Nanobiotechnology approaches for engineering smart plant sensors
Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environme...
Saved in:
Published in | Nature nanotechnology Vol. 14; no. 6; pp. 541 - 553 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.
Nanotechnology can be used to create smart plant sensors that could eventually improve agricultural productivity. |
---|---|
AbstractList | Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use. Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use. Nanotechnology can be used to create smart plant sensors that could eventually improve agricultural productivity. Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use. Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.Nanotechnology can be used to create smart plant sensors that could eventually improve agricultural productivity. |
Author | Newkirk, Gregory Michael Kruss, Sebastian Giraldo, Juan Pablo Wu, Honghong |
Author_xml | – sequence: 1 givenname: Juan Pablo orcidid: 0000-0002-8400-8944 surname: Giraldo fullname: Giraldo, Juan Pablo email: juanpablo.giraldo@ucr.edu organization: Department of Botany and Plant Sciences, University of California, Center for Plant Cell Biology, University of California, Institute of Integrative Genome Biology, University of California – sequence: 2 givenname: Honghong orcidid: 0000-0001-6629-0280 surname: Wu fullname: Wu, Honghong organization: Department of Botany and Plant Sciences, University of California – sequence: 3 givenname: Gregory Michael orcidid: 0000-0002-1154-7787 surname: Newkirk fullname: Newkirk, Gregory Michael organization: Department of Botany and Plant Sciences, University of California – sequence: 4 givenname: Sebastian surname: Kruss fullname: Kruss, Sebastian organization: Institute of Physical Chemistry, Georg August University Göttingen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31168083$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQhi1UBOXjB7CgSCwsgTs7jpMNhPiSECwwW45rt0GpHex06L_HVUuRKsF0Hp7X995zREbOO0PIGcIVAquuY4G85DlgnUMhIC_3yBhFUeWM1Xy0fVfikBzF-AnAaU2LA3LIEMsKKjYmN6_K-ab1g9Ez5zs_XWaq74NXemZiZn3IjJu2zpjQumkW5yoMWd8pN2TRuOhDPCH7VnXRnG7mMfl4uH-_e8pf3h6f725fcl0IPuRNg6rgWlijhLK6mFCtEKy1pq4mlQJbl1aXyCuKlnOBVDdogQtWThA0FOyYXK7_TeW-FiYOct5GbbrUxfhFlJRyKBmFukzoxQ766RfBpXaJYskYMg6JOt9Qi2ZuJrIPbbpuKX_cJADXgA4-xmDsFkGQK_9y7V8m_3LlX65Wi52Mbgc1tN4NQbXdv0m6TsZ-pdqE39J_h74B76yY4A |
CitedBy_id | crossref_primary_10_1002_advs_202103414 crossref_primary_10_1149_1945_7111_ac0306 crossref_primary_10_3389_fmolb_2022_890654 crossref_primary_10_1039_D4FO02119C crossref_primary_10_1111_tpj_15553 crossref_primary_10_3390_magnetochemistry5040064 crossref_primary_10_1038_s41570_022_00443_0 crossref_primary_10_2478_prolas_2022_0031 crossref_primary_10_11648_j_nano_20251301_12 crossref_primary_10_1039_D3EN00014A crossref_primary_10_1039_D3EN00268C crossref_primary_10_1002_smll_202003833 crossref_primary_10_1021_acsnano_2c04073 crossref_primary_10_1016_j_bios_2024_116131 crossref_primary_10_1002_adma_201904957 crossref_primary_10_1039_D0NR00864H crossref_primary_10_3389_fchem_2022_848320 crossref_primary_10_1111_jipb_13652 crossref_primary_10_1016_j_ecoenv_2022_114295 crossref_primary_10_1016_j_aac_2024_03_001 crossref_primary_10_1080_87559129_2021_2013872 crossref_primary_10_1016_j_bios_2024_116114 crossref_primary_10_3390_agronomy13082112 crossref_primary_10_1007_s40820_022_00895_5 crossref_primary_10_3390_s19224865 crossref_primary_10_1016_j_colsurfb_2021_111990 crossref_primary_10_1039_D2EE00405D crossref_primary_10_1002_adbi_202000778 crossref_primary_10_1002_advs_202400207 crossref_primary_10_1038_s41467_020_15731_w crossref_primary_10_3390_agronomy13041126 crossref_primary_10_3390_chemosensors8020026 crossref_primary_10_1093_pcp_pcac067 crossref_primary_10_1016_j_eng_2023_11_021 crossref_primary_10_1038_s41565_021_00924_1 crossref_primary_10_1021_acs_langmuir_0c01130 crossref_primary_10_1021_acs_jafc_0c04881 crossref_primary_10_1002_advs_202414748 crossref_primary_10_1007_s42976_022_00340_8 crossref_primary_10_1063_5_0226375 crossref_primary_10_1021_acsanm_3c04167 crossref_primary_10_1002_smll_202406222 crossref_primary_10_1038_s41928_024_01174_4 crossref_primary_10_1016_j_cej_2022_134793 crossref_primary_10_1088_1748_3190_ad5ba1 crossref_primary_10_1557_s43579_020_00003_x crossref_primary_10_3389_fpls_2021_663849 crossref_primary_10_1016_j_nanoen_2023_108850 crossref_primary_10_1016_j_bios_2023_115300 crossref_primary_10_1088_1748_3190_aca198 crossref_primary_10_3390_agronomy12061342 crossref_primary_10_1002_anie_202112372 crossref_primary_10_1016_j_aoas_2020_08_001 crossref_primary_10_1016_j_bios_2022_115005 crossref_primary_10_1016_j_bios_2024_116379 crossref_primary_10_1021_acsnano_4c13076 crossref_primary_10_1080_07388551_2022_2090315 crossref_primary_10_1021_acs_est_0c04688 crossref_primary_10_1038_s41467_024_50968_9 crossref_primary_10_1109_ACCESS_2023_3250466 crossref_primary_10_3389_fchem_2020_00434 crossref_primary_10_1021_acsomega_2c00017 crossref_primary_10_1039_D1EN00870F crossref_primary_10_1007_s12668_024_01318_y crossref_primary_10_1016_j_stress_2022_100107 crossref_primary_10_12720_jcm_16_1_8_19 crossref_primary_10_1038_s43246_021_00208_0 crossref_primary_10_1016_j_jhazmat_2021_127374 crossref_primary_10_1021_acs_chemrev_3c00581 crossref_primary_10_1002_adma_202406349 crossref_primary_10_1002_adma_202210016 crossref_primary_10_1016_j_xplc_2022_100346 crossref_primary_10_1016_j_impact_2021_100361 crossref_primary_10_1021_acsnano_4c09062 crossref_primary_10_1021_acs_nanolett_9b05159 crossref_primary_10_1021_acsnano_1c08417 crossref_primary_10_1093_pcp_pcaa064 crossref_primary_10_1016_j_bcab_2024_103110 crossref_primary_10_3390_s22062227 crossref_primary_10_1093_jxb_eraa470 crossref_primary_10_1016_j_bios_2020_112636 crossref_primary_10_1016_j_crbiot_2024_100219 crossref_primary_10_1021_acs_est_1c00803 crossref_primary_10_1094_PHYTO_03_24_0079_FI crossref_primary_10_1002_adfm_202010532 crossref_primary_10_1111_pbi_14283 crossref_primary_10_1002_adfm_202412869 crossref_primary_10_1002_anbr_202000028 crossref_primary_10_1007_s00216_020_02726_1 crossref_primary_10_3390_plants14050716 crossref_primary_10_3390_s19235069 crossref_primary_10_1016_j_mtbio_2023_100759 crossref_primary_10_1039_D2EN00574C crossref_primary_10_1080_10643389_2020_1785264 crossref_primary_10_1016_j_foohum_2024_100409 crossref_primary_10_3390_plants11040511 crossref_primary_10_3390_ijms222313043 crossref_primary_10_46876_ja_822503 crossref_primary_10_1016_j_bios_2021_113953 crossref_primary_10_1016_j_nantod_2021_101078 crossref_primary_10_1111_pce_15299 crossref_primary_10_1021_acssensors_2c00442 crossref_primary_10_1016_j_jclepro_2024_141607 crossref_primary_10_1021_acs_jafc_2c02170 crossref_primary_10_1016_j_impact_2021_100363 crossref_primary_10_1016_j_compag_2024_109449 crossref_primary_10_1111_jac_12732 crossref_primary_10_1016_j_chemosphere_2024_142178 crossref_primary_10_1016_j_plaphy_2024_108694 crossref_primary_10_3390_genes13101886 crossref_primary_10_1126_sciadv_adk7488 crossref_primary_10_2139_ssrn_4071644 crossref_primary_10_1038_s41565_019_0461_7 crossref_primary_10_1021_acs_jpcc_1c05432 crossref_primary_10_1088_1361_6528_ad22a7 crossref_primary_10_1039_D0EN00729C crossref_primary_10_1021_acs_est_2c01926 crossref_primary_10_1016_j_jclepro_2022_133729 crossref_primary_10_1038_s41477_020_0632_4 crossref_primary_10_1007_s12010_024_05039_6 crossref_primary_10_1038_s41378_023_00598_w crossref_primary_10_1149_1945_7111_ad1306 crossref_primary_10_1088_1748_3190_ac1711 crossref_primary_10_1186_s12951_022_01483_w crossref_primary_10_1016_j_heliyon_2024_e31635 crossref_primary_10_1016_j_plana_2024_100079 crossref_primary_10_1021_acssusresmgt_4c00075 crossref_primary_10_1016_j_nanoen_2022_107323 crossref_primary_10_1039_D0EN00271B crossref_primary_10_1109_JSEN_2024_3390681 crossref_primary_10_1007_s11103_020_01082_z crossref_primary_10_1021_acs_jafc_2c08065 crossref_primary_10_1021_acsnano_1c01256 crossref_primary_10_1021_acsanm_4c04463 crossref_primary_10_1021_acs_nanolett_3c05082 crossref_primary_10_1002_smsc_202200042 crossref_primary_10_1016_j_indcrop_2025_120713 crossref_primary_10_3389_fpls_2022_994429 crossref_primary_10_1002_adfm_202106475 crossref_primary_10_1021_acs_jafc_9b06615 crossref_primary_10_1063_1_5120178 crossref_primary_10_1038_s41929_022_00823_1 crossref_primary_10_3390_nano11082068 crossref_primary_10_1002_smll_202104482 crossref_primary_10_1111_tpj_15619 crossref_primary_10_1007_s11101_020_09738_w crossref_primary_10_1021_acsnano_2c06481 crossref_primary_10_1038_s41578_024_00742_6 crossref_primary_10_1016_j_jallcom_2023_173075 crossref_primary_10_1016_j_tplants_2024_06_010 crossref_primary_10_1016_j_nanoen_2021_106042 crossref_primary_10_3389_fagro_2022_825087 crossref_primary_10_1021_acsnano_2c02201 crossref_primary_10_1016_j_matdes_2023_111683 crossref_primary_10_1089_ind_2020_29222_lpw crossref_primary_10_1016_j_tibtech_2022_09_013 crossref_primary_10_1002_adsu_202200333 crossref_primary_10_1039_D2NR02967G crossref_primary_10_1021_acsnano_0c03757 crossref_primary_10_1016_j_eehl_2023_07_005 crossref_primary_10_1021_acs_jafc_4c05288 crossref_primary_10_1016_j_cej_2024_157254 crossref_primary_10_1002_adma_202311144 crossref_primary_10_3390_molecules27185758 crossref_primary_10_1002_jbio_201960080 crossref_primary_10_34133_plantphenomics_0051 crossref_primary_10_1016_j_snr_2021_100068 crossref_primary_10_1016_j_nantod_2021_101143 crossref_primary_10_1039_D1TA02206G crossref_primary_10_1007_s40843_020_1601_9 crossref_primary_10_1038_s41565_020_0706_5 crossref_primary_10_1109_LRA_2023_3250006 crossref_primary_10_1039_D1EN00845E crossref_primary_10_3389_fnano_2024_1310165 crossref_primary_10_1002_adma_202105009 crossref_primary_10_1371_journal_pone_0264967 crossref_primary_10_1002_adma_202409356 crossref_primary_10_3389_fnano_2020_579954 crossref_primary_10_1016_j_jhazmat_2024_134130 crossref_primary_10_1186_s40538_024_00592_y crossref_primary_10_4236_jacen_2022_111004 crossref_primary_10_1016_j_aca_2024_342450 crossref_primary_10_1002_adsr_202200099 crossref_primary_10_1002_adma_202305828 crossref_primary_10_1038_s41565_021_00867_7 crossref_primary_10_1021_acsagscitech_1c00177 crossref_primary_10_1007_s40820_024_01543_w crossref_primary_10_1021_acsnano_3c04314 crossref_primary_10_3390_molecules26237070 crossref_primary_10_1039_D0NR06832B crossref_primary_10_1002_cplu_202000248 crossref_primary_10_1002_ijch_202000060 crossref_primary_10_1016_j_envres_2023_115934 crossref_primary_10_1021_acsnano_3c06172 crossref_primary_10_1016_j_tplants_2023_11_013 crossref_primary_10_1038_s41467_024_51741_8 crossref_primary_10_1002_ange_202112372 crossref_primary_10_1016_j_coche_2021_100706 crossref_primary_10_2174_0115734137275111231206072049 crossref_primary_10_1016_j_cropd_2022_100006 crossref_primary_10_4236_ojapps_2020_106027 crossref_primary_10_1016_j_scitotenv_2024_172473 crossref_primary_10_1186_s12951_021_01178_8 crossref_primary_10_1002_adfm_201909062 crossref_primary_10_1016_j_scitotenv_2024_172476 crossref_primary_10_1038_s41467_020_15299_5 crossref_primary_10_3390_membranes12040358 crossref_primary_10_1038_s41477_020_00808_7 crossref_primary_10_1016_j_stress_2024_100498 crossref_primary_10_1039_D1EN00257K crossref_primary_10_1002_adfm_202106787 crossref_primary_10_1002_admt_202001182 crossref_primary_10_3390_nano11040839 crossref_primary_10_1016_j_cj_2021_06_002 crossref_primary_10_3389_fpls_2021_691295 crossref_primary_10_1007_s11240_024_02944_w crossref_primary_10_1002_adsu_202300511 crossref_primary_10_1021_acsami_3c10511 crossref_primary_10_1088_2631_6331_acc0cf crossref_primary_10_1021_acs_nanolett_9b02865 crossref_primary_10_1021_acssensors_1c01159 crossref_primary_10_1039_C9QM00614A crossref_primary_10_1021_acsnano_1c10828 crossref_primary_10_1021_acsami_4c23005 crossref_primary_10_1016_j_tibtech_2022_09_007 crossref_primary_10_1002_admt_201900657 crossref_primary_10_1126_sciadv_abe9733 crossref_primary_10_1002_smll_202000705 crossref_primary_10_1002_smll_202309481 crossref_primary_10_1021_acs_est_3c01269 crossref_primary_10_1021_acsomega_0c05850 crossref_primary_10_1155_2022_8953914 crossref_primary_10_1002_advs_202003642 crossref_primary_10_1021_acsabm_2c00872 crossref_primary_10_1016_j_jafr_2021_100246 crossref_primary_10_3389_fpls_2020_610307 crossref_primary_10_3390_agriculture13030668 crossref_primary_10_1016_j_trac_2023_117186 crossref_primary_10_1021_acsanm_1c03482 crossref_primary_10_1016_j_trechm_2023_07_004 crossref_primary_10_1002_smll_202304237 crossref_primary_10_1021_acsanm_0c00943 crossref_primary_10_3390_bios12080647 crossref_primary_10_1038_s41565_022_01307_w crossref_primary_10_3389_fpls_2024_1490801 crossref_primary_10_1007_s11816_020_00636_3 crossref_primary_10_1002_adma_202411067 crossref_primary_10_3390_agronomy13071709 crossref_primary_10_1016_j_nantod_2024_102326 crossref_primary_10_1109_ACCESS_2025_3539121 crossref_primary_10_1016_j_atech_2024_100416 crossref_primary_10_1002_ange_202108373 crossref_primary_10_1021_acsagscitech_1c00273 crossref_primary_10_3390_nano12162731 crossref_primary_10_1007_s12274_022_4922_1 crossref_primary_10_1021_acs_est_1c00767 crossref_primary_10_1557_s43577_023_00505_8 crossref_primary_10_1038_s41477_021_00946_6 crossref_primary_10_1007_s00344_022_10857_1 crossref_primary_10_1016_j_jece_2024_113693 crossref_primary_10_1080_00103624_2024_2358854 crossref_primary_10_1016_j_scitotenv_2021_146578 crossref_primary_10_1021_acsami_0c11539 crossref_primary_10_1021_acsomega_9b03125 crossref_primary_10_3390_ijms23084402 crossref_primary_10_1021_acsnano_0c10817 crossref_primary_10_1002_chem_202300940 crossref_primary_10_1002_smll_202408943 crossref_primary_10_1007_s40820_024_01587_y crossref_primary_10_1021_acs_est_3c05686 crossref_primary_10_1039_D4TA02345E crossref_primary_10_1111_gtc_13075 crossref_primary_10_1016_j_indcrop_2024_120108 crossref_primary_10_3390_horticulturae9090967 crossref_primary_10_1021_acs_nanolett_1c03416 crossref_primary_10_1039_D3RA04083F crossref_primary_10_1016_j_cogsc_2021_100488 crossref_primary_10_1042_ETLS20230070 crossref_primary_10_1021_acssensors_4c02558 crossref_primary_10_1155_2022_3683723 crossref_primary_10_1016_j_enconman_2022_116098 crossref_primary_10_1039_D4AY01346H crossref_primary_10_1049_mna2_12117 crossref_primary_10_1016_j_scitotenv_2024_173360 crossref_primary_10_1039_D3NA00178D crossref_primary_10_1002_chem_202302215 crossref_primary_10_1002_ente_202000236 crossref_primary_10_1007_s11157_023_09667_y crossref_primary_10_1039_D1EN00390A crossref_primary_10_1016_j_plana_2024_100121 crossref_primary_10_3390_jof6040222 crossref_primary_10_1007_s11051_020_04866_y crossref_primary_10_1088_1674_4926_44_2_023104 crossref_primary_10_1021_acssensors_2c00834 crossref_primary_10_1007_s40820_024_01597_w crossref_primary_10_1021_acs_est_1c01876 crossref_primary_10_1038_s43016_020_0110_1 crossref_primary_10_1016_j_indcrop_2023_116266 crossref_primary_10_1016_j_snb_2024_135702 crossref_primary_10_3390_bios11040107 crossref_primary_10_1002_adom_202201769 crossref_primary_10_1016_j_impact_2021_100297 crossref_primary_10_1016_j_device_2024_100401 crossref_primary_10_1021_acsmaterialslett_0c00062 crossref_primary_10_1021_acsnano_2c02714 crossref_primary_10_1002_adma_201905654 crossref_primary_10_3389_fphy_2020_616040 crossref_primary_10_1002_adma_201907156 crossref_primary_10_1016_j_sajb_2024_02_035 crossref_primary_10_1016_j_talanta_2024_126876 crossref_primary_10_1002_anie_202108373 crossref_primary_10_1021_acsnano_4c00512 crossref_primary_10_1016_j_scienta_2022_111143 crossref_primary_10_1002_advs_202415238 crossref_primary_10_1016_j_heliyon_2022_e11855 crossref_primary_10_1111_ppl_13665 crossref_primary_10_1016_j_plana_2023_100046 crossref_primary_10_1039_D0EN00387E crossref_primary_10_1016_j_indcrop_2022_115427 crossref_primary_10_1021_acsnano_2c02162 crossref_primary_10_1016_j_matchemphys_2020_123057 crossref_primary_10_15507_2658_4123_033_202301_128_139 crossref_primary_10_1038_s44287_024_00131_9 crossref_primary_10_3389_fpls_2022_843994 crossref_primary_10_1039_D0NH00594K |
Cites_doi | 10.1111/j.1365-3059.2010.02411.x 10.1111/j.1364-3703.2011.00752.x 10.1111/j.1461-0248.2011.01736.x 10.1038/s41467-017-00074-w 10.1038/s41565-019-0382-5 10.1038/ncomms13342 10.1002/etc.2174 10.1073/pnas.1610359113 10.3390/s8053557 10.1016/j.tplants.2014.06.013 10.1016/j.tplants.2016.04.005 10.1038/nnano.2016.38 10.1039/C8EN00323H 10.1038/nmat4771 10.1146/annurev.arplant.57.032905.105441 10.1002/admt.201700223 10.3389/fpls.2018.00058 10.1093/jxb/eri174 10.1038/nmat4427 10.3390/s18041050 10.1105/tpc.11.4.691 10.1021/acsami.8b07179 10.1002/smll.201403276 10.1111/nph.15550 10.1021/ja1084942 10.1016/j.fcr.2012.04.003 10.1093/jxb/erq444 10.1146/annurev-anchem-061516-045310 10.1038/nrg3901 10.1146/annurev-arplant-042817-040104 10.1039/C3CS60271K 10.1002/anie.201201042 10.1016/j.compag.2010.02.007 10.1016/j.biosystemseng.2018.06.006 10.7554/eLife.01739 10.1016/j.addr.2013.07.015 10.1093/aob/mcg164 10.1046/j.0960-7412.2002.001607.x 10.1088/0957-4484/17/16/022 10.1002/anie.200704501 10.1038/ncomms7043 10.1021/acs.nanolett.5b04549 10.1021/nn204323f 10.1111/nph.12797 10.1111/j.1365-313X.2011.04780.x 10.1021/nl500513n 10.1073/pnas.1701328114 10.1016/j.jplph.2017.05.007 10.1016/j.tplants.2006.02.005 10.1038/nnano.2010.24 10.1038/nnano.2013.222 10.1016/j.plantsci.2009.12.005 10.1016/S1360-1385(00)01781-7 10.3389/fpls.2014.00061 10.1146/annurev-arplant-042809-112226 10.1094/PDIS-03-15-0340-FE 10.1021/nn200262u 10.1038/nnano.2007.108 10.1186/s13007-017-0248-5 10.1105/tpc.113.114595 10.1046/j.1365-313x.2000.00786.x 10.4161/psb.23316 10.1073/pnas.1319955111 10.1007/s13593-014-0246-1 10.1038/s41565-019-0375-4 10.1094/MPMI.1999.12.8.720 10.1093/jxb/erq199 10.1039/b915139g 10.1094/PDIS-05-16-0598-RE 10.1016/j.pbi.2014.07.009 10.1016/j.agsy.2017.01.023 10.1021/acsnano.7b05723 10.1038/nnano.2015.338 10.1038/nnano.2009.326 10.1117/1.JBO.20.3.030901 10.3390/agronomy8040057 10.3390/s140304014 10.1126/science.287.5453.622 10.3390/s18072083 10.3390/s16050644 10.1038/s41477-017-0063-z 10.1042/BJ20140931 10.1021/acs.chemrev.5b00008 10.1073/pnas.95.4.1933 10.1105/tpc.106.044073 10.1007/s11104-018-3708-4 10.2134/agronj2006.0370c 10.1016/j.molp.2015.05.006 10.3389/fpls.2017.01147 10.1093/mp/sst079 10.1038/s41477-018-0189-7 10.1897/08-002.1 10.1046/j.1365-3040.1998.00380.x 10.1111/j.1365-313X.2008.03652.x 10.1073/pnas.1116437108 10.1016/j.tplants.2016.08.002 10.1073/pnas.0708586104 10.1002/smll.201702958 10.1146/annurev.pp.46.060195.000523 10.1021/acsnano.7b00569 10.1021/acssuschemeng.8b03379 10.1111/j.1399-3054.1986.tb03367.x 10.1093/jxb/ery251 10.1016/j.carbon.2015.12.027 10.1038/nnano.2015.115 10.1104/pp.16.00652 10.1093/jxb/erl004 10.1039/C7LC00930E 10.1016/j.compag.2016.08.021 10.1111/j.1365-3040.2006.01528.x 10.1016/j.saa.2018.01.073 10.1105/tpc.005579 10.7150/thno.3463 10.1074/jbc.TM117.000232 10.1038/29087 10.7554/eLife.01741 10.1016/j.tplants.2011.03.007 10.1016/j.rse.2011.10.007 10.3390/jimaging2040034 10.1021/acschembio.6b00883 10.1021/ja01072a002 10.1126/science.aat7744 10.1039/C7LC00914C 10.1111/pce.12935 10.1038/nature10947 10.1093/jxb/ers143 10.1021/ja410433b 10.1093/jxb/erl231 10.1105/tpc.13.4.907 10.1073/pnas.97.16.8849 10.1063/1.1626265 10.1093/jxb/erj026 10.1104/pp.17.00857 10.1146/annurev-arplant-042817-040047 10.1016/j.future.2013.01.010 10.1038/nnano.2013.236 10.1016/j.cell.2016.08.029 10.1038/nmat3890 10.1007/s12274-009-9009-8 10.1146/annurev-arplant-042110-103745 10.1021/acs.nanolett.5b04467 10.3389/fpls.2012.00292 10.1073/pnas.1613541114 10.1073/pnas.98.1.355 10.3390/s18010021 10.1038/lsa.2015.40 10.3390/s141120078 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2019 Springer Nature Limited 2019. |
Copyright_xml | – notice: Springer Nature Limited 2019 – notice: Springer Nature Limited 2019. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-019-0470-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 553 |
