Out-of-plane coordination of iridium single atoms with organic molecules and cobalt–iron hydroxides to boost oxygen evolution reaction

Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane w...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 20; no. 1; pp. 57 - 66
Main Authors Zhao, Jie, Guo, Yue, Zhang, Zhiqi, Zhang, Xilin, Ji, Qianqian, Zhang, Hua, Song, Zhaoqi, Liu, Dongqing, Zeng, Jianrong, Chuang, Chenghao, Zhang, Erhuan, Wang, Yuhao, Hu, Guangzhi, Mushtaq, Muhammad Asim, Raza, Waseem, Cai, Xingke, Ciucci, Francesco
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2025
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir 1 /(Co,Fe)-OH/MI). This Ir 1 /(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm −2 and 257 mV at 600 mA cm −2 as well as an ultra-small Tafel slope of 24 mV dec −1 . Furthermore, Ir 1 /(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO 2 by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d -band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER. This article presents a new method for coordinating iridium atoms with dimethylimidazole and cobalt–iron hydroxides. This enhances the oxygen evolution reaction and delivers high current densities with reduced precious metal use.
AbstractList Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir 1 /(Co,Fe)-OH/MI). This Ir 1 /(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm −2 and 257 mV at 600 mA cm −2 as well as an ultra-small Tafel slope of 24 mV dec −1 . Furthermore, Ir 1 /(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO 2 by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d -band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER. This article presents a new method for coordinating iridium atoms with dimethylimidazole and cobalt–iron hydroxides. This enhances the oxygen evolution reaction and delivers high current densities with reduced precious metal use.
Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir /(Co,Fe)-OH/MI). This Ir /(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm and 257 mV at 600 mA cm as well as an ultra-small Tafel slope of 24 mV dec . Furthermore, Ir /(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d-band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER.
Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir1/(Co,Fe)-OH/MI). This Ir1/(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm-2 and 257 mV at 600 mA cm-2 as well as an ultra-small Tafel slope of 24 mV dec-1. Furthermore, Ir1/(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO2 by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d-band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER.Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir1/(Co,Fe)-OH/MI). This Ir1/(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm-2 and 257 mV at 600 mA cm-2 as well as an ultra-small Tafel slope of 24 mV dec-1. Furthermore, Ir1/(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO2 by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d-band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER.
Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir1/(Co,Fe)-OH/MI). This Ir1/(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm−2 and 257 mV at 600 mA cm−2 as well as an ultra-small Tafel slope of 24 mV dec−1. Furthermore, Ir1/(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO2 by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d-band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER.This article presents a new method for coordinating iridium atoms with dimethylimidazole and cobalt–iron hydroxides. This enhances the oxygen evolution reaction and delivers high current densities with reduced precious metal use.
Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir 1 /(Co,Fe)-OH/MI). This Ir 1 /(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm −2 and 257 mV at 600 mA cm −2 as well as an ultra-small Tafel slope of 24 mV dec −1 . Furthermore, Ir 1 /(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO 2 by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d -band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER.
Author Cai, Xingke
Mushtaq, Muhammad Asim
Zeng, Jianrong
Guo, Yue
Zhang, Xilin
Zhang, Hua
Hu, Guangzhi
Zhang, Erhuan
Liu, Dongqing
Zhang, Zhiqi
Song, Zhaoqi
Wang, Yuhao
Raza, Waseem
Ji, Qianqian
Chuang, Chenghao
Zhao, Jie
Ciucci, Francesco
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-0108-2189
  surname: Zhao
  fullname: Zhao, Jie
  organization: Institute for Advanced Study, Shenzhen University, School of Energy and Environment, City University of Hong Kong
– sequence: 2
  givenname: Yue
  orcidid: 0000-0003-3702-8384
  surname: Guo
  fullname: Guo, Yue
  organization: Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University
– sequence: 3
  givenname: Zhiqi
  surname: Zhang
  fullname: Zhang, Zhiqi
  organization: Key Laboratory of Energy Thermal Conversion and Control (Ministry of Education), School of Energy and Environment, Southeast University
– sequence: 4
  givenname: Xilin
  orcidid: 0000-0002-7141-5700
  surname: Zhang
  fullname: Zhang, Xilin
  organization: School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University
– sequence: 5
  givenname: Qianqian
  orcidid: 0009-0001-0005-6931
  surname: Ji
  fullname: Ji, Qianqian
  organization: Institute for Advanced Study, Shenzhen University
– sequence: 6
  givenname: Hua
  surname: Zhang
  fullname: Zhang, Hua
  organization: School of Ecology and Environmental Science, Yunnan University
– sequence: 7
  givenname: Zhaoqi
  orcidid: 0000-0001-5440-0403
  surname: Song
  fullname: Song, Zhaoqi
  organization: Institute for Advanced Study, Shenzhen University
– sequence: 8
  givenname: Dongqing
  orcidid: 0000-0002-5989-1202
  surname: Liu
  fullname: Liu, Dongqing
  organization: College of Mechatronics and Control Engineering, Shenzhen University
– sequence: 9
  givenname: Jianrong
  orcidid: 0000-0003-4867-1893
  surname: Zeng
  fullname: Zeng, Jianrong
  organization: Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences
– sequence: 10
  givenname: Chenghao
  orcidid: 0000-0001-8161-1521
  surname: Chuang
  fullname: Chuang, Chenghao
  organization: Department of Physics, Tamkang University
– sequence: 11
  givenname: Erhuan
  surname: Zhang
  fullname: Zhang, Erhuan
  organization: Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University
– sequence: 12
  givenname: Yuhao
  orcidid: 0000-0003-2943-434X
  surname: Wang
  fullname: Wang, Yuhao
  organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology
– sequence: 13
  givenname: Guangzhi
  orcidid: 0000-0003-0324-2788
  surname: Hu
  fullname: Hu, Guangzhi
  organization: School of Ecology and Environmental Science, Yunnan University
– sequence: 14
  givenname: Muhammad Asim
  orcidid: 0009-0004-0073-1783
  surname: Mushtaq
  fullname: Mushtaq, Muhammad Asim
  organization: Institute for Advanced Study, Shenzhen University
– sequence: 15
  givenname: Waseem
  surname: Raza
  fullname: Raza, Waseem
  organization: Institute for Advanced Study, Shenzhen University
– sequence: 16
  givenname: Xingke
  orcidid: 0000-0003-3878-4456
  surname: Cai
  fullname: Cai, Xingke
  email: cai.xingke@szu.edu.cn
  organization: Institute for Advanced Study, Shenzhen University
– sequence: 17
  givenname: Francesco
  orcidid: 0000-0003-0614-5537
  surname: Ciucci
  fullname: Ciucci, Francesco
  email: francesco.ciucci@uni-bayreuth.de
  organization: University of Bayreuth, Chair of Electrode Design for Electrochemical Energy Systems, University of Bayreuth, Bavarian Center for Battery Technology (BayBatt)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39433919$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVAR_YA_wAFZ4sIlYCdxHJ8QqviSKvUCZ8txJllXiWexnbJ748idf8gvwbvbFuihJ4807z2_mXmn5MijB0Kec_aas6p9E2suGlGwsi4Yb5ksNo_ICZd1W1SVEkd3dSuPyWmMV4yJUpX1E3JcqTpDuDohPy-XVOBQrCfjgVrE0DtvkkNPcaAuuN4tM43OjxNQk3CO9LtLK4phNN5ZOuMEdpkgUuP7zO_MlH7_-OVCFlht-4Ab1-dmQtohxkRxsx3BU7jGadn_EsDYXfGUPB7MFOHZzXtGvn54_-X8U3Fx-fHz-buLwtZSpMIy1gtloJMN2FbkOVQt-8ZIbivVddAwAWIAZurOssGyvqtKDrJVRglo1VCdkbcH3fXSzdBb8CmYSa-Dm03YajRO_9_xbqVHvNacS8EaJbPCqxuFgN8WiEnPLlqYdhvEJeqK87xaJvgO-vIe9AqX4PN8GSWkbBhXKqNe_GvpzsvtlTKgPQBswBgDDNq6tD9SdugmzZneBUIfAqFzIPQ-EHqTqeU96q36g6TqQIoZ7EcIf20_wPoDMTLOVA
CitedBy_id crossref_primary_10_26599_NR_2025_94907211
crossref_primary_10_1016_j_apcatb_2024_124804
crossref_primary_10_1016_j_jallcom_2025_179876
crossref_primary_10_1016_j_fuel_2025_134550
crossref_primary_10_1002_aenm_202405366
Cites_doi 10.1039/D2CC02633C
10.1073/pnas.1001859107
10.1007/s12274-022-4501-5
10.1002/adfm.202300808
10.1021/acscatal.2c05624
10.1149/1.2086355
10.1016/0013-4686(64)80017-7
10.1126/science.aaf1525
10.1039/D2EE01337A
10.1002/aenm.202002816
10.1039/D0NR01491E
10.1016/j.ccr.2023.215029
10.1021/jacs.8b00752
10.1016/0013-4686(64)80016-5
10.1038/nature11475
10.1016/j.cej.2022.139104
10.1016/j.cej.2022.136962
10.1002/aenm.201601275
10.1039/D2TA10081A
10.1007/s12598-022-02003-3
10.1002/advs.202206107
10.1021/jacs.1c04087
10.1016/j.cattod.2015.08.014
10.1016/j.ijhydene.2022.10.252
10.1038/s41563-021-01006-2
10.1021/acs.nanolett.2c01124
10.1016/j.apcatb.2022.122313
10.1126/science.aaf5050
10.1002/adma.202200270
10.1073/pnas.1006652108
10.1016/j.cej.2020.125149
10.1039/D2EE03022E
10.1039/D0SC06250B
10.1002/adfm.202214069
10.1016/j.jechem.2023.02.033
10.1002/smll.201702568
10.1016/j.apmate.2023.100151
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group Jan 2025
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group Jan 2025
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
7QO
7U5
8FD
F28
FR3
K9.
L7M
P64
7X8
5PM
DOI 10.1038/s41565-024-01807-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 66
ExternalDocumentID PMC11750697
39433919
10_1038_s41565_024_01807_x
Genre Journal Article
GrantInformation_xml – fundername: the Research Grant Council of Hong Kong for the projects (16201820 and 16201622). the University of Bayreuth for providing start-up funds.
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M732352
  funderid: https://doi.org/10.13039/501100002858
– fundername: financial support came from the Start-up Research Fund of Southeast University (No. RF1028623161)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22369020; 52003163;22105129; 52003163
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52003163;22105129
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22369020
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52003163
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M732352
GroupedDBID ---
-~X
0R~
123
29M
39C
4.4
53G
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABFSG
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACSTC
ACUHS
ADBBV
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFHIU
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AHBCP
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARAPS
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
C6C
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NFIDA
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
CITATION
NPM
7QO
7U5
8FD
F28
FR3
K9.
L7M
P64
7X8
5PM
ID FETCH-LOGICAL-c475t-c00d59aeb76ec85943947d6a71c39bbe605e5fe0a4bc0fc0db321e789a95e89f3
IEDL.DBID C6C
ISSN 1748-3387
1748-3395
IngestDate Thu Aug 21 18:40:58 EDT 2025
Thu Jul 10 23:23:17 EDT 2025
Thu Jul 17 02:04:06 EDT 2025
Mon Jul 21 05:39:44 EDT 2025
Thu Apr 24 22:50:47 EDT 2025
Tue Jul 01 01:56:37 EDT 2025
Mon Jul 21 06:08:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-c00d59aeb76ec85943947d6a71c39bbe605e5fe0a4bc0fc0db321e789a95e89f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3702-8384
0000-0002-5989-1202
0000-0003-0614-5537
0009-0001-0005-6931
0000-0001-5440-0403
0000-0003-4867-1893
0009-0004-0073-1783
0000-0002-7141-5700
0000-0003-2943-434X
0000-0002-0108-2189
0000-0003-0324-2788
0000-0001-8161-1521
0000-0003-3878-4456
OpenAccessLink https://www.nature.com/articles/s41565-024-01807-x
PMID 39433919
PQID 3157760199
PQPubID 546299
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11750697
proquest_miscellaneous_3119190517
proquest_journals_3157760199
pubmed_primary_39433919
crossref_citationtrail_10_1038_s41565_024_01807_x
crossref_primary_10_1038_s41565_024_01807_x
springer_journals_10_1038_s41565_024_01807_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References F Arshad (1807_CR23) 2023; 48
J Wu (1807_CR20) 2023; 33
M Dincă (1807_CR15) 2010; 107
Y Yang (1807_CR37) 2023; 13
L Yang (1807_CR10) 2018; 9
P Benson (1807_CR18) 1964; 9
SJ Kim (1807_CR26) 2023; 81
CJ Huang (1807_CR11) 2023; 325
C Jia (1807_CR41) 2022; 15
P Li (1807_CR27) 2019; 10
S Li (1807_CR4) 2021; 20
X Duan (1807_CR39) 2022; 466
X Mu (1807_CR29) 2022; 15
Q He (1807_CR43) 2022; 22
Y Xing (1807_CR42) 2020; 395
E Enkhtuvshin (1807_CR21) 2023; 33
J Zhao (1807_CR35) 2024; 3
B Zhang (1807_CR2) 2016; 352
Y Wang (1807_CR40) 2020; 12
K Jiang (1807_CR5) 2020; 11
Y Zhu (1807_CR14) 2022; 13
H Cui (1807_CR25) 2022; 41
M Batool (1807_CR12) 2023; 480
JK Nørskov (1807_CR47) 2011; 108
H Li (1807_CR24) 2023; 452
J Zhao (1807_CR33) 2020; 76
Z Zhang (1807_CR44) 2022; 13
R Mohili (1807_CR13) 2023; 11
S Cherevko (1807_CR7) 2016; 262
P Babar (1807_CR19) 2018; 14
T Zhang (1807_CR30) 2022; 13
Q Hu (1807_CR48) 2022; 13
J Bauer (1807_CR16) 1990; 137
LC Seitz (1807_CR3) 2016; 353
W Huang (1807_CR9) 2022; 34
J Zhao (1807_CR34) 2022; 58
S Chu (1807_CR1) 2012; 488
R Tobias (1807_CR6) 2017; 7
