(R)-Ketamine Induces a Greater Increase in Prefrontal 5-HT Release Than (S)-Ketamine and Ketamine Metabolites via an AMPA Receptor-Independent Mechanism
Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine'...
Saved in:
Published in | The international journal of neuropsychopharmacology Vol. 22; no. 10; pp. 665 - 674 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice.
The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis.
(R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine.
(R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites. |
---|---|
AbstractList | Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice.
The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis.
(R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine.
(R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites. Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice.BACKGROUNDAlthough recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice.The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis.METHODSThe extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis.(R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine.RESULTS(R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine.(R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites.CONCLUSIONS(R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites. Background Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine’s action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice. Methods The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis. Results (R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine. Conclusions (R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites. |
Author | Ago, Yukio Seiriki, Kaoru Yamaguchi, Takumi Tsukada, Shinji Tanaka, Tatsunori Kasai, Atsushi Igarashi, Hisato Nakazawa, Takanobu Higuchi, Momoko Hashimoto, Hitoshi Tanabe, Wataru Yokoyama, Rei Hashimoto, Kenji Nakagawa, Shinsaku |
AuthorAffiliation | 7 Division of Bioscience, Institute for Datability Science, Osaka University , Suita, Osaka, Japan 1 Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka, Japan 3 Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University , Suita, Osaka, Japan 8 Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University , Suita, Osaka, Japan 5 Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health , Chiba, Japan 6 Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui , Suita, Osaka, Japan 2 Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka, Japan 4 Department of |
AuthorAffiliation_xml | – name: 5 Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health , Chiba, Japan – name: 6 Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui , Suita, Osaka, Japan – name: 3 Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University , Suita, Osaka, Japan – name: 4 Department of Pharmacology, Graduate School of Dentistry, Osaka University , Suita, Osaka, Japan – name: 8 Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University , Suita, Osaka, Japan – name: 1 Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka, Japan – name: 2 Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka, Japan – name: 7 Division of Bioscience, Institute for Datability Science, Osaka University , Suita, Osaka, Japan |
Author_xml | – sequence: 1 givenname: Yukio orcidid: 0000-0001-7562-4000 surname: Ago fullname: Ago, Yukio organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 2 givenname: Wataru surname: Tanabe fullname: Tanabe, Wataru organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 3 givenname: Momoko surname: Higuchi fullname: Higuchi, Momoko organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 4 givenname: Shinji surname: Tsukada fullname: Tsukada, Shinji organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 5 givenname: Tatsunori surname: Tanaka fullname: Tanaka, Tatsunori organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 6 givenname: Takumi surname: Yamaguchi fullname: Yamaguchi, Takumi organization: Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 7 givenname: Hisato surname: Igarashi fullname: Igarashi, Hisato organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 8 givenname: Rei surname: Yokoyama fullname: Yokoyama, Rei organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 9 givenname: Kaoru surname: Seiriki fullname: Seiriki, Kaoru organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka, Japan – sequence: 10 givenname: Atsushi orcidid: 0000-0002-1612-3078 surname: Kasai fullname: Kasai, Atsushi organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 11 givenname: Takanobu orcidid: 0000-0003-4863-1277 surname: Nakazawa fullname: Nakazawa, Takanobu organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan – sequence: 12 givenname: Shinsaku surname: Nakagawa fullname: Nakagawa, Shinsaku organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 13 givenname: Kenji surname: Hashimoto fullname: Hashimoto, Kenji organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan – sequence: 14 givenname: Hitoshi orcidid: 0000-0001-6548-4016 surname: Hashimoto fullname: Hashimoto, Hitoshi organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan, Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan, Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan, Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31325908$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhi1URD_gxB1Z4rIIhdpxnMQXpFUFbUUrqrKcrVlnQr3K2sF2KpVfws_F2y2rUnGxxzPPvJ7RzCHZc94hIa85-8CZEsd25cbj8e4Xq_gzcsCrWhWSc753b_OCV7LZJ4cxrhgrKynqF2RfcFFKxdoD8nt2_a74ggnW1iE9d91kMFKgpwEhYcgek62I1Dp6FbAP3iUYqCzOFvQah_vQ4gYcnX17pAOuo7vHZTaWfrApC99ayEE6v7ya53SDY_KhyL_iiPlwKcMmq9m4fkme9zBEfPVwH5Hvnz8tTs6Ki6-n5yfzi8JUjUzFErpWqrpZ9pwJJWSvWlWLspOdUWBk20NXSYS-Y8IYVKoFrLED7EzDRNmCOCIft7rjtFxndy4iwKDHYNcQ7rQHq_-NOHujf_hbXbdlyUWbBWYPAsH_nDAmvbbR4DCAQz9FXZY1V01dsSqjb5-gKz8Fl9vTgteqbWXJeKbePK5oV8rfoWXg_RYwwceYh7JDONObldCbldDblcg0f0IbmyBZv2nHDv_N-QN9mL06 |
CitedBy_id | crossref_primary_10_1007_s00213_022_06098_5 crossref_primary_10_1177_0269881120967857 crossref_primary_10_1016_j_neuropharm_2021_108936 crossref_primary_10_1016_j_pbb_2020_172927 crossref_primary_10_3390_biom13091411 crossref_primary_10_1007_s00406_023_01629_3 crossref_primary_10_3389_fnbeh_2021_759466 crossref_primary_10_1016_j_neuropharm_2022_109313 crossref_primary_10_2147_NSS_S341161 crossref_primary_10_1016_j_bbr_2021_113651 crossref_primary_10_1016_j_pharma_2023_10_008 crossref_primary_10_1111_bph_17324 crossref_primary_10_1016_j_neuropharm_2022_109153 crossref_primary_10_1016_j_neuropharm_2022_109351 crossref_primary_10_1016_j_bcp_2022_114963 crossref_primary_10_1124_pharmrev_120_000056 crossref_primary_10_1051_jbio_2023026 crossref_primary_10_1016_j_euroneuro_2021_01_005 crossref_primary_10_1124_pharmrev_120_000149 crossref_primary_10_1186_s12871_024_02681_9 crossref_primary_10_3389_fphar_2021_782457 crossref_primary_10_1016_j_pbb_2020_172870 crossref_primary_10_3390_ph17020194 crossref_primary_10_1016_j_pbb_2020_172876 crossref_primary_10_3390_ijms25010100 crossref_primary_10_1038_s41398_020_01110_y crossref_primary_10_1016_j_neuropharm_2023_109422 crossref_primary_10_1038_s41398_024_02796_0 crossref_primary_10_1007_s00508_024_02358_w crossref_primary_10_1016_j_bcp_2021_114892 crossref_primary_10_1016_j_neubiorev_2021_12_005 crossref_primary_10_3390_ijms23126713 crossref_primary_10_1093_braincomms_fcab285 crossref_primary_10_1016_j_biopsych_2024_09_024 crossref_primary_10_1016_j_pharmthera_2021_107875 crossref_primary_10_1111_bcp_15374 crossref_primary_10_1126_sciadv_abi6375 crossref_primary_10_3389_fphar_2024_1337749 crossref_primary_10_1016_j_neubiorev_2023_105122 crossref_primary_10_3390_ph16040634 crossref_primary_10_1016_j_ejphar_2023_176032 crossref_primary_10_1016_j_brainres_2020_146980 crossref_primary_10_1007_s40263_022_00984_4 crossref_primary_10_1152_jn_00462_2021 crossref_primary_10_1038_s41380_024_02419_6 crossref_primary_10_1007_s00210_022_02229_z crossref_primary_10_3389_fpsyt_2023_1214018 crossref_primary_10_31857_S1027813323030081 crossref_primary_10_1016_j_bbr_2021_113633 crossref_primary_10_1134_S181971242303008X crossref_primary_10_1016_j_phrs_2021_105761 crossref_primary_10_3390_ijms21207581 crossref_primary_10_1016_j_neuroscience_2025_03_011 crossref_primary_10_1177_0269881120959644 crossref_primary_10_1038_s41398_020_0844_4 crossref_primary_10_1093_ijnp_pyad050 crossref_primary_10_1097_FBP_0000000000000623 crossref_primary_10_1016_j_bbrc_2022_01_024 crossref_primary_10_3390_ph15020125 crossref_primary_10_1007_s43440_021_00222_6 crossref_primary_10_1016_j_biopsych_2020_12_006 crossref_primary_10_1007_s12035_020_02145_4 crossref_primary_10_1038_s41398_019_0624_1 crossref_primary_10_1016_j_ajogmf_2023_101241 crossref_primary_10_1016_j_bbr_2023_114799 crossref_primary_10_1038_s41380_024_02853_6 |
Cites_doi | 10.1038/npp.2013.71 10.1038/npp.2013.176 10.1176/appi.ajp.2015.15040465 10.1038/tp.2015.136 10.1016/j.biopsych.2017.10.020 10.1254/jphs.12R09CP 10.1016/S0014-2999(97)01116-3 10.1038/mp.2017.255 10.1038/s41380-019-0400-x 10.1038/npp.2015.233 10.1007/s00406-016-0692-7 10.1176/appi.ajp.2018.17060720 10.1038/sj.npp.1300567 10.1016/j.bbr.2014.05.065 10.1124/jpet.116.233627 10.1016/j.biopsych.2018.05.007 10.1007/s00213-016-4327-5 10.1016/j.biopsych.2009.04.029 10.1016/S0006-3223(99)00230-9 10.1016/j.eurpsy.2013.10.005 10.1017/S1461145714000649 10.1007/s00406-019-01012-1 10.1016/j.neuropharm.2018.06.033 10.1017/S1461145713001582 10.1001/jamapsychiatry.2017.3739 10.1038/npp.2017.94 10.1016/S1734-1140(13)71515-9 10.1001/archpsyc.63.8.856 10.1016/S0304-3940(99)00688-6 10.1002/aur.1596 10.1097/00000542-199803000-00029 10.1093/ijnp/pyy007 10.1176/appi.ajp.2017.17060647 10.1038/s41398-017-0031-4 10.1126/scisignal.aai7884 10.1093/ijnp/pyx116 10.1038/nature17998 10.1016/j.bbr.2011.05.035 10.1016/S0306-4522(02)00652-8 10.4088/JCP.12m08252 10.1038/s41386-018-0084-y 10.1038/s41467-018-08168-9 10.1016/j.biopsych.2017.05.016 10.1016/j.pharep.2018.02.011 10.1007/s00213-013-3024-x 10.1038/npp.2016.210 10.1017/S0033291715001506 10.1016/j.neuropharm.2016.05.010 10.1016/j.ejphar.2017.05.035 10.1038/npp.2016.224 10.1016/j.jocn.2007.11.007 10.1016/j.pbb.2013.11.033 10.1176/appi.ajp.2017.17040472 10.2174/1570159X15666170221101054 10.1124/jpet.116.239228 10.1093/ijnp/pyx100 10.1016/j.biopsych.2016.12.020 10.1016/j.biopsych.2012.06.022 10.1016/j.biopsych.2012.10.019 10.1073/pnas.1814709116 10.1176/appi.ajp.163.1.153 10.1038/npp.2013.52 10.1016/j.biopsych.2007.05.028 10.1016/j.pnpbp.2016.05.007 10.1007/s00213-013-3353-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press on behalf of CINP. The Author(s) 2019. Published by Oxford University Press on behalf of CINP. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2019. Published by Oxford University Press on behalf of CINP. 2019 |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press on behalf of CINP. – notice: The Author(s) 2019. Published by Oxford University Press on behalf of CINP. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2019. Published by Oxford University Press on behalf of CINP. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88G 8AO 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ K9. M0S M1P M2M PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM |
DOI | 10.1093/ijnp/pyz041 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Psychology Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1469-5111 |
EndPage | 674 |
ExternalDocumentID | PMC6822138 31325908 10_1093_ijnp_pyz041 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; ; grantid: JP16K08268; JP17K19488; JP17H03989 – fundername: ; ; grantid: JP18H05416; JP19dm0107122; JP19dm0207061; JP19dm0107119 – fundername: ; ; |
GroupedDBID | --- -E. .FH 0E1 0R~ 123 29J 4.4 5VS 74X 74Y 7X7 7~V 88E 8AO 8FI 8FJ 8R4 8R5 AAFWJ AAMVS AAOGV AAPXW AAVAP AAYXX ABEJV ABGNP ABITZ ABIVO ABKKG ABPTD ABQLI ABUWG ABVKB ABXVV ACGFS ACIMK ADBBV ADHZD AEMTW AENEX AENZO AFFVI AFKRA AFPKN AFUTZ AHMBA AJ7 ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS ARABE AVWKF AZQEC BAWUL BAYMD BCNDV BENPR C0O CCPQU CIDKT CITATION CS3 DC4 DIK DU5 DWQXO EBS EMOBN FYUFA GNUQQ GROUPED_DOAJ H13 HG- HMCUK HST HYE HZ~ I.6 IAO IHR ITC I~P J36 J38 J3A KQ8 KSI L98 M-V M1P M2M M48 ML0 O9- OAWHX OJQWA OK1 P2P PEELM PHGZM PHGZT PIMPY PSQYO PSYQQ Q2X ROL RPM RR0 S6- S70 TJX TOX TUQ UKHRP UU6 WQ3 WXU WYP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c475t-bad85967bf103935f989632d5dc9ac58fad45eafd03cce998ae6edaedc70328a3 |
IEDL.DBID | 7X7 |
ISSN | 1461-1457 1469-5111 |
IngestDate | Thu Aug 21 17:52:49 EDT 2025 Sun Aug 24 03:28:25 EDT 2025 Fri Jul 25 21:58:58 EDT 2025 Thu Apr 03 07:02:09 EDT 2025 Tue Jul 01 03:53:25 EDT 2025 Thu Apr 24 22:52:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | (S)-ketamine AMPA receptors (R)-ketamine monoamine prefrontal cortex |
Language | English |
License | http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2019. Published by Oxford University Press on behalf of CINP. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-bad85967bf103935f989632d5dc9ac58fad45eafd03cce998ae6edaedc70328a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Y.A. and W.T contributed equally to this work. |
ORCID | 0000-0003-4863-1277 0000-0002-1612-3078 0000-0001-7562-4000 0000-0001-6548-4016 |
OpenAccessLink | https://www.proquest.com/docview/3169885201?pq-origsite=%requestingapplication% |
PMID | 31325908 |
PQID | 3169885201 |
PQPubID | 43629 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6822138 proquest_miscellaneous_2261976404 proquest_journals_3169885201 pubmed_primary_31325908 crossref_primary_10_1093_ijnp_pyz041 crossref_citationtrail_10_1093_ijnp_pyz041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: US |
PublicationTitle | The international journal of neuropsychopharmacology |
PublicationTitleAlternate | Int J Neuropsychopharmacol |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Murrough (2019103106193137900_CIT0034) 2015; 45 Smith (2019103106193137900_CIT0046) 2013; 74 Daly (2019103106193137900_CIT0010) 2018; 75 Yamaguchi (2019103106193137900_CIT0053) 2018; 43 Zanos (2019103106193137900_CIT0060) 2018; 23 Yamamoto (2019103106193137900_CIT0054) 2013; 38 Sanacora (2019103106193137900_CIT0045) 2017; 42 Watt (2019103106193137900_CIT0050) 2014; 231 Duman (2019103106193137900_CIT0013) 2019 Zhang (2019103106193137900_CIT0065) 2014; 116 Berman (2019103106193137900_CIT0005) 2000; 47 Pałucha-Poniewiera (2019103106193137900_CIT0040) 2018; 70 Su (2019103106193137900_CIT0047) 2017; 42 Zanos (2019103106193137900_CIT0061) 2016; 533 Furuyashiki (2019103106193137900_CIT0021) 2012; 120 du Jardin (2019103106193137900_CIT0012) 2016; 71 Zhang (2019103106193137900_CIT0066) 2014; 18 Gigliucci (2019103106193137900_CIT0022) 2013; 228 Chaki (2019103106193137900_CIT0007) 2017; 15 Ebert (2019103106193137900_CIT0014) 1997; 333 Zarate (2019103106193137900_CIT0064) 2013; 74 Grunebaum (2019103106193137900_CIT0024) 2018; 175 Murrough (2019103106193137900_CIT0033) 2013; 74 Hashimoto (2019103106193137900_CIT0027) 2017; 267 Nishimura (2019103106193137900_CIT0038) 1998; 88 Yang (2019103106193137900_CIT0058) 2018; 84 FDA News Release on March 5 (2019103106193137900_CIT0015) 2019 du Jardin (2019103106193137900_CIT0011) 2016; 233 Zarate (2019103106193137900_CIT0063) 2006; 163 Araki (2019103106193137900_CIT0004) 2014; 17 Zhang (2019103106193137900_CIT0068) 2018; 21 Nishitani (2019103106193137900_CIT0039) 2014; 17 Ago (2019103106193137900_CIT0002) 2013; 38 Zarate (2019103106193137900_CIT0062) 2006; 63 Hara (2019103106193137900_CIT0025) 2016; 9 Ago (2019103106193137900_CIT0003) 2017; 809 Wilkinson (2019103106193137900_CIT0051) 2018; 175 Witkin (2019103106193137900_CIT0052) 2016; 358 National Research Council (2019103106193137900_CIT0035) 1996 Yang (2019103106193137900_CIT0055) 2015; 5 Tanaka (2019103106193137900_CIT0048) 2017; 20 Koike (2019103106193137900_CIT0029) 2014; 271 Yang (2019103106193137900_CIT0057) 2017; 7 Yang (2019103106193137900_CIT0059) 2018; 83 Zhou (2019103106193137900_CIT0070) 2014; 29 Chang (2019103106193137900_CIT0008) 2019 Hare (2019103106193137900_CIT0026) 2019; 10 Newport (2019103106193137900_CIT0036) 2015; 172 Zhao (2019103106193137900_CIT0069) 2008; 15 Fukumoto (2019103106193137900_CIT0017) 2016; 41 Pham (2019103106193137900_CIT0042) 2018; 84 Kinoshita (2019103106193137900_CIT0028) 2018; 21 Lorrain (2019103106193137900_CIT0031) 2003; 117 Franklin (2019103106193137900_CIT0016) 1997 Yang (2019103106193137900_CIT0056) 2017; 82 Ago (2019103106193137900_CIT0001) 2005; 30 Fukumoto (2019103106193137900_CIT0019) 2018; 21 Walker (2019103106193137900_CIT0049) 2013; 38 Canuso (2019103106193137900_CIT0006) 2018; 175 Rogóż (2019103106193137900_CIT0044) 2013; 65 Zhang (2019103106193137900_CIT0067) 2016; 9 Fukumoto (2019103106193137900_CIT0020) 2019; 116 Chou (2019103106193137900_CIT0009) 2018; 139 Fukumoto (2019103106193137900_CIT0018) 2017; 361 Pham (2019103106193137900_CIT0041) 2017; 112 Gould (2019103106193137900_CIT0023) 2017; 42 Nishimura (2019103106193137900_CIT0037) 1999; 274 Maeng (2019103106193137900_CIT0032) 2008; 63 Koike (2019103106193137900_CIT0030) 2011; 224 Price (2019103106193137900_CIT0043) 2009; 66 |
References_xml | – volume: 38 start-page: 1609 year: 2013 ident: 2019103106193137900_CIT0049 article-title: NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice publication-title: Neuropsychopharmacology doi: 10.1038/npp.2013.71 – volume: 38 start-page: 2666 year: 2013 ident: 2019103106193137900_CIT0054 article-title: Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: a PET study in conscious monkeys publication-title: Neuropsychopharmacology doi: 10.1038/npp.2013.176 – volume: 172 start-page: 950 year: 2015 ident: 2019103106193137900_CIT0036 article-title: Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2015.15040465 – volume: 5 start-page: e632 year: 2015 ident: 2019103106193137900_CIT0055 article-title: R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects publication-title: Transl Psychiatry doi: 10.1038/tp.2015.136 – volume: 84 start-page: e3 year: 2018 ident: 2019103106193137900_CIT0042 article-title: Common neurotransmission recruited in (R,S)-ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2017.10.020 – volume: 120 start-page: 63 year: 2012 ident: 2019103106193137900_CIT0021 article-title: Roles of dopamine and inflammation-related molecules in behavioral alterations caused by repeated stress publication-title: J Pharmacol Sci doi: 10.1254/jphs.12R09CP – volume: 333 start-page: 99 year: 1997 ident: 2019103106193137900_CIT0014 article-title: Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord publication-title: Eur J Pharmacol doi: 10.1016/S0014-2999(97)01116-3 – volume: 23 start-page: 801 year: 2018 ident: 2019103106193137900_CIT0060 article-title: Mechanisms of ketamine action as an antidepressant publication-title: Mol Psychiatry doi: 10.1038/mp.2017.255 – year: 2019 ident: 2019103106193137900_CIT0013 article-title: Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function publication-title: Mol Psychiatry doi: 10.1038/s41380-019-0400-x – volume: 41 start-page: 1046 year: 2016 ident: 2019103106193137900_CIT0017 article-title: The antidepressant effects of an mglu2/3 receptor antagonist and ketamine require AMPA receptor stimulation in the mpfc and subsequent activation of the 5-HT neurons in the DRN publication-title: Neuropsychopharmacology doi: 10.1038/npp.2015.233 – volume: 267 start-page: 173 year: 2017 ident: 2019103106193137900_CIT0027 article-title: Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys publication-title: Eur Arch Psychiatry Clin Neurosci doi: 10.1007/s00406-016-0692-7 – volume: 175 start-page: 620 year: 2018 ident: 2019103106193137900_CIT0006 article-title: Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized, placebo-controlled study publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2018.17060720 – volume: 30 start-page: 43 year: 2005 ident: 2019103106193137900_CIT0001 article-title: Sulpiride in combination with fluvoxamine increases in vivo dopamine release selectively in rat prefrontal cortex publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300567 – volume: 271 start-page: 111 year: 2014 ident: 2019103106193137900_CIT0029 article-title: Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats publication-title: Behav Brain Res doi: 10.1016/j.bbr.2014.05.065 – volume: 358 start-page: 71 year: 2016 ident: 2019103106193137900_CIT0052 article-title: The rapidly acting antidepressant ketamine and the mglu2/3 receptor antagonist LY341495 rapidly engage dopaminergic mood circuits publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.116.233627 – volume: 84 start-page: 591 year: 2018 ident: 2019103106193137900_CIT0058 article-title: AMPA receptor activation-independent antidepressant actions of ketamine metabolite (S)-norketamine publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2018.05.007 – volume: 233 start-page: 2813 year: 2016 ident: 2019103106193137900_CIT0011 article-title: Differential interaction with the serotonin system by S-ketamine, vortioxetine, and fluoxetine in a genetic rat model of depression publication-title: Psychopharmacology doi: 10.1007/s00213-016-4327-5 – volume: 66 start-page: 522 year: 2009 ident: 2019103106193137900_CIT0043 article-title: Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2009.04.029 – volume: 47 start-page: 351 year: 2000 ident: 2019103106193137900_CIT0005 article-title: Antidepressant effects of ketamine in depressed patients publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(99)00230-9 – volume: 29 start-page: 419 year: 2014 ident: 2019103106193137900_CIT0070 article-title: Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mtor and BDNF in rat hippocampus and prefrontal cortex publication-title: Eur Psychiatry doi: 10.1016/j.eurpsy.2013.10.005 – volume: 17 start-page: 1321 year: 2014 ident: 2019103106193137900_CIT0039 article-title: Raphe AMPA receptors and nicotinic acetylcholine receptors mediate ketamine-induced serotonin release in the rat prefrontal cortex publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145714000649 – year: 2019 ident: 2019103106193137900_CIT0008 article-title: Lack of dopamine D1 receptors in the antidepressant actions of (R)-ketamine in a chronic social defeat stress model publication-title: Eur Arch Psychiatry Clin Neurosci doi: 10.1007/s00406-019-01012-1 – volume: 139 start-page: 1 year: 2018 ident: 2019103106193137900_CIT0009 article-title: (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.06.033 – year: 2019 ident: 2019103106193137900_CIT0015 – volume-title: The mouse brain in stereotaxic coordinates year: 1997 ident: 2019103106193137900_CIT0016 – volume: 17 start-page: 883 year: 2014 ident: 2019103106193137900_CIT0004 article-title: Involvement of prefrontal AMPA receptors in encounter stimulation-induced hyperactivity in isolation-reared mice publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145713001582 – volume: 75 start-page: 139 year: 2018 ident: 2019103106193137900_CIT0010 article-title: Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: a randomized clinical trial publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2017.3739 – volume: 42 start-page: 2482 year: 2017 ident: 2019103106193137900_CIT0047 article-title: Dose-related effects of adjunctive ketamine in Taiwanese patients with treatment-resistant depression publication-title: Neuropsychopharmacology doi: 10.1038/npp.2017.94 – volume: 65 start-page: 1535 year: 2013 ident: 2019103106193137900_CIT0044 article-title: Combined treatment with atypical antipsychotics and antidepressants in treatment-resistant depression: preclinical and clinical efficacy publication-title: Pharmacol Rep doi: 10.1016/S1734-1140(13)71515-9 – volume: 63 start-page: 856 year: 2006 ident: 2019103106193137900_CIT0062 article-title: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.63.8.856 – volume: 274 start-page: 131 year: 1999 ident: 2019103106193137900_CIT0037 article-title: Ketamine stereoselectively inhibits rat dopamine transporter publication-title: Neurosci Lett doi: 10.1016/S0304-3940(99)00688-6 – volume: 9 start-page: 926 year: 2016 ident: 2019103106193137900_CIT0025 article-title: Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism publication-title: Autism Res doi: 10.1002/aur.1596 – volume: 88 start-page: 768 year: 1998 ident: 2019103106193137900_CIT0038 article-title: Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells publication-title: Anesthesiology doi: 10.1097/00000542-199803000-00029 – volume: 20 start-page: 410 year: 2017 ident: 2019103106193137900_CIT0048 article-title: Role of prefrontal serotonergic and dopaminergic systems in encounter-induced hyperactivity in methamphetamine-sensitized mice publication-title: Int J Neuropsychopharmacol – volume: 21 start-page: 305 year: 2018 ident: 2019103106193137900_CIT0028 article-title: Ketamine-induced prefrontal serotonin release is mediated by cholinergic neurons in the pedunculopontine tegmental nucleus publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyy007 – volume: 175 start-page: 327 year: 2018 ident: 2019103106193137900_CIT0024 article-title: Ketamine for rapid reduction of suicidal thoughts in major depression: A midazolam-controlled randomized clinical trial publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2017.17060647 – volume: 7 start-page: 1294 year: 2017 ident: 2019103106193137900_CIT0057 article-title: Possible role of the gut microbiota-brain axis in the antidepressant effects of ®-ketamine in a social defeat stress model publication-title: Transl Psychiatry doi: 10.1038/s41398-017-0031-4 – volume: 9 start-page: ra123 year: 2016 ident: 2019103106193137900_CIT0067 article-title: Essential roles of AMPA receptor glua1 phosphorylation and presynaptic HCN channels in fast-acting antidepressant responses of ketamine publication-title: Sci Signal doi: 10.1126/scisignal.aai7884 – volume: 21 start-page: 371 year: 2018 ident: 2019103106193137900_CIT0019 article-title: Role of 5-HT1A receptor stimulation in the medial prefrontal cortex in the sustained antidepressant effects of ketamine publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyx116 – volume: 533 start-page: 481 year: 2016 ident: 2019103106193137900_CIT0061 article-title: NMDAR inhibition-independent antidepressant actions of ketamine metabolites publication-title: Nature doi: 10.1038/nature17998 – volume: 224 start-page: 107 year: 2011 ident: 2019103106193137900_CIT0030 article-title: Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression publication-title: Behav Brain Res doi: 10.1016/j.bbr.2011.05.035 – volume: 117 start-page: 697 year: 2003 ident: 2019103106193137900_CIT0031 article-title: Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268 publication-title: Neuroscience doi: 10.1016/S0306-4522(02)00652-8 – volume: 74 start-page: 966 year: 2013 ident: 2019103106193137900_CIT0046 article-title: Antidepressant augmentation using the N-methyl-D-aspartate antagonist memantine: a randomized, double-blind, placebo-controlled trial publication-title: J Clin Psychiatry doi: 10.4088/JCP.12m08252 – volume: 43 start-page: 1900 year: 2018 ident: 2019103106193137900_CIT0053 article-title: (2R,6R)-hydroxynorketamine is not essential for the antidepressant actions of ®-ketamine in mice publication-title: Neuropsychopharmacology doi: 10.1038/s41386-018-0084-y – volume: 10 start-page: 223 year: 2019 ident: 2019103106193137900_CIT0026 article-title: Optogenetic stimulation of medial prefrontal cortex drd1 neurons produces rapid and long-lasting antidepressant effects publication-title: Nat Commun doi: 10.1038/s41467-018-08168-9 – volume: 83 start-page: 18 year: 2018 ident: 2019103106193137900_CIT0059 article-title: Mechanistic target of rapamycin-independent antidepressant effects of ®-ketamine in a social defeat stress model publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2017.05.016 – volume: 70 start-page: 837 year: 2018 ident: 2019103106193137900_CIT0040 article-title: The role of glutamatergic modulation in the mechanism of action of ketamine, a prototype rapid-acting antidepressant drug publication-title: Pharmacol Rep doi: 10.1016/j.pharep.2018.02.011 – volume: 228 start-page: 157 year: 2013 ident: 2019103106193137900_CIT0022 article-title: Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism publication-title: Psychopharmacology (Berl) doi: 10.1007/s00213-013-3024-x – volume: 42 start-page: 368 year: 2017 ident: 2019103106193137900_CIT0023 article-title: Ketamine mechanism of action: separating the wheat from the chaff publication-title: Neuropsychopharmacology doi: 10.1038/npp.2016.210 – volume: 45 start-page: 3571 year: 2015 ident: 2019103106193137900_CIT0034 article-title: Ketamine for rapid reduction of suicidal ideation: a randomized controlled trial publication-title: Psychol Med doi: 10.1017/S0033291715001506 – volume: 112 start-page: 198 year: 2017 ident: 2019103106193137900_CIT0041 article-title: Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cj mice publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2016.05.010 – volume: 809 start-page: 172 year: 2017 ident: 2019103106193137900_CIT0003 article-title: Psychopharmacology of combined activation of the serotonin1a and σ1 receptors publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2017.05.035 – volume: 42 start-page: 844 year: 2017 ident: 2019103106193137900_CIT0045 article-title: Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: a randomized, placebo-controlled study publication-title: Neuropsychopharmacology doi: 10.1038/npp.2016.224 – volume: 15 start-page: 1264 year: 2008 ident: 2019103106193137900_CIT0069 article-title: Antidepressants modulate the in vitro inhibitory effects of propofol and ketamine on norepinephrine and serotonin transporter function publication-title: J Clin Neurosci doi: 10.1016/j.jocn.2007.11.007 – volume: 116 start-page: 137 year: 2014 ident: 2019103106193137900_CIT0065 article-title: R (-)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine publication-title: Pharmacol Biochem Behav doi: 10.1016/j.pbb.2013.11.033 – volume: 175 start-page: 150 year: 2018 ident: 2019103106193137900_CIT0051 article-title: The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2017.17040472 – volume: 15 start-page: 963 year: 2017 ident: 2019103106193137900_CIT0007 article-title: Beyond ketamine: new approaches to the development of safer antidepressants publication-title: Curr Neuropharmacol doi: 10.2174/1570159X15666170221101054 – volume: 361 start-page: 9 year: 2017 ident: 2019103106193137900_CIT0018 article-title: Antidepressant potential of ®-ketamine in rodent models: comparison with (S)-ketamine publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.116.239228 – volume: 21 start-page: 157 year: 2018 ident: 2019103106193137900_CIT0068 article-title: 5-hydroxytryptamine-independent antidepressant actions of ®-ketamine in a chronic social defeat stress model publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyx100 – volume-title: Guide for the care and use of laboratory animals year: 1996 ident: 2019103106193137900_CIT0035 – volume: 82 start-page: e43 year: 2017 ident: 2019103106193137900_CIT0056 article-title: ®-ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2016.12.020 – volume: 74 start-page: 250 year: 2013 ident: 2019103106193137900_CIT0033 article-title: Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2012.06.022 – volume: 74 start-page: 257 year: 2013 ident: 2019103106193137900_CIT0064 article-title: A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2012.10.019 – volume: 116 start-page: 297 year: 2019 ident: 2019103106193137900_CIT0020 article-title: Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1814709116 – volume: 163 start-page: 153 year: 2006 ident: 2019103106193137900_CIT0063 article-title: A double-blind, placebo-controlled study of memantine in the treatment of major depression publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.163.1.153 – volume: 38 start-page: 1535 year: 2013 ident: 2019103106193137900_CIT0002 article-title: Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice publication-title: Neuropsychopharmacology doi: 10.1038/npp.2013.52 – volume: 18 start-page: pyu077 year: 2014 ident: 2019103106193137900_CIT0066 article-title: Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation publication-title: Int J Neuropsychopharmacol – volume: 63 start-page: 349 year: 2008 ident: 2019103106193137900_CIT0032 article-title: Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2007.05.028 – volume: 71 start-page: 27 year: 2016 ident: 2019103106193137900_CIT0012 article-title: Potential involvement of serotonergic signaling in ketamine’s antidepressant actions: a critical review publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2016.05.007 – volume: 231 start-page: 1627 year: 2014 ident: 2019103106193137900_CIT0050 article-title: Decreased prefrontal cortex dopamine activity following adolescent social defeat in male rats: role of dopamine D2 receptors publication-title: Psychopharmacology doi: 10.1007/s00213-013-3353-9 |
SSID | ssj0024536 |
Score | 2.503801 |
Snippet | Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and... Background Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 665 |
SubjectTerms | Animals Disease Models, Animal Dopamine Dopamine - metabolism Dose-Response Relationship, Drug Ketamine Ketamine - administration & dosage Ketamine - analogs & derivatives Ketamine - antagonists & inhibitors Ketamine - pharmacology Lipopolysaccharides Male Metabolites Mice Microdialysis Microinjections Norepinephrine - metabolism Prefrontal Cortex - metabolism Quinoxalines - pharmacology Receptors, AMPA - metabolism Regular Serotonin Serotonin - metabolism Stereoisomerism |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELam8cILgvGrY0NGmqaBZpY0cew8IFQhpgIqqkYr7S262I4WtKWlyRDlL-HP5S5J03VMvCWxHVs-X-4c330fYwcqTq02KYgsNZEInYkF2CgQfaUh04Fn_ZobcPQ1Gk7Dz-fyfIutyDjbCSzv3NoRn9R0cfn214_le1T4dy0Y0kn-vZifzJe_PUpgv4cmSZGGjkK9Bt2TQZtm5As_lKpN1LvVeNM0_eNv3g6bvGGHTh-yB60DyQeNxB-xLVfssMNxg0C9POaTdUJVecwP-XiNTb18zP4cnb0WX1wFV-hdcuLtwO8EB17_KXALfEJeZOl4XvAxjpDgDbA3KYYTfoYWioomF1Dwo2833gOF5d3NCC9SiqrDF__MAQv5YDQeYHOKoJktxKeOebfCypR5nJdXT9j09OPkw1C05AzChEpWIgWrZRypNPPr9N4s1qjLfSuticFInYENpYPMeoExDjd14CJnAWdPEYQfBE_ZdjEr3HPGJSjnSc8D7fwQW8SZDwoyci5N2k_jHnuzkktiWuRyItC4TJoT9CAhISaNEHvsoKs8bwA77q62txJwslp0SeBHsdYSfaIee9UVo77RIQoUbnZdJn3acqoo9MIee9ash64fgsEkDvkeUxsrpatAWN6bJUV-UWN6R-io-YHe_f-wXrD7tEVvIof22Ha1uHb76BRV6ct6wf8FhckR_Q priority: 102 providerName: Scholars Portal |
Title | (R)-Ketamine Induces a Greater Increase in Prefrontal 5-HT Release Than (S)-Ketamine and Ketamine Metabolites via an AMPA Receptor-Independent Mechanism |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31325908 https://www.proquest.com/docview/3169885201 https://www.proquest.com/docview/2261976404 https://pubmed.ncbi.nlm.nih.gov/PMC6822138 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EFMT4DozLSNA00q0ljx84TKmhTAXWqSif1LXJsRwtiaWmySeUv4c_lLknTFRAvVpLzl3L-OJ_vfkfIkYxTq0yqWZaaiHFnYqZtFLKBVDpToW-DOjbg-CIaXfLPczFvFW5la1a5WRPrhdouDOrI-2EQxUoJ2K_eL38wjBqFt6ttCI37ZB-hy9CkS863By4uwta7KGABF7L1z4NDfD__Viz7y_VPnwe7O9JfYuaf1pJ3tp_zR-RhKzfSYcPoA3LPFY_J8aQBnl6f0tnWj6o8pcd0soWkXj8hv06mb9kXV-lrECophuuA5YFqWisI3Aq-oPBYOpoXdAI9RFQDaE2w0YxOYWNC0uxKF_Tk6516dGFp9zKGhxSN6aDi21wDkQ7HkyEUR8OZxYp96gLuVpAZHY7z8vopuTw_m30csTYmAzNcioql2ioRRzLNgtqrN4sVTOGBFdbE2giVacuF05n1Q2McnOW0i5zV8PckIvfp8BnZKxaFe0Go0NL5wve1cgGHEnEWaKkzlClNOkhjj7zb8CUxLWA5xs34njQX52GCTEwaJnrkqMu8bHA6_p3tcMPgpJ2sZbIdWh5505FhmuHdiS7c4qZMBnjSlBH3uUeeN-OhawfRLzF0vEfkzkjpMiCE9y6lyK9qKO8I5LMgVC__361X5AGkcWNDeEj2qtWNew2yUJX26gHfI_sfzi4m016tUYB0zNVvpkISPQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEN8UBhhpTAPNahLH-XhAqMCmlq5VVDJpb8GxHa2IpaXpQOUv4a_gb-ScpOkKiLe9Jfb5Q7rz-Wzf_Q5g1w9TFchU0CyVHnW1DKlQHqOOH4gsYJayy9yAw5HXO3E_nPLTLfi1ioUxbpUrnVgqajWV5o68w2wvDAKO-9Wb2VdqskaZ19VVCo1KLAZ6-R2PbMXr_nvk7wvHOTqM3_VonVWAStfnC5oKFfDQ89PMLuNSszBAIXQUVzIUkgeZUC7XIlMWk1LjaURoTyuhlfQN9pxg2O812HYZHmVasP32cBSN1-h-nNXxTDa1Xe7XEYFWyDqTz_msM1v-sFx7cw_8y7D90z_z0oZ3dAtu1pYq6VaidRu2dH4H9qIK6np5QOJ15FZxQPZItAbBXt6Fn_vjl3SgF-IczVhiEoSgQiKClFcSeo4lxlwtNJnkJMIZGhwFHI3TXkzGuBWaqvhM5GT_46V-RK5I8zPEj9S472HH3yYCK0l3GHWxuXHVmc5pv0nxu0BiE-I8Kc7vwcmV8Os-tPJprh8C4cLXFrcsEWjbxRZhZgtfZMaKlamThm14teJLImuIdJOp40tSPdWzxDAxqZjYht2GeFYhg_ybbGfF4KRWD0WyFuY2PG-qcWGb1xqR6-lFkTjmbOt7ruW24UElD804Bm_TJKtvg78hKQ2BAQ3frMknZyV4uIcWoc2CR_-f1jO43ouHx8lxfzR4DDewJKw8GHegtZhf6CdoiS3Sp7X4E_h01SvuN6L1T1U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28R%29-Ketamine+Induces+a+Greater+Increase+in+Prefrontal+5-HT+Release+Than+%28S%29-Ketamine+and+Ketamine+Metabolites+via+an+AMPA+Receptor-Independent+Mechanism&rft.jtitle=The+international+journal+of+neuropsychopharmacology&rft.au=Ago%2C+Yukio&rft.au=Tanabe%2C+Wataru&rft.au=Higuchi%2C+Momoko&rft.au=Tsukada%2C+Shinji&rft.date=2019-10-01&rft.pub=Oxford+University+Press&rft.issn=1461-1457&rft.eissn=1469-5111&rft.volume=22&rft.issue=10&rft.spage=665&rft.epage=674&rft_id=info:doi/10.1093%2Fijnp%2Fpyz041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-1457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-1457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-1457&client=summon |