Nanobiotechnology approaches for engineering smart plant sensors

Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environme...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 14; no. 6; pp. 541 - 553
Main Authors Giraldo, Juan Pablo, Wu, Honghong, Newkirk, Gregory Michael, Kruss, Sebastian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use. Nanotechnology can be used to create smart plant sensors that could eventually improve agricultural productivity.
AbstractList Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.
Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use. Nanotechnology can be used to create smart plant sensors that could eventually improve agricultural productivity.
Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.
Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.Nanotechnology can be used to create smart plant sensors that could eventually improve agricultural productivity.
Author Newkirk, Gregory Michael
Kruss, Sebastian
Giraldo, Juan Pablo
Wu, Honghong
Author_xml – sequence: 1
  givenname: Juan Pablo
  orcidid: 0000-0002-8400-8944
  surname: Giraldo
  fullname: Giraldo, Juan Pablo
  email: juanpablo.giraldo@ucr.edu
  organization: Department of Botany and Plant Sciences, University of California, Center for Plant Cell Biology, University of California, Institute of Integrative Genome Biology, University of California
– sequence: 2
  givenname: Honghong
  orcidid: 0000-0001-6629-0280
  surname: Wu
  fullname: Wu, Honghong
  organization: Department of Botany and Plant Sciences, University of California
– sequence: 3
  givenname: Gregory Michael
  orcidid: 0000-0002-1154-7787
  surname: Newkirk
  fullname: Newkirk, Gregory Michael
  organization: Department of Botany and Plant Sciences, University of California
– sequence: 4
  givenname: Sebastian
  surname: Kruss
  fullname: Kruss, Sebastian
  organization: Institute of Physical Chemistry, Georg August University Göttingen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31168083$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi1UBOXjB7CgSCwsgTs7jpMNhPiSECwwW45rt0GpHex06L_HVUuRKsF0Hp7X995zREbOO0PIGcIVAquuY4G85DlgnUMhIC_3yBhFUeWM1Xy0fVfikBzF-AnAaU2LA3LIEMsKKjYmN6_K-ab1g9Ez5zs_XWaq74NXemZiZn3IjJu2zpjQumkW5yoMWd8pN2TRuOhDPCH7VnXRnG7mMfl4uH-_e8pf3h6f725fcl0IPuRNg6rgWlijhLK6mFCtEKy1pq4mlQJbl1aXyCuKlnOBVDdogQtWThA0FOyYXK7_TeW-FiYOct5GbbrUxfhFlJRyKBmFukzoxQ766RfBpXaJYskYMg6JOt9Qi2ZuJrIPbbpuKX_cJADXgA4-xmDsFkGQK_9y7V8m_3LlX65Wi52Mbgc1tN4NQbXdv0m6TsZ-pdqE39J_h74B76yY4A
CitedBy_id crossref_primary_10_1002_advs_202103414
crossref_primary_10_1149_1945_7111_ac0306
crossref_primary_10_3389_fmolb_2022_890654
crossref_primary_10_1039_D4FO02119C
crossref_primary_10_1111_tpj_15553
crossref_primary_10_3390_magnetochemistry5040064
crossref_primary_10_1038_s41570_022_00443_0
crossref_primary_10_2478_prolas_2022_0031
crossref_primary_10_11648_j_nano_20251301_12
crossref_primary_10_1039_D3EN00014A
crossref_primary_10_1039_D3EN00268C
crossref_primary_10_1002_smll_202003833
crossref_primary_10_1021_acsnano_2c04073
crossref_primary_10_1016_j_bios_2024_116131
crossref_primary_10_1002_adma_201904957
crossref_primary_10_1039_D0NR00864H
crossref_primary_10_3389_fchem_2022_848320
crossref_primary_10_1111_jipb_13652
crossref_primary_10_1016_j_ecoenv_2022_114295
crossref_primary_10_1016_j_aac_2024_03_001
crossref_primary_10_1080_87559129_2021_2013872
crossref_primary_10_1016_j_bios_2024_116114
crossref_primary_10_3390_agronomy13082112
crossref_primary_10_1007_s40820_022_00895_5
crossref_primary_10_3390_s19224865
crossref_primary_10_1016_j_colsurfb_2021_111990
crossref_primary_10_1039_D2EE00405D
crossref_primary_10_1002_adbi_202000778
crossref_primary_10_1002_advs_202400207
crossref_primary_10_1038_s41467_020_15731_w
crossref_primary_10_3390_agronomy13041126
crossref_primary_10_3390_chemosensors8020026
crossref_primary_10_1093_pcp_pcac067
crossref_primary_10_1016_j_eng_2023_11_021
crossref_primary_10_1038_s41565_021_00924_1
crossref_primary_10_1021_acs_langmuir_0c01130
crossref_primary_10_1021_acs_jafc_0c04881
crossref_primary_10_1002_advs_202414748
crossref_primary_10_1007_s42976_022_00340_8
crossref_primary_10_1063_5_0226375
crossref_primary_10_1021_acsanm_3c04167
crossref_primary_10_1002_smll_202406222
crossref_primary_10_1038_s41928_024_01174_4
crossref_primary_10_1016_j_cej_2022_134793
crossref_primary_10_1088_1748_3190_ad5ba1
crossref_primary_10_1557_s43579_020_00003_x
crossref_primary_10_3389_fpls_2021_663849
crossref_primary_10_1016_j_nanoen_2023_108850
crossref_primary_10_1016_j_bios_2023_115300
crossref_primary_10_1088_1748_3190_aca198
crossref_primary_10_3390_agronomy12061342
crossref_primary_10_1002_anie_202112372
crossref_primary_10_1016_j_aoas_2020_08_001
crossref_primary_10_1016_j_bios_2022_115005
crossref_primary_10_1016_j_bios_2024_116379
crossref_primary_10_1021_acsnano_4c13076
crossref_primary_10_1080_07388551_2022_2090315
crossref_primary_10_1021_acs_est_0c04688
crossref_primary_10_1038_s41467_024_50968_9
crossref_primary_10_1109_ACCESS_2023_3250466
crossref_primary_10_3389_fchem_2020_00434
crossref_primary_10_1021_acsomega_2c00017
crossref_primary_10_1039_D1EN00870F
crossref_primary_10_1007_s12668_024_01318_y
crossref_primary_10_1016_j_stress_2022_100107
crossref_primary_10_12720_jcm_16_1_8_19
crossref_primary_10_1038_s43246_021_00208_0
crossref_primary_10_1016_j_jhazmat_2021_127374
crossref_primary_10_1021_acs_chemrev_3c00581
crossref_primary_10_1002_adma_202406349
crossref_primary_10_1002_adma_202210016
crossref_primary_10_1016_j_xplc_2022_100346
crossref_primary_10_1016_j_impact_2021_100361
crossref_primary_10_1021_acsnano_4c09062
crossref_primary_10_1021_acs_nanolett_9b05159
crossref_primary_10_1021_acsnano_1c08417
crossref_primary_10_1093_pcp_pcaa064
crossref_primary_10_1016_j_bcab_2024_103110
crossref_primary_10_3390_s22062227
crossref_primary_10_1093_jxb_eraa470
crossref_primary_10_1016_j_bios_2020_112636
crossref_primary_10_1016_j_crbiot_2024_100219
crossref_primary_10_1021_acs_est_1c00803
crossref_primary_10_1094_PHYTO_03_24_0079_FI
crossref_primary_10_1002_adfm_202010532
crossref_primary_10_1111_pbi_14283
crossref_primary_10_1002_adfm_202412869
crossref_primary_10_1002_anbr_202000028
crossref_primary_10_1007_s00216_020_02726_1
crossref_primary_10_3390_plants14050716
crossref_primary_10_3390_s19235069
crossref_primary_10_1016_j_mtbio_2023_100759
crossref_primary_10_1039_D2EN00574C
crossref_primary_10_1080_10643389_2020_1785264
crossref_primary_10_1016_j_foohum_2024_100409
crossref_primary_10_3390_plants11040511
crossref_primary_10_3390_ijms222313043
crossref_primary_10_46876_ja_822503
crossref_primary_10_1016_j_bios_2021_113953
crossref_primary_10_1016_j_nantod_2021_101078
crossref_primary_10_1111_pce_15299
crossref_primary_10_1021_acssensors_2c00442
crossref_primary_10_1016_j_jclepro_2024_141607
crossref_primary_10_1021_acs_jafc_2c02170
crossref_primary_10_1016_j_impact_2021_100363
crossref_primary_10_1016_j_compag_2024_109449
crossref_primary_10_1111_jac_12732
crossref_primary_10_1016_j_chemosphere_2024_142178
crossref_primary_10_1016_j_plaphy_2024_108694
crossref_primary_10_3390_genes13101886
crossref_primary_10_1126_sciadv_adk7488
crossref_primary_10_2139_ssrn_4071644
crossref_primary_10_1038_s41565_019_0461_7
crossref_primary_10_1021_acs_jpcc_1c05432
crossref_primary_10_1088_1361_6528_ad22a7
crossref_primary_10_1039_D0EN00729C
crossref_primary_10_1021_acs_est_2c01926
crossref_primary_10_1016_j_jclepro_2022_133729
crossref_primary_10_1038_s41477_020_0632_4
crossref_primary_10_1007_s12010_024_05039_6
crossref_primary_10_1038_s41378_023_00598_w
crossref_primary_10_1149_1945_7111_ad1306
crossref_primary_10_1088_1748_3190_ac1711
crossref_primary_10_1186_s12951_022_01483_w
crossref_primary_10_1016_j_heliyon_2024_e31635
crossref_primary_10_1016_j_plana_2024_100079
crossref_primary_10_1021_acssusresmgt_4c00075
crossref_primary_10_1016_j_nanoen_2022_107323
crossref_primary_10_1039_D0EN00271B
crossref_primary_10_1109_JSEN_2024_3390681
crossref_primary_10_1007_s11103_020_01082_z
crossref_primary_10_1021_acs_jafc_2c08065
crossref_primary_10_1021_acsnano_1c01256
crossref_primary_10_1021_acsanm_4c04463
crossref_primary_10_1021_acs_nanolett_3c05082
crossref_primary_10_1002_smsc_202200042
crossref_primary_10_1016_j_indcrop_2025_120713
crossref_primary_10_3389_fpls_2022_994429
crossref_primary_10_1002_adfm_202106475
crossref_primary_10_1021_acs_jafc_9b06615
crossref_primary_10_1063_1_5120178
crossref_primary_10_1038_s41929_022_00823_1
crossref_primary_10_3390_nano11082068
crossref_primary_10_1002_smll_202104482
crossref_primary_10_1111_tpj_15619
crossref_primary_10_1007_s11101_020_09738_w
crossref_primary_10_1021_acsnano_2c06481
crossref_primary_10_1038_s41578_024_00742_6
crossref_primary_10_1016_j_jallcom_2023_173075
crossref_primary_10_1016_j_tplants_2024_06_010
crossref_primary_10_1016_j_nanoen_2021_106042
crossref_primary_10_3389_fagro_2022_825087
crossref_primary_10_1021_acsnano_2c02201
crossref_primary_10_1016_j_matdes_2023_111683
crossref_primary_10_1089_ind_2020_29222_lpw
crossref_primary_10_1016_j_tibtech_2022_09_013
crossref_primary_10_1002_adsu_202200333
crossref_primary_10_1039_D2NR02967G
crossref_primary_10_1021_acsnano_0c03757
crossref_primary_10_1016_j_eehl_2023_07_005
crossref_primary_10_1021_acs_jafc_4c05288
crossref_primary_10_1016_j_cej_2024_157254
crossref_primary_10_1002_adma_202311144
crossref_primary_10_3390_molecules27185758
crossref_primary_10_1002_jbio_201960080
crossref_primary_10_34133_plantphenomics_0051
crossref_primary_10_1016_j_snr_2021_100068
crossref_primary_10_1016_j_nantod_2021_101143
crossref_primary_10_1039_D1TA02206G
crossref_primary_10_1007_s40843_020_1601_9
crossref_primary_10_1038_s41565_020_0706_5
crossref_primary_10_1109_LRA_2023_3250006
crossref_primary_10_1039_D1EN00845E
crossref_primary_10_3389_fnano_2024_1310165
crossref_primary_10_1002_adma_202105009
crossref_primary_10_1371_journal_pone_0264967
crossref_primary_10_1002_adma_202409356
crossref_primary_10_3389_fnano_2020_579954
crossref_primary_10_1016_j_jhazmat_2024_134130
crossref_primary_10_1186_s40538_024_00592_y
crossref_primary_10_4236_jacen_2022_111004
crossref_primary_10_1016_j_aca_2024_342450
crossref_primary_10_1002_adsr_202200099
crossref_primary_10_1002_adma_202305828
crossref_primary_10_1038_s41565_021_00867_7
crossref_primary_10_1021_acsagscitech_1c00177
crossref_primary_10_1007_s40820_024_01543_w
crossref_primary_10_1021_acsnano_3c04314
crossref_primary_10_3390_molecules26237070
crossref_primary_10_1039_D0NR06832B
crossref_primary_10_1002_cplu_202000248
crossref_primary_10_1002_ijch_202000060
crossref_primary_10_1016_j_envres_2023_115934
crossref_primary_10_1021_acsnano_3c06172
crossref_primary_10_1016_j_tplants_2023_11_013
crossref_primary_10_1038_s41467_024_51741_8
crossref_primary_10_1002_ange_202112372
crossref_primary_10_1016_j_coche_2021_100706
crossref_primary_10_2174_0115734137275111231206072049
crossref_primary_10_1016_j_cropd_2022_100006
crossref_primary_10_4236_ojapps_2020_106027
crossref_primary_10_1016_j_scitotenv_2024_172473
crossref_primary_10_1186_s12951_021_01178_8
crossref_primary_10_1002_adfm_201909062
crossref_primary_10_1016_j_scitotenv_2024_172476
crossref_primary_10_1038_s41467_020_15299_5
crossref_primary_10_3390_membranes12040358
crossref_primary_10_1038_s41477_020_00808_7
crossref_primary_10_1016_j_stress_2024_100498
crossref_primary_10_1039_D1EN00257K
crossref_primary_10_1002_adfm_202106787
crossref_primary_10_1002_admt_202001182
crossref_primary_10_3390_nano11040839
crossref_primary_10_1016_j_cj_2021_06_002
crossref_primary_10_3389_fpls_2021_691295
crossref_primary_10_1007_s11240_024_02944_w
crossref_primary_10_1002_adsu_202300511
crossref_primary_10_1021_acsami_3c10511
crossref_primary_10_1088_2631_6331_acc0cf
crossref_primary_10_1021_acs_nanolett_9b02865
crossref_primary_10_1021_acssensors_1c01159
crossref_primary_10_1039_C9QM00614A
crossref_primary_10_1021_acsnano_1c10828
crossref_primary_10_1021_acsami_4c23005
crossref_primary_10_1016_j_tibtech_2022_09_007
crossref_primary_10_1002_admt_201900657
crossref_primary_10_1126_sciadv_abe9733
crossref_primary_10_1002_smll_202000705
crossref_primary_10_1002_smll_202309481
crossref_primary_10_1021_acs_est_3c01269
crossref_primary_10_1021_acsomega_0c05850
crossref_primary_10_1155_2022_8953914
crossref_primary_10_1002_advs_202003642
crossref_primary_10_1021_acsabm_2c00872
crossref_primary_10_1016_j_jafr_2021_100246
crossref_primary_10_3389_fpls_2020_610307
crossref_primary_10_3390_agriculture13030668
crossref_primary_10_1016_j_trac_2023_117186
crossref_primary_10_1021_acsanm_1c03482
crossref_primary_10_1016_j_trechm_2023_07_004
crossref_primary_10_1002_smll_202304237
crossref_primary_10_1021_acsanm_0c00943
crossref_primary_10_3390_bios12080647
crossref_primary_10_1038_s41565_022_01307_w
crossref_primary_10_3389_fpls_2024_1490801
crossref_primary_10_1007_s11816_020_00636_3
crossref_primary_10_1002_adma_202411067
crossref_primary_10_3390_agronomy13071709
crossref_primary_10_1016_j_nantod_2024_102326
crossref_primary_10_1109_ACCESS_2025_3539121
crossref_primary_10_1016_j_atech_2024_100416
crossref_primary_10_1002_ange_202108373
crossref_primary_10_1021_acsagscitech_1c00273
crossref_primary_10_3390_nano12162731
crossref_primary_10_1007_s12274_022_4922_1
crossref_primary_10_1021_acs_est_1c00767
crossref_primary_10_1557_s43577_023_00505_8
crossref_primary_10_1038_s41477_021_00946_6
crossref_primary_10_1007_s00344_022_10857_1
crossref_primary_10_1016_j_jece_2024_113693
crossref_primary_10_1080_00103624_2024_2358854
crossref_primary_10_1016_j_scitotenv_2021_146578
crossref_primary_10_1021_acsami_0c11539
crossref_primary_10_1021_acsomega_9b03125
crossref_primary_10_3390_ijms23084402
crossref_primary_10_1021_acsnano_0c10817
crossref_primary_10_1002_chem_202300940
crossref_primary_10_1002_smll_202408943
crossref_primary_10_1007_s40820_024_01587_y
crossref_primary_10_1021_acs_est_3c05686
crossref_primary_10_1039_D4TA02345E
crossref_primary_10_1111_gtc_13075
crossref_primary_10_1016_j_indcrop_2024_120108
crossref_primary_10_3390_horticulturae9090967
crossref_primary_10_1021_acs_nanolett_1c03416
crossref_primary_10_1039_D3RA04083F
crossref_primary_10_1016_j_cogsc_2021_100488
crossref_primary_10_1042_ETLS20230070
crossref_primary_10_1021_acssensors_4c02558
crossref_primary_10_1155_2022_3683723
crossref_primary_10_1016_j_enconman_2022_116098
crossref_primary_10_1039_D4AY01346H
crossref_primary_10_1049_mna2_12117
crossref_primary_10_1016_j_scitotenv_2024_173360
crossref_primary_10_1039_D3NA00178D
crossref_primary_10_1002_chem_202302215
crossref_primary_10_1002_ente_202000236
crossref_primary_10_1007_s11157_023_09667_y
crossref_primary_10_1039_D1EN00390A
crossref_primary_10_1016_j_plana_2024_100121
crossref_primary_10_3390_jof6040222
crossref_primary_10_1007_s11051_020_04866_y
crossref_primary_10_1088_1674_4926_44_2_023104
crossref_primary_10_1021_acssensors_2c00834
crossref_primary_10_1007_s40820_024_01597_w
crossref_primary_10_1021_acs_est_1c01876
crossref_primary_10_1038_s43016_020_0110_1
crossref_primary_10_1016_j_indcrop_2023_116266
crossref_primary_10_1016_j_snb_2024_135702
crossref_primary_10_3390_bios11040107
crossref_primary_10_1002_adom_202201769
crossref_primary_10_1016_j_impact_2021_100297
crossref_primary_10_1016_j_device_2024_100401
crossref_primary_10_1021_acsmaterialslett_0c00062
crossref_primary_10_1021_acsnano_2c02714
crossref_primary_10_1002_adma_201905654
crossref_primary_10_3389_fphy_2020_616040
crossref_primary_10_1002_adma_201907156
crossref_primary_10_1016_j_sajb_2024_02_035
crossref_primary_10_1016_j_talanta_2024_126876
crossref_primary_10_1002_anie_202108373
crossref_primary_10_1021_acsnano_4c00512
crossref_primary_10_1016_j_scienta_2022_111143
crossref_primary_10_1002_advs_202415238
crossref_primary_10_1016_j_heliyon_2022_e11855
crossref_primary_10_1111_ppl_13665
crossref_primary_10_1016_j_plana_2023_100046
crossref_primary_10_1039_D0EN00387E
crossref_primary_10_1016_j_indcrop_2022_115427
crossref_primary_10_1021_acsnano_2c02162
crossref_primary_10_1016_j_matchemphys_2020_123057
crossref_primary_10_15507_2658_4123_033_202301_128_139
crossref_primary_10_1038_s44287_024_00131_9
crossref_primary_10_3389_fpls_2022_843994
crossref_primary_10_1039_D0NH00594K
Cites_doi 10.1111/j.1365-3059.2010.02411.x
10.1111/j.1364-3703.2011.00752.x
10.1111/j.1461-0248.2011.01736.x
10.1038/s41467-017-00074-w
10.1038/s41565-019-0382-5
10.1038/ncomms13342
10.1002/etc.2174
10.1073/pnas.1610359113
10.3390/s8053557
10.1016/j.tplants.2014.06.013
10.1016/j.tplants.2016.04.005
10.1038/nnano.2016.38
10.1039/C8EN00323H
10.1038/nmat4771
10.1146/annurev.arplant.57.032905.105441
10.1002/admt.201700223
10.3389/fpls.2018.00058
10.1093/jxb/eri174
10.1038/nmat4427
10.3390/s18041050
10.1105/tpc.11.4.691
10.1021/acsami.8b07179
10.1002/smll.201403276
10.1111/nph.15550
10.1021/ja1084942
10.1016/j.fcr.2012.04.003
10.1093/jxb/erq444
10.1146/annurev-anchem-061516-045310
10.1038/nrg3901
10.1146/annurev-arplant-042817-040104
10.1039/C3CS60271K
10.1002/anie.201201042
10.1016/j.compag.2010.02.007
10.1016/j.biosystemseng.2018.06.006
10.7554/eLife.01739
10.1016/j.addr.2013.07.015
10.1093/aob/mcg164
10.1046/j.0960-7412.2002.001607.x
10.1088/0957-4484/17/16/022
10.1002/anie.200704501
10.1038/ncomms7043
10.1021/acs.nanolett.5b04549
10.1021/nn204323f
10.1111/nph.12797
10.1111/j.1365-313X.2011.04780.x
10.1021/nl500513n
10.1073/pnas.1701328114
10.1016/j.jplph.2017.05.007
10.1016/j.tplants.2006.02.005
10.1038/nnano.2010.24
10.1038/nnano.2013.222
10.1016/j.plantsci.2009.12.005
10.1016/S1360-1385(00)01781-7
10.3389/fpls.2014.00061
10.1146/annurev-arplant-042809-112226
10.1094/PDIS-03-15-0340-FE
10.1021/nn200262u
10.1038/nnano.2007.108
10.1186/s13007-017-0248-5
10.1105/tpc.113.114595
10.1046/j.1365-313x.2000.00786.x
10.4161/psb.23316
10.1073/pnas.1319955111
10.1007/s13593-014-0246-1
10.1038/s41565-019-0375-4
10.1094/MPMI.1999.12.8.720
10.1093/jxb/erq199
10.1039/b915139g
10.1094/PDIS-05-16-0598-RE
10.1016/j.pbi.2014.07.009
10.1016/j.agsy.2017.01.023
10.1021/acsnano.7b05723
10.1038/nnano.2015.338
10.1038/nnano.2009.326
10.1117/1.JBO.20.3.030901
10.3390/agronomy8040057
10.3390/s140304014
10.1126/science.287.5453.622
10.3390/s18072083
10.3390/s16050644
10.1038/s41477-017-0063-z
10.1042/BJ20140931
10.1021/acs.chemrev.5b00008
10.1073/pnas.95.4.1933
10.1105/tpc.106.044073
10.1007/s11104-018-3708-4
10.2134/agronj2006.0370c
10.1016/j.molp.2015.05.006
10.3389/fpls.2017.01147
10.1093/mp/sst079
10.1038/s41477-018-0189-7
10.1897/08-002.1
10.1046/j.1365-3040.1998.00380.x
10.1111/j.1365-313X.2008.03652.x
10.1073/pnas.1116437108
10.1016/j.tplants.2016.08.002
10.1073/pnas.0708586104
10.1002/smll.201702958
10.1146/annurev.pp.46.060195.000523
10.1021/acsnano.7b00569
10.1021/acssuschemeng.8b03379
10.1111/j.1399-3054.1986.tb03367.x
10.1093/jxb/ery251
10.1016/j.carbon.2015.12.027
10.1038/nnano.2015.115
10.1104/pp.16.00652
10.1093/jxb/erl004
10.1039/C7LC00930E
10.1016/j.compag.2016.08.021
10.1111/j.1365-3040.2006.01528.x
10.1016/j.saa.2018.01.073
10.1105/tpc.005579
10.7150/thno.3463
10.1074/jbc.TM117.000232
10.1038/29087
10.7554/eLife.01741
10.1016/j.tplants.2011.03.007
10.1016/j.rse.2011.10.007
10.3390/jimaging2040034
10.1021/acschembio.6b00883
10.1021/ja01072a002
10.1126/science.aat7744
10.1039/C7LC00914C
10.1111/pce.12935
10.1038/nature10947
10.1093/jxb/ers143
10.1021/ja410433b
10.1093/jxb/erl231
10.1105/tpc.13.4.907
10.1073/pnas.97.16.8849
10.1063/1.1626265
10.1093/jxb/erj026
10.1104/pp.17.00857
10.1146/annurev-arplant-042817-040047
10.1016/j.future.2013.01.010
10.1038/nnano.2013.236
10.1016/j.cell.2016.08.029
10.1038/nmat3890
10.1007/s12274-009-9009-8
10.1146/annurev-arplant-042110-103745
10.1021/acs.nanolett.5b04467
10.3389/fpls.2012.00292
10.1073/pnas.1613541114
10.1073/pnas.98.1.355
10.3390/s18010021
10.1038/lsa.2015.40
10.3390/s141120078
ContentType Journal Article
Copyright Springer Nature Limited 2019
Springer Nature Limited 2019.
Copyright_xml – notice: Springer Nature Limited 2019
– notice: Springer Nature Limited 2019.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-019-0470-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 553
ExternalDocumentID 31168083
10_1038_s41565_019_0470_6
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c475t-bb1a45c7fea7afc4d2ca10fffe98d8a0f96fc615821f55712cb1f05736d10c043
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 11:51:27 EDT 2025
Fri Jul 25 08:55:19 EDT 2025
Thu Apr 03 07:02:02 EDT 2025
Tue Jul 01 01:56:29 EDT 2025
Thu Apr 24 22:50:29 EDT 2025
Fri Feb 21 02:41:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-bb1a45c7fea7afc4d2ca10fffe98d8a0f96fc615821f55712cb1f05736d10c043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1154-7787
0000-0001-6629-0280
0000-0002-8400-8944
PMID 31168083
PQID 2235651350
PQPubID 546299
PageCount 13
ParticipantIDs proquest_miscellaneous_2250632096
proquest_journals_2235651350
pubmed_primary_31168083
crossref_primary_10_1038_s41565_019_0470_6
crossref_citationtrail_10_1038_s41565_019_0470_6
springer_journals_10_1038_s41565_019_0470_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Bush (CR134) 1995; 46
Tilman, Balzer, Hill, Befort (CR2) 2011; 108
Humplík, Lazár, Husičková, Spíchal (CR41) 2015; 11
Al-Tamimi (CR46) 2016; 7
Tripodi, Massa, Venezia, Cardi (CR108) 2018; 8
Zarco-Tejada (CR54) 2018; 4
Zhu (CR133) 2018; 9
van Loon, Geraats, Linthorst (CR68) 2006; 11
Kim, Böhmer, Hu, Nishimura, Schroeder (CR64) 2010; 61
Hong, Lee, Jackson, Lee (CR93) 2015; 4
Waadt (CR152) 2014; 3
Zhao (CR126) 2017; 3
Esser, Schnorr, Swager (CR99) 2012; 51
Liu (CR106) 2015; 10
Li (CR149) 2018; 195
Martinelli (CR50) 2015; 35
Gilroy (CR55) 2014; 19
Bour (CR35) 2016; 10
Baret, Houlès, Guérif (CR114) 2007; 58
Guillaume, Isabelle, Marc, Thierry (CR8) 2018; 41
Heikenfeld (CR26) 2018; 18
Xie (CR107) 2015; 14
Li, Zhang, Huang (CR16) 2014; 14
Zhao, Li, Yu, Cheng, He (CR42) 2016; 6
Kong (CR102) 2000; 287
Singsaas, Sharkey (CR71) 1998; 21
Nietzel (CR81) 2019; 221
Verslues, Bray (CR150) 2006; 57
Wu (CR141) 2014; 464
Shen (CR154) 2013; 6
Okumoto, Jones, Frommer (CR25) 2012; 63
Zhu (CR63) 2017; 215
Shapiguzov, Vainonen, Wrzaczek, Kangasjärvi (CR85) 2012; 3
Kruss (CR90) 2014; 136
Rolland, Baena-Gonzalez, Sheen (CR61) 2006; 57
Wu, Tito, Giraldo (CR119) 2017; 11
Chaerle, Van Der Straeten (CR40) 2000; 5
Zarco-Tejada, González-Dugo, Berni (CR44) 2012; 117
Liu, Tabakman, Welsher, Dai (CR96) 2009; 2
Jin (CR130) 2010; 5
Toyota (CR72) 2018; 361
Bellard, Bertelsmeier, Leadley, Thuiller, Courchamp (CR13) 2012; 15
Hong, Diao, Antaris, Dai (CR36) 2015; 115
Gubbi, Buyya, Marusic, Palaniswami (CR112) 2013; 29
Suzuki, Rivero, Shulaev, Blumwald, Mittler (CR4) 2014; 203
Scholthof (CR11) 2011; 12
Sankaran, Mishra, Ehsani, Davis (CR49) 2010; 72
Cattanach, Kulkarni, Kozlov, Manohar (CR103) 2006; 17
Mickelbart, Hasegawa, Bailey-Serres (CR6) 2015; 16
Delledonne, Xia, Dixon, Lamb (CR66) 1998; 394
Kwak (CR21) 2017; 10
Hatfield, Gitelson, Schepers, Walthall (CR14) 2008; 100
Loro (CR78) 2016; 171
Altangerel (CR53) 2017; 114
García-Tejero, Ortega-Arévalo, Iglesias-Contreras, Moreno, Souza, Tavira, Durán-Zuazo (CR113) 2018; 18
Li, Wu, Santana, Fahlgren, Giraldo (CR29) 2018; 10
McMillan, Calvert, Pitts (CR146) 1964; 86
Cohen, Alchanatis, Meron, Saranga, Tsipris (CR47) 2005; 56
Pajares (CR123) 2016; 2
Klessig (CR70) 2000; 97
Knoester, Pieterse, Bol, Van Loon (CR145) 1999; 12
Oren, Ceylan, Schnable, Dong (CR98) 2017; 2
Cheeseman (CR127) 2006; 57
Sanders, Brownlee, Harper (CR135) 1999; 11
Kruss (CR91) 2017; 114
White, Broadley (CR137) 2003; 92
Bandodkar, Jeerapan, You, Nuñez-Flores, Wang (CR101) 2016; 16
Deuschle (CR74) 2006; 18
Lee (CR100) 2016; 11
Thomas, Liu, Kantrow, Lancaster (CR142) 2001; 98
Giraldo (CR19) 2014; 13
Demirer, Zhang, Matos, Goh, Cunningham, Sung, Chang, Aditham, Chio, Cho, Staskawicz, Landry (CR23) 2019; 14
de San Celedonio, Abeledo, Miralles (CR7) 2018; 429
Koman (CR28) 2017; 17
Padilla, Gallardo, Peña-Fleitas, de Souza, Thompson (CR15) 2018; 18
Iverson (CR116) 2013; 8
Mittler (CR58) 2017; 22
Yagi, Shiina (CR83) 2014; 5
Cho (CR140) 2017; 12
Zhu (CR56) 2016; 167
Niu (CR151) 2018; 69
Kwak, Lew, Sweeney, Koman, Wong, Bohmert-Tatarev, Snell, Seo, Chua, Strano (CR22) 2019; 14
Kruss (CR87) 2013; 65
Matsuda, Horikawa, Saito, Nagai (CR139) 2013; 3
Smith, Mancini, Nie (CR17) 2009; 4
Yoshida, Mogami, Yamaguchi-Shinozaki (CR65) 2014; 21
Du, Liu, Xiong (CR147) 2013; 4
Havrdova (CR38) 2016; 99
Miller (CR129) 2009; 2
Smyth, Repetto, Seidel (CR132) 1986; 68
Wilson, Nadeau, Jaworski, Tromberg, Durkin (CR18) 2015; 20
Borgatta (CR118) 2018; 6
Torney, Trewyn, Lin, Wang (CR125) 2007; 2
Lin (CR67) 2017; 7
Valle (CR43) 2017; 13
Li, Wang, Weber, Gerhards (CR73) 2017; 18
Joshi, Singla-Pareek, Pareek (CR3) 2018; 293
Lelong (CR110) 2008; 8
Grimmer, John Foulkes, Paveley (CR52) 2012; 63
Knoester (CR144) 1998; 95
Lee (CR30) 2014; 14
Krebs (CR77) 2012; 69
White (CR109) 2012; 133
Howe, Major, Koo (CR69) 2018; 69
Guo, Park, Yoon, Shin (CR86) 2014; 43
Lee, Sharma, Radadia, Masel, Strano (CR105) 2008; 47
Wong (CR27) 2017; 16
Munns, James, Sirault, Furbank, Jones (CR48) 2010; 61
Chaudhuri, Hörmann, Frommer (CR76) 2011; 62
Chaudhuri (CR75) 2008; 56
Keinath (CR80) 2015; 8
Monshausen, Bibikova, Messerli, Shi, Gilroy (CR155) 2007; 104
Davison (CR32) 2010; 178
Bai, Ge, Hussain, Baenziger, Graef (CR111) 2016; 128
Fasano (CR156) 2001; 13
Walia, Waadt, Jones (CR24) 2018; 69
Son (CR88) 2011; 5
Parks (CR34) 2013; 32
Zrazhevskiy, Sena, Gao (CR92) 2010; 39
Graham (CR117) 2016; 100
Giraldo (CR20) 2015; 11
Yum (CR131) 2012; 6
Conner, Glare, Nap (CR31) 2003; 33
Larrieu (CR148) 2015; 6
Leinonen, Grant, Tagliavia, Chaves, Jones (CR45) 2006; 29
Zhang (CR89) 2013; 8
Wolfert, Ge, Verdouw, Bogaardt (CR115) 2017; 153
Zhang (CR143) 2011; 133
Jones (CR153) 2014; 3
Emmi, Gonzalez-de-Soto, Pajares, Gonzalez-de-Santos (CR122) 2014; 14
Oh (CR37) 2016; 11
Choi, Toyota, Kim, Hilleary, Gilroy (CR138) 2014; 111
CR12
CR94
Wong (CR82) 2016; 16
Kiegle, Moore, Haseloff, Tester, Knight (CR59) 2000; 23
Exposito-Rodriguez, Laissue, Yvon-Durocher, Smirnoff, Mullineaux (CR79) 2017; 8
Mahlein (CR51) 2016; 100
Tognetti, Pontis, Martínez-Noël (CR62) 2013; 8
Alhamid (CR121) 2018; 172
AbdElgawad (CR128) 2016; 7
Yu, Park, Jon (CR95) 2012; 2
Fahad (CR5) 2017; 8
Novak (CR104) 2003; 83
Meyer, Hagemann, Kruss (CR97) 2017; 11
Ibayashi (CR124) 2016; 16
van Ittersum (CR1) 2016; 113
Suzuki (CR57) 2013; 25
Lecourieux, Mazars, Pauly, Ranjeva, Pugin (CR136) 2002; 14
Chakraborty, Newton (CR9) 2011; 60
Mittler (CR60) 2011; 16
Wu, Shabala, Shabala, Giraldo (CR120) 2018; 5
Wang, Lombi, Zhao, Kopittke (CR39) 2016; 21
Griffitt, Luo, Gao, Bonzongo, Barber (CR33) 2008; 27
Fisher (CR10) 2012; 484
Yu, Lutz, Maliga (CR84) 2017; 175
JM Fasano (470_CR156) 2001; 13
M Havrdova (470_CR38) 2016; 99
L Chaerle (470_CR40) 2000; 5
P Wang (470_CR39) 2016; 21
Y Cohen (470_CR47) 2005; 56
S Kruss (470_CR87) 2013; 65
D Sanders (470_CR135) 1999; 11
A Walia (470_CR24) 2018; 69
T Matsuda (470_CR139) 2013; 3
M Knoester (470_CR144) 1998; 95
K Cattanach (470_CR103) 2006; 17
Q Zhu (470_CR63) 2017; 215
B Esser (470_CR99) 2012; 51
M Niu (470_CR151) 2018; 69
JP Giraldo (470_CR19) 2014; 13
G Hong (470_CR36) 2015; 115
JO Alhamid (470_CR121) 2018; 172
T Nietzel (470_CR81) 2019; 221
B Valle (470_CR43) 2017; 13
B Chaudhuri (470_CR76) 2011; 62
F Baret (470_CR114) 2007; 58
J Borgatta (470_CR118) 2018; 6
A-K Mahlein (470_CR51) 2016; 100
J-K Zhu (470_CR56) 2016; 167
NM Iverson (470_CR116) 2013; 8
MK Yu (470_CR95) 2012; 2
CY Lee (470_CR105) 2008; 47
S Okumoto (470_CR25) 2012; 63
K Deuschle (470_CR74) 2006; 18
Y Li (470_CR149) 2018; 195
Iván García-Tejero (470_CR113) 2018; 18
PJ White (470_CR137) 2003; 92
J Wu (470_CR141) 2014; 464
AN Parks (470_CR34) 2013; 32
Y Yagi (470_CR83) 2014; 5
JL Hatfield (470_CR14) 2008; 100
DA Smyth (470_CR132) 1986; 68
B Chaudhuri (470_CR75) 2008; 56
J Gubbi (470_CR112) 2013; 29
S Kruss (470_CR90) 2014; 136
S Chakraborty (470_CR9) 2011; 60
J Shen (470_CR154) 2013; 6
K Yum (470_CR131) 2012; 6
RJ Griffitt (470_CR33) 2008; 27
J Davison (470_CR32) 2010; 178
P Tripodi (470_CR108) 2018; 8
J Heikenfeld (470_CR26) 2018; 18
D Son (470_CR88) 2011; 5
E Oh (470_CR37) 2016; 11
M Krebs (470_CR77) 2012; 69
H Wu (470_CR119) 2017; 11
H Lee (470_CR100) 2016; 11
D Tilman (470_CR2) 2011; 108
MK Grimmer (470_CR52) 2012; 63
JH Graham (470_CR117) 2016; 100
W-G Choi (470_CR138) 2014; 111
VB Koman (470_CR28) 2017; 17
DS Bush (470_CR134) 1995; 46
T-H Kim (470_CR64) 2010; 61
N Altangerel (470_CR53) 2017; 114
AJ Conner (470_CR31) 2003; 33
H Ibayashi (470_CR124) 2016; 16
AM Smith (470_CR17) 2009; 4
S-Y Kwak (470_CR21) 2017; 10
N Al-Tamimi (470_CR46) 2016; 7
S Kruss (470_CR91) 2017; 114
R Mittler (470_CR60) 2011; 16
RH Wilson (470_CR18) 2015; 20
M Exposito-Rodriguez (470_CR79) 2017; 8
MV Mickelbart (470_CR6) 2015; 16
L Li (470_CR16) 2014; 14
PJ Zarco-Tejada (470_CR44) 2012; 117
H AbdElgawad (470_CR128) 2016; 7
S Gilroy (470_CR55) 2014; 19
Q Yu (470_CR84) 2017; 175
DF Klessig (470_CR70) 2000; 97
AJ Bandodkar (470_CR101) 2016; 16
K Lee (470_CR30) 2014; 14
GA Howe (470_CR69) 2018; 69
JF Humplík (470_CR41) 2015; 11
H Wu (470_CR120) 2018; 5
G Pajares (470_CR123) 2016; 2
GB Monshausen (470_CR155) 2007; 104
H Jin (470_CR130) 2010; 5
GR McMillan (470_CR146) 1964; 86
M Toyota (470_CR72) 2018; 361
F Rolland (470_CR61) 2006; 57
G Bai (470_CR111) 2016; 128
C Bellard (470_CR13) 2012; 15
JP Novak (470_CR104) 2003; 83
MH Wong (470_CR82) 2016; 16
FM Padilla (470_CR15) 2018; 18
J-H Cho (470_CR140) 2017; 12
E Kiegle (470_CR59) 2000; 23
MK van Ittersum (470_CR1) 2016; 113
D Lecourieux (470_CR136) 2002; 14
JM Cheeseman (470_CR127) 2006; 57
S Hong (470_CR93) 2015; 4
JA Tognetti (470_CR62) 2013; 8
JW White (470_CR109) 2012; 133
NF Keinath (470_CR80) 2015; 8
P Zrazhevskiy (470_CR92) 2010; 39
N Suzuki (470_CR57) 2013; 25
K-BG Scholthof (470_CR11) 2011; 12
Gozde S. Demirer (470_CR23) 2019; 14
H Li (470_CR73) 2017; 18
Z Liu (470_CR96) 2009; 2
M Knoester (470_CR145) 1999; 12
D Meyer (470_CR97) 2017; 11
R Munns (470_CR48) 2010; 61
M Delledonne (470_CR66) 1998; 394
470_CR12
Y Lin (470_CR67) 2017; 7
A Bour (470_CR35) 2016; 10
R Joshi (470_CR3) 2018; 293
JP Giraldo (470_CR20) 2015; 11
J Kong (470_CR102) 2000; 287
N Suzuki (470_CR4) 2014; 203
MC Fisher (470_CR10) 2012; 484
L Emmi (470_CR122) 2014; 14
G Miller (470_CR129) 2009; 2
S Oren (470_CR98) 2017; 2
C Guillaume (470_CR8) 2018; 41
I Leinonen (470_CR45) 2006; 29
Y-R Zhao (470_CR42) 2016; 6
470_CR94
CCD Lelong (470_CR110) 2008; 8
A Larrieu (470_CR148) 2015; 6
S Sankaran (470_CR49) 2010; 72
MH Wong (470_CR27) 2017; 16
T Yoshida (470_CR65) 2014; 21
S Wolfert (470_CR115) 2017; 153
F Martinelli (470_CR50) 2015; 35
J Zhang (470_CR89) 2013; 8
S Fahad (470_CR5) 2017; 8
PE Verslues (470_CR150) 2006; 57
R Waadt (470_CR152) 2014; 3
G Loro (470_CR78) 2016; 171
PJ Zarco-Tejada (470_CR54) 2018; 4
AM Jones (470_CR153) 2014; 3
C Xie (470_CR107) 2015; 14
EL Singsaas (470_CR71) 1998; 21
A Shapiguzov (470_CR85) 2012; 3
RP de San Celedonio (470_CR7) 2018; 429
H Du (470_CR147) 2013; 4
X Zhao (470_CR126) 2017; 3
R Mittler (470_CR58) 2017; 22
F Torney (470_CR125) 2007; 2
J Zhu (470_CR133) 2018; 9
Seon-Yeong Kwak (470_CR22) 2019; 14
Z Guo (470_CR86) 2014; 43
J Liu (470_CR106) 2015; 10
LC van Loon (470_CR68) 2006; 11
J Li (470_CR29) 2018; 10
J Zhang (470_CR143) 2011; 133
DD Thomas (470_CR142) 2001; 98
References_xml – volume: 114
  start-page: 3393
  year: 2017
  end-page: 3396
  ident: CR53
  article-title: diagnostics of early abiotic plant stress response via Raman spectroscopy
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 8
  start-page: e23316
  year: 2013
  ident: CR62
  article-title: Sucrose signaling in plants: a world yet to be explored
  publication-title: Plant Signal. Behav.
– volume: 32
  start-page: 1270
  year: 2013
  end-page: 1277
  ident: CR34
  article-title: Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain
  publication-title: Environ. Toxicol. Chem.
– volume: 464
  start-page: 13
  year: 2014
  end-page: 22
  ident: CR141
  article-title: Red fluorescent genetically encoded Ca indicators for use in mitochondria and endoplasmic reticulum
  publication-title: Biochem. J.
– volume: 21
  start-page: 133
  year: 2014
  end-page: 139
  ident: CR65
  article-title: ABA-dependent and ABA-independent signaling in response to osmotic stress in plants
  publication-title: Curr. Opin. Plant Biol.
– volume: 10
  start-page: 629
  year: 2015
  end-page: 636
  ident: CR106
  article-title: Syringe-injectable electronics
  publication-title: Nat. Nanotechnol.
– volume: 98
  start-page: 355
  year: 2001
  end-page: 360
  ident: CR142
  article-title: The biological lifetime of nitric oxide: Implications for the perivascular dynamics of NO and O
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 4
  start-page: 397
  year: 2013
  ident: CR147
  article-title: Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice
  publication-title: Front. Plant Sci.
– volume: 58
  start-page: 869
  year: 2007
  end-page: 880
  ident: CR114
  article-title: Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management
  publication-title: J. Exp. Bot.
– volume: 57
  start-page: 675
  year: 2006
  end-page: 709
  ident: CR61
  article-title: Sugar sensing and signaling in plants: conserved and novel mechanisms
  publication-title: Annu. Rev. Plant Biol.
– volume: 63
  start-page: 4321
  year: 2012
  end-page: 4331
  ident: CR52
  article-title: Foliar pathogenesis and plant water relations: a review
  publication-title: J. Exp. Bot.
– volume: 8
  start-page: 873
  year: 2013
  end-page: 880
  ident: CR116
  article-title: biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes
  publication-title: Nat. Nanotechnol.
– volume: 100
  start-page: S117
  year: 2008
  end-page: S131
  ident: CR14
  article-title: Application of spectral remote sensing for agronomic decisions
  publication-title: Agron. J.
– volume: 178
  start-page: 94
  year: 2010
  end-page: 98
  ident: CR32
  article-title: GM plants: science, politics and EC regulations
  publication-title: Plant Sci.
– volume: 69
  start-page: 4945
  year: 2018
  end-page: 4960
  ident: CR151
  article-title: An early ABA-induced stomatal closure, Na sequestration in leaf vein and K retention in mesophyll confer salt tissue tolerance in species
  publication-title: J. Exp. Bot.
– volume: 13
  start-page: 907
  year: 2001
  end-page: 921
  ident: CR156
  article-title: Changes in root cap pH are required for the gravity response of the Arabidopsis root
  publication-title: Plant Cell
– volume: 97
  start-page: 8849
  year: 2000
  end-page: 8855
  ident: CR70
  article-title: Nitric oxide and salicylic acid signaling in plant defense
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 92
  start-page: 487
  year: 2003
  end-page: 511
  ident: CR137
  article-title: Calcium in plants
  publication-title: Ann. Bot.
– volume: 6
  year: 2015
  ident: CR148
  article-title: A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1147
  year: 2017
  ident: CR5
  article-title: Crop production under drought and heat stress: plant responses and management options
  publication-title: Front. Plant Sci.
– volume: 13
  year: 2017
  ident: CR43
  article-title: PYM: a new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments
  publication-title: Plant Methods
– volume: 5
  start-page: 3888
  year: 2011
  end-page: 3895
  ident: CR88
  article-title: Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions
  publication-title: ACS Nano
– volume: 18
  start-page: 1050
  issue: 4
  year: 2018
  ident: CR113
  article-title: Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone
  publication-title: Sensors
– volume: 11
  start-page: 184
  year: 2006
  end-page: 191
  ident: CR68
  article-title: Ethylene as a modulator of disease resistance in plants
  publication-title: Trends Plant Sci.
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  ident: CR56
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 18
  start-page: 2314
  year: 2006
  end-page: 2325
  ident: CR74
  article-title: Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of RNA-silencing mutants
  publication-title: Plant Cell
– volume: 83
  start-page: 4026
  year: 2003
  end-page: 4028
  ident: CR104
  article-title: Nerve agent detection using networks of single-walled carbon nanotubes
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 691
  year: 1999
  end-page: 706
  ident: CR135
  article-title: Communicating with calcium
  publication-title: Plant Cell
– volume: 175
  start-page: 186
  year: 2017
  end-page: 193
  ident: CR84
  article-title: Efficient plastid transformation in rabidopsis
  publication-title: Plant Physiol.
– volume: 171
  start-page: 2317
  year: 2016
  end-page: 2330
  ident: CR78
  article-title: Chloroplast-specific Ca imaging using yellow cameleon fluorescent protein sensors reveals organelle-autonomous Ca signatures in the stroma
  publication-title: Plant Physiol.
– volume: 43
  start-page: 16
  year: 2014
  end-page: 29
  ident: CR86
  article-title: Recent progress in the development of near-infrared fluorescent probes for bioimaging applications
  publication-title: Chem. Soc. Rev.
– volume: 35
  start-page: 1
  year: 2015
  end-page: 25
  ident: CR50
  article-title: Advanced methods of plant disease detection. A review
  publication-title: Agron. Sustain. Dev.
– volume: 221
  start-page: 1649
  year: 2019
  end-page: 1664
  ident: CR81
  article-title: The fluorescent protein sensor roGFP2-Orp1 monitors H O and thiol redox integration and elucidates intracellular H O dynamics during elicitor-induced oxidative burst in Arabidopsis
  publication-title: New Phytol.
– volume: 8
  start-page: 57
  year: 2018
  ident: CR108
  article-title: Sensing technologies for precision phenotyping in vegetable crops: current status and future challenges
  publication-title: Agronomy
– volume: 12
  start-page: 1066
  year: 2017
  end-page: 1074
  ident: CR140
  article-title: The GCaMP-R family of genetically encoded ratiometric calcium indicators
  publication-title: ACS Chem. Biol.
– volume: 11
  start-page: 11283
  year: 2017
  end-page: 11297
  ident: CR119
  article-title: Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species
  publication-title: ACS Nano
– volume: 10
  start-page: 113
  year: 2017
  end-page: 140
  ident: CR21
  article-title: Nanosensor technology applied to living plant systems
  publication-title: Annu. Rev. Anal. Chem.
– volume: 394
  start-page: 585
  year: 1998
  end-page: 588
  ident: CR66
  article-title: Nitric oxide functions as a signal in plant disease resistance
  publication-title: Nature
– volume: 3
  start-page: 292
  year: 2012
  ident: CR85
  article-title: ROS-talk: how the apoplast, the chloroplast, and the nucleus get the message through
  publication-title: Front. Plant Sci.
– volume: 46
  start-page: 95
  year: 1995
  end-page: 122
  ident: CR134
  article-title: Calcium regulation in plant cells and its role in signaling
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
– volume: 4
  year: 2015
  ident: CR93
  article-title: Bioinspired optical antennas: gold plant viruses
  publication-title: Light Sci. Appl.
– volume: 133
  start-page: 567
  year: 2011
  end-page: 581
  ident: CR143
  article-title: Single molecule detection of nitric oxide enabled by d(AT) 15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes
  publication-title: J. Am. Chem. Soc.
– volume: 68
  start-page: 367
  year: 1986
  end-page: 374
  ident: CR132
  article-title: Cultivar differences in soluble sugar content of mature rice grain
  publication-title: Physiol. Plant.
– volume: 215
  start-page: 65
  year: 2017
  end-page: 72
  ident: CR63
  article-title: FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots
  publication-title: J. Plant Physiol.
– volume: 9
  start-page: 58
  year: 2018
  ident: CR133
  article-title: Characterization of sugar contents and sucrose metabolizing enzymes in developing leaves of
  publication-title: Front. Plant Sci.
– volume: 14
  start-page: 2627
  year: 2002
  end-page: 2641
  ident: CR136
  article-title: Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells
  publication-title: Plant Cell
– volume: 7
  start-page: 276
  year: 2016
  ident: CR128
  article-title: High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs
  publication-title: Front. Plant Sci.
– volume: 16
  start-page: 644
  year: 2016
  ident: CR124
  article-title: A reliable wireless control system for tomato hydroponics
  publication-title: Sensors
– volume: 6
  start-page: 819
  year: 2012
  end-page: 830
  ident: CR131
  article-title: Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose
  publication-title: ACS Nano
– volume: 5
  start-page: 1567
  year: 2018
  end-page: 1583
  ident: CR120
  article-title: Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention
  publication-title: Environ. Sci. Nano
– volume: 111
  start-page: 6497
  year: 2014
  end-page: 6502
  ident: CR138
  article-title: Salt stress-induced Ca waves are associated with rapid, long-distance root-to-shoot signaling in plants
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 6
  start-page: 14847
  year: 2018
  end-page: 14856
  ident: CR118
  article-title: Copper based nanomaterials suppress root fungal disease in watermelon ( ): role of particle morphology, composition and dissolution behavior
  publication-title: ACS Sustain. Chem. Eng.
– volume: 86
  start-page: 3602
  year: 1964
  end-page: 3605
  ident: CR146
  article-title: Detection and lifetime of enol-acetone in the photolysis of 2-pentanone vapor
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 721
  year: 2016
  end-page: 727
  ident: CR101
  article-title: Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: combining intrinsic and design-induced stretchability
  publication-title: Nano Lett.
– volume: 17
  start-page: 4123
  year: 2006
  end-page: 4128
  ident: CR103
  article-title: Flexible carbon nanotube sensors for nerve agent simulants
  publication-title: Nanotechnology
– volume: 61
  start-page: 561
  year: 2010
  end-page: 591
  ident: CR64
  article-title: Guard cell signal transduction network: advances in understanding abscisic acid, CO , and Ca signaling
  publication-title: Annu. Rev. Plant Biol.
– volume: 25
  start-page: 3553
  year: 2013
  end-page: 3569
  ident: CR57
  article-title: Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants
  publication-title: Plant Cell
– volume: 14
  start-page: 2647
  year: 2014
  end-page: 2654
  ident: CR30
  article-title: synthesis of carbon nanotube-graphite electronic devices and their integrations onto surfaces of live plants and insects
  publication-title: Nano Lett.
– volume: 72
  start-page: 1
  year: 2010
  end-page: 13
  ident: CR49
  article-title: A review of advanced techniques for detecting plant diseases
  publication-title: Comput. Electron. Agric.
– volume: 29
  start-page: 1508
  year: 2006
  end-page: 1518
  ident: CR45
  article-title: Estimating stomatal conductance with thermal imagery
  publication-title: Plant Cell Environ.
– volume: 33
  start-page: 19
  year: 2003
  end-page: 46
  ident: CR31
  article-title: The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment
  publication-title: Plant J.
– volume: 3
  start-page: e01739
  year: 2014
  ident: CR152
  article-title: FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis
  publication-title: eLife
– volume: 3
  start-page: e01741
  year: 2014
  ident: CR153
  article-title: Abscisic acid dynamics in roots detected with genetically encoded FRET sensors
  publication-title: eLife
– volume: 10
  start-page: 28279
  year: 2018
  end-page: 28289
  ident: CR29
  article-title: Standoff optical glucose sensing in photosynthetic organisms by a quantum dot fluorescent probe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 293
  start-page: 5035
  year: 2018
  end-page: 5043
  ident: CR3
  article-title: Engineering abiotic stress response in plants for biomass production
  publication-title: J. Biol. Chem.
– ident: CR94
– volume: 3
  start-page: 956
  year: 2017
  end-page: 964
  ident: CR126
  article-title: Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers
  publication-title: Nat. Plants
– volume: 19
  start-page: 623
  year: 2014
  end-page: 630
  ident: CR55
  article-title: A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling
  publication-title: Trends Plant Sci.
– volume: 12
  start-page: 720
  year: 1999
  end-page: 727
  ident: CR145
  article-title: Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application
  publication-title: Mol. Plant. Microbe Interact.
– volume: 4
  start-page: 710
  year: 2009
  end-page: 711
  ident: CR17
  article-title: Bioimaging: second window for imaging
  publication-title: Nat. Nanotechnol.
– volume: 39
  start-page: 4326
  year: 2010
  end-page: 4354
  ident: CR92
  article-title: Designing multifunctional quantum dots for bioimaging, detection, and drug delivery
  publication-title: Chem. Soc. Rev.
– volume: 65
  start-page: 1933
  year: 2013
  end-page: 1950
  ident: CR87
  article-title: Carbon nanotubes as optical biomedical sensors
  publication-title: Adv. Drug Deliv. Rev.
– volume: 5
  start-page: 61
  year: 2014
  ident: CR83
  article-title: Recent advances in the study of chloroplast gene expression and its evolution
  publication-title: Front. Plant Sci.
– volume: 8
  start-page: 3557
  year: 2008
  end-page: 3585
  ident: CR110
  article-title: Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots
  publication-title: Sensors
– volume: 195
  start-page: 172
  year: 2018
  end-page: 175
  ident: CR149
  article-title: A reagent-assisted method in SERS detection of methyl salicylate
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 14
  start-page: 1286
  year: 2015
  end-page: 1292
  ident: CR107
  article-title: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes
  publication-title: Nat. Mater.
– volume: 17
  start-page: 4015
  year: 2017
  end-page: 4024
  ident: CR28
  article-title: Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata
  publication-title: Lab Chip
– volume: 2
  start-page: 295
  year: 2007
  end-page: 300
  ident: CR125
  article-title: Mesoporous silica nanoparticles deliver DNA and chemicals into plants
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 34
  year: 2016
  ident: CR123
  article-title: Machine-vision systems selection for agricultural vehicles: a guide
  publication-title: J. Imaging
– volume: 100
  start-page: 241
  year: 2016
  end-page: 251
  ident: CR51
  article-title: Plant disease detection by imaging sensors - parallels and specific demands for precision agriculture and plant phenotyping
  publication-title: Plant Dis.
– volume: 2
  start-page: ra45
  year: 2009
  ident: CR129
  article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli
  publication-title: Sci. Signal.
– volume: 8
  start-page: 1188
  year: 2015
  end-page: 1200
  ident: CR80
  article-title: Live cell imaging with R-GECO1 sheds light on flg22- and chitin-induced transient [Ca ] patterns in
  publication-title: Mol. Plant
– volume: 41
  start-page: 1008
  year: 2018
  end-page: 1021
  ident: CR8
  article-title: Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks
  publication-title: Plant Cell Environ.
– volume: 11
  start-page: 4017
  year: 2017
  end-page: 4027
  ident: CR97
  article-title: Kinetic requirements for spatiotemporal chemical imaging with fluorescent nanosensors
  publication-title: ACS Nano
– volume: 14
  start-page: 4014
  year: 2014
  end-page: 4049
  ident: CR122
  article-title: Integrating sensory/actuation systems in agricultural vehicles
  publication-title: Sensors
– volume: 2
  start-page: 3
  year: 2012
  end-page: 44
  ident: CR95
  article-title: Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy
  publication-title: Theranostics
– volume: 108
  start-page: 20260
  year: 2011
  end-page: 20264
  ident: CR2
  article-title: Global food demand and the sustainable intensification of agriculture
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 13
  start-page: 400
  year: 2014
  end-page: 408
  ident: CR19
  article-title: Plant nanobionics approach to augment photosynthesis and biochemical sensing
  publication-title: Nat. Mater.
– volume: 8
  start-page: 959
  year: 2013
  end-page: 968
  ident: CR89
  article-title: Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes
  publication-title: Nat. Nanotechnol.
– volume: 11
  year: 2015
  ident: CR41
  article-title: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses: a review
  publication-title: Plant Methods
– ident: CR12
– volume: 15
  start-page: 365
  year: 2012
  end-page: 377
  ident: CR13
  article-title: Impacts of climate change on the future of biodiversity
  publication-title: Ecol. Lett.
– volume: 136
  start-page: 713
  year: 2014
  end-page: 724
  ident: CR90
  article-title: Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2013
  ident: CR139
  article-title: Highlighted Ca imaging with a genetically encoded ‘caged’ indicator
  publication-title: Sci. Rep.
– volume: 18
  start-page: 21
  year: 2017
  ident: CR73
  article-title: Early identification of herbicide stress in soybean ( (L.) Merr.) using chlorophyll fluorescence imaging technology
  publication-title: Sensors
– volume: 2
  start-page: 85
  year: 2009
  end-page: 120
  ident: CR96
  article-title: Carbon nanotubes in biology and medicine: and detection, imaging and drug delivery
  publication-title: Nano Res.
– volume: 56
  start-page: 1843
  year: 2005
  end-page: 1852
  ident: CR47
  article-title: Estimation of leaf water potential by thermal imagery and spatial analysis
  publication-title: J. Exp. Bot.
– volume: 7
  year: 2017
  ident: CR67
  article-title: The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi
  publication-title: Sci. Rep.
– volume: 18
  start-page: 2083
  year: 2018
  ident: CR15
  article-title: Proximal optical sensors for nitrogen management of vegetable crops: a review
  publication-title: Sensors
– volume: 16
  start-page: 237
  year: 2015
  end-page: 251
  ident: CR6
  article-title: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability
  publication-title: Nat. Rev. Genet.
– volume: 484
  start-page: 186
  year: 2012
  end-page: 194
  ident: CR10
  article-title: Emerging fungal threats to animal, plant and ecosystem health
  publication-title: Nature
– volume: 6
  year: 2016
  ident: CR42
  article-title: Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease
  publication-title: Sci. Rep.
– volume: 29
  start-page: 1645
  year: 2013
  end-page: 1660
  ident: CR112
  article-title: Internet of Things (IoT): A vision, architectural elements, and future directions
  publication-title: Future Gener. Comp. Syst.
– volume: 56
  start-page: 948
  year: 2008
  end-page: 962
  ident: CR75
  article-title: Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips
  publication-title: Plant J.
– volume: 128
  start-page: 181
  year: 2016
  end-page: 192
  ident: CR111
  article-title: A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding
  publication-title: Comput. Electron. Agric.
– volume: 115
  start-page: 10816
  year: 2015
  end-page: 10906
  ident: CR36
  article-title: Carbon nanomaterials for biological imaging and nanomedicinal therapy
  publication-title: Chem. Rev.
– volume: 95
  start-page: 1933
  year: 1998
  end-page: 1937
  ident: CR144
  article-title: Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 104
  start-page: 20996
  year: 2007
  end-page: 21001
  ident: CR155
  article-title: Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 20
  start-page: 030901
  year: 2015
  ident: CR18
  article-title: Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization
  publication-title: J. Biomed. Opt.
– volume: 287
  start-page: 622
  year: 2000
  end-page: 625
  ident: CR102
  article-title: Nanotube molecular wires as chemical sensors
  publication-title: Science
– volume: 14
  start-page: 456
  issue: 5
  year: 2019
  end-page: 464
  ident: CR23
  article-title: High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants
  publication-title: Nature Nanotechnology
– volume: 11
  start-page: 566
  year: 2016
  end-page: 572
  ident: CR100
  article-title: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy
  publication-title: Nat. Nanotechnol.
– volume: 51
  start-page: 5752
  year: 2012
  end-page: 5756
  ident: CR99
  article-title: Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 22
  start-page: 11
  year: 2017
  end-page: 19
  ident: CR58
  article-title: ROS are good
  publication-title: Trends Plant Sci.
– volume: 21
  start-page: 1181
  year: 1998
  end-page: 1188
  ident: CR71
  article-title: The regulation of isoprene emission responses to rapid leaf temperature fluctuations
  publication-title: Plant Cell Environ.
– volume: 429
  start-page: 469
  year: 2018
  end-page: 481
  ident: CR7
  article-title: Physiological traits associated with reductions in grain number in wheat and barley under waterlogging
  publication-title: Plant Soil
– volume: 69
  start-page: 497
  year: 2018
  end-page: 524
  ident: CR24
  article-title: Genetically encoded biosensors in plants: pathways to discovery
  publication-title: Annu. Rev. Plant Biol.
– volume: 21
  start-page: 699
  year: 2016
  end-page: 712
  ident: CR39
  article-title: Nanotechnology: a new opportunity in plant sciences
  publication-title: Trends Plant Sci.
– volume: 61
  start-page: 3499
  year: 2010
  end-page: 3507
  ident: CR48
  article-title: New phenotyping methods for screening wheat and barley for beneficial responses to water deficit
  publication-title: J. Exp. Bot.
– volume: 16
  start-page: 1161
  year: 2016
  end-page: 1172
  ident: CR82
  article-title: Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism
  publication-title: Nano Lett.
– volume: 133
  start-page: 101
  year: 2012
  end-page: 112
  ident: CR109
  article-title: Field-based phenomics for plant genetics research
  publication-title: Field Crops Res.
– volume: 69
  start-page: 181
  year: 2012
  end-page: 192
  ident: CR77
  article-title: FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca dynamics: improved vectors for Ca imaging in plants
  publication-title: Plant J.
– volume: 63
  start-page: 663
  year: 2012
  end-page: 706
  ident: CR25
  article-title: Quantitative imaging with fluorescent biosensors
  publication-title: Annu. Rev. Plant Biol.
– volume: 361
  start-page: 1112
  year: 2018
  end-page: 1115
  ident: CR72
  article-title: Glutamate triggers long-distance, calcium-based plant defense signaling
  publication-title: Science
– volume: 27
  start-page: 1972
  year: 2008
  end-page: 1978
  ident: CR33
  article-title: Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms
  publication-title: Environ. Toxicol. Chem.
– volume: 62
  start-page: 2411
  year: 2011
  end-page: 2417
  ident: CR76
  article-title: Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants
  publication-title: J. Exp. Bot.
– volume: 203
  start-page: 32
  year: 2014
  end-page: 43
  ident: CR4
  article-title: Abiotic and biotic stress combinations
  publication-title: New Phytol.
– volume: 14
  start-page: 20078
  year: 2014
  end-page: 20111
  ident: CR16
  article-title: A review of imaging techniques for plant phenotyping
  publication-title: Sensors
– volume: 7
  year: 2016
  ident: CR46
  article-title: Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping
  publication-title: Nat. Commun.
– volume: 5
  start-page: 302
  year: 2010
  end-page: 309
  ident: CR130
  article-title: Detection of single-molecule H O signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 495
  year: 2000
  end-page: 501
  ident: CR40
  article-title: Imaging techniques and the early detection of plant stress
  publication-title: Trends Plant Sci.
– volume: 16
  start-page: 264
  year: 2017
  end-page: 272
  ident: CR27
  article-title: Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics
  publication-title: Nat. Mater.
– volume: 114
  start-page: 1789
  year: 2017
  end-page: 1794
  ident: CR91
  article-title: High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 10
  start-page: 245
  year: 2016
  end-page: 255
  ident: CR35
  article-title: Toxicity of CeO nanoparticles on a freshwater experimental trophic chain: a study in environmentally relevant conditions through the use of mesocosms
  publication-title: Nanotoxicology
– volume: 11
  start-page: 479
  year: 2016
  end-page: 486
  ident: CR37
  article-title: Meta-analysis of cellular toxicity for cadmium-containing quantum dots
  publication-title: Nat. Nanotechnol.
– volume: 172
  start-page: 124
  year: 2018
  end-page: 133
  ident: CR121
  article-title: Cellulose nanocrystals reduce cold damage to reproductive buds in fruit crops
  publication-title: Biosyst. Eng.
– volume: 18
  start-page: 217
  year: 2018
  end-page: 248
  ident: CR26
  article-title: Wearable sensors: modalities, challenges, and prospects
  publication-title: Lab Chip
– volume: 99
  start-page: 238
  year: 2016
  end-page: 248
  ident: CR38
  article-title: Toxicity of carbon dots – Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle
  publication-title: Carbon
– volume: 113
  start-page: 14964
  year: 2016
  end-page: 14969
  ident: CR1
  article-title: Can sub-Saharan Africa feed itself?
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 12
  start-page: 938
  year: 2011
  end-page: 954
  ident: CR11
  article-title: Top 10 plant viruses in molecular plant pathology
  publication-title: Mol. Plant Pathol.
– volume: 153
  start-page: 69
  year: 2017
  end-page: 80
  ident: CR115
  article-title: Big data in smart farming – A review
  publication-title: Agric. Syst.
– volume: 4
  start-page: 432
  year: 2018
  end-page: 439
  ident: CR54
  article-title: Previsual symptoms of infection revealed in spectral plant-trait alterations
  publication-title: Nat. Plants
– volume: 2
  start-page: 1700223
  year: 2017
  ident: CR98
  article-title: High-resolution patterning and transferring of graphene-based nanomaterials onto tape toward roll-to-roll production of tape-based wearable sensors
  publication-title: Adv. Mater. Technol.
– volume: 100
  start-page: 2442
  year: 2016
  end-page: 2447
  ident: CR117
  article-title: Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees
  publication-title: Plant Dis.
– volume: 6
  start-page: 1419
  year: 2013
  end-page: 1437
  ident: CR154
  article-title: Organelle pH in the Arabidopsis endomembrane system
  publication-title: Mol. Plant
– volume: 57
  start-page: 201
  year: 2006
  end-page: 212
  ident: CR150
  article-title: Role of abscisic acid (ABA) and ABA-insensitive loci in low water potential-induced ABA and proline accumulation
  publication-title: J. Exp. Bot.
– volume: 14
  start-page: 447
  issue: 5
  year: 2019
  end-page: 455
  ident: CR22
  article-title: Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers
  publication-title: Nature Nanotechnology
– volume: 60
  start-page: 2
  year: 2011
  end-page: 14
  ident: CR9
  article-title: Climate change, plant diseases and food security: an overview: Climate change and food security
  publication-title: Plant Pathol.
– volume: 16
  start-page: 300
  year: 2011
  end-page: 309
  ident: CR60
  article-title: ROS signaling: the new wave?
  publication-title: Trends Plant Sci.
– volume: 11
  start-page: 3973
  year: 2015
  end-page: 3984
  ident: CR20
  article-title: A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: application to monitoring
  publication-title: Small
– volume: 8
  year: 2017
  ident: CR79
  article-title: Photosynthesis-dependent H O transfer from chloroplasts to nuclei provides a high-light signalling mechanism
  publication-title: Nat. Commun.
– volume: 117
  start-page: 322
  year: 2012
  end-page: 337
  ident: CR44
  article-title: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera
  publication-title: Remote Sens. Environ.
– volume: 57
  start-page: 2435
  year: 2006
  end-page: 2444
  ident: CR127
  article-title: Hydrogen peroxide concentrations in leaves under natural conditions
  publication-title: J. Exp. Bot.
– volume: 69
  start-page: 387
  year: 2018
  end-page: 415
  ident: CR69
  article-title: Modularity in jasmonate signaling for multistress resilience
  publication-title: Annu. Rev. Plant Biol.
– volume: 47
  start-page: 5018
  year: 2008
  end-page: 5021
  ident: CR105
  article-title: On-chip micro gas chromatograph enabled by a noncovalently functionalized single-walled carbon nanotube sensor array
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 23
  start-page: 267
  year: 2000
  end-page: 278
  ident: CR59
  article-title: Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root
  publication-title: Plant J.
– volume: 60
  start-page: 2
  year: 2011
  ident: 470_CR9
  publication-title: Plant Pathol.
  doi: 10.1111/j.1365-3059.2010.02411.x
– volume: 12
  start-page: 938
  year: 2011
  ident: 470_CR11
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2011.00752.x
– volume: 15
  start-page: 365
  year: 2012
  ident: 470_CR13
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2011.01736.x
– volume: 8
  year: 2017
  ident: 470_CR79
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00074-w
– volume: 14
  start-page: 456
  issue: 5
  year: 2019
  ident: 470_CR23
  publication-title: Nature Nanotechnology
  doi: 10.1038/s41565-019-0382-5
– volume: 7
  year: 2016
  ident: 470_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13342
– volume: 32
  start-page: 1270
  year: 2013
  ident: 470_CR34
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.2174
– volume: 7
  year: 2017
  ident: 470_CR67
  publication-title: Sci. Rep.
– volume: 113
  start-page: 14964
  year: 2016
  ident: 470_CR1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1610359113
– volume: 8
  start-page: 3557
  year: 2008
  ident: 470_CR110
  publication-title: Sensors
  doi: 10.3390/s8053557
– volume: 19
  start-page: 623
  year: 2014
  ident: 470_CR55
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.06.013
– volume: 21
  start-page: 699
  year: 2016
  ident: 470_CR39
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.04.005
– volume: 11
  start-page: 566
  year: 2016
  ident: 470_CR100
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.38
– volume: 5
  start-page: 1567
  year: 2018
  ident: 470_CR120
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C8EN00323H
– volume: 16
  start-page: 264
  year: 2017
  ident: 470_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4771
– volume: 57
  start-page: 675
  year: 2006
  ident: 470_CR61
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105441
– volume: 2
  start-page: 1700223
  year: 2017
  ident: 470_CR98
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201700223
– volume: 9
  start-page: 58
  year: 2018
  ident: 470_CR133
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00058
– volume: 56
  start-page: 1843
  year: 2005
  ident: 470_CR47
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri174
– volume: 6
  year: 2016
  ident: 470_CR42
  publication-title: Sci. Rep.
– volume: 14
  start-page: 1286
  year: 2015
  ident: 470_CR107
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4427
– volume: 18
  start-page: 1050
  issue: 4
  year: 2018
  ident: 470_CR113
  publication-title: Sensors
  doi: 10.3390/s18041050
– volume: 11
  start-page: 691
  year: 1999
  ident: 470_CR135
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.4.691
– volume: 10
  start-page: 28279
  year: 2018
  ident: 470_CR29
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07179
– volume: 11
  start-page: 3973
  year: 2015
  ident: 470_CR20
  publication-title: Small
  doi: 10.1002/smll.201403276
– volume: 221
  start-page: 1649
  year: 2019
  ident: 470_CR81
  publication-title: New Phytol.
  doi: 10.1111/nph.15550
– volume: 133
  start-page: 567
  year: 2011
  ident: 470_CR143
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1084942
– volume: 133
  start-page: 101
  year: 2012
  ident: 470_CR109
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2012.04.003
– volume: 62
  start-page: 2411
  year: 2011
  ident: 470_CR76
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq444
– volume: 10
  start-page: 113
  year: 2017
  ident: 470_CR21
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-061516-045310
– volume: 10
  start-page: 245
  year: 2016
  ident: 470_CR35
  publication-title: Nanotoxicology
– volume: 16
  start-page: 237
  year: 2015
  ident: 470_CR6
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3901
– volume: 69
  start-page: 497
  year: 2018
  ident: 470_CR24
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042817-040104
– volume: 43
  start-page: 16
  year: 2014
  ident: 470_CR86
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60271K
– volume: 51
  start-page: 5752
  year: 2012
  ident: 470_CR99
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201201042
– volume: 72
  start-page: 1
  year: 2010
  ident: 470_CR49
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.02.007
– volume: 172
  start-page: 124
  year: 2018
  ident: 470_CR121
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.06.006
– volume: 3
  start-page: e01739
  year: 2014
  ident: 470_CR152
  publication-title: eLife
  doi: 10.7554/eLife.01739
– volume: 65
  start-page: 1933
  year: 2013
  ident: 470_CR87
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.07.015
– volume: 92
  start-page: 487
  year: 2003
  ident: 470_CR137
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcg164
– ident: 470_CR12
– volume: 33
  start-page: 19
  year: 2003
  ident: 470_CR31
  publication-title: Plant J.
  doi: 10.1046/j.0960-7412.2002.001607.x
– volume: 17
  start-page: 4123
  year: 2006
  ident: 470_CR103
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/16/022
– volume: 47
  start-page: 5018
  year: 2008
  ident: 470_CR105
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200704501
– volume: 6
  year: 2015
  ident: 470_CR148
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7043
– volume: 16
  start-page: 721
  year: 2016
  ident: 470_CR101
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04549
– volume: 6
  start-page: 819
  year: 2012
  ident: 470_CR131
  publication-title: ACS Nano
  doi: 10.1021/nn204323f
– volume: 203
  start-page: 32
  year: 2014
  ident: 470_CR4
  publication-title: New Phytol.
  doi: 10.1111/nph.12797
– volume: 69
  start-page: 181
  year: 2012
  ident: 470_CR77
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04780.x
– volume: 14
  start-page: 2647
  year: 2014
  ident: 470_CR30
  publication-title: Nano Lett.
  doi: 10.1021/nl500513n
– volume: 114
  start-page: 3393
  year: 2017
  ident: 470_CR53
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1701328114
– volume: 215
  start-page: 65
  year: 2017
  ident: 470_CR63
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2017.05.007
– volume: 11
  start-page: 184
  year: 2006
  ident: 470_CR68
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2006.02.005
– volume: 5
  start-page: 302
  year: 2010
  ident: 470_CR130
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.24
– volume: 8
  start-page: 873
  year: 2013
  ident: 470_CR116
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.222
– volume: 178
  start-page: 94
  year: 2010
  ident: 470_CR32
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2009.12.005
– volume: 7
  start-page: 276
  year: 2016
  ident: 470_CR128
  publication-title: Front. Plant Sci.
– volume: 5
  start-page: 495
  year: 2000
  ident: 470_CR40
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(00)01781-7
– volume: 5
  start-page: 61
  year: 2014
  ident: 470_CR83
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00061
– volume: 61
  start-page: 561
  year: 2010
  ident: 470_CR64
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042809-112226
– volume: 100
  start-page: 241
  year: 2016
  ident: 470_CR51
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-03-15-0340-FE
– volume: 5
  start-page: 3888
  year: 2011
  ident: 470_CR88
  publication-title: ACS Nano
  doi: 10.1021/nn200262u
– volume: 2
  start-page: 295
  year: 2007
  ident: 470_CR125
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.108
– volume: 13
  year: 2017
  ident: 470_CR43
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0248-5
– volume: 25
  start-page: 3553
  year: 2013
  ident: 470_CR57
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.114595
– volume: 23
  start-page: 267
  year: 2000
  ident: 470_CR59
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2000.00786.x
– volume: 8
  start-page: e23316
  year: 2013
  ident: 470_CR62
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.23316
– volume: 111
  start-page: 6497
  year: 2014
  ident: 470_CR138
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1319955111
– volume: 35
  start-page: 1
  year: 2015
  ident: 470_CR50
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0246-1
– volume: 14
  start-page: 447
  issue: 5
  year: 2019
  ident: 470_CR22
  publication-title: Nature Nanotechnology
  doi: 10.1038/s41565-019-0375-4
– volume: 12
  start-page: 720
  year: 1999
  ident: 470_CR145
  publication-title: Mol. Plant. Microbe Interact.
  doi: 10.1094/MPMI.1999.12.8.720
– volume: 61
  start-page: 3499
  year: 2010
  ident: 470_CR48
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq199
– volume: 39
  start-page: 4326
  year: 2010
  ident: 470_CR92
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b915139g
– volume: 100
  start-page: 2442
  year: 2016
  ident: 470_CR117
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-05-16-0598-RE
– volume: 21
  start-page: 133
  year: 2014
  ident: 470_CR65
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2014.07.009
– volume: 153
  start-page: 69
  year: 2017
  ident: 470_CR115
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2017.01.023
– volume: 11
  start-page: 11283
  year: 2017
  ident: 470_CR119
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05723
– volume: 11
  start-page: 479
  year: 2016
  ident: 470_CR37
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.338
– volume: 4
  start-page: 710
  year: 2009
  ident: 470_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.326
– volume: 20
  start-page: 030901
  year: 2015
  ident: 470_CR18
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.20.3.030901
– volume: 8
  start-page: 57
  year: 2018
  ident: 470_CR108
  publication-title: Agronomy
  doi: 10.3390/agronomy8040057
– volume: 14
  start-page: 4014
  year: 2014
  ident: 470_CR122
  publication-title: Sensors
  doi: 10.3390/s140304014
– volume: 3
  year: 2013
  ident: 470_CR139
  publication-title: Sci. Rep.
– volume: 287
  start-page: 622
  year: 2000
  ident: 470_CR102
  publication-title: Science
  doi: 10.1126/science.287.5453.622
– volume: 18
  start-page: 2083
  year: 2018
  ident: 470_CR15
  publication-title: Sensors
  doi: 10.3390/s18072083
– volume: 16
  start-page: 644
  year: 2016
  ident: 470_CR124
  publication-title: Sensors
  doi: 10.3390/s16050644
– volume: 3
  start-page: 956
  year: 2017
  ident: 470_CR126
  publication-title: Nat. Plants
  doi: 10.1038/s41477-017-0063-z
– volume: 464
  start-page: 13
  year: 2014
  ident: 470_CR141
  publication-title: Biochem. J.
  doi: 10.1042/BJ20140931
– volume: 115
  start-page: 10816
  year: 2015
  ident: 470_CR36
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00008
– volume: 95
  start-page: 1933
  year: 1998
  ident: 470_CR144
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.4.1933
– volume: 18
  start-page: 2314
  year: 2006
  ident: 470_CR74
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.044073
– volume: 429
  start-page: 469
  year: 2018
  ident: 470_CR7
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3708-4
– volume: 100
  start-page: S117
  year: 2008
  ident: 470_CR14
  publication-title: Agron. J.
  doi: 10.2134/agronj2006.0370c
– volume: 8
  start-page: 1188
  year: 2015
  ident: 470_CR80
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2015.05.006
– volume: 8
  start-page: 1147
  year: 2017
  ident: 470_CR5
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01147
– volume: 6
  start-page: 1419
  year: 2013
  ident: 470_CR154
  publication-title: Mol. Plant
  doi: 10.1093/mp/sst079
– volume: 4
  start-page: 432
  year: 2018
  ident: 470_CR54
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0189-7
– volume: 4
  start-page: 397
  year: 2013
  ident: 470_CR147
  publication-title: Front. Plant Sci.
– volume: 11
  year: 2015
  ident: 470_CR41
  publication-title: Plant Methods
– volume: 27
  start-page: 1972
  year: 2008
  ident: 470_CR33
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/08-002.1
– volume: 21
  start-page: 1181
  year: 1998
  ident: 470_CR71
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.1998.00380.x
– volume: 56
  start-page: 948
  year: 2008
  ident: 470_CR75
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03652.x
– volume: 108
  start-page: 20260
  year: 2011
  ident: 470_CR2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1116437108
– volume: 22
  start-page: 11
  year: 2017
  ident: 470_CR58
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.002
– volume: 104
  start-page: 20996
  year: 2007
  ident: 470_CR155
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0708586104
– ident: 470_CR94
  doi: 10.1002/smll.201702958
– volume: 46
  start-page: 95
  year: 1995
  ident: 470_CR134
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.pp.46.060195.000523
– volume: 11
  start-page: 4017
  year: 2017
  ident: 470_CR97
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00569
– volume: 6
  start-page: 14847
  year: 2018
  ident: 470_CR118
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03379
– volume: 68
  start-page: 367
  year: 1986
  ident: 470_CR132
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1986.tb03367.x
– volume: 69
  start-page: 4945
  year: 2018
  ident: 470_CR151
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery251
– volume: 99
  start-page: 238
  year: 2016
  ident: 470_CR38
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.027
– volume: 10
  start-page: 629
  year: 2015
  ident: 470_CR106
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.115
– volume: 171
  start-page: 2317
  year: 2016
  ident: 470_CR78
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00652
– volume: 57
  start-page: 2435
  year: 2006
  ident: 470_CR127
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl004
– volume: 17
  start-page: 4015
  year: 2017
  ident: 470_CR28
  publication-title: Lab Chip
  doi: 10.1039/C7LC00930E
– volume: 128
  start-page: 181
  year: 2016
  ident: 470_CR111
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.08.021
– volume: 29
  start-page: 1508
  year: 2006
  ident: 470_CR45
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2006.01528.x
– volume: 195
  start-page: 172
  year: 2018
  ident: 470_CR149
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2018.01.073
– volume: 14
  start-page: 2627
  year: 2002
  ident: 470_CR136
  publication-title: Plant Cell
  doi: 10.1105/tpc.005579
– volume: 2
  start-page: 3
  year: 2012
  ident: 470_CR95
  publication-title: Theranostics
  doi: 10.7150/thno.3463
– volume: 293
  start-page: 5035
  year: 2018
  ident: 470_CR3
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.TM117.000232
– volume: 394
  start-page: 585
  year: 1998
  ident: 470_CR66
  publication-title: Nature
  doi: 10.1038/29087
– volume: 3
  start-page: e01741
  year: 2014
  ident: 470_CR153
  publication-title: eLife
  doi: 10.7554/eLife.01741
– volume: 16
  start-page: 300
  year: 2011
  ident: 470_CR60
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2011.03.007
– volume: 117
  start-page: 322
  year: 2012
  ident: 470_CR44
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.007
– volume: 2
  start-page: 34
  year: 2016
  ident: 470_CR123
  publication-title: J. Imaging
  doi: 10.3390/jimaging2040034
– volume: 12
  start-page: 1066
  year: 2017
  ident: 470_CR140
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b00883
– volume: 86
  start-page: 3602
  year: 1964
  ident: 470_CR146
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01072a002
– volume: 361
  start-page: 1112
  year: 2018
  ident: 470_CR72
  publication-title: Science
  doi: 10.1126/science.aat7744
– volume: 18
  start-page: 217
  year: 2018
  ident: 470_CR26
  publication-title: Lab Chip
  doi: 10.1039/C7LC00914C
– volume: 41
  start-page: 1008
  year: 2018
  ident: 470_CR8
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12935
– volume: 484
  start-page: 186
  year: 2012
  ident: 470_CR10
  publication-title: Nature
  doi: 10.1038/nature10947
– volume: 63
  start-page: 4321
  year: 2012
  ident: 470_CR52
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers143
– volume: 136
  start-page: 713
  year: 2014
  ident: 470_CR90
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410433b
– volume: 58
  start-page: 869
  year: 2007
  ident: 470_CR114
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl231
– volume: 13
  start-page: 907
  year: 2001
  ident: 470_CR156
  publication-title: Plant Cell
  doi: 10.1105/tpc.13.4.907
– volume: 97
  start-page: 8849
  year: 2000
  ident: 470_CR70
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.16.8849
– volume: 83
  start-page: 4026
  year: 2003
  ident: 470_CR104
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1626265
– volume: 57
  start-page: 201
  year: 2006
  ident: 470_CR150
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj026
– volume: 2
  start-page: ra45
  year: 2009
  ident: 470_CR129
  publication-title: Sci. Signal.
– volume: 175
  start-page: 186
  year: 2017
  ident: 470_CR84
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00857
– volume: 69
  start-page: 387
  year: 2018
  ident: 470_CR69
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042817-040047
– volume: 29
  start-page: 1645
  year: 2013
  ident: 470_CR112
  publication-title: Future Gener. Comp. Syst.
  doi: 10.1016/j.future.2013.01.010
– volume: 8
  start-page: 959
  year: 2013
  ident: 470_CR89
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.236
– volume: 167
  start-page: 313
  year: 2016
  ident: 470_CR56
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 13
  start-page: 400
  year: 2014
  ident: 470_CR19
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3890
– volume: 2
  start-page: 85
  year: 2009
  ident: 470_CR96
  publication-title: Nano Res.
  doi: 10.1007/s12274-009-9009-8
– volume: 63
  start-page: 663
  year: 2012
  ident: 470_CR25
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042110-103745
– volume: 16
  start-page: 1161
  year: 2016
  ident: 470_CR82
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04467
– volume: 3
  start-page: 292
  year: 2012
  ident: 470_CR85
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2012.00292
– volume: 114
  start-page: 1789
  year: 2017
  ident: 470_CR91
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1613541114
– volume: 98
  start-page: 355
  year: 2001
  ident: 470_CR142
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.98.1.355
– volume: 18
  start-page: 21
  year: 2017
  ident: 470_CR73
  publication-title: Sensors
  doi: 10.3390/s18010021
– volume: 4
  year: 2015
  ident: 470_CR93
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2015.40
– volume: 14
  start-page: 20078
  year: 2014
  ident: 470_CR16
  publication-title: Sensors
  doi: 10.3390/s141120078
SSID ssj0052924
Score 2.67757
SecondaryResourceType review_article
Snippet Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 541
SubjectTerms 631/61/350
631/61/350/1057
631/61/350/2093
631/61/350/354
631/61/350/59
Agricultural industry
Agricultural production
Agrochemicals
Biosensing Techniques - methods
Biotechnology - methods
Chemistry and Materials Science
Coding
Crop Production - methods
Crops, Agricultural - genetics
Crops, Agricultural - growth & development
Electronic devices
Electronic equipment
Genetic code
Humans
Materials Science
Nanomaterials
Nanotechnology
Nanotechnology - methods
Nanotechnology and Microengineering
New technology
Optical communication
Optimization
Organic chemistry
Parameter sensitivity
Performance assessment
Phenotyping
Plants, Genetically Modified - genetics
Plants, Genetically Modified - growth & development
Productivity
R&D
Research & development
Resource efficiency
Review Article
Sensors
Smart sensors
Temporal resolution
Title Nanobiotechnology approaches for engineering smart plant sensors
URI https://link.springer.com/article/10.1038/s41565-019-0470-6
https://www.ncbi.nlm.nih.gov/pubmed/31168083
https://www.proquest.com/docview/2235651350
https://www.proquest.com/docview/2250632096
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZ4XOCAeFMYqEicQBVNkzTtCRhiTEhMCIG0W9WmyWlsY93-P3ZfAyG4tIembWQ7yWc7-QxwIdFKQk7HPkKrPYGA1IuyUHihEpnJZR4oSQecnwdh_108DeWwDrgV9bbKZk4sJ-p8oilGfo3LGGIPxqV_M_30qGoUZVfrEhqrsE7UZbSlSw1bh0sGcVXUVonIQ1dMNVlNHl0X5LjQtjVKDSj0oH6uS7_A5q9Eabn-9LZhqwaO7l2l6R1YMeNd2PxGJ7gHtzhVEqvSvA2Xuw1luClcRKeuWTZ3iw-0Gnc6QtG6BTqzk1mxD--9h7f7vldXSPC0UHLuZRlLhdTKmlSlVos80CnzrbUmjvIo9W2MGkDMEgXMSqlYoDNmiQIxzJmvfcEPYG08GZsjcJnylcrwszzjwioW2zjOidwuR3GlyjrgN_JJdE0fTlUsRkmZxuZRUok0QZEmJNIkdOCyfWVacWf817jTCD2ph1GRLJXuwHn7GAcAZTXSsZksqI1EmBWgK-bAYaWs9m-cMSotwh24arS3_PifXTn-vysnsBGUdkOhmA6szWcLc4rIZJ6dleaH16j3eAbrd71ud4D37sPg5fULnCngpQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCAqU0AeuVC6gqPErTg4VRYVl-zy1Um8mcexT2V2arRB_qr-xM8l6F1TRW89xHGvm8zw88TcA2xpRkku69pEHlyoMSNOizlWaG1X7RjfCaLrgfHKaD8_V4YW-WIKbeBeGfquMNrEz1M3Y0Rn5DroxjD241Nnnya-UukZRdTW20OhhceT__MaUrd09-Ir6_SDE4NvZ_jCddRVInTJ6mtY1r5R2JvjKVMGpRriKZyEEXxZNUWWhxFWjny8ED1obLlzNA9EG5g3PXKYkzvsIHispS9pRxeB7tPxalH0TXaOKFFM_E6uosthpKVGi3-SoFGEwY_vXD94Jbu8UZjt_N3gBz2eBKvvSI-slLPnRCjz7i77wFeyhaSYWp-n8eJ5FinLfMoyGmV8MZ-1PRCmbXKIqWYvJ8_iqfQ3nDyK7N7A8Go_8W2DcZMbUOK2spQqGl6EsGyLTa1BclQkJZFE-1s3oyqlrxqXtyuaysL1ILYrUkkhtnsDH-SuTnqvjvsHrUeh2tm1buwBZAlvzx7jhqIpSjfz4msZoDOsEpn4JrPbKmn9Nck6tTGQCn6L2FpP_dynv7l_Ke3gyPDs5tscHp0dr8FR0GKJjoHVYnl5d-w2Miqb1ZgdFBj8eGvu344gayg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJwQJRHCX0ZCS6gaONXnBwqitquWgoVByrtzSSOfSq7S7MV4q_113UmrwVV9NZzHMf55rNnxmPPALzVyJJU0rWPNLhYoUEaZ2Wq4tSo0le6EkbTBeevZ-nxufo80ZMVuO7vwtCxyn5NbBbqauZoj3yEagxtDy51MgrdsYhvh-OP818xVZCiSGtfTqOlyKn_8xvdt3rv5BBl_U6I8dH3g-O4qzAQO2X0Ii5LXijtTPCFKYJTlXAFT0IIPs-qrEhCjn-AOj8TPGhtuHAlD5RCMK144hIlsd8HsGYkDgznkpkMzp4WeVtQ16gsRjfQ9BFVmY1qcproyByFJQx6b__qxFuG7q0gbaP7xk_hSWe0sk8ty9ZhxU-fweO_Uhk-h31cpimj02LYqmd9unJfM7SMmV82Z_VPZCybX6BYWY2O9OyyfgHn94LdS1idzqb-FTBuEmNK7FaWUgXD85DnFSXWqxCuwoQIkh4f67rU5VRB48I2IXSZ2RZSi5BagtSmEbwfXpm3eTvuarzVg267KVzbJeEieDM8xslHEZVi6mdX1EajiSfQDYxgoxXW8DXJOZU1kRF86KW37Py_Q3l991B24SGy3n45OTvdhEeioRDtCG3B6uLyym-jgbQodxomMvhx39S_Afa-Hvc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanobiotechnology+approaches+for+engineering+smart+plant+sensors&rft.jtitle=Nature+nanotechnology&rft.au=Giraldo%2C+Juan+Pablo&rft.au=Wu%2C+Honghong&rft.au=Newkirk%2C+Gregory+Michael&rft.au=Kruss%2C+Sebastian&rft.date=2019-06-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=14&rft.issue=6&rft.spage=541&rft.epage=553&rft_id=info:doi/10.1038%2Fs41565-019-0470-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_019_0470_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon