911847900 https://pubmed.ncbi.nlm.nih.gov/PMC10769959 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5Be4EDKu_QUhmJG1gk8SMxt9WqpQLBhVYqp8ietUUFZKvu9sC_ZybJZtm2VOKSiyfOY_yYh-f7AF5br9HZupAWC5SciJPBVVHqyAGHEDCvuBr58xd7dKI_nprTASaHa2Gu5O_fLZiXQUvaWSSPPyvNXdg2haqYpmFqp2M8hblKeub4kpx06WpbDzUyN3ezuQ9dMy6vn5G8kijt9p_DHXgwGI5i0mv6IdyJ7SO4_xec4GP49bWN_sdvEXtqnsV70ddAinkSfBJUnPM46ZrEWSt8d5SDVjuBHbUD9SHWgP8LwSFaEZhCQuLA_SAYXeIieSTZJ3B8eHA8PZIDnYJEXZmlxNLjDGta0LyvVKgK79CHyqMKqHFm8jQr65A0eZQGdULyHUIiORWjC0VST2GrnbfxOQif26DJrkrBKW3ZSaxtrmodlU3KW51Bsfq3DQ5Q48x48bNZgySzPhrSRwdOahuTwZvxnvMeaONW6b2Vypph0i2akhdupUzlMng1NtN04RyIb-P8spehDdnleQbPeg2Pj2PjxTqjMqg3dD8KMBT3Zkt79r2D5CYn2jJyWwZvV8Nk_V7__owX_ye-C_dKsqn6CNAebC0vLuNLsomWYR-2Jx--fTrY7yYFXU_KyR-kuQZ_ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiHcDBYwEJ7CUxI5jI3GogGpLHxe2Um-R7bVF1TZbdbdC_T39o53Ja1kKSBx69uTl8cSf7ZnvA3irrPRG6Ywrn3lOB3HcmTJwGWjDwTmfllSNvLunRvvy20FxsAKXfS1Mk-3eH0k2f-pFsZsohOQ4x3AaiYr3qZTb4eInLtRmn7a-oFff5fnm1_HnEe-0BLiXZTHnPrd-4jVGs7WlcGVmjbeutF44L_2kSOMk1y5KXE4VXkaPwNlFtBMhGJdFgbe9BbcRe2gKnf18Y9jIIZGUVrI-T43gRivdFef8-a2XJ8BrqPZ6cuZvJ7TNxLf5AO53iJVttEPsIayE-hHc-4XH8DGcfK-DPbpgodUEmn1kbfElm0ZGKajslAZo08QOa2abHBL8zTLfaErgPdhCaWDGaG-YOdKu4L4TnWBEa3EWrUfbJzC-ib5_Cqv1tA5rwGyqnERAF50RUtHqVKtUaBmEisIqmUDW923lO45zkto4rhbszOSPCv3RsKKqqkjg_XDNacvw8U_r9d5lVRftsyqnGUOIojQJvBmaMU7p8MXWYXre2iASMGmawLPWw8PjCDUpU4gE9JLvBwPiAF9uqQ9_NFzguHpXRBmXwId-mCze6--f8fz_zF_DndF4d6fa2drbfgF3cwR27TbUOqzOz87DSwRmc_eqCQwG1Q0H4hWboEh3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiE4VHyWlAJGghNYTWLHiZE4oC2rlkKFRJF6i2yvLSogu-puhfqr-IvMxEmWpYDEoWdPHMfjiWfsmfcAniojnVZVxpXLHKeLOG516bn0dOBgrUtLqkZ-f6j2Psm3x8XxGvzoa2HabPf-SjLWNBBKU7PYmU3CzrLwTRRCctxvOK1Kxfu0ygN__h2Dtvmr_V3U8LM8H785Gu3xjleAO1kWC-5y4yauQss2phS2zIx2xpbGCeukmxRpmOSVDRJDq8LJ4NCJtgHlhPfaZkFgt1fgKgZGGUV7IzUaDnWIMCXS1-epFlxXquoKdf486tXN8IKHezFR87fb2nYTHN-Ejc57Za_jcrsFa765DTd-wTS8A98-Nt58OWc-8gPNX7JYiMmmgVE6KpvRYm2b2EnDTJtPgr9c5lp-CeyDLVkH5ozOiZklHgvuOgIKRhAXp8E4lL0LR5cx9_dgvZk2_j4wkyor0bkLVgupKFKtVCoq6YUKwiiZQNbPbe06vHOi3fhaL5GaSR816qNFSFV1kcDz4ZlZRPv4p_R2r7K6s_x5ndPuIURR6gSeDM1os3QRYxo_PYsy6BXoNE1gM2p4eB15UEoXIoFqRfeDAOGBr7Y0J59bXHCM5BXBxyXwol8my3H9_TO2_k_8MVz7sDuu3-0fHjyA6zn6ePFEahvWF6dn_iH6aAv7qLULBvUl2-FPAexMnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sneaky+emotions%3A+impact+of+data+partitions+in+affective+computing+experiments+with+brain-computer+interfacing&rft.jtitle=Biomedical+engineering+letters&rft.au=Moreno-Alcayde%2C+Yoelvis&rft.au=Traver%2C+V.+Javier&rft.au=Leiva%2C+Luis+A.&rft.date=2024-01-01&rft.pub=The+Korean+Society+of+Medical+and+Biological+Engineering&rft.issn=2093-9868&rft.eissn=2093-985X&rft.volume=14&rft.issue=1&rft.spage=103&rft.epage=113&rft_id=info:doi/10.1007%2Fs13534-023-00316-5&rft.externalDocID=10_1007_s13534_023_00316_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-9868&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-9868&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-9868&client=summon |