P Zhai (1807_CR28) 2021; 12
N Li (1807_CR36) 2021; 143
H Shi (1807_CR49) 2023; 14
Z Li (1807_CR22) 2023; 62
Y Liu (1807_CR32) 2023; 10
J Li (1807_CR46) 2021; 12
Z Yan (1807_CR8) 2018; 9
X Li (1807_CR31) 2023; 16
Y Hu (1807_CR38) 2021; 11
P Benson (1807_CR17) 1964; 9
J Zhang (1807_CR45) 2018; 140
References_xml – volume: 58
  start-page: 9124
  year: 2022
  ident: 1807_CR34
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC02633C
– volume: 107
  start-page: 10337
  year: 2010
  ident: 1807_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1001859107
– volume: 15
  start-page: 10014
  year: 2022
  ident: 1807_CR41
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4501-5
– volume: 33
  start-page: 2300808
  year: 2023
  ident: 1807_CR20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202300808
– volume: 13
  year: 2022
  ident: 1807_CR44
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2771
  year: 2023
  ident: 1807_CR37
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c05624
– volume: 137
  start-page: 173
  year: 1990
  ident: 1807_CR16
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086355
– volume: 9
  start-page: 281
  year: 1964
  ident: 1807_CR18
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(64)80017-7
– volume: 352
  start-page: 333
  year: 2016
  ident: 1807_CR2
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 15
  start-page: 4048
  year: 2022
  ident: 1807_CR29
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE01337A
– volume: 11
  start-page: 2002816
  year: 2021
  ident: 1807_CR38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002816
– volume: 12
  start-page: 9669
  year: 2020
  ident: 1807_CR40
  publication-title: Nanoscale
  doi: 10.1039/D0NR01491E
– volume: 480
  start-page: 215029
  year: 2023
  ident: 1807_CR12
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215029
– volume: 140
  start-page: 3876
  year: 2018
  ident: 1807_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 9
  start-page: 275
  year: 1964
  ident: 1807_CR17
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(64)80016-5
– volume: 12
  year: 2021
  ident: 1807_CR28
  publication-title: Nat. Commun.
– volume: 488
  start-page: 294
  year: 2012
  ident: 1807_CR1
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 452
  start-page: 139104
  year: 2023
  ident: 1807_CR24
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139104
– volume: 10
  year: 2019
  ident: 1807_CR27
  publication-title: Nat. Commun.
– volume: 466
  start-page: 136962
  year: 2022
  ident: 1807_CR39
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136962
– volume: 7
  start-page: 1601275
  year: 2017
  ident: 1807_CR6
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601275
– volume: 11
  start-page: 10463
  year: 2023
  ident: 1807_CR13
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA10081A
– volume: 41
  start-page: 2606
  year: 2022
  ident: 1807_CR25
  publication-title: Rare Met.
  doi: 10.1007/s12598-022-02003-3
– volume: 13
  year: 2022
  ident: 1807_CR14
  publication-title: Nat. Commun.
– volume: 10
  start-page: 2206107
  year: 2023
  ident: 1807_CR32
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206107
– volume: 143
  start-page: 18001
  year: 2021
  ident: 1807_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c04087
– volume: 262
  start-page: 170
  year: 2016
  ident: 1807_CR7
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.08.014
– volume: 48
  start-page: 4719
  year: 2023
  ident: 1807_CR23
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2022.10.252
– volume: 20
  start-page: 1240
  year: 2021
  ident: 1807_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01006-2
– volume: 13
  year: 2022
  ident: 1807_CR30
  publication-title: Nat. Commun.
– volume: 22
  start-page: 3832
  year: 2022
  ident: 1807_CR43
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01124
– volume: 9
  year: 2018
  ident: 1807_CR8
  publication-title: Nat. Commun.
– volume: 14
  year: 2023
  ident: 1807_CR49
  publication-title: Nat. Commun.
– volume: 325
  start-page: 122313
  year: 2023
  ident: 1807_CR11
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.122313
– volume: 353
  start-page: 1011
  year: 2016
  ident: 1807_CR3
  publication-title: Science
  doi: 10.1126/science.aaf5050
– volume: 62
  year: 2023
  ident: 1807_CR22
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  year: 2022
  ident: 1807_CR48
  publication-title: Nat. Commun.
– volume: 11
  year: 2020
  ident: 1807_CR5
  publication-title: Nat. Commun.
– volume: 9
  year: 2018
  ident: 1807_CR10
  publication-title: Nat. Commun.
– volume: 34
  start-page: 2200270
  year: 2022
  ident: 1807_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200270
– volume: 108
  start-page: 937
  year: 2011
  ident: 1807_CR47
  publication-title: PNAS
  doi: 10.1073/pnas.1006652108
– volume: 395
  start-page: 125149
  year: 2020
  ident: 1807_CR42
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125149
– volume: 16
  start-page: 502
  year: 2023
  ident: 1807_CR31
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03022E
– volume: 76
  year: 2020
  ident: 1807_CR33
  publication-title: Nano Energy
– volume: 12
  start-page: 1756
  year: 2021
  ident: 1807_CR46
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC06250B
– volume: 33
  start-page: 2214069
  year: 2023
  ident: 1807_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214069
– volume: 81
  start-page: 82
  year: 2023
  ident: 1807_CR26
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.02.033
– volume: 14
  year: 2018
  ident: 1807_CR19
  publication-title: Small
  doi: 10.1002/smll.201702568
– volume: 3
  start-page: 100151
  year: 2024
  ident: 1807_CR35
  publication-title: Adv. Powder Mater.
  doi: 10.1016/j.apmate.2023.100151
SSID ssj0052924
Score 2.6139433
Snippet Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 57
SubjectTerms 119/118
140/133
140/146
639/301/299/886
639/301/357/1018
639/638/161/886
639/638/77/886
639/925/357/1018
Atomic properties
Catalysts
Chemistry and Materials Science
Cobalt
Coordination
Current density
Evolution
Ferrous hydroxide
Hydroxides
Iridium
Iron
Ligands
Materials Science
Microscopy
Nanoparticles
Nanotechnology
Nanotechnology and Microengineering
Noble metals
Organic chemistry
Oxidation
Oxygen
Oxygen evolution reactions
Precious metals
Title Out-of-plane coordination of iridium single atoms with organic molecules and cobalt–iron hydroxides to boost oxygen evolution reaction
URI https://link.springer.com/article/10.1038/s41565-024-01807-x
https://www.ncbi.nlm.nih.gov/pubmed/39433919
https://www.proquest.com/docview/3157760199
https://www.proquest.com/docview/3119190517
https://pubmed.ncbi.nlm.nih.gov/PMC11750697
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELaq9gIHxD-BUhmJG1g4iR3bx3bFqkKiXKjUWxQ7jhppN6k22Wp748idN-RJmHGShaWAhHIc20k8Y3tmPPMNIa8TUWrLvWOZKyomnOPMCC6YrOApMflRYb7zx7Ps9Fx8uJAXeySZcmFC0H6AtAzb9BQd9q5DQwNziTFmQnPFQG88QOh2lOpZNpt2X5mYoZCtEpqB-aXGRBme6j-MsXsY3dIwbwdK_nZbGg6h-X1yb9Qe6fHwvQ_Inm8ekru_YAo-Il8_rXvWVuwKo1ipa8G4rAePH20rWq_qsl4vKXoIFp6Cxb3sKPpi6VDeydHlUC_Xd7RoSuhvi0X__cs3zIajlzflqt3UJRD7loJ-3vW03dyADFJ_PcowBS005Eo8Jufz959np2wst8CcULJnjvNSmsJblXmnpcGcWVVmhYpdaqz1YPh4WXleCOt45Xhp0yT2SpvCSK9NlT4h-03b-GeEgomLwPWySjMttEGOCxfHVWKtSaoiiUg8zXvuRixyLImxyMOdeKrzgVc58CoPvMo3EXmz7XM1IHH8s_XhxM58XJVdnsZSYQyQMRF5tSXDesJLEmBKu8Y2YMEiaJmKyNOB-9vXwYSkKVAjonfkYtsAsbp3KU19GTC7ERGVZwYGfTuJ0M_v-vtvPP-_5i_InQTrEwcX0SHZ71dr_xKUpt4ekYPj-cnJ2VFYLT8AwfAWLw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELaqcgAOiH8CBYzEDSycxI7tI1pRLdCWSyv1FsWOo0baTardLNreeuydN-RJmHGShaWAhHIc20k8Y3tmPPMNIa8TUWrLvWOZKyomnOPMCC6YrOApMflRYb7z4VE2PRGfTuXpDknGXJgQtB8gLcM2PUaHvVuioYG5xBgzoblioDfeAF07wzCuSTYZd1-ZmL6QrRKagfmlhkQZnuo_jLF9GF3TMK8HSv52WxoOof275M6gPdL3_ffeIzu-uU9u_4Ip-IBcfVl1rK3YOUaxUteCcVn3Hj_aVrRe1GW9mlP0EMw8BYt7vqToi6V9eSdH5329XL-kRVNCf1vMuu-X3zAbjp5dlIt2XZdA7FoK-vmyo-36AmSQ-q-DDFPQQkOuxENysv_heDJlQ7kF5oSSHXOcl9IU3qrMOy0N5syqMitU7FJjrQfDx8vK80JYxyvHS5smsVfaFEZ6bar0Edlt2sY_IRRMXASul1WaaaENcly4OK4Sa01SFUlE4nHeczdgkWNJjFke7sRTnfe8yoFXeeBVvo7Im02f8x6J45-t90Z25sOqXOZpLBXGABkTkVcbMqwnvCQBprQrbAMWLIKWqYg87rm_eR1MSJoCNSJ6Sy42DRCre5vS1GcBsxsRUXlmYNC3owj9_K6__8bT_2v-ktycHh8e5Acfjz4_I7cSrFUc3EV7ZLdbrPxzUKA6-yKsmB9Adxei
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkRAcKt6kFDASNzB1Eju2j2hhVV6FA5V6ixI_1Ei7yWqTRdsbR-78Q34JHidZWApIKMexncQztmfGM98g9CRhRpbUapLpwhGmNSWKUUa484-B5EcB-c7vj7OjE_bmlJ_uoGzMhQlB-wHSMmzTY3TYYQuGBuQSQ8yEpIKsny-Mu4Que32bgtE1ySbjDswT1RezFUwSb4KJIVmGpvIP42wfSBe0zIvBkr_dmIaDaHod7Q0aJH7Rf_MNtGPrm-jaL7iCt9DXD6uONI4sIJIV68YbmFXv9cONw9WyMtVqjsFLMLPYW93zFoM_FvclnjSe9zVzbYuL2vj-ZTHrvn_5Bhlx-OzcLJt1ZTyxa7DX0dsON-tzL4fYfh7kGHtNNORL3EYn01efJkdkKLlANBO8I5pSw1VhS5FZLbmCvFlhskLEOlVlab3xY7mztGClpk5TU6ZJbIVUheJWKpfeQbt1U9t7CHszF8DruUszyaQCrjMdxy4pS5W4IolQPM57rgc8ciiLMcvDvXgq855XuedVHniVryP0dNNn0aNx_LP1wcjOfFiZbZ7GXEAckFIRerwh-zUFFyWeKc0K2ngrFoDLRITu9tzfvM5PSJp6aoTkllxsGgBe9zalrs4CbjegotJM-UGfjSL087v-_hv7_9f8Ebry8eU0f_f6-O19dDWBcsXBY3SAdrvlyj7wOlRXPgwL5gcinBir
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Out-of-plane+coordination+of+iridium+single+atoms+with+organic+molecules+and+cobalt%E2%80%93iron+hydroxides+to+boost+oxygen+evolution+reaction&rft.jtitle=Nature+nanotechnology&rft.au=Zhao%2C+Jie&rft.au=Guo%2C+Yue&rft.au=Zhang%2C+Zhiqi&rft.au=Zhang%2C+Xilin&rft.date=2025-01-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=20&rft.issue=1&rft.spage=57&rft.epage=66&rft_id=info:doi/10.1038%2Fs41565-024-01807-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_024_01807_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon