(R)-Ketamine Induces a Greater Increase in Prefrontal 5-HT Release Than (S)-Ketamine and Ketamine Metabolites via an AMPA Receptor-Independent Mechanism

Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine'...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of neuropsychopharmacology Vol. 22; no. 10; pp. 665 - 674
Main Authors Ago, Yukio, Tanabe, Wataru, Higuchi, Momoko, Tsukada, Shinji, Tanaka, Tatsunori, Yamaguchi, Takumi, Igarashi, Hisato, Yokoyama, Rei, Seiriki, Kaoru, Kasai, Atsushi, Nakazawa, Takanobu, Nakagawa, Shinsaku, Hashimoto, Kenji, Hashimoto, Hitoshi
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice. The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis. (R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine. (R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites.
AbstractList Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice. The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis. (R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine. (R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites.
Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice.BACKGROUNDAlthough recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice.The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis.METHODSThe extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis.(R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine.RESULTS(R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine.(R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites.CONCLUSIONS(R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites.
Background Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine’s action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice. Methods The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis. Results (R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine. Conclusions (R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites.
Author Ago, Yukio
Seiriki, Kaoru
Yamaguchi, Takumi
Tsukada, Shinji
Tanaka, Tatsunori
Kasai, Atsushi
Igarashi, Hisato
Nakazawa, Takanobu
Higuchi, Momoko
Hashimoto, Hitoshi
Tanabe, Wataru
Yokoyama, Rei
Hashimoto, Kenji
Nakagawa, Shinsaku
AuthorAffiliation 7 Division of Bioscience, Institute for Datability Science, Osaka University , Suita, Osaka, Japan
1 Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka, Japan
3 Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University , Suita, Osaka, Japan
8 Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University , Suita, Osaka, Japan
5 Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health , Chiba, Japan
6 Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui , Suita, Osaka, Japan
2 Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka, Japan
4 Department of
AuthorAffiliation_xml – name: 5 Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health , Chiba, Japan
– name: 6 Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui , Suita, Osaka, Japan
– name: 3 Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University , Suita, Osaka, Japan
– name: 4 Department of Pharmacology, Graduate School of Dentistry, Osaka University , Suita, Osaka, Japan
– name: 8 Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University , Suita, Osaka, Japan
– name: 1 Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka, Japan
– name: 2 Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka, Japan
– name: 7 Division of Bioscience, Institute for Datability Science, Osaka University , Suita, Osaka, Japan
Author_xml – sequence: 1
  givenname: Yukio
  orcidid: 0000-0001-7562-4000
  surname: Ago
  fullname: Ago, Yukio
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 2
  givenname: Wataru
  surname: Tanabe
  fullname: Tanabe, Wataru
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 3
  givenname: Momoko
  surname: Higuchi
  fullname: Higuchi, Momoko
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 4
  givenname: Shinji
  surname: Tsukada
  fullname: Tsukada, Shinji
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 5
  givenname: Tatsunori
  surname: Tanaka
  fullname: Tanaka, Tatsunori
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 6
  givenname: Takumi
  surname: Yamaguchi
  fullname: Yamaguchi, Takumi
  organization: Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 7
  givenname: Hisato
  surname: Igarashi
  fullname: Igarashi, Hisato
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 8
  givenname: Rei
  surname: Yokoyama
  fullname: Yokoyama, Rei
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 9
  givenname: Kaoru
  surname: Seiriki
  fullname: Seiriki, Kaoru
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka, Japan
– sequence: 10
  givenname: Atsushi
  orcidid: 0000-0002-1612-3078
  surname: Kasai
  fullname: Kasai, Atsushi
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 11
  givenname: Takanobu
  orcidid: 0000-0003-4863-1277
  surname: Nakazawa
  fullname: Nakazawa, Takanobu
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
– sequence: 12
  givenname: Shinsaku
  surname: Nakagawa
  fullname: Nakagawa, Shinsaku
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 13
  givenname: Kenji
  surname: Hashimoto
  fullname: Hashimoto, Kenji
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
– sequence: 14
  givenname: Hitoshi
  orcidid: 0000-0001-6548-4016
  surname: Hashimoto
  fullname: Hashimoto, Hitoshi
  organization: Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan, Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan, Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan, Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan, Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31325908$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1URD_gxB1Z4rIIhdpxnMQXpFUFbUUrqrKcrVlnQr3K2sF2KpVfws_F2y2rUnGxxzPPvJ7RzCHZc94hIa85-8CZEsd25cbj8e4Xq_gzcsCrWhWSc753b_OCV7LZJ4cxrhgrKynqF2RfcFFKxdoD8nt2_a74ggnW1iE9d91kMFKgpwEhYcgek62I1Dp6FbAP3iUYqCzOFvQah_vQ4gYcnX17pAOuo7vHZTaWfrApC99ayEE6v7ya53SDY_KhyL_iiPlwKcMmq9m4fkme9zBEfPVwH5Hvnz8tTs6Ki6-n5yfzi8JUjUzFErpWqrpZ9pwJJWSvWlWLspOdUWBk20NXSYS-Y8IYVKoFrLED7EzDRNmCOCIft7rjtFxndy4iwKDHYNcQ7rQHq_-NOHujf_hbXbdlyUWbBWYPAsH_nDAmvbbR4DCAQz9FXZY1V01dsSqjb5-gKz8Fl9vTgteqbWXJeKbePK5oV8rfoWXg_RYwwceYh7JDONObldCbldDblcg0f0IbmyBZv2nHDv_N-QN9mL06
CitedBy_id crossref_primary_10_1007_s00213_022_06098_5
crossref_primary_10_1177_0269881120967857
crossref_primary_10_1016_j_neuropharm_2021_108936
crossref_primary_10_1016_j_pbb_2020_172927
crossref_primary_10_3390_biom13091411
crossref_primary_10_1007_s00406_023_01629_3
crossref_primary_10_3389_fnbeh_2021_759466
crossref_primary_10_1016_j_neuropharm_2022_109313
crossref_primary_10_2147_NSS_S341161
crossref_primary_10_1016_j_bbr_2021_113651
crossref_primary_10_1016_j_pharma_2023_10_008
crossref_primary_10_1111_bph_17324
crossref_primary_10_1016_j_neuropharm_2022_109153
crossref_primary_10_1016_j_neuropharm_2022_109351
crossref_primary_10_1016_j_bcp_2022_114963
crossref_primary_10_1124_pharmrev_120_000056
crossref_primary_10_1051_jbio_2023026
crossref_primary_10_1016_j_euroneuro_2021_01_005
crossref_primary_10_1124_pharmrev_120_000149
crossref_primary_10_1186_s12871_024_02681_9
crossref_primary_10_3389_fphar_2021_782457
crossref_primary_10_1016_j_pbb_2020_172870
crossref_primary_10_3390_ph17020194
crossref_primary_10_1016_j_pbb_2020_172876
crossref_primary_10_3390_ijms25010100
crossref_primary_10_1038_s41398_020_01110_y
crossref_primary_10_1016_j_neuropharm_2023_109422
crossref_primary_10_1038_s41398_024_02796_0
crossref_primary_10_1007_s00508_024_02358_w
crossref_primary_10_1016_j_bcp_2021_114892
crossref_primary_10_1016_j_neubiorev_2021_12_005
crossref_primary_10_3390_ijms23126713
crossref_primary_10_1093_braincomms_fcab285
crossref_primary_10_1016_j_biopsych_2024_09_024
crossref_primary_10_1016_j_pharmthera_2021_107875
crossref_primary_10_1111_bcp_15374
crossref_primary_10_1126_sciadv_abi6375
crossref_primary_10_3389_fphar_2024_1337749
crossref_primary_10_1016_j_neubiorev_2023_105122
crossref_primary_10_3390_ph16040634
crossref_primary_10_1016_j_ejphar_2023_176032
crossref_primary_10_1016_j_brainres_2020_146980
crossref_primary_10_1007_s40263_022_00984_4
crossref_primary_10_1152_jn_00462_2021
crossref_primary_10_1038_s41380_024_02419_6
crossref_primary_10_1007_s00210_022_02229_z
crossref_primary_10_3389_fpsyt_2023_1214018
crossref_primary_10_31857_S1027813323030081
crossref_primary_10_1016_j_bbr_2021_113633
crossref_primary_10_1134_S181971242303008X
crossref_primary_10_1016_j_phrs_2021_105761
crossref_primary_10_3390_ijms21207581
crossref_primary_10_1016_j_neuroscience_2025_03_011
crossref_primary_10_1177_0269881120959644
crossref_primary_10_1038_s41398_020_0844_4
crossref_primary_10_1093_ijnp_pyad050
crossref_primary_10_1097_FBP_0000000000000623
crossref_primary_10_1016_j_bbrc_2022_01_024
crossref_primary_10_3390_ph15020125
crossref_primary_10_1007_s43440_021_00222_6
crossref_primary_10_1016_j_biopsych_2020_12_006
crossref_primary_10_1007_s12035_020_02145_4
crossref_primary_10_1038_s41398_019_0624_1
crossref_primary_10_1016_j_ajogmf_2023_101241
crossref_primary_10_1016_j_bbr_2023_114799
crossref_primary_10_1038_s41380_024_02853_6
Cites_doi 10.1038/npp.2013.71
10.1038/npp.2013.176
10.1176/appi.ajp.2015.15040465
10.1038/tp.2015.136
10.1016/j.biopsych.2017.10.020
10.1254/jphs.12R09CP
10.1016/S0014-2999(97)01116-3
10.1038/mp.2017.255
10.1038/s41380-019-0400-x
10.1038/npp.2015.233
10.1007/s00406-016-0692-7
10.1176/appi.ajp.2018.17060720
10.1038/sj.npp.1300567
10.1016/j.bbr.2014.05.065
10.1124/jpet.116.233627
10.1016/j.biopsych.2018.05.007
10.1007/s00213-016-4327-5
10.1016/j.biopsych.2009.04.029
10.1016/S0006-3223(99)00230-9
10.1016/j.eurpsy.2013.10.005
10.1017/S1461145714000649
10.1007/s00406-019-01012-1
10.1016/j.neuropharm.2018.06.033
10.1017/S1461145713001582
10.1001/jamapsychiatry.2017.3739
10.1038/npp.2017.94
10.1016/S1734-1140(13)71515-9
10.1001/archpsyc.63.8.856
10.1016/S0304-3940(99)00688-6
10.1002/aur.1596
10.1097/00000542-199803000-00029
10.1093/ijnp/pyy007
10.1176/appi.ajp.2017.17060647
10.1038/s41398-017-0031-4
10.1126/scisignal.aai7884
10.1093/ijnp/pyx116
10.1038/nature17998
10.1016/j.bbr.2011.05.035
10.1016/S0306-4522(02)00652-8
10.4088/JCP.12m08252
10.1038/s41386-018-0084-y
10.1038/s41467-018-08168-9
10.1016/j.biopsych.2017.05.016
10.1016/j.pharep.2018.02.011
10.1007/s00213-013-3024-x
10.1038/npp.2016.210
10.1017/S0033291715001506
10.1016/j.neuropharm.2016.05.010
10.1016/j.ejphar.2017.05.035
10.1038/npp.2016.224
10.1016/j.jocn.2007.11.007
10.1016/j.pbb.2013.11.033
10.1176/appi.ajp.2017.17040472
10.2174/1570159X15666170221101054
10.1124/jpet.116.239228
10.1093/ijnp/pyx100
10.1016/j.biopsych.2016.12.020
10.1016/j.biopsych.2012.06.022
10.1016/j.biopsych.2012.10.019
10.1073/pnas.1814709116
10.1176/appi.ajp.163.1.153
10.1038/npp.2013.52
10.1016/j.biopsych.2007.05.028
10.1016/j.pnpbp.2016.05.007
10.1007/s00213-013-3353-9
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of CINP.
The Author(s) 2019. Published by Oxford University Press on behalf of CINP. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2019. Published by Oxford University Press on behalf of CINP. 2019
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of CINP.
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of CINP. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of CINP. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88G
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
K9.
M0S
M1P
M2M
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOI 10.1093/ijnp/pyz041
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1469-5111
EndPage 674
ExternalDocumentID PMC6822138
31325908
10_1093_ijnp_pyz041
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ; ;
  grantid: JP16K08268; JP17K19488; JP17H03989
– fundername: ; ;
  grantid: JP18H05416; JP19dm0107122; JP19dm0207061; JP19dm0107119
– fundername: ; ;
GroupedDBID ---
-E.
.FH
0E1
0R~
123
29J
4.4
5VS
74X
74Y
7X7
7~V
88E
8AO
8FI
8FJ
8R4
8R5
AAFWJ
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABITZ
ABIVO
ABKKG
ABPTD
ABQLI
ABUWG
ABVKB
ABXVV
ACGFS
ACIMK
ADBBV
ADHZD
AEMTW
AENEX
AENZO
AFFVI
AFKRA
AFPKN
AFUTZ
AHMBA
AJ7
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
ARABE
AVWKF
AZQEC
BAWUL
BAYMD
BCNDV
BENPR
C0O
CCPQU
CIDKT
CITATION
CS3
DC4
DIK
DU5
DWQXO
EBS
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
H13
HG-
HMCUK
HST
HYE
HZ~
I.6
IAO
IHR
ITC
I~P
J36
J38
J3A
KQ8
KSI
L98
M-V
M1P
M2M
M48
ML0
O9-
OAWHX
OJQWA
OK1
P2P
PEELM
PHGZM
PHGZT
PIMPY
PSQYO
PSYQQ
Q2X
ROL
RPM
RR0
S6-
S70
TJX
TOX
TUQ
UKHRP
UU6
WQ3
WXU
WYP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c475t-bad85967bf103935f989632d5dc9ac58fad45eafd03cce998ae6edaedc70328a3
IEDL.DBID 7X7
ISSN 1461-1457
1469-5111
IngestDate Thu Aug 21 17:52:49 EDT 2025
Sun Aug 24 03:28:25 EDT 2025
Fri Jul 25 21:58:58 EDT 2025
Thu Apr 03 07:02:09 EDT 2025
Tue Jul 01 03:53:25 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords (S)-ketamine
AMPA receptors
(R)-ketamine
monoamine
prefrontal cortex
Language English
License http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2019. Published by Oxford University Press on behalf of CINP.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-bad85967bf103935f989632d5dc9ac58fad45eafd03cce998ae6edaedc70328a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Y.A. and W.T contributed equally to this work.
ORCID 0000-0003-4863-1277
0000-0002-1612-3078
0000-0001-7562-4000
0000-0001-6548-4016
OpenAccessLink https://www.proquest.com/docview/3169885201?pq-origsite=%requestingapplication%
PMID 31325908
PQID 3169885201
PQPubID 43629
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6822138
proquest_miscellaneous_2261976404
proquest_journals_3169885201
pubmed_primary_31325908
crossref_primary_10_1093_ijnp_pyz041
crossref_citationtrail_10_1093_ijnp_pyz041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: US
PublicationTitle The international journal of neuropsychopharmacology
PublicationTitleAlternate Int J Neuropsychopharmacol
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Murrough (2019103106193137900_CIT0034) 2015; 45
Smith (2019103106193137900_CIT0046) 2013; 74
Daly (2019103106193137900_CIT0010) 2018; 75
Yamaguchi (2019103106193137900_CIT0053) 2018; 43
Zanos (2019103106193137900_CIT0060) 2018; 23
Yamamoto (2019103106193137900_CIT0054) 2013; 38
Sanacora (2019103106193137900_CIT0045) 2017; 42
Watt (2019103106193137900_CIT0050) 2014; 231
Duman (2019103106193137900_CIT0013) 2019
Zhang (2019103106193137900_CIT0065) 2014; 116
Berman (2019103106193137900_CIT0005) 2000; 47
Pałucha-Poniewiera (2019103106193137900_CIT0040) 2018; 70
Su (2019103106193137900_CIT0047) 2017; 42
Zanos (2019103106193137900_CIT0061) 2016; 533
Furuyashiki (2019103106193137900_CIT0021) 2012; 120
du Jardin (2019103106193137900_CIT0012) 2016; 71
Zhang (2019103106193137900_CIT0066) 2014; 18
Gigliucci (2019103106193137900_CIT0022) 2013; 228
Chaki (2019103106193137900_CIT0007) 2017; 15
Ebert (2019103106193137900_CIT0014) 1997; 333
Zarate (2019103106193137900_CIT0064) 2013; 74
Grunebaum (2019103106193137900_CIT0024) 2018; 175
Murrough (2019103106193137900_CIT0033) 2013; 74
Hashimoto (2019103106193137900_CIT0027) 2017; 267
Nishimura (2019103106193137900_CIT0038) 1998; 88
Yang (2019103106193137900_CIT0058) 2018; 84
FDA News Release on March 5 (2019103106193137900_CIT0015) 2019
du Jardin (2019103106193137900_CIT0011) 2016; 233
Zarate (2019103106193137900_CIT0063) 2006; 163
Araki (2019103106193137900_CIT0004) 2014; 17
Zhang (2019103106193137900_CIT0068) 2018; 21
Nishitani (2019103106193137900_CIT0039) 2014; 17
Ago (2019103106193137900_CIT0002) 2013; 38
Zarate (2019103106193137900_CIT0062) 2006; 63
Hara (2019103106193137900_CIT0025) 2016; 9
Ago (2019103106193137900_CIT0003) 2017; 809
Wilkinson (2019103106193137900_CIT0051) 2018; 175
Witkin (2019103106193137900_CIT0052) 2016; 358
National Research Council (2019103106193137900_CIT0035) 1996
Yang (2019103106193137900_CIT0055) 2015; 5
Tanaka (2019103106193137900_CIT0048) 2017; 20
Koike (2019103106193137900_CIT0029) 2014; 271
Yang (2019103106193137900_CIT0057) 2017; 7
Yang (2019103106193137900_CIT0059) 2018; 83
Zhou (2019103106193137900_CIT0070) 2014; 29
Chang (2019103106193137900_CIT0008) 2019
Hare (2019103106193137900_CIT0026) 2019; 10
Newport (2019103106193137900_CIT0036) 2015; 172
Zhao (2019103106193137900_CIT0069) 2008; 15
Fukumoto (2019103106193137900_CIT0017) 2016; 41
Pham (2019103106193137900_CIT0042) 2018; 84
Kinoshita (2019103106193137900_CIT0028) 2018; 21
Lorrain (2019103106193137900_CIT0031) 2003; 117
Franklin (2019103106193137900_CIT0016) 1997
Yang (2019103106193137900_CIT0056) 2017; 82
Ago (2019103106193137900_CIT0001) 2005; 30
Fukumoto (2019103106193137900_CIT0019) 2018; 21
Walker (2019103106193137900_CIT0049) 2013; 38
Canuso (2019103106193137900_CIT0006) 2018; 175
Rogóż (2019103106193137900_CIT0044) 2013; 65
Zhang (2019103106193137900_CIT0067) 2016; 9
Fukumoto (2019103106193137900_CIT0020) 2019; 116
Chou (2019103106193137900_CIT0009) 2018; 139
Fukumoto (2019103106193137900_CIT0018) 2017; 361
Pham (2019103106193137900_CIT0041) 2017; 112
Gould (2019103106193137900_CIT0023) 2017; 42
Nishimura (2019103106193137900_CIT0037) 1999; 274
Maeng (2019103106193137900_CIT0032) 2008; 63
Koike (2019103106193137900_CIT0030) 2011; 224
Price (2019103106193137900_CIT0043) 2009; 66
References_xml – volume: 38
  start-page: 1609
  year: 2013
  ident: 2019103106193137900_CIT0049
  article-title: NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2013.71
– volume: 38
  start-page: 2666
  year: 2013
  ident: 2019103106193137900_CIT0054
  article-title: Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: a PET study in conscious monkeys
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2013.176
– volume: 172
  start-page: 950
  year: 2015
  ident: 2019103106193137900_CIT0036
  article-title: Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2015.15040465
– volume: 5
  start-page: e632
  year: 2015
  ident: 2019103106193137900_CIT0055
  article-title: R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2015.136
– volume: 84
  start-page: e3
  year: 2018
  ident: 2019103106193137900_CIT0042
  article-title: Common neurotransmission recruited in (R,S)-ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.10.020
– volume: 120
  start-page: 63
  year: 2012
  ident: 2019103106193137900_CIT0021
  article-title: Roles of dopamine and inflammation-related molecules in behavioral alterations caused by repeated stress
  publication-title: J Pharmacol Sci
  doi: 10.1254/jphs.12R09CP
– volume: 333
  start-page: 99
  year: 1997
  ident: 2019103106193137900_CIT0014
  article-title: Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(97)01116-3
– volume: 23
  start-page: 801
  year: 2018
  ident: 2019103106193137900_CIT0060
  article-title: Mechanisms of ketamine action as an antidepressant
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2017.255
– year: 2019
  ident: 2019103106193137900_CIT0013
  article-title: Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-019-0400-x
– volume: 41
  start-page: 1046
  year: 2016
  ident: 2019103106193137900_CIT0017
  article-title: The antidepressant effects of an mglu2/3 receptor antagonist and ketamine require AMPA receptor stimulation in the mpfc and subsequent activation of the 5-HT neurons in the DRN
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2015.233
– volume: 267
  start-page: 173
  year: 2017
  ident: 2019103106193137900_CIT0027
  article-title: Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys
  publication-title: Eur Arch Psychiatry Clin Neurosci
  doi: 10.1007/s00406-016-0692-7
– volume: 175
  start-page: 620
  year: 2018
  ident: 2019103106193137900_CIT0006
  article-title: Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized, placebo-controlled study
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2018.17060720
– volume: 30
  start-page: 43
  year: 2005
  ident: 2019103106193137900_CIT0001
  article-title: Sulpiride in combination with fluvoxamine increases in vivo dopamine release selectively in rat prefrontal cortex
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1300567
– volume: 271
  start-page: 111
  year: 2014
  ident: 2019103106193137900_CIT0029
  article-title: Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2014.05.065
– volume: 358
  start-page: 71
  year: 2016
  ident: 2019103106193137900_CIT0052
  article-title: The rapidly acting antidepressant ketamine and the mglu2/3 receptor antagonist LY341495 rapidly engage dopaminergic mood circuits
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.116.233627
– volume: 84
  start-page: 591
  year: 2018
  ident: 2019103106193137900_CIT0058
  article-title: AMPA receptor activation-independent antidepressant actions of ketamine metabolite (S)-norketamine
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2018.05.007
– volume: 233
  start-page: 2813
  year: 2016
  ident: 2019103106193137900_CIT0011
  article-title: Differential interaction with the serotonin system by S-ketamine, vortioxetine, and fluoxetine in a genetic rat model of depression
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-016-4327-5
– volume: 66
  start-page: 522
  year: 2009
  ident: 2019103106193137900_CIT0043
  article-title: Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2009.04.029
– volume: 47
  start-page: 351
  year: 2000
  ident: 2019103106193137900_CIT0005
  article-title: Antidepressant effects of ketamine in depressed patients
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(99)00230-9
– volume: 29
  start-page: 419
  year: 2014
  ident: 2019103106193137900_CIT0070
  article-title: Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mtor and BDNF in rat hippocampus and prefrontal cortex
  publication-title: Eur Psychiatry
  doi: 10.1016/j.eurpsy.2013.10.005
– volume: 17
  start-page: 1321
  year: 2014
  ident: 2019103106193137900_CIT0039
  article-title: Raphe AMPA receptors and nicotinic acetylcholine receptors mediate ketamine-induced serotonin release in the rat prefrontal cortex
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1017/S1461145714000649
– year: 2019
  ident: 2019103106193137900_CIT0008
  article-title: Lack of dopamine D1 receptors in the antidepressant actions of (R)-ketamine in a chronic social defeat stress model
  publication-title: Eur Arch Psychiatry Clin Neurosci
  doi: 10.1007/s00406-019-01012-1
– volume: 139
  start-page: 1
  year: 2018
  ident: 2019103106193137900_CIT0009
  article-title: (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2018.06.033
– year: 2019
  ident: 2019103106193137900_CIT0015
– volume-title: The mouse brain in stereotaxic coordinates
  year: 1997
  ident: 2019103106193137900_CIT0016
– volume: 17
  start-page: 883
  year: 2014
  ident: 2019103106193137900_CIT0004
  article-title: Involvement of prefrontal AMPA receptors in encounter stimulation-induced hyperactivity in isolation-reared mice
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1017/S1461145713001582
– volume: 75
  start-page: 139
  year: 2018
  ident: 2019103106193137900_CIT0010
  article-title: Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: a randomized clinical trial
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2017.3739
– volume: 42
  start-page: 2482
  year: 2017
  ident: 2019103106193137900_CIT0047
  article-title: Dose-related effects of adjunctive ketamine in Taiwanese patients with treatment-resistant depression
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2017.94
– volume: 65
  start-page: 1535
  year: 2013
  ident: 2019103106193137900_CIT0044
  article-title: Combined treatment with atypical antipsychotics and antidepressants in treatment-resistant depression: preclinical and clinical efficacy
  publication-title: Pharmacol Rep
  doi: 10.1016/S1734-1140(13)71515-9
– volume: 63
  start-page: 856
  year: 2006
  ident: 2019103106193137900_CIT0062
  article-title: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.63.8.856
– volume: 274
  start-page: 131
  year: 1999
  ident: 2019103106193137900_CIT0037
  article-title: Ketamine stereoselectively inhibits rat dopamine transporter
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(99)00688-6
– volume: 9
  start-page: 926
  year: 2016
  ident: 2019103106193137900_CIT0025
  article-title: Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism
  publication-title: Autism Res
  doi: 10.1002/aur.1596
– volume: 88
  start-page: 768
  year: 1998
  ident: 2019103106193137900_CIT0038
  article-title: Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells
  publication-title: Anesthesiology
  doi: 10.1097/00000542-199803000-00029
– volume: 20
  start-page: 410
  year: 2017
  ident: 2019103106193137900_CIT0048
  article-title: Role of prefrontal serotonergic and dopaminergic systems in encounter-induced hyperactivity in methamphetamine-sensitized mice
  publication-title: Int J Neuropsychopharmacol
– volume: 21
  start-page: 305
  year: 2018
  ident: 2019103106193137900_CIT0028
  article-title: Ketamine-induced prefrontal serotonin release is mediated by cholinergic neurons in the pedunculopontine tegmental nucleus
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1093/ijnp/pyy007
– volume: 175
  start-page: 327
  year: 2018
  ident: 2019103106193137900_CIT0024
  article-title: Ketamine for rapid reduction of suicidal thoughts in major depression: A midazolam-controlled randomized clinical trial
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2017.17060647
– volume: 7
  start-page: 1294
  year: 2017
  ident: 2019103106193137900_CIT0057
  article-title: Possible role of the gut microbiota-brain axis in the antidepressant effects of ®-ketamine in a social defeat stress model
  publication-title: Transl Psychiatry
  doi: 10.1038/s41398-017-0031-4
– volume: 9
  start-page: ra123
  year: 2016
  ident: 2019103106193137900_CIT0067
  article-title: Essential roles of AMPA receptor glua1 phosphorylation and presynaptic HCN channels in fast-acting antidepressant responses of ketamine
  publication-title: Sci Signal
  doi: 10.1126/scisignal.aai7884
– volume: 21
  start-page: 371
  year: 2018
  ident: 2019103106193137900_CIT0019
  article-title: Role of 5-HT1A receptor stimulation in the medial prefrontal cortex in the sustained antidepressant effects of ketamine
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1093/ijnp/pyx116
– volume: 533
  start-page: 481
  year: 2016
  ident: 2019103106193137900_CIT0061
  article-title: NMDAR inhibition-independent antidepressant actions of ketamine metabolites
  publication-title: Nature
  doi: 10.1038/nature17998
– volume: 224
  start-page: 107
  year: 2011
  ident: 2019103106193137900_CIT0030
  article-title: Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2011.05.035
– volume: 117
  start-page: 697
  year: 2003
  ident: 2019103106193137900_CIT0031
  article-title: Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(02)00652-8
– volume: 74
  start-page: 966
  year: 2013
  ident: 2019103106193137900_CIT0046
  article-title: Antidepressant augmentation using the N-methyl-D-aspartate antagonist memantine: a randomized, double-blind, placebo-controlled trial
  publication-title: J Clin Psychiatry
  doi: 10.4088/JCP.12m08252
– volume: 43
  start-page: 1900
  year: 2018
  ident: 2019103106193137900_CIT0053
  article-title: (2R,6R)-hydroxynorketamine is not essential for the antidepressant actions of ®-ketamine in mice
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-018-0084-y
– volume: 10
  start-page: 223
  year: 2019
  ident: 2019103106193137900_CIT0026
  article-title: Optogenetic stimulation of medial prefrontal cortex drd1 neurons produces rapid and long-lasting antidepressant effects
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-08168-9
– volume: 83
  start-page: 18
  year: 2018
  ident: 2019103106193137900_CIT0059
  article-title: Mechanistic target of rapamycin-independent antidepressant effects of ®-ketamine in a social defeat stress model
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.05.016
– volume: 70
  start-page: 837
  year: 2018
  ident: 2019103106193137900_CIT0040
  article-title: The role of glutamatergic modulation in the mechanism of action of ketamine, a prototype rapid-acting antidepressant drug
  publication-title: Pharmacol Rep
  doi: 10.1016/j.pharep.2018.02.011
– volume: 228
  start-page: 157
  year: 2013
  ident: 2019103106193137900_CIT0022
  article-title: Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/s00213-013-3024-x
– volume: 42
  start-page: 368
  year: 2017
  ident: 2019103106193137900_CIT0023
  article-title: Ketamine mechanism of action: separating the wheat from the chaff
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2016.210
– volume: 45
  start-page: 3571
  year: 2015
  ident: 2019103106193137900_CIT0034
  article-title: Ketamine for rapid reduction of suicidal ideation: a randomized controlled trial
  publication-title: Psychol Med
  doi: 10.1017/S0033291715001506
– volume: 112
  start-page: 198
  year: 2017
  ident: 2019103106193137900_CIT0041
  article-title: Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cj mice
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2016.05.010
– volume: 809
  start-page: 172
  year: 2017
  ident: 2019103106193137900_CIT0003
  article-title: Psychopharmacology of combined activation of the serotonin1a and σ1 receptors
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2017.05.035
– volume: 42
  start-page: 844
  year: 2017
  ident: 2019103106193137900_CIT0045
  article-title: Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: a randomized, placebo-controlled study
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2016.224
– volume: 15
  start-page: 1264
  year: 2008
  ident: 2019103106193137900_CIT0069
  article-title: Antidepressants modulate the in vitro inhibitory effects of propofol and ketamine on norepinephrine and serotonin transporter function
  publication-title: J Clin Neurosci
  doi: 10.1016/j.jocn.2007.11.007
– volume: 116
  start-page: 137
  year: 2014
  ident: 2019103106193137900_CIT0065
  article-title: R (-)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine
  publication-title: Pharmacol Biochem Behav
  doi: 10.1016/j.pbb.2013.11.033
– volume: 175
  start-page: 150
  year: 2018
  ident: 2019103106193137900_CIT0051
  article-title: The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2017.17040472
– volume: 15
  start-page: 963
  year: 2017
  ident: 2019103106193137900_CIT0007
  article-title: Beyond ketamine: new approaches to the development of safer antidepressants
  publication-title: Curr Neuropharmacol
  doi: 10.2174/1570159X15666170221101054
– volume: 361
  start-page: 9
  year: 2017
  ident: 2019103106193137900_CIT0018
  article-title: Antidepressant potential of ®-ketamine in rodent models: comparison with (S)-ketamine
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.116.239228
– volume: 21
  start-page: 157
  year: 2018
  ident: 2019103106193137900_CIT0068
  article-title: 5-hydroxytryptamine-independent antidepressant actions of ®-ketamine in a chronic social defeat stress model
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1093/ijnp/pyx100
– volume-title: Guide for the care and use of laboratory animals
  year: 1996
  ident: 2019103106193137900_CIT0035
– volume: 82
  start-page: e43
  year: 2017
  ident: 2019103106193137900_CIT0056
  article-title: ®-ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2016.12.020
– volume: 74
  start-page: 250
  year: 2013
  ident: 2019103106193137900_CIT0033
  article-title: Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2012.06.022
– volume: 74
  start-page: 257
  year: 2013
  ident: 2019103106193137900_CIT0064
  article-title: A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2012.10.019
– volume: 116
  start-page: 297
  year: 2019
  ident: 2019103106193137900_CIT0020
  article-title: Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1814709116
– volume: 163
  start-page: 153
  year: 2006
  ident: 2019103106193137900_CIT0063
  article-title: A double-blind, placebo-controlled study of memantine in the treatment of major depression
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.163.1.153
– volume: 38
  start-page: 1535
  year: 2013
  ident: 2019103106193137900_CIT0002
  article-title: Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2013.52
– volume: 18
  start-page: pyu077
  year: 2014
  ident: 2019103106193137900_CIT0066
  article-title: Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation
  publication-title: Int J Neuropsychopharmacol
– volume: 63
  start-page: 349
  year: 2008
  ident: 2019103106193137900_CIT0032
  article-title: Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2007.05.028
– volume: 71
  start-page: 27
  year: 2016
  ident: 2019103106193137900_CIT0012
  article-title: Potential involvement of serotonergic signaling in ketamine’s antidepressant actions: a critical review
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2016.05.007
– volume: 231
  start-page: 1627
  year: 2014
  ident: 2019103106193137900_CIT0050
  article-title: Decreased prefrontal cortex dopamine activity following adolescent social defeat in male rats: role of dopamine D2 receptors
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-013-3353-9
SSID ssj0024536
Score 2.503801
Snippet Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and...
Background Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 665
SubjectTerms Animals
Disease Models, Animal
Dopamine
Dopamine - metabolism
Dose-Response Relationship, Drug
Ketamine
Ketamine - administration & dosage
Ketamine - analogs & derivatives
Ketamine - antagonists & inhibitors
Ketamine - pharmacology
Lipopolysaccharides
Male
Metabolites
Mice
Microdialysis
Microinjections
Norepinephrine - metabolism
Prefrontal Cortex - metabolism
Quinoxalines - pharmacology
Receptors, AMPA - metabolism
Regular
Serotonin
Serotonin - metabolism
Stereoisomerism
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELam8cILgvGrY0NGmqaBZpY0cew8IFQhpgIqqkYr7S262I4WtKWlyRDlL-HP5S5J03VMvCWxHVs-X-4c330fYwcqTq02KYgsNZEInYkF2CgQfaUh04Fn_ZobcPQ1Gk7Dz-fyfIutyDjbCSzv3NoRn9R0cfn214_le1T4dy0Y0kn-vZifzJe_PUpgv4cmSZGGjkK9Bt2TQZtm5As_lKpN1LvVeNM0_eNv3g6bvGGHTh-yB60DyQeNxB-xLVfssMNxg0C9POaTdUJVecwP-XiNTb18zP4cnb0WX1wFV-hdcuLtwO8EB17_KXALfEJeZOl4XvAxjpDgDbA3KYYTfoYWioomF1Dwo2833gOF5d3NCC9SiqrDF__MAQv5YDQeYHOKoJktxKeOebfCypR5nJdXT9j09OPkw1C05AzChEpWIgWrZRypNPPr9N4s1qjLfSuticFInYENpYPMeoExDjd14CJnAWdPEYQfBE_ZdjEr3HPGJSjnSc8D7fwQW8SZDwoyci5N2k_jHnuzkktiWuRyItC4TJoT9CAhISaNEHvsoKs8bwA77q62txJwslp0SeBHsdYSfaIee9UVo77RIQoUbnZdJn3acqoo9MIee9ash64fgsEkDvkeUxsrpatAWN6bJUV-UWN6R-io-YHe_f-wXrD7tEVvIof22Ha1uHb76BRV6ct6wf8FhckR_Q
  priority: 102
  providerName: Scholars Portal
Title (R)-Ketamine Induces a Greater Increase in Prefrontal 5-HT Release Than (S)-Ketamine and Ketamine Metabolites via an AMPA Receptor-Independent Mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/31325908
https://www.proquest.com/docview/3169885201
https://www.proquest.com/docview/2261976404
https://pubmed.ncbi.nlm.nih.gov/PMC6822138
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EFMT4DozLSNA00q0ljx84TKmhTAXWqSif1LXJsRwtiaWmySeUv4c_lLknTFRAvVpLzl3L-OJ_vfkfIkYxTq0yqWZaaiHFnYqZtFLKBVDpToW-DOjbg-CIaXfLPczFvFW5la1a5WRPrhdouDOrI-2EQxUoJ2K_eL38wjBqFt6ttCI37ZB-hy9CkS863By4uwta7KGABF7L1z4NDfD__Viz7y_VPnwe7O9JfYuaf1pJ3tp_zR-RhKzfSYcPoA3LPFY_J8aQBnl6f0tnWj6o8pcd0soWkXj8hv06mb9kXV-lrECophuuA5YFqWisI3Aq-oPBYOpoXdAI9RFQDaE2w0YxOYWNC0uxKF_Tk6516dGFp9zKGhxSN6aDi21wDkQ7HkyEUR8OZxYp96gLuVpAZHY7z8vopuTw_m30csTYmAzNcioql2ioRRzLNgtqrN4sVTOGBFdbE2giVacuF05n1Q2McnOW0i5zV8PckIvfp8BnZKxaFe0Go0NL5wve1cgGHEnEWaKkzlClNOkhjj7zb8CUxLWA5xs34njQX52GCTEwaJnrkqMu8bHA6_p3tcMPgpJ2sZbIdWh5505FhmuHdiS7c4qZMBnjSlBH3uUeeN-OhawfRLzF0vEfkzkjpMiCE9y6lyK9qKO8I5LMgVC__361X5AGkcWNDeEj2qtWNew2yUJX26gHfI_sfzi4m016tUYB0zNVvpkISPQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEN8UBhhpTAPNahLH-XhAqMCmlq5VVDJpb8GxHa2IpaXpQOUv4a_gb-ScpOkKiLe9Jfb5Q7rz-Wzf_Q5g1w9TFchU0CyVHnW1DKlQHqOOH4gsYJayy9yAw5HXO3E_nPLTLfi1ioUxbpUrnVgqajWV5o68w2wvDAKO-9Wb2VdqskaZ19VVCo1KLAZ6-R2PbMXr_nvk7wvHOTqM3_VonVWAStfnC5oKFfDQ89PMLuNSszBAIXQUVzIUkgeZUC7XIlMWk1LjaURoTyuhlfQN9pxg2O812HYZHmVasP32cBSN1-h-nNXxTDa1Xe7XEYFWyDqTz_msM1v-sFx7cw_8y7D90z_z0oZ3dAtu1pYq6VaidRu2dH4H9qIK6np5QOJ15FZxQPZItAbBXt6Fn_vjl3SgF-IczVhiEoSgQiKClFcSeo4lxlwtNJnkJMIZGhwFHI3TXkzGuBWaqvhM5GT_46V-RK5I8zPEj9S472HH3yYCK0l3GHWxuXHVmc5pv0nxu0BiE-I8Kc7vwcmV8Os-tPJprh8C4cLXFrcsEWjbxRZhZgtfZMaKlamThm14teJLImuIdJOp40tSPdWzxDAxqZjYht2GeFYhg_ybbGfF4KRWD0WyFuY2PG-qcWGb1xqR6-lFkTjmbOt7ruW24UElD804Bm_TJKtvg78hKQ2BAQ3frMknZyV4uIcWoc2CR_-f1jO43ouHx8lxfzR4DDewJKw8GHegtZhf6CdoiS3Sp7X4E_h01SvuN6L1T1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28R%29-Ketamine+Induces+a+Greater+Increase+in+Prefrontal+5-HT+Release+Than+%28S%29-Ketamine+and+Ketamine+Metabolites+via+an+AMPA+Receptor-Independent+Mechanism&rft.jtitle=The+international+journal+of+neuropsychopharmacology&rft.au=Ago%2C+Yukio&rft.au=Tanabe%2C+Wataru&rft.au=Higuchi%2C+Momoko&rft.au=Tsukada%2C+Shinji&rft.date=2019-10-01&rft.pub=Oxford+University+Press&rft.issn=1461-1457&rft.eissn=1469-5111&rft.volume=22&rft.issue=10&rft.spage=665&rft.epage=674&rft_id=info:doi/10.1093%2Fijnp%2Fpyz041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-1457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-1457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-1457&client=summon