ExternalDocumentID | 31168083 10_1038_s41565_019_0470_6 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c475t-bb1a45c7fea7afc4d2ca10fffe98d8a0f96fc615821f55712cb1f05736d10c043 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 11:51:27 EDT 2025 Fri Jul 25 08:55:19 EDT 2025 Thu Apr 03 07:02:02 EDT 2025 Tue Jul 01 01:56:29 EDT 2025 Thu Apr 24 22:50:29 EDT 2025 Fri Feb 21 02:41:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-bb1a45c7fea7afc4d2ca10fffe98d8a0f96fc615821f55712cb1f05736d10c043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1154-7787 0000-0001-6629-0280 0000-0002-8400-8944 |
PMID | 31168083 |
PQID | 2235651350 |
PQPubID | 546299 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2250632096 proquest_journals_2235651350 pubmed_primary_31168083 crossref_primary_10_1038_s41565_019_0470_6 crossref_citationtrail_10_1038_s41565_019_0470_6 springer_journals_10_1038_s41565_019_0470_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Bush (CR134) 1995; 46 Tilman, Balzer, Hill, Befort (CR2) 2011; 108 Humplík, Lazár, Husičková, Spíchal (CR41) 2015; 11 Al-Tamimi (CR46) 2016; 7 Tripodi, Massa, Venezia, Cardi (CR108) 2018; 8 Zarco-Tejada (CR54) 2018; 4 Zhu (CR133) 2018; 9 van Loon, Geraats, Linthorst (CR68) 2006; 11 Kim, Böhmer, Hu, Nishimura, Schroeder (CR64) 2010; 61 Hong, Lee, Jackson, Lee (CR93) 2015; 4 Waadt (CR152) 2014; 3 Zhao (CR126) 2017; 3 Esser, Schnorr, Swager (CR99) 2012; 51 Liu (CR106) 2015; 10 Li (CR149) 2018; 195 Martinelli (CR50) 2015; 35 Gilroy (CR55) 2014; 19 Bour (CR35) 2016; 10 Baret, Houlès, Guérif (CR114) 2007; 58 Guillaume, Isabelle, Marc, Thierry (CR8) 2018; 41 Heikenfeld (CR26) 2018; 18 Xie (CR107) 2015; 14 Li, Zhang, Huang (CR16) 2014; 14 Zhao, Li, Yu, Cheng, He (CR42) 2016; 6 Kong (CR102) 2000; 287 Singsaas, Sharkey (CR71) 1998; 21 Nietzel (CR81) 2019; 221 Verslues, Bray (CR150) 2006; 57 Wu (CR141) 2014; 464 Shen (CR154) 2013; 6 Okumoto, Jones, Frommer (CR25) 2012; 63 Zhu (CR63) 2017; 215 Shapiguzov, Vainonen, Wrzaczek, Kangasjärvi (CR85) 2012; 3 Kruss (CR90) 2014; 136 Rolland, Baena-Gonzalez, Sheen (CR61) 2006; 57 Wu, Tito, Giraldo (CR119) 2017; 11 Chaerle, Van Der Straeten (CR40) 2000; 5 Zarco-Tejada, González-Dugo, Berni (CR44) 2012; 117 Liu, Tabakman, Welsher, Dai (CR96) 2009; 2 Jin (CR130) 2010; 5 Toyota (CR72) 2018; 361 Bellard, Bertelsmeier, Leadley, Thuiller, Courchamp (CR13) 2012; 15 Hong, Diao, Antaris, Dai (CR36) 2015; 115 Gubbi, Buyya, Marusic, Palaniswami (CR112) 2013; 29 Suzuki, Rivero, Shulaev, Blumwald, Mittler (CR4) 2014; 203 Scholthof (CR11) 2011; 12 Sankaran, Mishra, Ehsani, Davis (CR49) 2010; 72 Cattanach, Kulkarni, Kozlov, Manohar (CR103) 2006; 17 Mickelbart, Hasegawa, Bailey-Serres (CR6) 2015; 16 Delledonne, Xia, Dixon, Lamb (CR66) 1998; 394 Kwak (CR21) 2017; 10 Hatfield, Gitelson, Schepers, Walthall (CR14) 2008; 100 Loro (CR78) 2016; 171 Altangerel (CR53) 2017; 114 García-Tejero, Ortega-Arévalo, Iglesias-Contreras, Moreno, Souza, Tavira, Durán-Zuazo (CR113) 2018; 18 Li, Wu, Santana, Fahlgren, Giraldo (CR29) 2018; 10 McMillan, Calvert, Pitts (CR146) 1964; 86 Cohen, Alchanatis, Meron, Saranga, Tsipris (CR47) 2005; 56 Pajares (CR123) 2016; 2 Klessig (CR70) 2000; 97 Knoester, Pieterse, Bol, Van Loon (CR145) 1999; 12 Oren, Ceylan, Schnable, Dong (CR98) 2017; 2 Cheeseman (CR127) 2006; 57 Sanders, Brownlee, Harper (CR135) 1999; 11 Kruss (CR91) 2017; 114 White, Broadley (CR137) 2003; 92 Bandodkar, Jeerapan, You, Nuñez-Flores, Wang (CR101) 2016; 16 Deuschle (CR74) 2006; 18 Lee (CR100) 2016; 11 Thomas, Liu, Kantrow, Lancaster (CR142) 2001; 98 Giraldo (CR19) 2014; 13 Demirer, Zhang, Matos, Goh, Cunningham, Sung, Chang, Aditham, Chio, Cho, Staskawicz, Landry (CR23) 2019; 14 de San Celedonio, Abeledo, Miralles (CR7) 2018; 429 Koman (CR28) 2017; 17 Padilla, Gallardo, Peña-Fleitas, de Souza, Thompson (CR15) 2018; 18 Iverson (CR116) 2013; 8 Mittler (CR58) 2017; 22 Yagi, Shiina (CR83) 2014; 5 Cho (CR140) 2017; 12 Zhu (CR56) 2016; 167 Niu (CR151) 2018; 69 Kwak, Lew, Sweeney, Koman, Wong, Bohmert-Tatarev, Snell, Seo, Chua, Strano (CR22) 2019; 14 Kruss (CR87) 2013; 65 Matsuda, Horikawa, Saito, Nagai (CR139) 2013; 3 Smith, Mancini, Nie (CR17) 2009; 4 Yoshida, Mogami, Yamaguchi-Shinozaki (CR65) 2014; 21 Du, Liu, Xiong (CR147) 2013; 4 Havrdova (CR38) 2016; 99 Miller (CR129) 2009; 2 Smyth, Repetto, Seidel (CR132) 1986; 68 Wilson, Nadeau, Jaworski, Tromberg, Durkin (CR18) 2015; 20 Borgatta (CR118) 2018; 6 Torney, Trewyn, Lin, Wang (CR125) 2007; 2 Lin (CR67) 2017; 7 Valle (CR43) 2017; 13 Li, Wang, Weber, Gerhards (CR73) 2017; 18 Joshi, Singla-Pareek, Pareek (CR3) 2018; 293 Lelong (CR110) 2008; 8 Grimmer, John Foulkes, Paveley (CR52) 2012; 63 Knoester (CR144) 1998; 95 Lee (CR30) 2014; 14 Krebs (CR77) 2012; 69 White (CR109) 2012; 133 Howe, Major, Koo (CR69) 2018; 69 Guo, Park, Yoon, Shin (CR86) 2014; 43 Lee, Sharma, Radadia, Masel, Strano (CR105) 2008; 47 Wong (CR27) 2017; 16 Munns, James, Sirault, Furbank, Jones (CR48) 2010; 61 Chaudhuri, Hörmann, Frommer (CR76) 2011; 62 Chaudhuri (CR75) 2008; 56 Keinath (CR80) 2015; 8 Monshausen, Bibikova, Messerli, Shi, Gilroy (CR155) 2007; 104 Davison (CR32) 2010; 178 Bai, Ge, Hussain, Baenziger, Graef (CR111) 2016; 128 Fasano (CR156) 2001; 13 Walia, Waadt, Jones (CR24) 2018; 69 Son (CR88) 2011; 5 Parks (CR34) 2013; 32 Zrazhevskiy, Sena, Gao (CR92) 2010; 39 Graham (CR117) 2016; 100 Giraldo (CR20) 2015; 11 Yum (CR131) 2012; 6 Conner, Glare, Nap (CR31) 2003; 33 Larrieu (CR148) 2015; 6 Leinonen, Grant, Tagliavia, Chaves, Jones (CR45) 2006; 29 Zhang (CR89) 2013; 8 Wolfert, Ge, Verdouw, Bogaardt (CR115) 2017; 153 Zhang (CR143) 2011; 133 Jones (CR153) 2014; 3 Emmi, Gonzalez-de-Soto, Pajares, Gonzalez-de-Santos (CR122) 2014; 14 Oh (CR37) 2016; 11 Choi, Toyota, Kim, Hilleary, Gilroy (CR138) 2014; 111 CR12 CR94 Wong (CR82) 2016; 16 Kiegle, Moore, Haseloff, Tester, Knight (CR59) 2000; 23 Exposito-Rodriguez, Laissue, Yvon-Durocher, Smirnoff, Mullineaux (CR79) 2017; 8 Mahlein (CR51) 2016; 100 Tognetti, Pontis, Martínez-Noël (CR62) 2013; 8 Alhamid (CR121) 2018; 172 AbdElgawad (CR128) 2016; 7 Yu, Park, Jon (CR95) 2012; 2 Fahad (CR5) 2017; 8 Novak (CR104) 2003; 83 Meyer, Hagemann, Kruss (CR97) 2017; 11 Ibayashi (CR124) 2016; 16 van Ittersum (CR1) 2016; 113 Suzuki (CR57) 2013; 25 Lecourieux, Mazars, Pauly, Ranjeva, Pugin (CR136) 2002; 14 Chakraborty, Newton (CR9) 2011; 60 Mittler (CR60) 2011; 16 Wu, Shabala, Shabala, Giraldo (CR120) 2018; 5 Wang, Lombi, Zhao, Kopittke (CR39) 2016; 21 Griffitt, Luo, Gao, Bonzongo, Barber (CR33) 2008; 27 Fisher (CR10) 2012; 484 Yu, Lutz, Maliga (CR84) 2017; 175 JM Fasano (470_CR156) 2001; 13 M Havrdova (470_CR38) 2016; 99 L Chaerle (470_CR40) 2000; 5 P Wang (470_CR39) 2016; 21 Y Cohen (470_CR47) 2005; 56 S Kruss (470_CR87) 2013; 65 D Sanders (470_CR135) 1999; 11 A Walia (470_CR24) 2018; 69 T Matsuda (470_CR139) 2013; 3 M Knoester (470_CR144) 1998; 95 K Cattanach (470_CR103) 2006; 17 Q Zhu (470_CR63) 2017; 215 B Esser (470_CR99) 2012; 51 M Niu (470_CR151) 2018; 69 JP Giraldo (470_CR19) 2014; 13 G Hong (470_CR36) 2015; 115 JO Alhamid (470_CR121) 2018; 172 T Nietzel (470_CR81) 2019; 221 B Valle (470_CR43) 2017; 13 B Chaudhuri (470_CR76) 2011; 62 F Baret (470_CR114) 2007; 58 J Borgatta (470_CR118) 2018; 6 A-K Mahlein (470_CR51) 2016; 100 J-K Zhu (470_CR56) 2016; 167 NM Iverson (470_CR116) 2013; 8 MK Yu (470_CR95) 2012; 2 CY Lee (470_CR105) 2008; 47 S Okumoto (470_CR25) 2012; 63 K Deuschle (470_CR74) 2006; 18 Y Li (470_CR149) 2018; 195 Iván García-Tejero (470_CR113) 2018; 18 PJ White (470_CR137) 2003; 92 J Wu (470_CR141) 2014; 464 AN Parks (470_CR34) 2013; 32 Y Yagi (470_CR83) 2014; 5 JL Hatfield (470_CR14) 2008; 100 DA Smyth (470_CR132) 1986; 68 B Chaudhuri (470_CR75) 2008; 56 J Gubbi (470_CR112) 2013; 29 S Kruss (470_CR90) 2014; 136 S Chakraborty (470_CR9) 2011; 60 J Shen (470_CR154) 2013; 6 K Yum (470_CR131) 2012; 6 RJ Griffitt (470_CR33) 2008; 27 J Davison (470_CR32) 2010; 178 P Tripodi (470_CR108) 2018; 8 J Heikenfeld (470_CR26) 2018; 18 D Son (470_CR88) 2011; 5 E Oh (470_CR37) 2016; 11 M Krebs (470_CR77) 2012; 69 H Wu (470_CR119) 2017; 11 H Lee (470_CR100) 2016; 11 D Tilman (470_CR2) 2011; 108 MK Grimmer (470_CR52) 2012; 63 JH Graham (470_CR117) 2016; 100 W-G Choi (470_CR138) 2014; 111 VB Koman (470_CR28) 2017; 17 DS Bush (470_CR134) 1995; 46 T-H Kim (470_CR64) 2010; 61 N Altangerel (470_CR53) 2017; 114 AJ Conner (470_CR31) 2003; 33 H Ibayashi (470_CR124) 2016; 16 AM Smith (470_CR17) 2009; 4 S-Y Kwak (470_CR21) 2017; 10 N Al-Tamimi (470_CR46) 2016; 7 S Kruss (470_CR91) 2017; 114 R Mittler (470_CR60) 2011; 16 RH Wilson (470_CR18) 2015; 20 M Exposito-Rodriguez (470_CR79) 2017; 8 MV Mickelbart (470_CR6) 2015; 16 L Li (470_CR16) 2014; 14 PJ Zarco-Tejada (470_CR44) 2012; 117 H AbdElgawad (470_CR128) 2016; 7 S Gilroy (470_CR55) 2014; 19 Q Yu (470_CR84) 2017; 175 DF Klessig (470_CR70) 2000; 97 AJ Bandodkar (470_CR101) 2016; 16 K Lee (470_CR30) 2014; 14 GA Howe (470_CR69) 2018; 69 JF Humplík (470_CR41) 2015; 11 H Wu (470_CR120) 2018; 5 G Pajares (470_CR123) 2016; 2 GB Monshausen (470_CR155) 2007; 104 H Jin (470_CR130) 2010; 5 GR McMillan (470_CR146) 1964; 86 M Toyota (470_CR72) 2018; 361 F Rolland (470_CR61) 2006; 57 G Bai (470_CR111) 2016; 128 C Bellard (470_CR13) 2012; 15 JP Novak (470_CR104) 2003; 83 MH Wong (470_CR82) 2016; 16 FM Padilla (470_CR15) 2018; 18 J-H Cho (470_CR140) 2017; 12 E Kiegle (470_CR59) 2000; 23 MK van Ittersum (470_CR1) 2016; 113 D Lecourieux (470_CR136) 2002; 14 JM Cheeseman (470_CR127) 2006; 57 S Hong (470_CR93) 2015; 4 JA Tognetti (470_CR62) 2013; 8 JW White (470_CR109) 2012; 133 NF Keinath (470_CR80) 2015; 8 P Zrazhevskiy (470_CR92) 2010; 39 N Suzuki (470_CR57) 2013; 25 K-BG Scholthof (470_CR11) 2011; 12 Gozde S. Demirer (470_CR23) 2019; 14 H Li (470_CR73) 2017; 18 Z Liu (470_CR96) 2009; 2 M Knoester (470_CR145) 1999; 12 D Meyer (470_CR97) 2017; 11 R Munns (470_CR48) 2010; 61 M Delledonne (470_CR66) 1998; 394 470_CR12 Y Lin (470_CR67) 2017; 7 A Bour (470_CR35) 2016; 10 R Joshi (470_CR3) 2018; 293 JP Giraldo (470_CR20) 2015; 11 J Kong (470_CR102) 2000; 287 N Suzuki (470_CR4) 2014; 203 MC Fisher (470_CR10) 2012; 484 L Emmi (470_CR122) 2014; 14 G Miller (470_CR129) 2009; 2 S Oren (470_CR98) 2017; 2 C Guillaume (470_CR8) 2018; 41 I Leinonen (470_CR45) 2006; 29 Y-R Zhao (470_CR42) 2016; 6 470_CR94 CCD Lelong (470_CR110) 2008; 8 A Larrieu (470_CR148) 2015; 6 S Sankaran (470_CR49) 2010; 72 MH Wong (470_CR27) 2017; 16 T Yoshida (470_CR65) 2014; 21 S Wolfert (470_CR115) 2017; 153 F Martinelli (470_CR50) 2015; 35 J Zhang (470_CR89) 2013; 8 S Fahad (470_CR5) 2017; 8 PE Verslues (470_CR150) 2006; 57 R Waadt (470_CR152) 2014; 3 G Loro (470_CR78) 2016; 171 PJ Zarco-Tejada (470_CR54) 2018; 4 AM Jones (470_CR153) 2014; 3 C Xie (470_CR107) 2015; 14 EL Singsaas (470_CR71) 1998; 21 A Shapiguzov (470_CR85) 2012; 3 RP de San Celedonio (470_CR7) 2018; 429 H Du (470_CR147) 2013; 4 X Zhao (470_CR126) 2017; 3 R Mittler (470_CR58) 2017; 22 F Torney (470_CR125) 2007; 2 J Zhu (470_CR133) 2018; 9 Seon-Yeong Kwak (470_CR22) 2019; 14 Z Guo (470_CR86) 2014; 43 J Liu (470_CR106) 2015; 10 LC van Loon (470_CR68) 2006; 11 J Li (470_CR29) 2018; 10 J Zhang (470_CR143) 2011; 133 DD Thomas (470_CR142) 2001; 98 |
References_xml | – volume: 114 start-page: 3393 year: 2017 end-page: 3396 ident: CR53 article-title: diagnostics of early abiotic plant stress response via Raman spectroscopy publication-title: Proc. Natl Acad. Sci. USA – volume: 8 start-page: e23316 year: 2013 ident: CR62 article-title: Sucrose signaling in plants: a world yet to be explored publication-title: Plant Signal. Behav. – volume: 32 start-page: 1270 year: 2013 end-page: 1277 ident: CR34 article-title: Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain publication-title: Environ. Toxicol. Chem. – volume: 464 start-page: 13 year: 2014 end-page: 22 ident: CR141 article-title: Red fluorescent genetically encoded Ca indicators for use in mitochondria and endoplasmic reticulum publication-title: Biochem. J. – volume: 21 start-page: 133 year: 2014 end-page: 139 ident: CR65 article-title: ABA-dependent and ABA-independent signaling in response to osmotic stress in plants publication-title: Curr. Opin. Plant Biol. – volume: 10 start-page: 629 year: 2015 end-page: 636 ident: CR106 article-title: Syringe-injectable electronics publication-title: Nat. Nanotechnol. – volume: 98 start-page: 355 year: 2001 end-page: 360 ident: CR142 article-title: The biological lifetime of nitric oxide: Implications for the perivascular dynamics of NO and O publication-title: Proc. Natl Acad. Sci. USA – volume: 4 start-page: 397 year: 2013 ident: CR147 article-title: Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice publication-title: Front. Plant Sci. – volume: 58 start-page: 869 year: 2007 end-page: 880 ident: CR114 article-title: Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management publication-title: J. Exp. Bot. – volume: 57 start-page: 675 year: 2006 end-page: 709 ident: CR61 article-title: Sugar sensing and signaling in plants: conserved and novel mechanisms publication-title: Annu. Rev. Plant Biol. – volume: 63 start-page: 4321 year: 2012 end-page: 4331 ident: CR52 article-title: Foliar pathogenesis and plant water relations: a review publication-title: J. Exp. Bot. – volume: 8 start-page: 873 year: 2013 end-page: 880 ident: CR116 article-title: biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes publication-title: Nat. Nanotechnol. – volume: 100 start-page: S117 year: 2008 end-page: S131 ident: CR14 article-title: Application of spectral remote sensing for agronomic decisions publication-title: Agron. J. – volume: 178 start-page: 94 year: 2010 end-page: 98 ident: CR32 article-title: GM plants: science, politics and EC regulations publication-title: Plant Sci. – volume: 69 start-page: 4945 year: 2018 end-page: 4960 ident: CR151 article-title: An early ABA-induced stomatal closure, Na sequestration in leaf vein and K retention in mesophyll confer salt tissue tolerance in species publication-title: J. Exp. Bot. – volume: 13 start-page: 907 year: 2001 end-page: 921 ident: CR156 article-title: Changes in root cap pH are required for the gravity response of the Arabidopsis root publication-title: Plant Cell – volume: 97 start-page: 8849 year: 2000 end-page: 8855 ident: CR70 article-title: Nitric oxide and salicylic acid signaling in plant defense publication-title: Proc. Natl Acad. Sci. USA – volume: 92 start-page: 487 year: 2003 end-page: 511 ident: CR137 article-title: Calcium in plants publication-title: Ann. Bot. – volume: 6 year: 2015 ident: CR148 article-title: A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants publication-title: Nat. Commun. – volume: 8 start-page: 1147 year: 2017 ident: CR5 article-title: Crop production under drought and heat stress: plant responses and management options publication-title: Front. Plant Sci. – volume: 13 year: 2017 ident: CR43 article-title: PYM: a new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments publication-title: Plant Methods – volume: 5 start-page: 3888 year: 2011 end-page: 3895 ident: CR88 article-title: Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions publication-title: ACS Nano – volume: 18 start-page: 1050 issue: 4 year: 2018 ident: CR113 article-title: Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone publication-title: Sensors – volume: 11 start-page: 184 year: 2006 end-page: 191 ident: CR68 article-title: Ethylene as a modulator of disease resistance in plants publication-title: Trends Plant Sci. – volume: 167 start-page: 313 year: 2016 end-page: 324 ident: CR56 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 18 start-page: 2314 year: 2006 end-page: 2325 ident: CR74 article-title: Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of RNA-silencing mutants publication-title: Plant Cell – volume: 83 start-page: 4026 year: 2003 end-page: 4028 ident: CR104 article-title: Nerve agent detection using networks of single-walled carbon nanotubes publication-title: Appl. Phys. Lett. – volume: 11 start-page: 691 year: 1999 end-page: 706 ident: CR135 article-title: Communicating with calcium publication-title: Plant Cell – volume: 175 start-page: 186 year: 2017 end-page: 193 ident: CR84 article-title: Efficient plastid transformation in rabidopsis publication-title: Plant Physiol. – volume: 171 start-page: 2317 year: 2016 end-page: 2330 ident: CR78 article-title: Chloroplast-specific Ca imaging using yellow cameleon fluorescent protein sensors reveals organelle-autonomous Ca signatures in the stroma publication-title: Plant Physiol. – volume: 43 start-page: 16 year: 2014 end-page: 29 ident: CR86 article-title: Recent progress in the development of near-infrared fluorescent probes for bioimaging applications publication-title: Chem. Soc. Rev. – volume: 35 start-page: 1 year: 2015 end-page: 25 ident: CR50 article-title: Advanced methods of plant disease detection. A review publication-title: Agron. Sustain. Dev. – volume: 221 start-page: 1649 year: 2019 end-page: 1664 ident: CR81 article-title: The fluorescent protein sensor roGFP2-Orp1 monitors H O and thiol redox integration and elucidates intracellular H O dynamics during elicitor-induced oxidative burst in Arabidopsis publication-title: New Phytol. – volume: 8 start-page: 57 year: 2018 ident: CR108 article-title: Sensing technologies for precision phenotyping in vegetable crops: current status and future challenges publication-title: Agronomy – volume: 12 start-page: 1066 year: 2017 end-page: 1074 ident: CR140 article-title: The GCaMP-R family of genetically encoded ratiometric calcium indicators publication-title: ACS Chem. Biol. – volume: 11 start-page: 11283 year: 2017 end-page: 11297 ident: CR119 article-title: Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species publication-title: ACS Nano – volume: 10 start-page: 113 year: 2017 end-page: 140 ident: CR21 article-title: Nanosensor technology applied to living plant systems publication-title: Annu. Rev. Anal. Chem. – volume: 394 start-page: 585 year: 1998 end-page: 588 ident: CR66 article-title: Nitric oxide functions as a signal in plant disease resistance publication-title: Nature – volume: 3 start-page: 292 year: 2012 ident: CR85 article-title: ROS-talk: how the apoplast, the chloroplast, and the nucleus get the message through publication-title: Front. Plant Sci. – volume: 46 start-page: 95 year: 1995 end-page: 122 ident: CR134 article-title: Calcium regulation in plant cells and its role in signaling publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. – volume: 4 year: 2015 ident: CR93 article-title: Bioinspired optical antennas: gold plant viruses publication-title: Light Sci. Appl. – volume: 133 start-page: 567 year: 2011 end-page: 581 ident: CR143 article-title: Single molecule detection of nitric oxide enabled by d(AT) 15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes publication-title: J. Am. Chem. Soc. – volume: 68 start-page: 367 year: 1986 end-page: 374 ident: CR132 article-title: Cultivar differences in soluble sugar content of mature rice grain publication-title: Physiol. Plant. – volume: 215 start-page: 65 year: 2017 end-page: 72 ident: CR63 article-title: FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots publication-title: J. Plant Physiol. – volume: 9 start-page: 58 year: 2018 ident: CR133 article-title: Characterization of sugar contents and sucrose metabolizing enzymes in developing leaves of publication-title: Front. Plant Sci. – volume: 14 start-page: 2627 year: 2002 end-page: 2641 ident: CR136 article-title: Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells publication-title: Plant Cell – volume: 7 start-page: 276 year: 2016 ident: CR128 article-title: High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs publication-title: Front. Plant Sci. – volume: 16 start-page: 644 year: 2016 ident: CR124 article-title: A reliable wireless control system for tomato hydroponics publication-title: Sensors – volume: 6 start-page: 819 year: 2012 end-page: 830 ident: CR131 article-title: Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose publication-title: ACS Nano – volume: 5 start-page: 1567 year: 2018 end-page: 1583 ident: CR120 article-title: Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention publication-title: Environ. Sci. Nano – volume: 111 start-page: 6497 year: 2014 end-page: 6502 ident: CR138 article-title: Salt stress-induced Ca waves are associated with rapid, long-distance root-to-shoot signaling in plants publication-title: Proc. Natl Acad. Sci. USA – volume: 6 start-page: 14847 year: 2018 end-page: 14856 ident: CR118 article-title: Copper based nanomaterials suppress root fungal disease in watermelon ( ): role of particle morphology, composition and dissolution behavior publication-title: ACS Sustain. Chem. Eng. – volume: 86 start-page: 3602 year: 1964 end-page: 3605 ident: CR146 article-title: Detection and lifetime of enol-acetone in the photolysis of 2-pentanone vapor publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 721 year: 2016 end-page: 727 ident: CR101 article-title: Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: combining intrinsic and design-induced stretchability publication-title: Nano Lett. – volume: 17 start-page: 4123 year: 2006 end-page: 4128 ident: CR103 article-title: Flexible carbon nanotube sensors for nerve agent simulants publication-title: Nanotechnology – volume: 61 start-page: 561 year: 2010 end-page: 591 ident: CR64 article-title: Guard cell signal transduction network: advances in understanding abscisic acid, CO , and Ca signaling publication-title: Annu. Rev. Plant Biol. – volume: 25 start-page: 3553 year: 2013 end-page: 3569 ident: CR57 article-title: Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants publication-title: Plant Cell – volume: 14 start-page: 2647 year: 2014 end-page: 2654 ident: CR30 article-title: synthesis of carbon nanotube-graphite electronic devices and their integrations onto surfaces of live plants and insects publication-title: Nano Lett. – volume: 72 start-page: 1 year: 2010 end-page: 13 ident: CR49 article-title: A review of advanced techniques for detecting plant diseases publication-title: Comput. Electron. Agric. – volume: 29 start-page: 1508 year: 2006 end-page: 1518 ident: CR45 article-title: Estimating stomatal conductance with thermal imagery publication-title: Plant Cell Environ. – volume: 33 start-page: 19 year: 2003 end-page: 46 ident: CR31 article-title: The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment publication-title: Plant J. – volume: 3 start-page: e01739 year: 2014 ident: CR152 article-title: FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis publication-title: eLife – volume: 3 start-page: e01741 year: 2014 ident: CR153 article-title: Abscisic acid dynamics in roots detected with genetically encoded FRET sensors publication-title: eLife – volume: 10 start-page: 28279 year: 2018 end-page: 28289 ident: CR29 article-title: Standoff optical glucose sensing in photosynthetic organisms by a quantum dot fluorescent probe publication-title: ACS Appl. Mater. Interfaces – volume: 293 start-page: 5035 year: 2018 end-page: 5043 ident: CR3 article-title: Engineering abiotic stress response in plants for biomass production publication-title: J. Biol. Chem. – ident: CR94 – volume: 3 start-page: 956 year: 2017 end-page: 964 ident: CR126 article-title: Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers publication-title: Nat. Plants – volume: 19 start-page: 623 year: 2014 end-page: 630 ident: CR55 article-title: A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling publication-title: Trends Plant Sci. – volume: 12 start-page: 720 year: 1999 end-page: 727 ident: CR145 article-title: Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application publication-title: Mol. Plant. Microbe Interact. – volume: 4 start-page: 710 year: 2009 end-page: 711 ident: CR17 article-title: Bioimaging: second window for imaging publication-title: Nat. Nanotechnol. – volume: 39 start-page: 4326 year: 2010 end-page: 4354 ident: CR92 article-title: Designing multifunctional quantum dots for bioimaging, detection, and drug delivery publication-title: Chem. Soc. Rev. – volume: 65 start-page: 1933 year: 2013 end-page: 1950 ident: CR87 article-title: Carbon nanotubes as optical biomedical sensors publication-title: Adv. Drug Deliv. Rev. – volume: 5 start-page: 61 year: 2014 ident: CR83 article-title: Recent advances in the study of chloroplast gene expression and its evolution publication-title: Front. Plant Sci. – volume: 8 start-page: 3557 year: 2008 end-page: 3585 ident: CR110 article-title: Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots publication-title: Sensors – volume: 195 start-page: 172 year: 2018 end-page: 175 ident: CR149 article-title: A reagent-assisted method in SERS detection of methyl salicylate publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 14 start-page: 1286 year: 2015 end-page: 1292 ident: CR107 article-title: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes publication-title: Nat. Mater. – volume: 17 start-page: 4015 year: 2017 end-page: 4024 ident: CR28 article-title: Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata publication-title: Lab Chip – volume: 2 start-page: 295 year: 2007 end-page: 300 ident: CR125 article-title: Mesoporous silica nanoparticles deliver DNA and chemicals into plants publication-title: Nat. Nanotechnol. – volume: 2 start-page: 34 year: 2016 ident: CR123 article-title: Machine-vision systems selection for agricultural vehicles: a guide publication-title: J. Imaging – volume: 100 start-page: 241 year: 2016 end-page: 251 ident: CR51 article-title: Plant disease detection by imaging sensors - parallels and specific demands for precision agriculture and plant phenotyping publication-title: Plant Dis. – volume: 2 start-page: ra45 year: 2009 ident: CR129 article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli publication-title: Sci. Signal. – volume: 8 start-page: 1188 year: 2015 end-page: 1200 ident: CR80 article-title: Live cell imaging with R-GECO1 sheds light on flg22- and chitin-induced transient [Ca ] patterns in publication-title: Mol. Plant – volume: 41 start-page: 1008 year: 2018 end-page: 1021 ident: CR8 article-title: Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks publication-title: Plant Cell Environ. – volume: 11 start-page: 4017 year: 2017 end-page: 4027 ident: CR97 article-title: Kinetic requirements for spatiotemporal chemical imaging with fluorescent nanosensors publication-title: ACS Nano – volume: 14 start-page: 4014 year: 2014 end-page: 4049 ident: CR122 article-title: Integrating sensory/actuation systems in agricultural vehicles publication-title: Sensors – volume: 2 start-page: 3 year: 2012 end-page: 44 ident: CR95 article-title: Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy publication-title: Theranostics – volume: 108 start-page: 20260 year: 2011 end-page: 20264 ident: CR2 article-title: Global food demand and the sustainable intensification of agriculture publication-title: Proc. Natl Acad. Sci. USA – volume: 13 start-page: 400 year: 2014 end-page: 408 ident: CR19 article-title: Plant nanobionics approach to augment photosynthesis and biochemical sensing publication-title: Nat. Mater. – volume: 8 start-page: 959 year: 2013 end-page: 968 ident: CR89 article-title: Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes publication-title: Nat. Nanotechnol. – volume: 11 year: 2015 ident: CR41 article-title: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses: a review publication-title: Plant Methods – ident: CR12 – volume: 15 start-page: 365 year: 2012 end-page: 377 ident: CR13 article-title: Impacts of climate change on the future of biodiversity publication-title: Ecol. Lett. – volume: 136 start-page: 713 year: 2014 end-page: 724 ident: CR90 article-title: Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors publication-title: J. Am. Chem. Soc. – volume: 3 year: 2013 ident: CR139 article-title: Highlighted Ca imaging with a genetically encoded ‘caged’ indicator publication-title: Sci. Rep. – volume: 18 start-page: 21 year: 2017 ident: CR73 article-title: Early identification of herbicide stress in soybean ( (L.) Merr.) using chlorophyll fluorescence imaging technology publication-title: Sensors – volume: 2 start-page: 85 year: 2009 end-page: 120 ident: CR96 article-title: Carbon nanotubes in biology and medicine: and detection, imaging and drug delivery publication-title: Nano Res. – volume: 56 start-page: 1843 year: 2005 end-page: 1852 ident: CR47 article-title: Estimation of leaf water potential by thermal imagery and spatial analysis publication-title: J. Exp. Bot. – volume: 7 year: 2017 ident: CR67 article-title: The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi publication-title: Sci. Rep. – volume: 18 start-page: 2083 year: 2018 ident: CR15 article-title: Proximal optical sensors for nitrogen management of vegetable crops: a review publication-title: Sensors – volume: 16 start-page: 237 year: 2015 end-page: 251 ident: CR6 article-title: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability publication-title: Nat. Rev. Genet. – volume: 484 start-page: 186 year: 2012 end-page: 194 ident: CR10 article-title: Emerging fungal threats to animal, plant and ecosystem health publication-title: Nature – volume: 6 year: 2016 ident: CR42 article-title: Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease publication-title: Sci. Rep. – volume: 29 start-page: 1645 year: 2013 end-page: 1660 ident: CR112 article-title: Internet of Things (IoT): A vision, architectural elements, and future directions publication-title: Future Gener. Comp. Syst. – volume: 56 start-page: 948 year: 2008 end-page: 962 ident: CR75 article-title: Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips publication-title: Plant J. – volume: 128 start-page: 181 year: 2016 end-page: 192 ident: CR111 article-title: A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding publication-title: Comput. Electron. Agric. – volume: 115 start-page: 10816 year: 2015 end-page: 10906 ident: CR36 article-title: Carbon nanomaterials for biological imaging and nanomedicinal therapy publication-title: Chem. Rev. – volume: 95 start-page: 1933 year: 1998 end-page: 1937 ident: CR144 article-title: Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi publication-title: Proc. Natl Acad. Sci. USA – volume: 104 start-page: 20996 year: 2007 end-page: 21001 ident: CR155 article-title: Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs publication-title: Proc. Natl Acad. Sci. USA – volume: 20 start-page: 030901 year: 2015 ident: CR18 article-title: Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization publication-title: J. Biomed. Opt. – volume: 287 start-page: 622 year: 2000 end-page: 625 ident: CR102 article-title: Nanotube molecular wires as chemical sensors publication-title: Science – volume: 14 start-page: 456 issue: 5 year: 2019 end-page: 464 ident: CR23 article-title: High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants publication-title: Nature Nanotechnology – volume: 11 start-page: 566 year: 2016 end-page: 572 ident: CR100 article-title: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy publication-title: Nat. Nanotechnol. – volume: 51 start-page: 5752 year: 2012 end-page: 5756 ident: CR99 article-title: Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness publication-title: Angew. Chem. Int. Ed. Engl. – volume: 22 start-page: 11 year: 2017 end-page: 19 ident: CR58 article-title: ROS are good publication-title: Trends Plant Sci. – volume: 21 start-page: 1181 year: 1998 end-page: 1188 ident: CR71 article-title: The regulation of isoprene emission responses to rapid leaf temperature fluctuations publication-title: Plant Cell Environ. – volume: 429 start-page: 469 year: 2018 end-page: 481 ident: CR7 article-title: Physiological traits associated with reductions in grain number in wheat and barley under waterlogging publication-title: Plant Soil – volume: 69 start-page: 497 year: 2018 end-page: 524 ident: CR24 article-title: Genetically encoded biosensors in plants: pathways to discovery publication-title: Annu. Rev. Plant Biol. – volume: 21 start-page: 699 year: 2016 end-page: 712 ident: CR39 article-title: Nanotechnology: a new opportunity in plant sciences publication-title: Trends Plant Sci. – volume: 61 start-page: 3499 year: 2010 end-page: 3507 ident: CR48 article-title: New phenotyping methods for screening wheat and barley for beneficial responses to water deficit publication-title: J. Exp. Bot. – volume: 16 start-page: 1161 year: 2016 end-page: 1172 ident: CR82 article-title: Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism publication-title: Nano Lett. – volume: 133 start-page: 101 year: 2012 end-page: 112 ident: CR109 article-title: Field-based phenomics for plant genetics research publication-title: Field Crops Res. – volume: 69 start-page: 181 year: 2012 end-page: 192 ident: CR77 article-title: FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca dynamics: improved vectors for Ca imaging in plants publication-title: Plant J. – volume: 63 start-page: 663 year: 2012 end-page: 706 ident: CR25 article-title: Quantitative imaging with fluorescent biosensors publication-title: Annu. Rev. Plant Biol. – volume: 361 start-page: 1112 year: 2018 end-page: 1115 ident: CR72 article-title: Glutamate triggers long-distance, calcium-based plant defense signaling publication-title: Science – volume: 27 start-page: 1972 year: 2008 end-page: 1978 ident: CR33 article-title: Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms publication-title: Environ. Toxicol. Chem. – volume: 62 start-page: 2411 year: 2011 end-page: 2417 ident: CR76 article-title: Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants publication-title: J. Exp. Bot. – volume: 203 start-page: 32 year: 2014 end-page: 43 ident: CR4 article-title: Abiotic and biotic stress combinations publication-title: New Phytol. – volume: 14 start-page: 20078 year: 2014 end-page: 20111 ident: CR16 article-title: A review of imaging techniques for plant phenotyping publication-title: Sensors – volume: 7 year: 2016 ident: CR46 article-title: Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping publication-title: Nat. Commun. – volume: 5 start-page: 302 year: 2010 end-page: 309 ident: CR130 article-title: Detection of single-molecule H O signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes publication-title: Nat. Nanotechnol. – volume: 5 start-page: 495 year: 2000 end-page: 501 ident: CR40 article-title: Imaging techniques and the early detection of plant stress publication-title: Trends Plant Sci. – volume: 16 start-page: 264 year: 2017 end-page: 272 ident: CR27 article-title: Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics publication-title: Nat. Mater. – volume: 114 start-page: 1789 year: 2017 end-page: 1794 ident: CR91 article-title: High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array publication-title: Proc. Natl Acad. Sci. USA – volume: 10 start-page: 245 year: 2016 end-page: 255 ident: CR35 article-title: Toxicity of CeO nanoparticles on a freshwater experimental trophic chain: a study in environmentally relevant conditions through the use of mesocosms publication-title: Nanotoxicology – volume: 11 start-page: 479 year: 2016 end-page: 486 ident: CR37 article-title: Meta-analysis of cellular toxicity for cadmium-containing quantum dots publication-title: Nat. Nanotechnol. – volume: 172 start-page: 124 year: 2018 end-page: 133 ident: CR121 article-title: Cellulose nanocrystals reduce cold damage to reproductive buds in fruit crops publication-title: Biosyst. Eng. – volume: 18 start-page: 217 year: 2018 end-page: 248 ident: CR26 article-title: Wearable sensors: modalities, challenges, and prospects publication-title: Lab Chip – volume: 99 start-page: 238 year: 2016 end-page: 248 ident: CR38 article-title: Toxicity of carbon dots – Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle publication-title: Carbon – volume: 113 start-page: 14964 year: 2016 end-page: 14969 ident: CR1 article-title: Can sub-Saharan Africa feed itself? publication-title: Proc. Natl Acad. Sci. USA – volume: 12 start-page: 938 year: 2011 end-page: 954 ident: CR11 article-title: Top 10 plant viruses in molecular plant pathology publication-title: Mol. Plant Pathol. – volume: 153 start-page: 69 year: 2017 end-page: 80 ident: CR115 article-title: Big data in smart farming – A review publication-title: Agric. Syst. – volume: 4 start-page: 432 year: 2018 end-page: 439 ident: CR54 article-title: Previsual symptoms of infection revealed in spectral plant-trait alterations publication-title: Nat. Plants – volume: 2 start-page: 1700223 year: 2017 ident: CR98 article-title: High-resolution patterning and transferring of graphene-based nanomaterials onto tape toward roll-to-roll production of tape-based wearable sensors publication-title: Adv. Mater. Technol. – volume: 100 start-page: 2442 year: 2016 end-page: 2447 ident: CR117 article-title: Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees publication-title: Plant Dis. – volume: 6 start-page: 1419 year: 2013 end-page: 1437 ident: CR154 article-title: Organelle pH in the Arabidopsis endomembrane system publication-title: Mol. Plant – volume: 57 start-page: 201 year: 2006 end-page: 212 ident: CR150 article-title: Role of abscisic acid (ABA) and ABA-insensitive loci in low water potential-induced ABA and proline accumulation publication-title: J. Exp. Bot. – volume: 14 start-page: 447 issue: 5 year: 2019 end-page: 455 ident: CR22 article-title: Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers publication-title: Nature Nanotechnology – volume: 60 start-page: 2 year: 2011 end-page: 14 ident: CR9 article-title: Climate change, plant diseases and food security: an overview: Climate change and food security publication-title: Plant Pathol. – volume: 16 start-page: 300 year: 2011 end-page: 309 ident: CR60 article-title: ROS signaling: the new wave? publication-title: Trends Plant Sci. – volume: 11 start-page: 3973 year: 2015 end-page: 3984 ident: CR20 article-title: A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: application to monitoring publication-title: Small – volume: 8 year: 2017 ident: CR79 article-title: Photosynthesis-dependent H O transfer from chloroplasts to nuclei provides a high-light signalling mechanism publication-title: Nat. Commun. – volume: 117 start-page: 322 year: 2012 end-page: 337 ident: CR44 article-title: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera publication-title: Remote Sens. Environ. – volume: 57 start-page: 2435 year: 2006 end-page: 2444 ident: CR127 article-title: Hydrogen peroxide concentrations in leaves under natural conditions publication-title: J. Exp. Bot. – volume: 69 start-page: 387 year: 2018 end-page: 415 ident: CR69 article-title: Modularity in jasmonate signaling for multistress resilience publication-title: Annu. Rev. Plant Biol. – volume: 47 start-page: 5018 year: 2008 end-page: 5021 ident: CR105 article-title: On-chip micro gas chromatograph enabled by a noncovalently functionalized single-walled carbon nanotube sensor array publication-title: Angew. Chem. Int. Ed. Engl. – volume: 23 start-page: 267 year: 2000 end-page: 278 ident: CR59 article-title: Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root publication-title: Plant J. – volume: 60 start-page: 2 year: 2011 ident: 470_CR9 publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.2010.02411.x – volume: 12 start-page: 938 year: 2011 ident: 470_CR11 publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2011.00752.x – volume: 15 start-page: 365 year: 2012 ident: 470_CR13 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2011.01736.x – volume: 8 year: 2017 ident: 470_CR79 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00074-w – volume: 14 start-page: 456 issue: 5 year: 2019 ident: 470_CR23 publication-title: Nature Nanotechnology doi: 10.1038/s41565-019-0382-5 – volume: 7 year: 2016 ident: 470_CR46 publication-title: Nat. Commun. doi: 10.1038/ncomms13342 – volume: 32 start-page: 1270 year: 2013 ident: 470_CR34 publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.2174 – volume: 7 year: 2017 ident: 470_CR67 publication-title: Sci. Rep. – volume: 113 start-page: 14964 year: 2016 ident: 470_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1610359113 – volume: 8 start-page: 3557 year: 2008 ident: 470_CR110 publication-title: Sensors doi: 10.3390/s8053557 – volume: 19 start-page: 623 year: 2014 ident: 470_CR55 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.06.013 – volume: 21 start-page: 699 year: 2016 ident: 470_CR39 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.04.005 – volume: 11 start-page: 566 year: 2016 ident: 470_CR100 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.38 – volume: 5 start-page: 1567 year: 2018 ident: 470_CR120 publication-title: Environ. Sci. Nano doi: 10.1039/C8EN00323H – volume: 16 start-page: 264 year: 2017 ident: 470_CR27 publication-title: Nat. Mater. doi: 10.1038/nmat4771 – volume: 57 start-page: 675 year: 2006 ident: 470_CR61 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105441 – volume: 2 start-page: 1700223 year: 2017 ident: 470_CR98 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201700223 – volume: 9 start-page: 58 year: 2018 ident: 470_CR133 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00058 – volume: 56 start-page: 1843 year: 2005 ident: 470_CR47 publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri174 – volume: 6 year: 2016 ident: 470_CR42 publication-title: Sci. Rep. – volume: 14 start-page: 1286 year: 2015 ident: 470_CR107 publication-title: Nat. Mater. doi: 10.1038/nmat4427 – volume: 18 start-page: 1050 issue: 4 year: 2018 ident: 470_CR113 publication-title: Sensors doi: 10.3390/s18041050 – volume: 11 start-page: 691 year: 1999 ident: 470_CR135 publication-title: Plant Cell doi: 10.1105/tpc.11.4.691 – volume: 10 start-page: 28279 year: 2018 ident: 470_CR29 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07179 – volume: 11 start-page: 3973 year: 2015 ident: 470_CR20 publication-title: Small doi: 10.1002/smll.201403276 – volume: 221 start-page: 1649 year: 2019 ident: 470_CR81 publication-title: New Phytol. doi: 10.1111/nph.15550 – volume: 133 start-page: 567 year: 2011 ident: 470_CR143 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1084942 – volume: 133 start-page: 101 year: 2012 ident: 470_CR109 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2012.04.003 – volume: 62 start-page: 2411 year: 2011 ident: 470_CR76 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq444 – volume: 10 start-page: 113 year: 2017 ident: 470_CR21 publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-061516-045310 – volume: 10 start-page: 245 year: 2016 ident: 470_CR35 publication-title: Nanotoxicology – volume: 16 start-page: 237 year: 2015 ident: 470_CR6 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3901 – volume: 69 start-page: 497 year: 2018 ident: 470_CR24 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040104 – volume: 43 start-page: 16 year: 2014 ident: 470_CR86 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60271K – volume: 51 start-page: 5752 year: 2012 ident: 470_CR99 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201201042 – volume: 72 start-page: 1 year: 2010 ident: 470_CR49 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2010.02.007 – volume: 172 start-page: 124 year: 2018 ident: 470_CR121 publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.06.006 – volume: 3 start-page: e01739 year: 2014 ident: 470_CR152 publication-title: eLife doi: 10.7554/eLife.01739 – volume: 65 start-page: 1933 year: 2013 ident: 470_CR87 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.07.015 – volume: 92 start-page: 487 year: 2003 ident: 470_CR137 publication-title: Ann. Bot. doi: 10.1093/aob/mcg164 – ident: 470_CR12 – volume: 33 start-page: 19 year: 2003 ident: 470_CR31 publication-title: Plant J. doi: 10.1046/j.0960-7412.2002.001607.x – volume: 17 start-page: 4123 year: 2006 ident: 470_CR103 publication-title: Nanotechnology doi: 10.1088/0957-4484/17/16/022 – volume: 47 start-page: 5018 year: 2008 ident: 470_CR105 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200704501 – volume: 6 year: 2015 ident: 470_CR148 publication-title: Nat. Commun. doi: 10.1038/ncomms7043 – volume: 16 start-page: 721 year: 2016 ident: 470_CR101 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04549 – volume: 6 start-page: 819 year: 2012 ident: 470_CR131 publication-title: ACS Nano doi: 10.1021/nn204323f – volume: 203 start-page: 32 year: 2014 ident: 470_CR4 publication-title: New Phytol. doi: 10.1111/nph.12797 – volume: 69 start-page: 181 year: 2012 ident: 470_CR77 publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04780.x – volume: 14 start-page: 2647 year: 2014 ident: 470_CR30 publication-title: Nano Lett. doi: 10.1021/nl500513n – volume: 114 start-page: 3393 year: 2017 ident: 470_CR53 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1701328114 – volume: 215 start-page: 65 year: 2017 ident: 470_CR63 publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2017.05.007 – volume: 11 start-page: 184 year: 2006 ident: 470_CR68 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2006.02.005 – volume: 5 start-page: 302 year: 2010 ident: 470_CR130 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.24 – volume: 8 start-page: 873 year: 2013 ident: 470_CR116 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.222 – volume: 178 start-page: 94 year: 2010 ident: 470_CR32 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2009.12.005 – volume: 7 start-page: 276 year: 2016 ident: 470_CR128 publication-title: Front. Plant Sci. – volume: 5 start-page: 495 year: 2000 ident: 470_CR40 publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01781-7 – volume: 5 start-page: 61 year: 2014 ident: 470_CR83 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00061 – volume: 61 start-page: 561 year: 2010 ident: 470_CR64 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112226 – volume: 100 start-page: 241 year: 2016 ident: 470_CR51 publication-title: Plant Dis. doi: 10.1094/PDIS-03-15-0340-FE – volume: 5 start-page: 3888 year: 2011 ident: 470_CR88 publication-title: ACS Nano doi: 10.1021/nn200262u – volume: 2 start-page: 295 year: 2007 ident: 470_CR125 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.108 – volume: 13 year: 2017 ident: 470_CR43 publication-title: Plant Methods doi: 10.1186/s13007-017-0248-5 – volume: 25 start-page: 3553 year: 2013 ident: 470_CR57 publication-title: Plant Cell doi: 10.1105/tpc.113.114595 – volume: 23 start-page: 267 year: 2000 ident: 470_CR59 publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00786.x – volume: 8 start-page: e23316 year: 2013 ident: 470_CR62 publication-title: Plant Signal. Behav. doi: 10.4161/psb.23316 – volume: 111 start-page: 6497 year: 2014 ident: 470_CR138 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1319955111 – volume: 35 start-page: 1 year: 2015 ident: 470_CR50 publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0246-1 – volume: 14 start-page: 447 issue: 5 year: 2019 ident: 470_CR22 publication-title: Nature Nanotechnology doi: 10.1038/s41565-019-0375-4 – volume: 12 start-page: 720 year: 1999 ident: 470_CR145 publication-title: Mol. Plant. Microbe Interact. doi: 10.1094/MPMI.1999.12.8.720 – volume: 61 start-page: 3499 year: 2010 ident: 470_CR48 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq199 – volume: 39 start-page: 4326 year: 2010 ident: 470_CR92 publication-title: Chem. Soc. Rev. doi: 10.1039/b915139g – volume: 100 start-page: 2442 year: 2016 ident: 470_CR117 publication-title: Plant Dis. doi: 10.1094/PDIS-05-16-0598-RE – volume: 21 start-page: 133 year: 2014 ident: 470_CR65 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2014.07.009 – volume: 153 start-page: 69 year: 2017 ident: 470_CR115 publication-title: Agric. Syst. doi: 10.1016/j.agsy.2017.01.023 – volume: 11 start-page: 11283 year: 2017 ident: 470_CR119 publication-title: ACS Nano doi: 10.1021/acsnano.7b05723 – volume: 11 start-page: 479 year: 2016 ident: 470_CR37 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.338 – volume: 4 start-page: 710 year: 2009 ident: 470_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.326 – volume: 20 start-page: 030901 year: 2015 ident: 470_CR18 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.20.3.030901 – volume: 8 start-page: 57 year: 2018 ident: 470_CR108 publication-title: Agronomy doi: 10.3390/agronomy8040057 – volume: 14 start-page: 4014 year: 2014 ident: 470_CR122 publication-title: Sensors doi: 10.3390/s140304014 – volume: 3 year: 2013 ident: 470_CR139 publication-title: Sci. Rep. – volume: 287 start-page: 622 year: 2000 ident: 470_CR102 publication-title: Science doi: 10.1126/science.287.5453.622 – volume: 18 start-page: 2083 year: 2018 ident: 470_CR15 publication-title: Sensors doi: 10.3390/s18072083 – volume: 16 start-page: 644 year: 2016 ident: 470_CR124 publication-title: Sensors doi: 10.3390/s16050644 – volume: 3 start-page: 956 year: 2017 ident: 470_CR126 publication-title: Nat. Plants doi: 10.1038/s41477-017-0063-z – volume: 464 start-page: 13 year: 2014 ident: 470_CR141 publication-title: Biochem. J. doi: 10.1042/BJ20140931 – volume: 115 start-page: 10816 year: 2015 ident: 470_CR36 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00008 – volume: 95 start-page: 1933 year: 1998 ident: 470_CR144 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.4.1933 – volume: 18 start-page: 2314 year: 2006 ident: 470_CR74 publication-title: Plant Cell doi: 10.1105/tpc.106.044073 – volume: 429 start-page: 469 year: 2018 ident: 470_CR7 publication-title: Plant Soil doi: 10.1007/s11104-018-3708-4 – volume: 100 start-page: S117 year: 2008 ident: 470_CR14 publication-title: Agron. J. doi: 10.2134/agronj2006.0370c – volume: 8 start-page: 1188 year: 2015 ident: 470_CR80 publication-title: Mol. Plant doi: 10.1016/j.molp.2015.05.006 – volume: 8 start-page: 1147 year: 2017 ident: 470_CR5 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01147 – volume: 6 start-page: 1419 year: 2013 ident: 470_CR154 publication-title: Mol. Plant doi: 10.1093/mp/sst079 – volume: 4 start-page: 432 year: 2018 ident: 470_CR54 publication-title: Nat. Plants doi: 10.1038/s41477-018-0189-7 – volume: 4 start-page: 397 year: 2013 ident: 470_CR147 publication-title: Front. Plant Sci. – volume: 11 year: 2015 ident: 470_CR41 publication-title: Plant Methods – volume: 27 start-page: 1972 year: 2008 ident: 470_CR33 publication-title: Environ. Toxicol. Chem. doi: 10.1897/08-002.1 – volume: 21 start-page: 1181 year: 1998 ident: 470_CR71 publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.1998.00380.x – volume: 56 start-page: 948 year: 2008 ident: 470_CR75 publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03652.x – volume: 108 start-page: 20260 year: 2011 ident: 470_CR2 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1116437108 – volume: 22 start-page: 11 year: 2017 ident: 470_CR58 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 104 start-page: 20996 year: 2007 ident: 470_CR155 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0708586104 – ident: 470_CR94 doi: 10.1002/smll.201702958 – volume: 46 start-page: 95 year: 1995 ident: 470_CR134 publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.pp.46.060195.000523 – volume: 11 start-page: 4017 year: 2017 ident: 470_CR97 publication-title: ACS Nano doi: 10.1021/acsnano.7b00569 – volume: 6 start-page: 14847 year: 2018 ident: 470_CR118 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03379 – volume: 68 start-page: 367 year: 1986 ident: 470_CR132 publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1986.tb03367.x – volume: 69 start-page: 4945 year: 2018 ident: 470_CR151 publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery251 – volume: 99 start-page: 238 year: 2016 ident: 470_CR38 publication-title: Carbon doi: 10.1016/j.carbon.2015.12.027 – volume: 10 start-page: 629 year: 2015 ident: 470_CR106 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.115 – volume: 171 start-page: 2317 year: 2016 ident: 470_CR78 publication-title: Plant Physiol. doi: 10.1104/pp.16.00652 – volume: 57 start-page: 2435 year: 2006 ident: 470_CR127 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl004 – volume: 17 start-page: 4015 year: 2017 ident: 470_CR28 publication-title: Lab Chip doi: 10.1039/C7LC00930E – volume: 128 start-page: 181 year: 2016 ident: 470_CR111 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.08.021 – volume: 29 start-page: 1508 year: 2006 ident: 470_CR45 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2006.01528.x – volume: 195 start-page: 172 year: 2018 ident: 470_CR149 publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2018.01.073 – volume: 14 start-page: 2627 year: 2002 ident: 470_CR136 publication-title: Plant Cell doi: 10.1105/tpc.005579 – volume: 2 start-page: 3 year: 2012 ident: 470_CR95 publication-title: Theranostics doi: 10.7150/thno.3463 – volume: 293 start-page: 5035 year: 2018 ident: 470_CR3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.TM117.000232 – volume: 394 start-page: 585 year: 1998 ident: 470_CR66 publication-title: Nature doi: 10.1038/29087 – volume: 3 start-page: e01741 year: 2014 ident: 470_CR153 publication-title: eLife doi: 10.7554/eLife.01741 – volume: 16 start-page: 300 year: 2011 ident: 470_CR60 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2011.03.007 – volume: 117 start-page: 322 year: 2012 ident: 470_CR44 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.007 – volume: 2 start-page: 34 year: 2016 ident: 470_CR123 publication-title: J. Imaging doi: 10.3390/jimaging2040034 – volume: 12 start-page: 1066 year: 2017 ident: 470_CR140 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00883 – volume: 86 start-page: 3602 year: 1964 ident: 470_CR146 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01072a002 – volume: 361 start-page: 1112 year: 2018 ident: 470_CR72 publication-title: Science doi: 10.1126/science.aat7744 – volume: 18 start-page: 217 year: 2018 ident: 470_CR26 publication-title: Lab Chip doi: 10.1039/C7LC00914C – volume: 41 start-page: 1008 year: 2018 ident: 470_CR8 publication-title: Plant Cell Environ. doi: 10.1111/pce.12935 – volume: 484 start-page: 186 year: 2012 ident: 470_CR10 publication-title: Nature doi: 10.1038/nature10947 – volume: 63 start-page: 4321 year: 2012 ident: 470_CR52 publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers143 – volume: 136 start-page: 713 year: 2014 ident: 470_CR90 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410433b – volume: 58 start-page: 869 year: 2007 ident: 470_CR114 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl231 – volume: 13 start-page: 907 year: 2001 ident: 470_CR156 publication-title: Plant Cell doi: 10.1105/tpc.13.4.907 – volume: 97 start-page: 8849 year: 2000 ident: 470_CR70 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.16.8849 – volume: 83 start-page: 4026 year: 2003 ident: 470_CR104 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1626265 – volume: 57 start-page: 201 year: 2006 ident: 470_CR150 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj026 – volume: 2 start-page: ra45 year: 2009 ident: 470_CR129 publication-title: Sci. Signal. – volume: 175 start-page: 186 year: 2017 ident: 470_CR84 publication-title: Plant Physiol. doi: 10.1104/pp.17.00857 – volume: 69 start-page: 387 year: 2018 ident: 470_CR69 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040047 – volume: 29 start-page: 1645 year: 2013 ident: 470_CR112 publication-title: Future Gener. Comp. Syst. doi: 10.1016/j.future.2013.01.010 – volume: 8 start-page: 959 year: 2013 ident: 470_CR89 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.236 – volume: 167 start-page: 313 year: 2016 ident: 470_CR56 publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 13 start-page: 400 year: 2014 ident: 470_CR19 publication-title: Nat. Mater. doi: 10.1038/nmat3890 – volume: 2 start-page: 85 year: 2009 ident: 470_CR96 publication-title: Nano Res. doi: 10.1007/s12274-009-9009-8 – volume: 63 start-page: 663 year: 2012 ident: 470_CR25 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103745 – volume: 16 start-page: 1161 year: 2016 ident: 470_CR82 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04467 – volume: 3 start-page: 292 year: 2012 ident: 470_CR85 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2012.00292 – volume: 114 start-page: 1789 year: 2017 ident: 470_CR91 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1613541114 – volume: 98 start-page: 355 year: 2001 ident: 470_CR142 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.98.1.355 – volume: 18 start-page: 21 year: 2017 ident: 470_CR73 publication-title: Sensors doi: 10.3390/s18010021 – volume: 4 year: 2015 ident: 470_CR93 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2015.40 – volume: 14 start-page: 20078 year: 2014 ident: 470_CR16 publication-title: Sensors doi: 10.3390/s141120078 |
SSID | ssj0052924 |
Score | 2.67757 |
SecondaryResourceType | review_article |
Snippet | Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 541 |
SubjectTerms | 631/61/350 631/61/350/1057 631/61/350/2093 631/61/350/354 631/61/350/59 Agricultural industry Agricultural production Agrochemicals Biosensing Techniques - methods Biotechnology - methods Chemistry and Materials Science Coding Crop Production - methods Crops, Agricultural - genetics Crops, Agricultural - growth & development Electronic devices Electronic equipment Genetic code Humans Materials Science Nanomaterials Nanotechnology Nanotechnology - methods Nanotechnology and Microengineering New technology Optical communication Optimization Organic chemistry Parameter sensitivity Performance assessment Phenotyping Plants, Genetically Modified - genetics Plants, Genetically Modified - growth & development Productivity R&D Research & development Resource efficiency Review Article Sensors Smart sensors Temporal resolution |
Title | Nanobiotechnology approaches for engineering smart plant sensors |
URI | https://link.springer.com/article/10.1038/s41565-019-0470-6 https://www.ncbi.nlm.nih.gov/pubmed/31168083 https://www.proquest.com/docview/2235651350 https://www.proquest.com/docview/2250632096 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZ4XOCAeFMYqEicQBVNkzTtCRhiTEhMCIG0W9WmyWlsY93-P3ZfAyG4tIembWQ7yWc7-QxwIdFKQk7HPkKrPYGA1IuyUHihEpnJZR4oSQecnwdh_108DeWwDrgV9bbKZk4sJ-p8oilGfo3LGGIPxqV_M_30qGoUZVfrEhqrsE7UZbSlSw1bh0sGcVXUVonIQ1dMNVlNHl0X5LjQtjVKDSj0oH6uS7_A5q9Eabn-9LZhqwaO7l2l6R1YMeNd2PxGJ7gHtzhVEqvSvA2Xuw1luClcRKeuWTZ3iw-0Gnc6QtG6BTqzk1mxD--9h7f7vldXSPC0UHLuZRlLhdTKmlSlVos80CnzrbUmjvIo9W2MGkDMEgXMSqlYoDNmiQIxzJmvfcEPYG08GZsjcJnylcrwszzjwioW2zjOidwuR3GlyjrgN_JJdE0fTlUsRkmZxuZRUok0QZEmJNIkdOCyfWVacWf817jTCD2ph1GRLJXuwHn7GAcAZTXSsZksqI1EmBWgK-bAYaWs9m-cMSotwh24arS3_PifXTn-vysnsBGUdkOhmA6szWcLc4rIZJ6dleaH16j3eAbrd71ud4D37sPg5fULnCngpQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCAqU0AeuVC6gqPErTg4VRYVl-zy1Um8mcexT2V2arRB_qr-xM8l6F1TRW89xHGvm8zw88TcA2xpRkku69pEHlyoMSNOizlWaG1X7RjfCaLrgfHKaD8_V4YW-WIKbeBeGfquMNrEz1M3Y0Rn5DroxjD241Nnnya-UukZRdTW20OhhceT__MaUrd09-Ir6_SDE4NvZ_jCddRVInTJ6mtY1r5R2JvjKVMGpRriKZyEEXxZNUWWhxFWjny8ED1obLlzNA9EG5g3PXKYkzvsIHispS9pRxeB7tPxalH0TXaOKFFM_E6uosthpKVGi3-SoFGEwY_vXD94Jbu8UZjt_N3gBz2eBKvvSI-slLPnRCjz7i77wFeyhaSYWp-n8eJ5FinLfMoyGmV8MZ-1PRCmbXKIqWYvJ8_iqfQ3nDyK7N7A8Go_8W2DcZMbUOK2spQqGl6EsGyLTa1BclQkJZFE-1s3oyqlrxqXtyuaysL1ILYrUkkhtnsDH-SuTnqvjvsHrUeh2tm1buwBZAlvzx7jhqIpSjfz4msZoDOsEpn4JrPbKmn9Nck6tTGQCn6L2FpP_dynv7l_Ke3gyPDs5tscHp0dr8FR0GKJjoHVYnl5d-w2Miqb1ZgdFBj8eGvu344gayg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJwQJRHCX0ZCS6gaONXnBwqitquWgoVByrtzSSOfSq7S7MV4q_113UmrwVV9NZzHMf55rNnxmPPALzVyJJU0rWPNLhYoUEaZ2Wq4tSo0le6EkbTBeevZ-nxufo80ZMVuO7vwtCxyn5NbBbqauZoj3yEagxtDy51MgrdsYhvh-OP818xVZCiSGtfTqOlyKn_8xvdt3rv5BBl_U6I8dH3g-O4qzAQO2X0Ii5LXijtTPCFKYJTlXAFT0IIPs-qrEhCjn-AOj8TPGhtuHAlD5RCMK144hIlsd8HsGYkDgznkpkMzp4WeVtQ16gsRjfQ9BFVmY1qcproyByFJQx6b__qxFuG7q0gbaP7xk_hSWe0sk8ty9ZhxU-fweO_Uhk-h31cpimj02LYqmd9unJfM7SMmV82Z_VPZCybX6BYWY2O9OyyfgHn94LdS1idzqb-FTBuEmNK7FaWUgXD85DnFSXWqxCuwoQIkh4f67rU5VRB48I2IXSZ2RZSi5BagtSmEbwfXpm3eTvuarzVg267KVzbJeEieDM8xslHEZVi6mdX1EajiSfQDYxgoxXW8DXJOZU1kRF86KW37Py_Q3l991B24SGy3n45OTvdhEeioRDtCG3B6uLyym-jgbQodxomMvhx39S_Afa-Hvc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanobiotechnology+approaches+for+engineering+smart+plant+sensors&rft.jtitle=Nature+nanotechnology&rft.au=Giraldo%2C+Juan+Pablo&rft.au=Wu%2C+Honghong&rft.au=Newkirk%2C+Gregory+Michael&rft.au=Kruss%2C+Sebastian&rft.date=2019-06-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=14&rft.issue=6&rft.spage=541&rft.epage=553&rft_id=info:doi/10.1038%2Fs41565-019-0470-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_019_0470_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |