Cellular and neurochemical basis of sleep stages in the thalamocortical network

The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of ace...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 5
Main Authors Krishnan, Giri P, Chauvette, Sylvain, Shamie, Isaac, Soltani, Sara, Timofeev, Igor, Cash, Sydney S, Halgren, Eric, Bazhenov, Maxim
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 16.11.2016
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages. There are several stages of sleep that cycle repeatedly through the night with each producing distinctive patterns of electrical activity in the brain. It is thought that these patterns may help us to remember things that have happened throughout the day. Cells in parts of the brain called the hypothalamus and the brainstem control transitions between sleep stages. They regulate the release of chemicals known as neuromodulators in many parts of the brain, including the cortex and thalamus, which play the roles in memory and learning. Researchers now know how the neuromodulators influence the properties of individual brain cells. However, it is not clear how coordinated action of many neuromodulators result in the patterns of electrical activity seen in the brain during each stage of sleep. Krishnan et al. used a computer model to investigate how three of these neuromodulators – acetylcholine, histamine and GABA – shift electrical activity in the brain between sleep stages. The computer model was able to recreate the network of brain cells in the cortex and thalamus and how this network responds to the changes in the levels of neuromodulators. The study found that simultaneous and balanced changes of acetylcholine, histamine, and GABA work together to shift the brain between the stages of sleep and to initiate patterns of the brain electrical activity specific to the different sleep stages. Krishnan et al. predict that the relative differences in the level of acetylcholine in the brains of humans, cats and mice may explain why different species have different patterns of electrical activity during sleep. The study also found that an anesthetic drug called propofol may induce sleep-like patterns of electrical activity in the human brain by affecting the levels of all three of the neuromodulators. More studies are needed to look at how the networks of cells in the cortex and thalamus communicate with the brainstem, and how changes in the levels of neuromodulators affect memory and learning.
AbstractList The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages. There are several stages of sleep that cycle repeatedly through the night with each producing distinctive patterns of electrical activity in the brain. It is thought that these patterns may help us to remember things that have happened throughout the day. Cells in parts of the brain called the hypothalamus and the brainstem control transitions between sleep stages. They regulate the release of chemicals known as neuromodulators in many parts of the brain, including the cortex and thalamus, which play the roles in memory and learning. Researchers now know how the neuromodulators influence the properties of individual brain cells. However, it is not clear how coordinated action of many neuromodulators result in the patterns of electrical activity seen in the brain during each stage of sleep. Krishnan et al. used a computer model to investigate how three of these neuromodulators – acetylcholine, histamine and GABA – shift electrical activity in the brain between sleep stages. The computer model was able to recreate the network of brain cells in the cortex and thalamus and how this network responds to the changes in the levels of neuromodulators. The study found that simultaneous and balanced changes of acetylcholine, histamine, and GABA work together to shift the brain between the stages of sleep and to initiate patterns of the brain electrical activity specific to the different sleep stages. Krishnan et al. predict that the relative differences in the level of acetylcholine in the brains of humans, cats and mice may explain why different species have different patterns of electrical activity during sleep. The study also found that an anesthetic drug called propofol may induce sleep-like patterns of electrical activity in the human brain by affecting the levels of all three of the neuromodulators. More studies are needed to look at how the networks of cells in the cortex and thalamus communicate with the brainstem, and how changes in the levels of neuromodulators affect memory and learning.
The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages.
The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages. DOI: http://dx.doi.org/10.7554/eLife.18607.001 There are several stages of sleep that cycle repeatedly through the night with each producing distinctive patterns of electrical activity in the brain. It is thought that these patterns may help us to remember things that have happened throughout the day. Cells in parts of the brain called the hypothalamus and the brainstem control transitions between sleep stages. They regulate the release of chemicals known as neuromodulators in many parts of the brain, including the cortex and thalamus, which play the roles in memory and learning. Researchers now know how the neuromodulators influence the properties of individual brain cells. However, it is not clear how coordinated action of many neuromodulators result in the patterns of electrical activity seen in the brain during each stage of sleep. Krishnan et al. used a computer model to investigate how three of these neuromodulators – acetylcholine, histamine and GABA – shift electrical activity in the brain between sleep stages. The computer model was able to recreate the network of brain cells in the cortex and thalamus and how this network responds to the changes in the levels of neuromodulators. The study found that simultaneous and balanced changes of acetylcholine, histamine, and GABA work together to shift the brain between the stages of sleep and to initiate patterns of the brain electrical activity specific to the different sleep stages. Krishnan et al. predict that the relative differences in the level of acetylcholine in the brains of humans, cats and mice may explain why different species have different patterns of electrical activity during sleep. The study also found that an anesthetic drug called propofol may induce sleep-like patterns of electrical activity in the human brain by affecting the levels of all three of the neuromodulators. More studies are needed to look at how the networks of cells in the cortex and thalamus communicate with the brainstem, and how changes in the levels of neuromodulators affect memory and learning. DOI: http://dx.doi.org/10.7554/eLife.18607.002
The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages.DOI: http://dx.doi.org/10.7554/eLife.18607.001
Author Krishnan, Giri P
Chauvette, Sylvain
Cash, Sydney S
Soltani, Sara
Timofeev, Igor
Bazhenov, Maxim
Halgren, Eric
Shamie, Isaac
Author_xml – sequence: 1
  givenname: Giri P
  orcidid: 0000-0002-3931-7633
  surname: Krishnan
  fullname: Krishnan, Giri P
  organization: Department of Medicine, University of California, San Diego, La Jolla, CA, United States
– sequence: 2
  givenname: Sylvain
  surname: Chauvette
  fullname: Chauvette, Sylvain
  organization: Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada, Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada
– sequence: 3
  givenname: Isaac
  surname: Shamie
  fullname: Shamie, Isaac
  organization: Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, United States
– sequence: 4
  givenname: Sara
  surname: Soltani
  fullname: Soltani, Sara
  organization: Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada, Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada
– sequence: 5
  givenname: Igor
  surname: Timofeev
  fullname: Timofeev, Igor
  organization: Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada, Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada
– sequence: 6
  givenname: Sydney S
  surname: Cash
  fullname: Cash, Sydney S
  organization: Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, United States
– sequence: 7
  givenname: Eric
  surname: Halgren
  fullname: Halgren, Eric
  organization: Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, United States
– sequence: 8
  givenname: Maxim
  surname: Bazhenov
  fullname: Bazhenov, Maxim
  organization: Department of Medicine, University of California, San Diego, La Jolla, CA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27849520$$D View this record in MEDLINE/PubMed
BookMark eNptksFrFDEUxoNUbK09eZcBL4JsTWaSTXIRZGm1sNCLgreQSd7sZs0ka5JR_O_N7LbSFgOPhOR7Pz5evpfoJMQACL0m-JIzRj_A2g1wScQS82forMUML7Cg308enE_RRc47XBenQhD5Ap22XFDJWnyGblfg_eR1anSwTYApRbOF0Rntm15nl5s4NNkD7Jtc9AZy40JTtlBLez1GE1M5iAOU3zH9eIWeD9pnuLjbz9G366uvqy-L9e3nm9Wn9cJQzsqil0RTS2RvcatbYzj0cimAYgukJa2lzDIjuLR4EB0DhrntBF9iDLrDw5J25-jmyLVR79Q-uVGnPypqpw4XMW2Unp15UFDBbDCDhI5RSYgQba3qQzDJOsMq6-ORtZ_6EayBUJL2j6CPX4Lbqk38pRiZabwC3t0BUvw5QS5qdNnUweoAccqKCEpIR6QUVfr2iXQXpxTqqBSpbjrSMjar3jx09M_K_b9VATkKTIo5JxiUcUUXF2eDziuC1RwPdYiHOsSj9rx_0nOP_Z_6L20Vu0I
CitedBy_id crossref_primary_10_1371_journal_pone_0306218
crossref_primary_10_1016_j_celrep_2021_109270
crossref_primary_10_1016_j_physa_2022_128069
crossref_primary_10_3389_fncir_2018_00004
crossref_primary_10_1111_ejn_15836
crossref_primary_10_3389_fnsys_2020_00022
crossref_primary_10_3390_clockssleep1010015
crossref_primary_10_1038_s41467_022_34938_7
crossref_primary_10_1016_j_conb_2017_07_009
crossref_primary_10_1016_j_neuron_2019_05_041
crossref_primary_10_1073_pnas_1804846115
crossref_primary_10_3389_fncel_2020_593050
crossref_primary_10_3389_fncom_2021_800101
crossref_primary_10_1007_s11818_020_00255_8
crossref_primary_10_1080_00207454_2020_1750392
crossref_primary_10_1152_jn_00068_2022
crossref_primary_10_1371_journal_pone_0277772
crossref_primary_10_1523_ENEURO_0293_19_2020
crossref_primary_10_1016_j_conb_2017_03_019
crossref_primary_10_3390_jpm12071070
crossref_primary_10_1007_s00429_022_02604_9
crossref_primary_10_1371_journal_pcbi_1006322
crossref_primary_10_3389_fneur_2017_00058
crossref_primary_10_1038_ncomms15499
crossref_primary_10_1103_PhysRevE_110_044401
crossref_primary_10_1093_sleep_zsac106
crossref_primary_10_1523_JNEUROSCI_1427_19_2019
crossref_primary_10_3389_fnsys_2019_00033
crossref_primary_10_1016_j_neurobiolaging_2018_12_012
crossref_primary_10_1093_cercor_bhz061
crossref_primary_10_1371_journal_pcbi_1005797
crossref_primary_10_3389_fncom_2022_769860
crossref_primary_10_1371_journal_pcbi_1005879
crossref_primary_10_1016_j_jneumeth_2018_10_002
crossref_primary_10_1016_j_celrep_2024_114790
crossref_primary_10_1093_cercor_bhaa228
crossref_primary_10_1016_j_simpa_2024_100667
crossref_primary_10_1371_journal_pcbi_1012245
crossref_primary_10_1038_s41467_025_58011_1
crossref_primary_10_7554_eLife_51005
crossref_primary_10_1016_j_celrep_2023_113267
crossref_primary_10_1371_journal_pcbi_1006171
Cites_doi 10.1073/pnas.041430398
10.1523/JNEUROSCI.0575-04.2004
10.1213/ANE.0b013e318297366e
10.1073/pnas.1221180110
10.1523/JNEUROSCI.11-10-03188.1991
10.1002/jnr.20602
10.1523/JNEUROSCI.5674-10.2011
10.1093/cercor/10.12.1185
10.1113/jphysiol.1996.sp021133
10.1152/jn.1985.54.6.1473
10.1016/S0013-4694(98)00051-0
10.1212/wnl.49.4.952
10.1523/JNEUROSCI.4652-06.2007
10.1152/jn.1996.76.6.4152
10.1016/S1388-2457(99)00318-1
10.1124/jpet.103.055772
10.1523/JNEUROSCI.1156-13.2014
10.1016/S1388-2457(02)00237-7
10.1016/S0166-4328(00)00257-6
10.1016/0165-0173(84)90017-1
10.1126/science.8392750
10.1124/jpet.102.043273
10.1046/j.1460-9568.1999.00779.x
10.1152/physrev.1988.68.3.649
10.1098/rsta.2011.0120
10.1093/bja/80.5.644
10.1093/sleep/29.7.967
10.1073/pnas.1017069108
10.1016/B978-0-12-374947-5.00057-2
10.1523/JNEUROSCI.5297-05.2006
10.1111/j.1365-2869.1993.tb00065.x
10.1113/jphysiol.2012.227462
10.1038/nrn2868
10.1523/JNEUROSCI.4460-13.2014
10.1073/pnas.0913016107
10.1113/jphysiol.2008.153874
10.1152/jn.00915.2004
10.1016/S0006-8993(00)02766-9
10.1097/00000542-199704000-00016
10.1111/j.1469-8986.1979.tb02991.x
10.1016/S0896-6273(00)80380-3
10.1097/00001756-199612200-00025
10.1152/jn.1998.79.3.1579
10.1038/79848
10.1152/jn.00845.2002
10.1126/science.1124593
10.5665/sleep.2106
10.1146/annurev.neuro.20.1.185
10.5664/jcsm.26814
10.1109/TAC.1974.1100705
10.1523/JNEUROSCI.18-16-06444.1998
10.1038/5729
10.1152/jn.1996.76.3.2049
10.1126/science.1148979
10.1038/nn.3203
10.1523/JNEUROSCI.22-24-10941.2002
10.1016/S0306-4522(97)00186-3
10.1037/h0057431
10.1016/0301-0082(92)90012-4
10.1162/neco.1994.6.1.14
10.1093/brain/awm146
10.1016/j.cell.2016.01.046
10.1016/0006-8993(94)01399-3
10.7554/eLife.06412
10.1523/JNEUROSCI.11-10-03200.1991
10.1523/JNEUROSCI.13-08-03266.1993
10.1523/JNEUROSCI.15-01-00604.1995
10.1073/pnas.86.20.8098
10.1007/BF02246405
10.1371/journal.pone.0144720
10.1152/ajpregu.2001.280.2.R598
10.1097/00000542-200009000-00020
10.1016/j.neuron.2015.06.003
10.1016/0304-3940(83)90166-0
10.1523/JNEUROSCI.19-21-09497.1999
10.1126/science.1169626
10.1038/nn913
10.1152/jn.2000.84.2.1076
10.1523/JNEUROSCI.0077-11.2011
10.1016/j.neuron.2012.08.034
10.1523/JNEUROSCI.01-08-00876.1981
10.3410/f.11117956.12356054
10.1371/journal.pcbi.1005022
10.1523/JNEUROSCI.22-19-08691.2002
10.1523/JNEUROSCI.3648-15.2016
10.1126/science.1135627
10.1126/science.8235588
10.1152/jn.2001.85.5.1969
ContentType Journal Article
Copyright 2016, Krishnan et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2016, Krishnan et al 2016 Krishnan et al
Copyright_xml – notice: 2016, Krishnan et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2016, Krishnan et al 2016 Krishnan et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.18607
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_e68e5fcf9e354911882188c4785953c5
PMC5111887
27849520
10_7554_eLife_18607
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
California
GeographicLocations_xml – name: United States--US
– name: California
GrantInformation_xml – fundername: CIHR
  grantid: MOP-136967
– fundername: NIMH NIH HHS
  grantid: R01 MH099645
– fundername: NIBIB NIH HHS
  grantid: R01 EB009282
– fundername: CIHR
  grantid: MOP-136969
– fundername: ;
  grantid: MOP-136969
– fundername: ;
  grantid: MURI: N000141310672
– fundername: ;
  grantid: 298475
– fundername: ;
  grantid: MH099645
– fundername: ;
  grantid: MOP-136967
– fundername: ;
  grantid: EB009282
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c475t-b91a4d19bd02a2cc7eb968e40de1212d45d5c879d0f835e507d387600ea30f643
IEDL.DBID 7X7
ISSN 2050-084X
IngestDate Wed Aug 27 01:12:25 EDT 2025
Thu Aug 21 18:42:08 EDT 2025
Fri Jul 11 04:42:57 EDT 2025
Fri Jul 25 11:51:46 EDT 2025
Mon Jul 21 06:05:54 EDT 2025
Tue Jul 01 01:11:44 EDT 2025
Thu Apr 24 22:58:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mouse
sleep spindles
sleep stages
neuroscience
sleep slow oscillations
human
neuromodulator
REM sleep
Language English
License http://creativecommons.org/licenses/by/4.0
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-b91a4d19bd02a2cc7eb968e40de1212d45d5c879d0f835e507d387600ea30f643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3931-7633
OpenAccessLink https://www.proquest.com/docview/1953312558?pq-origsite=%requestingapplication%
PMID 27849520
PQID 1953312558
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_e68e5fcf9e354911882188c4785953c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111887
proquest_miscellaneous_1841131998
proquest_journals_1953312558
pubmed_primary_27849520
crossref_citationtrail_10_7554_eLife_18607
crossref_primary_10_7554_eLife_18607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-16
PublicationDateYYYYMMDD 2016-11-16
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-16
  day: 16
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2016
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Lemieux (bib40) 2014; 34
Timofeev (bib85) 2001; 98
Kimura (bib38) 1999; 11
Purdon (bib65) 2013; 110
Nelson (bib57) 2002; 5
Amzica (bib5) 1998; 107
Niedermeyer (bib58) 2005
Vanini (bib88) 2011; 31
Aeschbach (bib2) 1993; 2
Marrosu (bib44) 1995; 671
Robinson (bib67) 2011; 369
Steriade (bib78) 1990
Murphy (bib54) 2011; 34
Niknazar (bib59) 2015; 10
Ching (bib19) 2010; 107
Destexhe (bib27) 1994; 6
Bazhenov (bib11) 2002; 22
Contreras (bib24) 1996; 490
Chauvette (bib17) 2012; 75
Euston (bib28) 2007; 318
Loomis (bib42) 1937; 21
Léna (bib43) 2005; 81
McCormick (bib48) 1991; 11
Rechtschaffen (bib66) 1968
Sanchez-Vives (bib69) 2000; 3
Pennartz (bib62) 2004; 24
Steriade (bib82) 2001; 85
McCarley (bib45) 1975; 189
Vanini (bib87) 2012; 35
Wei (bib91) 2016; 36
Yu (bib94) 2015; 87
Bazhenov (bib8) 2000; 84
Bonjean (bib13) 2011; 31
Nádasdy (bib60) 1999; 19
von Krosigk (bib90) 1993; 261
Bazhenov (bib9) 1998; 18
Aston-Jones (bib6) 1981; 1
Steriade (bib76) 1985; 54
Szymusiak (bib83) 2000; 115
Crowley (bib25) 2002; 113
Contreras (bib23) 1995; 15
Schellenberger Costa (bib71) 2016; 12
McCormick (bib47) 1989; 86
Saunders (bib70) 2015; 4
Gil (bib31) 1997; 19
Wulff (bib93) 2010; 11
Constanti (bib22) 1983; 39
Murasaki (bib53) 2003; 307
Vazquez (bib89) 2001; 280
Kitamura (bib39) 2003; 304
Baghdoyan (bib7) 2012
Sheroziya (bib72) 2014; 34
Cantero (bib15) 2000; 111
Bazhenov (bib10) 1999; 2
Clemens (bib20) 2007; 130
Mittmann (bib52) 1998; 79
Popa (bib63) 2010; 107
Steriade (bib81) 1993; 13
Werth (bib92) 1996; 8
McCormick (bib46) 1997; 20
Timofeev (bib84) 2000; 10
McCormick (bib49) 1992; 39
Rudolph (bib68) 2007; 27
Müller (bib56) 2006; 29
Iber (bib36) 2007
Sivagnanam (bib74) 2013
Mölle (bib55) 2002; 22
Parrino (bib61) 1996; 126
Haider (bib32) 2006; 26
Prell (bib64) 1988; 2
Bendor (bib12) 2012; 15
Hsieh (bib35) 2000; 880
Hengen (bib33) 2016; 165
Steriade (bib79) 1988; 68
Steriade (bib75) 1984; 8
Steriade (bib80) 1993; 262
Feinberg (bib29) 1979; 16
Achermann (bib1) 1997; 81
Destexhe (bib26) 1996; 76
Mena-Segovia (bib50) 2008; 586
Silber (bib73) 2007; 3
Amzica (bib4) 1997; 49
Steriade (bib77) 1991; 11
Flood (bib30) 1997; 86
Meuret (bib51) 2000; 93
Timofeev (bib86) 1996; 76
Liu (bib41) 2013; 117
Hill (bib34) 2005; 93
Akaike (bib3) 1974; 19
Chen (bib18) 2012; 590
Kikuchi (bib37) 1998; 80
Cash (bib16) 2009; 324
Bruno (bib14) 2006; 312
Compte (bib21) 2003; 89
References_xml – volume: 98
  start-page: 1924
  year: 2001
  ident: bib85
  article-title: Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study
  publication-title: PNAS
  doi: 10.1073/pnas.041430398
– volume: 24
  start-page: 6446
  year: 2004
  ident: bib62
  article-title: The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0575-04.2004
– volume: 117
  start-page: 358
  year: 2013
  ident: bib41
  article-title: Propofol stimulates noradrenalin-inhibited neurons in the ventrolateral preoptic nucleus by reducing GABAergic inhibition
  publication-title: Anesthesia & Analgesia
  doi: 10.1213/ANE.0b013e318297366e
– volume: 110
  start-page: E1142
  year: 2013
  ident: bib65
  article-title: Electroencephalogram signatures of loss and recovery of consciousness from propofol
  publication-title: PNAS
  doi: 10.1073/pnas.1221180110
– volume: 11
  start-page: 3188
  year: 1991
  ident: bib48
  article-title: Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.11-10-03188.1991
– volume: 81
  start-page: 891
  year: 2005
  ident: bib43
  article-title: Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep--wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats
  publication-title: Journal of Neuroscience Research
  doi: 10.1002/jnr.20602
– volume: 31
  start-page: 2649
  year: 2011
  ident: bib88
  article-title: Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5674-10.2011
– volume: 10
  start-page: 1185
  year: 2000
  ident: bib84
  article-title: Origin of slow cortical oscillations in deafferented cortical slabs
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/10.12.1185
– volume: 490 
  start-page: 159
  year: 1996
  ident: bib24
  article-title: Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1996.sp021133
– volume: 54
  start-page: 1473
  year: 1985
  ident: bib76
  article-title: Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1985.54.6.1473
– volume: 107
  start-page: 69
  year: 1998
  ident: bib5
  article-title: Electrophysiological correlates of sleep delta waves
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/S0013-4694(98)00051-0
– volume: 49
  start-page: 952
  year: 1997
  ident: bib4
  article-title: The K-complex: its slow (<1-Hz) rhythmicity and relation to delta waves
  publication-title: Neurology
  doi: 10.1212/wnl.49.4.952
– volume: 27
  start-page: 5280
  year: 2007
  ident: bib68
  article-title: Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4652-06.2007
– volume: 76
  start-page: 4152
  year: 1996
  ident: bib86
  article-title: Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1996.76.6.4152
– volume: 111
  start-page: 909
  year: 2000
  ident: bib15
  article-title: Alpha burst activity during human REM sleep: descriptive study and functional hypotheses
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(99)00318-1
– volume: 307
  start-page: 995
  year: 2003
  ident: bib53
  article-title: Site of action of the general anesthetic propofol in muscarinic M1 receptor-mediated signal transduction
  publication-title: Journal of Pharmacology and Experimental Therapeutics
  doi: 10.1124/jpet.103.055772
– volume: 34
  start-page: 5689
  year: 2014
  ident: bib40
  article-title: The impact of cortical deafferentation on the neocortical slow oscillation
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1156-13.2014
– volume: 113
  start-page: 1615
  year: 2002
  ident: bib25
  article-title: The effects of normal aging on sleep spindle and K-complex production
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(02)00237-7
– volume: 115
  start-page: 171
  year: 2000
  ident: bib83
  article-title: Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep
  publication-title: Behavioural Brain Research
  doi: 10.1016/S0166-4328(00)00257-6
– volume: 8
  start-page: 1
  year: 1984
  ident: bib75
  article-title: The thalamus as a neuronal oscillator
  publication-title: Brain Research Reviews
  doi: 10.1016/0165-0173(84)90017-1
– volume: 261
  start-page: 361
  year: 1993
  ident: bib90
  article-title: Cellular mechanisms of a synchronized oscillation in the thalamus
  publication-title: Science
  doi: 10.1126/science.8392750
– volume: 304
  start-page: 162
  year: 2003
  ident: bib39
  article-title: Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons
  publication-title: Journal of Pharmacology and Experimental Therapeutics
  doi: 10.1124/jpet.102.043273
– volume: 11
  start-page: 3597
  year: 1999
  ident: bib38
  article-title: Acetylcholine suppresses the spread of excitation in the visual cortex revealed by optical recording: possible differential effect depending on the source of input
  publication-title: European Journal of Neuroscience
  doi: 10.1046/j.1460-9568.1999.00779.x
– volume: 68
  start-page: 649
  year: 1988
  ident: bib79
  article-title: The functional states of the thalamus and the associated neuronal interplay
  publication-title: Physiological Reviews
  doi: 10.1152/physrev.1988.68.3.649
– volume-title: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields
  year: 2005
  ident: bib58
– volume: 369
  start-page: 3840
  year: 2011
  ident: bib67
  article-title: Quantitative modelling of sleep dynamics
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rsta.2011.0120
– volume: 80
  start-page: 644
  year: 1998
  ident: bib37
  article-title: In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats
  publication-title: British Journal of Anaesthesia
  doi: 10.1093/bja/80.5.644
– volume: 29
  start-page: 967
  year: 2006
  ident: bib56
  article-title: A taxonomic analysis of sleep stages
  publication-title: Sleep
  doi: 10.1093/sleep/29.7.967
– volume: 107
  start-page: 22665
  year: 2010
  ident: bib19
  article-title: Thalamocortical model for a propofol-induced -rhythm associated with loss of consciousness
  publication-title: PNAS
  doi: 10.1073/pnas.1017069108
– start-page: 982
  volume-title: Basic Neurochemistry
  year: 2012
  ident: bib7
  doi: 10.1016/B978-0-12-374947-5.00057-2
– volume: 26
  start-page: 4535
  year: 2006
  ident: bib32
  article-title: Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5297-05.2006
– volume: 2
  start-page: 70
  year: 1993
  ident: bib2
  article-title: All-night dynamics of the human sleep EEG
  publication-title: Journal of Sleep Research
  doi: 10.1111/j.1365-2869.1993.tb00065.x
– volume: 590
  start-page: 3987
  year: 2012
  ident: bib18
  article-title: Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2012.227462
– volume: 11
  start-page: 589
  year: 2010
  ident: bib93
  article-title: Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2868
– volume: 34
  start-page: 8875
  year: 2014
  ident: bib72
  article-title: Global intracellular slow-wave dynamics of the thalamocortical system
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4460-13.2014
– volume: 107
  start-page: 6516
  year: 2010
  ident: bib63
  article-title: Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep
  publication-title: PNAS
  doi: 10.1073/pnas.0913016107
– volume: 586
  start-page: 2947
  year: 2008
  ident: bib50
  article-title: Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2008.153874
– volume: 93
  start-page: 1671
  year: 2005
  ident: bib34
  article-title: Modeling sleep and wakefulness in the thalamocortical system
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00915.2004
– volume: 880
  start-page: 51
  year: 2000
  ident: bib35
  article-title: Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist
  publication-title: Brain Research
  doi: 10.1016/S0006-8993(00)02766-9
– volume: 86
  start-page: 859
  year: 1997
  ident: bib30
  article-title: Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected
  publication-title: Anesthesiology
  doi: 10.1097/00000542-199704000-00016
– volume: 16
  start-page: 283
  year: 1979
  ident: bib29
  article-title: Systematic trends across the night in human sleep cycles
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1979.tb02991.x
– volume: 19
  start-page: 679
  year: 1997
  ident: bib31
  article-title: Differential regulation of neocortical synapses by neuromodulators and activity
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80380-3
– volume: 8
  start-page: 123
  year: 1996
  ident: bib92
  article-title: Brain topography of the human sleep EEG: antero-posterior shifts of spectral power
  publication-title: Neuroreport
  doi: 10.1097/00001756-199612200-00025
– volume: 79
  start-page: 1579
  year: 1998
  ident: bib52
  article-title: Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1998.79.3.1579
– volume-title: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications: American Academy of Sleep Medicine
  year: 2007
  ident: bib36
– volume: 3
  start-page: 1027
  year: 2000
  ident: bib69
  article-title: Cellular and network mechanisms of rhythmic recurrent activity in neocortex
  publication-title: Nature Neuroscience
  doi: 10.1038/79848
– volume: 89
  start-page: 2707
  year: 2003
  ident: bib21
  article-title: Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00845.2002
– volume: 312
  start-page: 1622
  year: 2006
  ident: bib14
  article-title: Cortex is driven by weak but synchronously active thalamocortical synapses
  publication-title: Science
  doi: 10.1126/science.1124593
– volume: 2
  start-page: 114
  year: 1988
  ident: bib64
  article-title: Elevated levels of histamine metabolites in cerebrospinal fluid of aging, healthy humans
  publication-title: Comprehensive Gerontology. Section A, Clinical and Laboratory Sciences
– volume: 35
  start-page: 1325
  year: 2012
  ident: bib87
  article-title: GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep
  publication-title: Sleep
  doi: 10.5665/sleep.2106
– volume: 20
  start-page: 185
  year: 1997
  ident: bib46
  article-title: Sleep and arousal: thalamocortical mechanisms
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.20.1.185
– volume: 3
  start-page: 121
  year: 2007
  ident: bib73
  article-title: The visual scoring of sleep in adults
  publication-title: Journal of Clinical Sleep Medicine
  doi: 10.5664/jcsm.26814
– volume: 19
  start-page: 716
  year: 1974
  ident: bib3
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1974.1100705
– volume: 18
  start-page: 6444
  year: 1998
  ident: bib9
  article-title: Computational models of thalamocortical augmenting responses
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.18-16-06444.1998
– volume-title: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects
  year: 1968
  ident: bib66
– volume: 2
  start-page: 168
  year: 1999
  ident: bib10
  article-title: Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials
  publication-title: Nature Neuroscience
  doi: 10.1038/5729
– volume: 76
  start-page: 2049
  year: 1996
  ident: bib26
  article-title: Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1996.76.3.2049
– volume: 318
  start-page: 1147
  year: 2007
  ident: bib28
  article-title: Fast-forward playback of recent memory sequences in prefrontal cortex during sleep
  publication-title: Science
  doi: 10.1126/science.1148979
– volume: 15
  start-page: 1439
  year: 2012
  ident: bib12
  article-title: Biasing the content of hippocampal replay during sleep
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3203
– volume: 22
  start-page: 10941
  year: 2002
  ident: bib55
  article-title: Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.22-24-10941.2002
– volume: 81
  start-page: 213
  year: 1997
  ident: bib1
  article-title: Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(97)00186-3
– volume: 21
  start-page: 127
  year: 1937
  ident: bib42
  article-title: Cerebral states during sleep, as studied by human brain potentials
  publication-title: Journal of Experimental Psychology
  doi: 10.1037/h0057431
– volume: 39
  start-page: 337
  year: 1992
  ident: bib49
  article-title: Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity
  publication-title: Progress in Neurobiology
  doi: 10.1016/0301-0082(92)90012-4
– volume: 6
  start-page: 14
  year: 1994
  ident: bib27
  article-title: An efficient method for computing synaptic conductances based on a kinetic model of receptor binding
  publication-title: Neural Computation
  doi: 10.1162/neco.1994.6.1.14
– volume: 130
  start-page: 2868
  year: 2007
  ident: bib20
  article-title: Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans
  publication-title: Brain
  doi: 10.1093/brain/awm146
– volume: 165
  start-page: 180
  year: 2016
  ident: bib33
  article-title: Neuronal fring rate homeostasis is inhibited by sleep and promoted by wake
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.046
– volume: 671
  start-page: 329
  year: 1995
  ident: bib44
  article-title: Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats
  publication-title: Brain Research
  doi: 10.1016/0006-8993(94)01399-3
– volume: 4
  start-page: e06412
  year: 2015
  ident: bib70
  article-title: Corelease of acetylcholine and GABA from cholinergic forebrain neurons
  publication-title: eLife
  doi: 10.7554/eLife.06412
– volume: 11
  start-page: 3200
  year: 1991
  ident: bib77
  article-title: Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.11-10-03200.1991
– volume: 13
  start-page: 3266
  year: 1993
  ident: bib81
  article-title: Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram
  publication-title: Journal of Neuroscience 
  doi: 10.1523/JNEUROSCI.13-08-03266.1993
– volume: 15
  start-page: 604
  year: 1995
  ident: bib23
  article-title: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.15-01-00604.1995
– volume: 86
  start-page: 8098
  year: 1989
  ident: bib47
  article-title: Convergence and divergence of neurotransmitter action in human cerebral cortex
  publication-title: PNAS
  doi: 10.1073/pnas.86.20.8098
– volume: 126
  start-page: 1
  year: 1996
  ident: bib61
  article-title: Polysomnographic effects of hypnotic drugs. A review
  publication-title: Psychopharmacology
  doi: 10.1007/BF02246405
– volume: 10
  start-page: e0144720
  year: 2015
  ident: bib59
  article-title: Coupling of thalamocortical sleep oscillations are important for memory consolidation in humans
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144720
– volume: 280
  start-page: R598
  year: 2001
  ident: bib89
  article-title: Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
  doi: 10.1152/ajpregu.2001.280.2.R598
– volume: 93
  start-page: 708
  year: 2000
  ident: bib51
  article-title: Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers
  publication-title: Anesthesiology
  doi: 10.1097/00000542-200009000-00020
– volume: 87
  start-page: 164
  year: 2015
  ident: bib94
  article-title: Wakefulness Is governed by GABA and histamine cotransmission
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.003
– volume: 39
  start-page: 65
  year: 1983
  ident: bib22
  article-title: M-current in voltage-clamped olfactory cortex neurones
  publication-title: Neuroscience Letters
  doi: 10.1016/0304-3940(83)90166-0
– volume: 19
  start-page: 9497
  year: 1999
  ident: bib60
  article-title: Replay and time compression of recurring spike sequences in the hippocampus
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.19-21-09497.1999
– volume: 324
  start-page: 1084
  year: 2009
  ident: bib16
  article-title: The human K-complex represents an isolated cortical down-state
  publication-title: Science
  doi: 10.1126/science.1169626
– volume: 5
  start-page: 979
  year: 2002
  ident: bib57
  article-title: The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway
  publication-title: Nature Neuroscience
  doi: 10.1038/nn913
– volume: 84
  start-page: 1076
  year: 2000
  ident: bib8
  article-title: Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2000.84.2.1076
– volume: 31
  start-page: 9124
  year: 2011
  ident: bib13
  article-title: Corticothalamic feedback controls sleep spindle duration in vivo
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0077-11.2011
– volume: 75
  start-page: 1105
  year: 2012
  ident: bib17
  article-title: Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.08.034
– volume: 1
  start-page: 876
  year: 1981
  ident: bib6
  article-title: Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.01-08-00876.1981
– volume: 34
  start-page: 283
  year: 2011
  ident: bib54
  article-title: Propofol anesthesia and sleep: a high-density EEG study
  publication-title: Sleep
  doi: 10.3410/f.11117956.12356054
– volume: 12
  start-page: e1005022
  year: 2016
  ident: bib71
  article-title: A thalamocortical neural mass model of the EEG during NREM sleep and Its response to auditory stimulation
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005022
– volume: 22
  start-page: 8691
  year: 2002
  ident: bib11
  article-title: Model of thalamocortical slow-wave sleep oscillations and transitions to activated States
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.22-19-08691.2002
– volume-title: Introducing the Neuroscience Gateway
  year: 2013
  ident: bib74
– volume-title: Thalmic Oscillations and Signaling
  year: 1990
  ident: bib78
– volume: 36
  start-page: 4231
  year: 2016
  ident: bib91
  article-title: Synaptic mechanisms of memory consolidation during sleep slow oscillations
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3648-15.2016
– volume: 189
  start-page: 58
  year: 1975
  ident: bib45
  article-title: Neuronal excitability modulation over the sleep cycle: a structural and mathematical model
  publication-title: Science
  doi: 10.1126/science.1135627
– volume: 262
  start-page: 679
  year: 1993
  ident: bib80
  article-title: Thalamocortical oscillations in the sleeping and aroused brain
  publication-title: Science
  doi: 10.1126/science.8235588
– volume: 85
  start-page: 1969
  year: 2001
  ident: bib82
  article-title: Natural waking and sleep states: a view from inside neocortical neurons
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2001.85.5.1969
SSID ssj0000748819
Score 2.3971288
Snippet The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Acetylcholine
Acetylcholine - metabolism
Animal models
Animals
Cats
Cerebral cortex
Cerebral Cortex - anatomy & histology
Cerebral Cortex - physiology
Cluster analysis
EEG
Electrodes
Electroencephalography
Eye movements
Fourier transforms
gamma-Aminobutyric Acid - metabolism
Histamine - metabolism
Humans
Mice
Monoamines
Nerve Net - physiology
Neuromodulation
neuromodulator
Neuroscience
Neurosciences
NREM sleep
Oscillations
REM sleep
Sleep and wakefulness
sleep slow oscillations
sleep spindles
sleep stages
Sleep Stages - physiology
Species Specificity
Standard deviation
Thalamus
Thalamus - anatomy & histology
Thalamus - physiology
Vigilance
Wakefulness - physiology
γ-Aminobutyric acid
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VSEi9VNCWNkCRK3FCSoljx3aOLQIhRNtLkbhFjj0pK62yK3Y58O-ZccJqFyH10kMu8SRyxuO85683AMcMIyagzj2ha661b_OW562kck4Zp6IJfDj55y9zeaOvbqvbtVRfvCdskAceHHeKxmHVha5GRUMZosOOQMkFbVmYS4WkXkqYtzaYSv9gS4Ep6-FAniXIPMXrSYffpDOcOHYNgpJS_2v08uUuyTXYudiBdyNfFN-Heu7CG-zfw_aQQfLxA_w-w-mUd5IK30eRxCnDKAEgCKAmCzHrxGKKOBdEA__iQkx6QZyPLk-xMKOxZ5rMpkfTdvCPcHNx_ufsMh9zJOTkgmqZt7X0Osq6jUXpyxAstjV5TBcRJaFS1FWsgrN1LDriWkjsLyrHi3HoVdERHdmDrX7W42cQVlnq3mRWtF6Xpfc2lFVblLU2SK-wGZw8u60Jo4A457GYNjSQYB83ycdN8nEGxyvj-aCb8brZD_b_yoTFrtMNCoFmDIHmXyGQweFz6zVjD1w0vDyoiL1VLoOvq2LqO7wg4nucPZCN01IqPmWYwaehsVc14QXZuiqLDOxGGGxUdbOkn9wlfW7isFQ_u_8_vu0A3hJFM3z6UZpD2FreP-AXokHL9ihF_BNdDgTK
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDDelZbCXse9l64YHfRrkFsefeRpdWSlj3V520Lfg2Ep3EJLu7grrfz_JyR27cuwhL7EcbFmKfrItibETMiMmgMo9WtdcKd_kDe1bCemcNE5GEyg4-fK7uZirr1f66oBtinFODFztde2ontR82c3-_L77hAqP-HVm0Rp-hG-LFmbCGYoqP0KTZElDLyecn37JFuVUVGN83v0-OxYpJe7fhzbvX5r8xwqdP2aPJvjIT8f1fsIOoH_KHowFJe-esR9n0HV0sZT7PvKUqzJMGQE42qvFig8tX3UANxxR4TWs-KLnCAHx8SgaA7qiaW8bu6bb4c_Z_PzLz7OLfCqZkAdl9TpvKuFVFFUTi9KXIVhoKuNAFREEGqmodNTB2SoWLUIvQDAYpaOzOfCyaBGdvGCH_dDDK8attKjtSFY0XpWl9zaUuinKShnAT9iMfdiwrQ5TPnEqa9HV6FcQj-vE4zrxOGMnW-KbMY3GfrLPxP8tCeW-Ti-G5XU9qVINOCHdhrYCic4tOkgOYYrD-VOqNhl0xo43q1dv5Kmm00KJYE67jL3fNqMq0fmI72G4RRqnhJAUdJixl-Nib0dC57OVLouM2R0x2Bnqbku_-JXSdSOkxfHZ1_8f1hv2ELGYoTBHYY7Z4Xp5C28R76ybd0mW_wLdcv_R
  priority: 102
  providerName: Scholars Portal
Title Cellular and neurochemical basis of sleep stages in the thalamocortical network
URI https://www.ncbi.nlm.nih.gov/pubmed/27849520
https://www.proquest.com/docview/1953312558
https://www.proquest.com/docview/1841131998
https://pubmed.ncbi.nlm.nih.gov/PMC5111887
https://doaj.org/article/e68e5fcf9e354911882188c4785953c5
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3ahEIvpd91mi4q5FRwY1uyJZ9KExJCadJSGtibkaVxurDY23hzyL_vjOx1syX0YB_ssZFHkt_TzGgG4IBhpHCoYkvoGitl67hmu1UqjZGFkb5wvDn5_KI4u1Rf5vl8NLj1Y1jl5p8YftS-c2wjP2R3jyQ0zs2n1e-Yq0axd3UsofEQdjl1GYd06bmebCwEj4YQb9iWpwk4D_HrosGPqSm4fOwdIAr5-u8jmf_GSt4Bn9On8GRkjeLz0M3P4AG2z-HRUEfy9gV8O8blkuNJhW29CCkq3ZgIQBBMLXrRNaJfIq4EkcEr7MWiFcT86LA0IjpagQaTNj0agsJfwuXpyc_js3islBA7pfN1XJepVT4ta59kNnNOY10WBlXiMSVs8ir3uTO69ElDjAuJA3pp2CWHViYNkZJXsNN2Lb4BoaWmSU5iSW1VllmrXZbXSVaqAukVOoIPG7VVbkwjztUslhUtJ1jHVdBxFXQcwcEkvBqyZ9wvdsT6n0Q45XW40F1fVeMMqpA-KG9cU6KkNS2tiwyxE0PfzxnapMsj2N_0XjXOw776O2oieD_dphnEbhHbYndDMkalqeS9hhG8Hjp7agm7Zcs8SyLQW8Ngq6nbd9rFr5Clm5gstU_v_b9Zb-ExUbCCdzemxT7srK9v8B3RnHU9C2N5BrtHJxfff8yCsYDO58r8AS2pANI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYxULkihSezEzgEhWlpt6XZBqJV6Sx3bKSutkqXZCvVP8RuZyYsuqrj1kEsyiZzx2N83HnsGYJNgJDFO-BrR1RdC535O61YhV4onitvE0OHkw2kyPhZfTuKTNfjdn4WhbZX9nNhM1LYytEa-ReEejmgcq4-Lnz5VjaLoal9CozWLA3f5C122-sP-Z-zft1G0t3u0M_a7qgK-ETJe-nkaamHDNLdBpCNjpMvTRDkRWBfiPG5FbGOjZGqDAtmJQ75kuaLwldM8KBDA8bu3YF1wdGVGsL69O_32fVjVQUBWiLHtQUCJUL3lJrPCvQ9VQgVrr0BfUyHgOlr77-7MK3C3dx_udTyVfWoN6wGsufIh3G4rV14-gq87bj6nHaxMl5Y1STFNl3qAITDOalYVrJ47t2BIP89czWYlQ66Jl0YbrNDnbRbR8dVmG_pjOL4RLT6BUVmV7hkwySVOKygW5FpEkdbSRHEeRKlIHH5CevCuV1tmusTlVD9jnqEDQzrOGh1njY492ByEF22-juvFtkn_gwgl2W5uVOdnWTdmM4c_FBemSB1HLxo9MYV8SOH_U044bmIPNvrey7qRX2d_7dSDN8NjHLMUiNGlqy5QRokw5HS60YOnbWcPLaFAcBpHgQdyxQxWmrr6pJz9aPKCI3fG9snn_2_Wa7gzPjqcZJP96cELuIsEMKGzlWGyAaPl-YV7iSRrmb_qLJvB6U0Ppj-C4jsI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQFwQbwIFjFQuSGGT2I6dA0LQsmppKRyotLfg2E5ZaZUszVaov8bXMZMXXVRx6yGXZBI543l6XgDbpEZS60VoULuGQpgiLOjcKuZa81Rzl1oqTv58lO4di08zOduA30MtDKVVDjKxFdSutnRGPqFwD0dtLPWk7NMivu5O3y1_hjRBiiKtwziNjkQO_PkvdN-at_u7uNevkmT68dvOXthPGAitUHIVFllshIuzwkWJSaxVvshS7UXkfIwy3QnppNUqc1GJlopH28lxTaEsb3hUojLH716D64rLmHhMzdR4voOqWaO27UoCFSrtiT-cl_5NrFMaXXtBCbazAi4zcP_N07yg-KZ34HZvsbL3HYndhQ1f3YMb3QzL8_vwZccvFpTLykzlWNse0_ZNCBiqyHnD6pI1C--XDA3RE9-wecXQ6sTLIDXW6P22x-n4apuQ_gCOrwSHD2Gzqiv_GJjiCgUMgkWFEUlijLKJLKIkE6nHT6gAXg9oy23fwpwmaSxydGUIx3mL47zFcQDbI_Cy69xxOdgHwv8IQu222xv16Unec2_u8YdkacvMc_Sn0SfTaBlp_H_qDsetDGBr2L28lwFN_pdiA3g5PkbupZCMqXx9hjBaxDGnOscAHnWbPa6EQsKZTKIA1BoZrC11_Uk1_9F2CEcrGtennvx_WS_gJrJQfrh_dPAUbqElmFKRZZxuwebq9Mw_Q2trVTxvyZrB96vmoz-hfz3Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellular+and+neurochemical+basis+of+sleep+stages+in+the+thalamocortical+network&rft.jtitle=eLife&rft.au=Krishnan%2C+Giri+P&rft.au=Chauvette+Sylvain&rft.au=Shamie+Isaac&rft.au=Soltani%2C+Sara&rft.date=2016-11-16&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=5&rft_id=info:doi/10.7554%2FeLife.18607&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon