Cellular and neurochemical basis of sleep stages in the thalamocortical network
The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of ace...
Saved in:
Published in | eLife Vol. 5 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Sciences Publications Ltd
16.11.2016
eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages.
There are several stages of sleep that cycle repeatedly through the night with each producing distinctive patterns of electrical activity in the brain. It is thought that these patterns may help us to remember things that have happened throughout the day. Cells in parts of the brain called the hypothalamus and the brainstem control transitions between sleep stages. They regulate the release of chemicals known as neuromodulators in many parts of the brain, including the cortex and thalamus, which play the roles in memory and learning. Researchers now know how the neuromodulators influence the properties of individual brain cells. However, it is not clear how coordinated action of many neuromodulators result in the patterns of electrical activity seen in the brain during each stage of sleep.
Krishnan et al. used a computer model to investigate how three of these neuromodulators – acetylcholine, histamine and GABA – shift electrical activity in the brain between sleep stages. The computer model was able to recreate the network of brain cells in the cortex and thalamus and how this network responds to the changes in the levels of neuromodulators. The study found that simultaneous and balanced changes of acetylcholine, histamine, and GABA work together to shift the brain between the stages of sleep and to initiate patterns of the brain electrical activity specific to the different sleep stages.
Krishnan et al. predict that the relative differences in the level of acetylcholine in the brains of humans, cats and mice may explain why different species have different patterns of electrical activity during sleep. The study also found that an anesthetic drug called propofol may induce sleep-like patterns of electrical activity in the human brain by affecting the levels of all three of the neuromodulators. More studies are needed to look at how the networks of cells in the cortex and thalamus communicate with the brainstem, and how changes in the levels of neuromodulators affect memory and learning. |
---|---|
AbstractList | The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages.
There are several stages of sleep that cycle repeatedly through the night with each producing distinctive patterns of electrical activity in the brain. It is thought that these patterns may help us to remember things that have happened throughout the day. Cells in parts of the brain called the hypothalamus and the brainstem control transitions between sleep stages. They regulate the release of chemicals known as neuromodulators in many parts of the brain, including the cortex and thalamus, which play the roles in memory and learning. Researchers now know how the neuromodulators influence the properties of individual brain cells. However, it is not clear how coordinated action of many neuromodulators result in the patterns of electrical activity seen in the brain during each stage of sleep.
Krishnan et al. used a computer model to investigate how three of these neuromodulators – acetylcholine, histamine and GABA – shift electrical activity in the brain between sleep stages. The computer model was able to recreate the network of brain cells in the cortex and thalamus and how this network responds to the changes in the levels of neuromodulators. The study found that simultaneous and balanced changes of acetylcholine, histamine, and GABA work together to shift the brain between the stages of sleep and to initiate patterns of the brain electrical activity specific to the different sleep stages.
Krishnan et al. predict that the relative differences in the level of acetylcholine in the brains of humans, cats and mice may explain why different species have different patterns of electrical activity during sleep. The study also found that an anesthetic drug called propofol may induce sleep-like patterns of electrical activity in the human brain by affecting the levels of all three of the neuromodulators. More studies are needed to look at how the networks of cells in the cortex and thalamus communicate with the brainstem, and how changes in the levels of neuromodulators affect memory and learning. The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages. The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages. DOI: http://dx.doi.org/10.7554/eLife.18607.001 There are several stages of sleep that cycle repeatedly through the night with each producing distinctive patterns of electrical activity in the brain. It is thought that these patterns may help us to remember things that have happened throughout the day. Cells in parts of the brain called the hypothalamus and the brainstem control transitions between sleep stages. They regulate the release of chemicals known as neuromodulators in many parts of the brain, including the cortex and thalamus, which play the roles in memory and learning. Researchers now know how the neuromodulators influence the properties of individual brain cells. However, it is not clear how coordinated action of many neuromodulators result in the patterns of electrical activity seen in the brain during each stage of sleep. Krishnan et al. used a computer model to investigate how three of these neuromodulators – acetylcholine, histamine and GABA – shift electrical activity in the brain between sleep stages. The computer model was able to recreate the network of brain cells in the cortex and thalamus and how this network responds to the changes in the levels of neuromodulators. The study found that simultaneous and balanced changes of acetylcholine, histamine, and GABA work together to shift the brain between the stages of sleep and to initiate patterns of the brain electrical activity specific to the different sleep stages. Krishnan et al. predict that the relative differences in the level of acetylcholine in the brains of humans, cats and mice may explain why different species have different patterns of electrical activity during sleep. The study also found that an anesthetic drug called propofol may induce sleep-like patterns of electrical activity in the human brain by affecting the levels of all three of the neuromodulators. More studies are needed to look at how the networks of cells in the cortex and thalamus communicate with the brainstem, and how changes in the levels of neuromodulators affect memory and learning. DOI: http://dx.doi.org/10.7554/eLife.18607.002 The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages.DOI: http://dx.doi.org/10.7554/eLife.18607.001 |
Author | Krishnan, Giri P Chauvette, Sylvain Cash, Sydney S Soltani, Sara Timofeev, Igor Bazhenov, Maxim Halgren, Eric Shamie, Isaac |
Author_xml | – sequence: 1 givenname: Giri P orcidid: 0000-0002-3931-7633 surname: Krishnan fullname: Krishnan, Giri P organization: Department of Medicine, University of California, San Diego, La Jolla, CA, United States – sequence: 2 givenname: Sylvain surname: Chauvette fullname: Chauvette, Sylvain organization: Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada, Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada – sequence: 3 givenname: Isaac surname: Shamie fullname: Shamie, Isaac organization: Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, United States – sequence: 4 givenname: Sara surname: Soltani fullname: Soltani, Sara organization: Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada, Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada – sequence: 5 givenname: Igor surname: Timofeev fullname: Timofeev, Igor organization: Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada, Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada – sequence: 6 givenname: Sydney S surname: Cash fullname: Cash, Sydney S organization: Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, United States – sequence: 7 givenname: Eric surname: Halgren fullname: Halgren, Eric organization: Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, United States – sequence: 8 givenname: Maxim surname: Bazhenov fullname: Bazhenov, Maxim organization: Department of Medicine, University of California, San Diego, La Jolla, CA, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27849520$$D View this record in MEDLINE/PubMed |
BookMark | eNptksFrFDEUxoNUbK09eZcBL4JsTWaSTXIRZGm1sNCLgreQSd7sZs0ka5JR_O_N7LbSFgOPhOR7Pz5evpfoJMQACL0m-JIzRj_A2g1wScQS82forMUML7Cg308enE_RRc47XBenQhD5Ap22XFDJWnyGblfg_eR1anSwTYApRbOF0Rntm15nl5s4NNkD7Jtc9AZy40JTtlBLez1GE1M5iAOU3zH9eIWeD9pnuLjbz9G366uvqy-L9e3nm9Wn9cJQzsqil0RTS2RvcatbYzj0cimAYgukJa2lzDIjuLR4EB0DhrntBF9iDLrDw5J25-jmyLVR79Q-uVGnPypqpw4XMW2Unp15UFDBbDCDhI5RSYgQba3qQzDJOsMq6-ORtZ_6EayBUJL2j6CPX4Lbqk38pRiZabwC3t0BUvw5QS5qdNnUweoAccqKCEpIR6QUVfr2iXQXpxTqqBSpbjrSMjar3jx09M_K_b9VATkKTIo5JxiUcUUXF2eDziuC1RwPdYiHOsSj9rx_0nOP_Z_6L20Vu0I |
CitedBy_id | crossref_primary_10_1371_journal_pone_0306218 crossref_primary_10_1016_j_celrep_2021_109270 crossref_primary_10_1016_j_physa_2022_128069 crossref_primary_10_3389_fncir_2018_00004 crossref_primary_10_1111_ejn_15836 crossref_primary_10_3389_fnsys_2020_00022 crossref_primary_10_3390_clockssleep1010015 crossref_primary_10_1038_s41467_022_34938_7 crossref_primary_10_1016_j_conb_2017_07_009 crossref_primary_10_1016_j_neuron_2019_05_041 crossref_primary_10_1073_pnas_1804846115 crossref_primary_10_3389_fncel_2020_593050 crossref_primary_10_3389_fncom_2021_800101 crossref_primary_10_1007_s11818_020_00255_8 crossref_primary_10_1080_00207454_2020_1750392 crossref_primary_10_1152_jn_00068_2022 crossref_primary_10_1371_journal_pone_0277772 crossref_primary_10_1523_ENEURO_0293_19_2020 crossref_primary_10_1016_j_conb_2017_03_019 crossref_primary_10_3390_jpm12071070 crossref_primary_10_1007_s00429_022_02604_9 crossref_primary_10_1371_journal_pcbi_1006322 crossref_primary_10_3389_fneur_2017_00058 crossref_primary_10_1038_ncomms15499 crossref_primary_10_1103_PhysRevE_110_044401 crossref_primary_10_1093_sleep_zsac106 crossref_primary_10_1523_JNEUROSCI_1427_19_2019 crossref_primary_10_3389_fnsys_2019_00033 crossref_primary_10_1016_j_neurobiolaging_2018_12_012 crossref_primary_10_1093_cercor_bhz061 crossref_primary_10_1371_journal_pcbi_1005797 crossref_primary_10_3389_fncom_2022_769860 crossref_primary_10_1371_journal_pcbi_1005879 crossref_primary_10_1016_j_jneumeth_2018_10_002 crossref_primary_10_1016_j_celrep_2024_114790 crossref_primary_10_1093_cercor_bhaa228 crossref_primary_10_1016_j_simpa_2024_100667 crossref_primary_10_1371_journal_pcbi_1012245 crossref_primary_10_1038_s41467_025_58011_1 crossref_primary_10_7554_eLife_51005 crossref_primary_10_1016_j_celrep_2023_113267 crossref_primary_10_1371_journal_pcbi_1006171 |
Cites_doi | 10.1073/pnas.041430398 10.1523/JNEUROSCI.0575-04.2004 10.1213/ANE.0b013e318297366e 10.1073/pnas.1221180110 10.1523/JNEUROSCI.11-10-03188.1991 10.1002/jnr.20602 10.1523/JNEUROSCI.5674-10.2011 10.1093/cercor/10.12.1185 10.1113/jphysiol.1996.sp021133 10.1152/jn.1985.54.6.1473 10.1016/S0013-4694(98)00051-0 10.1212/wnl.49.4.952 10.1523/JNEUROSCI.4652-06.2007 10.1152/jn.1996.76.6.4152 10.1016/S1388-2457(99)00318-1 10.1124/jpet.103.055772 10.1523/JNEUROSCI.1156-13.2014 10.1016/S1388-2457(02)00237-7 10.1016/S0166-4328(00)00257-6 10.1016/0165-0173(84)90017-1 10.1126/science.8392750 10.1124/jpet.102.043273 10.1046/j.1460-9568.1999.00779.x 10.1152/physrev.1988.68.3.649 10.1098/rsta.2011.0120 10.1093/bja/80.5.644 10.1093/sleep/29.7.967 10.1073/pnas.1017069108 10.1016/B978-0-12-374947-5.00057-2 10.1523/JNEUROSCI.5297-05.2006 10.1111/j.1365-2869.1993.tb00065.x 10.1113/jphysiol.2012.227462 10.1038/nrn2868 10.1523/JNEUROSCI.4460-13.2014 10.1073/pnas.0913016107 10.1113/jphysiol.2008.153874 10.1152/jn.00915.2004 10.1016/S0006-8993(00)02766-9 10.1097/00000542-199704000-00016 10.1111/j.1469-8986.1979.tb02991.x 10.1016/S0896-6273(00)80380-3 10.1097/00001756-199612200-00025 10.1152/jn.1998.79.3.1579 10.1038/79848 10.1152/jn.00845.2002 10.1126/science.1124593 10.5665/sleep.2106 10.1146/annurev.neuro.20.1.185 10.5664/jcsm.26814 10.1109/TAC.1974.1100705 10.1523/JNEUROSCI.18-16-06444.1998 10.1038/5729 10.1152/jn.1996.76.3.2049 10.1126/science.1148979 10.1038/nn.3203 10.1523/JNEUROSCI.22-24-10941.2002 10.1016/S0306-4522(97)00186-3 10.1037/h0057431 10.1016/0301-0082(92)90012-4 10.1162/neco.1994.6.1.14 10.1093/brain/awm146 10.1016/j.cell.2016.01.046 10.1016/0006-8993(94)01399-3 10.7554/eLife.06412 10.1523/JNEUROSCI.11-10-03200.1991 10.1523/JNEUROSCI.13-08-03266.1993 10.1523/JNEUROSCI.15-01-00604.1995 10.1073/pnas.86.20.8098 10.1007/BF02246405 10.1371/journal.pone.0144720 10.1152/ajpregu.2001.280.2.R598 10.1097/00000542-200009000-00020 10.1016/j.neuron.2015.06.003 10.1016/0304-3940(83)90166-0 10.1523/JNEUROSCI.19-21-09497.1999 10.1126/science.1169626 10.1038/nn913 10.1152/jn.2000.84.2.1076 10.1523/JNEUROSCI.0077-11.2011 10.1016/j.neuron.2012.08.034 10.1523/JNEUROSCI.01-08-00876.1981 10.3410/f.11117956.12356054 10.1371/journal.pcbi.1005022 10.1523/JNEUROSCI.22-19-08691.2002 10.1523/JNEUROSCI.3648-15.2016 10.1126/science.1135627 10.1126/science.8235588 10.1152/jn.2001.85.5.1969 |
ContentType | Journal Article |
Copyright | 2016, Krishnan et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2016, Krishnan et al 2016 Krishnan et al |
Copyright_xml | – notice: 2016, Krishnan et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2016, Krishnan et al 2016 Krishnan et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.18607 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_e68e5fcf9e354911882188c4785953c5 PMC5111887 27849520 10_7554_eLife_18607 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US California |
GeographicLocations_xml | – name: United States--US – name: California |
GrantInformation_xml | – fundername: CIHR grantid: MOP-136967 – fundername: NIMH NIH HHS grantid: R01 MH099645 – fundername: NIBIB NIH HHS grantid: R01 EB009282 – fundername: CIHR grantid: MOP-136969 – fundername: ; grantid: MOP-136969 – fundername: ; grantid: MURI: N000141310672 – fundername: ; grantid: 298475 – fundername: ; grantid: MH099645 – fundername: ; grantid: MOP-136967 – fundername: ; grantid: EB009282 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c475t-b91a4d19bd02a2cc7eb968e40de1212d45d5c879d0f835e507d387600ea30f643 |
IEDL.DBID | 7X7 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:12:25 EDT 2025 Thu Aug 21 18:42:08 EDT 2025 Fri Jul 11 04:42:57 EDT 2025 Fri Jul 25 11:51:46 EDT 2025 Mon Jul 21 06:05:54 EDT 2025 Tue Jul 01 01:11:44 EDT 2025 Thu Apr 24 22:58:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | mouse sleep spindles sleep stages neuroscience sleep slow oscillations human neuromodulator REM sleep |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-b91a4d19bd02a2cc7eb968e40de1212d45d5c879d0f835e507d387600ea30f643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3931-7633 |
OpenAccessLink | https://www.proquest.com/docview/1953312558?pq-origsite=%requestingapplication% |
PMID | 27849520 |
PQID | 1953312558 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e68e5fcf9e354911882188c4785953c5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111887 proquest_miscellaneous_1841131998 proquest_journals_1953312558 pubmed_primary_27849520 crossref_citationtrail_10_7554_eLife_18607 crossref_primary_10_7554_eLife_18607 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-16 |
PublicationDateYYYYMMDD | 2016-11-16 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2016 |
Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Lemieux (bib40) 2014; 34 Timofeev (bib85) 2001; 98 Kimura (bib38) 1999; 11 Purdon (bib65) 2013; 110 Nelson (bib57) 2002; 5 Amzica (bib5) 1998; 107 Niedermeyer (bib58) 2005 Vanini (bib88) 2011; 31 Aeschbach (bib2) 1993; 2 Marrosu (bib44) 1995; 671 Robinson (bib67) 2011; 369 Steriade (bib78) 1990 Murphy (bib54) 2011; 34 Niknazar (bib59) 2015; 10 Ching (bib19) 2010; 107 Destexhe (bib27) 1994; 6 Bazhenov (bib11) 2002; 22 Contreras (bib24) 1996; 490 Chauvette (bib17) 2012; 75 Euston (bib28) 2007; 318 Loomis (bib42) 1937; 21 Léna (bib43) 2005; 81 McCormick (bib48) 1991; 11 Rechtschaffen (bib66) 1968 Sanchez-Vives (bib69) 2000; 3 Pennartz (bib62) 2004; 24 Steriade (bib82) 2001; 85 McCarley (bib45) 1975; 189 Vanini (bib87) 2012; 35 Wei (bib91) 2016; 36 Yu (bib94) 2015; 87 Bazhenov (bib8) 2000; 84 Bonjean (bib13) 2011; 31 Nádasdy (bib60) 1999; 19 von Krosigk (bib90) 1993; 261 Bazhenov (bib9) 1998; 18 Aston-Jones (bib6) 1981; 1 Steriade (bib76) 1985; 54 Szymusiak (bib83) 2000; 115 Crowley (bib25) 2002; 113 Contreras (bib23) 1995; 15 Schellenberger Costa (bib71) 2016; 12 McCormick (bib47) 1989; 86 Saunders (bib70) 2015; 4 Gil (bib31) 1997; 19 Wulff (bib93) 2010; 11 Constanti (bib22) 1983; 39 Murasaki (bib53) 2003; 307 Vazquez (bib89) 2001; 280 Kitamura (bib39) 2003; 304 Baghdoyan (bib7) 2012 Sheroziya (bib72) 2014; 34 Cantero (bib15) 2000; 111 Bazhenov (bib10) 1999; 2 Clemens (bib20) 2007; 130 Mittmann (bib52) 1998; 79 Popa (bib63) 2010; 107 Steriade (bib81) 1993; 13 Werth (bib92) 1996; 8 McCormick (bib46) 1997; 20 Timofeev (bib84) 2000; 10 McCormick (bib49) 1992; 39 Rudolph (bib68) 2007; 27 Müller (bib56) 2006; 29 Iber (bib36) 2007 Sivagnanam (bib74) 2013 Mölle (bib55) 2002; 22 Parrino (bib61) 1996; 126 Haider (bib32) 2006; 26 Prell (bib64) 1988; 2 Bendor (bib12) 2012; 15 Hsieh (bib35) 2000; 880 Hengen (bib33) 2016; 165 Steriade (bib79) 1988; 68 Steriade (bib75) 1984; 8 Steriade (bib80) 1993; 262 Feinberg (bib29) 1979; 16 Achermann (bib1) 1997; 81 Destexhe (bib26) 1996; 76 Mena-Segovia (bib50) 2008; 586 Silber (bib73) 2007; 3 Amzica (bib4) 1997; 49 Steriade (bib77) 1991; 11 Flood (bib30) 1997; 86 Meuret (bib51) 2000; 93 Timofeev (bib86) 1996; 76 Liu (bib41) 2013; 117 Hill (bib34) 2005; 93 Akaike (bib3) 1974; 19 Chen (bib18) 2012; 590 Kikuchi (bib37) 1998; 80 Cash (bib16) 2009; 324 Bruno (bib14) 2006; 312 Compte (bib21) 2003; 89 |
References_xml | – volume: 98 start-page: 1924 year: 2001 ident: bib85 article-title: Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study publication-title: PNAS doi: 10.1073/pnas.041430398 – volume: 24 start-page: 6446 year: 2004 ident: bib62 article-title: The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0575-04.2004 – volume: 117 start-page: 358 year: 2013 ident: bib41 article-title: Propofol stimulates noradrenalin-inhibited neurons in the ventrolateral preoptic nucleus by reducing GABAergic inhibition publication-title: Anesthesia & Analgesia doi: 10.1213/ANE.0b013e318297366e – volume: 110 start-page: E1142 year: 2013 ident: bib65 article-title: Electroencephalogram signatures of loss and recovery of consciousness from propofol publication-title: PNAS doi: 10.1073/pnas.1221180110 – volume: 11 start-page: 3188 year: 1991 ident: bib48 article-title: Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.11-10-03188.1991 – volume: 81 start-page: 891 year: 2005 ident: bib43 article-title: Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep--wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats publication-title: Journal of Neuroscience Research doi: 10.1002/jnr.20602 – volume: 31 start-page: 2649 year: 2011 ident: bib88 article-title: Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5674-10.2011 – volume: 10 start-page: 1185 year: 2000 ident: bib84 article-title: Origin of slow cortical oscillations in deafferented cortical slabs publication-title: Cerebral Cortex doi: 10.1093/cercor/10.12.1185 – volume: 490 start-page: 159 year: 1996 ident: bib24 article-title: Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm publication-title: The Journal of Physiology doi: 10.1113/jphysiol.1996.sp021133 – volume: 54 start-page: 1473 year: 1985 ident: bib76 article-title: Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami publication-title: Journal of Neurophysiology doi: 10.1152/jn.1985.54.6.1473 – volume: 107 start-page: 69 year: 1998 ident: bib5 article-title: Electrophysiological correlates of sleep delta waves publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/S0013-4694(98)00051-0 – volume: 49 start-page: 952 year: 1997 ident: bib4 article-title: The K-complex: its slow (<1-Hz) rhythmicity and relation to delta waves publication-title: Neurology doi: 10.1212/wnl.49.4.952 – volume: 27 start-page: 5280 year: 2007 ident: bib68 article-title: Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4652-06.2007 – volume: 76 start-page: 4152 year: 1996 ident: bib86 article-title: Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats publication-title: Journal of Neurophysiology doi: 10.1152/jn.1996.76.6.4152 – volume: 111 start-page: 909 year: 2000 ident: bib15 article-title: Alpha burst activity during human REM sleep: descriptive study and functional hypotheses publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(99)00318-1 – volume: 307 start-page: 995 year: 2003 ident: bib53 article-title: Site of action of the general anesthetic propofol in muscarinic M1 receptor-mediated signal transduction publication-title: Journal of Pharmacology and Experimental Therapeutics doi: 10.1124/jpet.103.055772 – volume: 34 start-page: 5689 year: 2014 ident: bib40 article-title: The impact of cortical deafferentation on the neocortical slow oscillation publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1156-13.2014 – volume: 113 start-page: 1615 year: 2002 ident: bib25 article-title: The effects of normal aging on sleep spindle and K-complex production publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(02)00237-7 – volume: 115 start-page: 171 year: 2000 ident: bib83 article-title: Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep publication-title: Behavioural Brain Research doi: 10.1016/S0166-4328(00)00257-6 – volume: 8 start-page: 1 year: 1984 ident: bib75 article-title: The thalamus as a neuronal oscillator publication-title: Brain Research Reviews doi: 10.1016/0165-0173(84)90017-1 – volume: 261 start-page: 361 year: 1993 ident: bib90 article-title: Cellular mechanisms of a synchronized oscillation in the thalamus publication-title: Science doi: 10.1126/science.8392750 – volume: 304 start-page: 162 year: 2003 ident: bib39 article-title: Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons publication-title: Journal of Pharmacology and Experimental Therapeutics doi: 10.1124/jpet.102.043273 – volume: 11 start-page: 3597 year: 1999 ident: bib38 article-title: Acetylcholine suppresses the spread of excitation in the visual cortex revealed by optical recording: possible differential effect depending on the source of input publication-title: European Journal of Neuroscience doi: 10.1046/j.1460-9568.1999.00779.x – volume: 68 start-page: 649 year: 1988 ident: bib79 article-title: The functional states of the thalamus and the associated neuronal interplay publication-title: Physiological Reviews doi: 10.1152/physrev.1988.68.3.649 – volume-title: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields year: 2005 ident: bib58 – volume: 369 start-page: 3840 year: 2011 ident: bib67 article-title: Quantitative modelling of sleep dynamics publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2011.0120 – volume: 80 start-page: 644 year: 1998 ident: bib37 article-title: In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats publication-title: British Journal of Anaesthesia doi: 10.1093/bja/80.5.644 – volume: 29 start-page: 967 year: 2006 ident: bib56 article-title: A taxonomic analysis of sleep stages publication-title: Sleep doi: 10.1093/sleep/29.7.967 – volume: 107 start-page: 22665 year: 2010 ident: bib19 article-title: Thalamocortical model for a propofol-induced -rhythm associated with loss of consciousness publication-title: PNAS doi: 10.1073/pnas.1017069108 – start-page: 982 volume-title: Basic Neurochemistry year: 2012 ident: bib7 doi: 10.1016/B978-0-12-374947-5.00057-2 – volume: 26 start-page: 4535 year: 2006 ident: bib32 article-title: Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5297-05.2006 – volume: 2 start-page: 70 year: 1993 ident: bib2 article-title: All-night dynamics of the human sleep EEG publication-title: Journal of Sleep Research doi: 10.1111/j.1365-2869.1993.tb00065.x – volume: 590 start-page: 3987 year: 2012 ident: bib18 article-title: Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2012.227462 – volume: 11 start-page: 589 year: 2010 ident: bib93 article-title: Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2868 – volume: 34 start-page: 8875 year: 2014 ident: bib72 article-title: Global intracellular slow-wave dynamics of the thalamocortical system publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4460-13.2014 – volume: 107 start-page: 6516 year: 2010 ident: bib63 article-title: Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep publication-title: PNAS doi: 10.1073/pnas.0913016107 – volume: 586 start-page: 2947 year: 2008 ident: bib50 article-title: Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2008.153874 – volume: 93 start-page: 1671 year: 2005 ident: bib34 article-title: Modeling sleep and wakefulness in the thalamocortical system publication-title: Journal of Neurophysiology doi: 10.1152/jn.00915.2004 – volume: 880 start-page: 51 year: 2000 ident: bib35 article-title: Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist publication-title: Brain Research doi: 10.1016/S0006-8993(00)02766-9 – volume: 86 start-page: 859 year: 1997 ident: bib30 article-title: Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected publication-title: Anesthesiology doi: 10.1097/00000542-199704000-00016 – volume: 16 start-page: 283 year: 1979 ident: bib29 article-title: Systematic trends across the night in human sleep cycles publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1979.tb02991.x – volume: 19 start-page: 679 year: 1997 ident: bib31 article-title: Differential regulation of neocortical synapses by neuromodulators and activity publication-title: Neuron doi: 10.1016/S0896-6273(00)80380-3 – volume: 8 start-page: 123 year: 1996 ident: bib92 article-title: Brain topography of the human sleep EEG: antero-posterior shifts of spectral power publication-title: Neuroreport doi: 10.1097/00001756-199612200-00025 – volume: 79 start-page: 1579 year: 1998 ident: bib52 article-title: Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons publication-title: Journal of Neurophysiology doi: 10.1152/jn.1998.79.3.1579 – volume-title: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications: American Academy of Sleep Medicine year: 2007 ident: bib36 – volume: 3 start-page: 1027 year: 2000 ident: bib69 article-title: Cellular and network mechanisms of rhythmic recurrent activity in neocortex publication-title: Nature Neuroscience doi: 10.1038/79848 – volume: 89 start-page: 2707 year: 2003 ident: bib21 article-title: Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model publication-title: Journal of Neurophysiology doi: 10.1152/jn.00845.2002 – volume: 312 start-page: 1622 year: 2006 ident: bib14 article-title: Cortex is driven by weak but synchronously active thalamocortical synapses publication-title: Science doi: 10.1126/science.1124593 – volume: 2 start-page: 114 year: 1988 ident: bib64 article-title: Elevated levels of histamine metabolites in cerebrospinal fluid of aging, healthy humans publication-title: Comprehensive Gerontology. Section A, Clinical and Laboratory Sciences – volume: 35 start-page: 1325 year: 2012 ident: bib87 article-title: GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep publication-title: Sleep doi: 10.5665/sleep.2106 – volume: 20 start-page: 185 year: 1997 ident: bib46 article-title: Sleep and arousal: thalamocortical mechanisms publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.20.1.185 – volume: 3 start-page: 121 year: 2007 ident: bib73 article-title: The visual scoring of sleep in adults publication-title: Journal of Clinical Sleep Medicine doi: 10.5664/jcsm.26814 – volume: 19 start-page: 716 year: 1974 ident: bib3 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1974.1100705 – volume: 18 start-page: 6444 year: 1998 ident: bib9 article-title: Computational models of thalamocortical augmenting responses publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.18-16-06444.1998 – volume-title: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects year: 1968 ident: bib66 – volume: 2 start-page: 168 year: 1999 ident: bib10 article-title: Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials publication-title: Nature Neuroscience doi: 10.1038/5729 – volume: 76 start-page: 2049 year: 1996 ident: bib26 article-title: Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices publication-title: Journal of Neurophysiology doi: 10.1152/jn.1996.76.3.2049 – volume: 318 start-page: 1147 year: 2007 ident: bib28 article-title: Fast-forward playback of recent memory sequences in prefrontal cortex during sleep publication-title: Science doi: 10.1126/science.1148979 – volume: 15 start-page: 1439 year: 2012 ident: bib12 article-title: Biasing the content of hippocampal replay during sleep publication-title: Nature Neuroscience doi: 10.1038/nn.3203 – volume: 22 start-page: 10941 year: 2002 ident: bib55 article-title: Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.22-24-10941.2002 – volume: 81 start-page: 213 year: 1997 ident: bib1 article-title: Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram publication-title: Neuroscience doi: 10.1016/S0306-4522(97)00186-3 – volume: 21 start-page: 127 year: 1937 ident: bib42 article-title: Cerebral states during sleep, as studied by human brain potentials publication-title: Journal of Experimental Psychology doi: 10.1037/h0057431 – volume: 39 start-page: 337 year: 1992 ident: bib49 article-title: Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity publication-title: Progress in Neurobiology doi: 10.1016/0301-0082(92)90012-4 – volume: 6 start-page: 14 year: 1994 ident: bib27 article-title: An efficient method for computing synaptic conductances based on a kinetic model of receptor binding publication-title: Neural Computation doi: 10.1162/neco.1994.6.1.14 – volume: 130 start-page: 2868 year: 2007 ident: bib20 article-title: Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans publication-title: Brain doi: 10.1093/brain/awm146 – volume: 165 start-page: 180 year: 2016 ident: bib33 article-title: Neuronal fring rate homeostasis is inhibited by sleep and promoted by wake publication-title: Cell doi: 10.1016/j.cell.2016.01.046 – volume: 671 start-page: 329 year: 1995 ident: bib44 article-title: Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats publication-title: Brain Research doi: 10.1016/0006-8993(94)01399-3 – volume: 4 start-page: e06412 year: 2015 ident: bib70 article-title: Corelease of acetylcholine and GABA from cholinergic forebrain neurons publication-title: eLife doi: 10.7554/eLife.06412 – volume: 11 start-page: 3200 year: 1991 ident: bib77 article-title: Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.11-10-03200.1991 – volume: 13 start-page: 3266 year: 1993 ident: bib81 article-title: Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.13-08-03266.1993 – volume: 15 start-page: 604 year: 1995 ident: bib23 article-title: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.15-01-00604.1995 – volume: 86 start-page: 8098 year: 1989 ident: bib47 article-title: Convergence and divergence of neurotransmitter action in human cerebral cortex publication-title: PNAS doi: 10.1073/pnas.86.20.8098 – volume: 126 start-page: 1 year: 1996 ident: bib61 article-title: Polysomnographic effects of hypnotic drugs. A review publication-title: Psychopharmacology doi: 10.1007/BF02246405 – volume: 10 start-page: e0144720 year: 2015 ident: bib59 article-title: Coupling of thalamocortical sleep oscillations are important for memory consolidation in humans publication-title: PLoS One doi: 10.1371/journal.pone.0144720 – volume: 280 start-page: R598 year: 2001 ident: bib89 article-title: Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology doi: 10.1152/ajpregu.2001.280.2.R598 – volume: 93 start-page: 708 year: 2000 ident: bib51 article-title: Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers publication-title: Anesthesiology doi: 10.1097/00000542-200009000-00020 – volume: 87 start-page: 164 year: 2015 ident: bib94 article-title: Wakefulness Is governed by GABA and histamine cotransmission publication-title: Neuron doi: 10.1016/j.neuron.2015.06.003 – volume: 39 start-page: 65 year: 1983 ident: bib22 article-title: M-current in voltage-clamped olfactory cortex neurones publication-title: Neuroscience Letters doi: 10.1016/0304-3940(83)90166-0 – volume: 19 start-page: 9497 year: 1999 ident: bib60 article-title: Replay and time compression of recurring spike sequences in the hippocampus publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.19-21-09497.1999 – volume: 324 start-page: 1084 year: 2009 ident: bib16 article-title: The human K-complex represents an isolated cortical down-state publication-title: Science doi: 10.1126/science.1169626 – volume: 5 start-page: 979 year: 2002 ident: bib57 article-title: The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway publication-title: Nature Neuroscience doi: 10.1038/nn913 – volume: 84 start-page: 1076 year: 2000 ident: bib8 article-title: Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks publication-title: Journal of Neurophysiology doi: 10.1152/jn.2000.84.2.1076 – volume: 31 start-page: 9124 year: 2011 ident: bib13 article-title: Corticothalamic feedback controls sleep spindle duration in vivo publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0077-11.2011 – volume: 75 start-page: 1105 year: 2012 ident: bib17 article-title: Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity publication-title: Neuron doi: 10.1016/j.neuron.2012.08.034 – volume: 1 start-page: 876 year: 1981 ident: bib6 article-title: Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.01-08-00876.1981 – volume: 34 start-page: 283 year: 2011 ident: bib54 article-title: Propofol anesthesia and sleep: a high-density EEG study publication-title: Sleep doi: 10.3410/f.11117956.12356054 – volume: 12 start-page: e1005022 year: 2016 ident: bib71 article-title: A thalamocortical neural mass model of the EEG during NREM sleep and Its response to auditory stimulation publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005022 – volume: 22 start-page: 8691 year: 2002 ident: bib11 article-title: Model of thalamocortical slow-wave sleep oscillations and transitions to activated States publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.22-19-08691.2002 – volume-title: Introducing the Neuroscience Gateway year: 2013 ident: bib74 – volume-title: Thalmic Oscillations and Signaling year: 1990 ident: bib78 – volume: 36 start-page: 4231 year: 2016 ident: bib91 article-title: Synaptic mechanisms of memory consolidation during sleep slow oscillations publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3648-15.2016 – volume: 189 start-page: 58 year: 1975 ident: bib45 article-title: Neuronal excitability modulation over the sleep cycle: a structural and mathematical model publication-title: Science doi: 10.1126/science.1135627 – volume: 262 start-page: 679 year: 1993 ident: bib80 article-title: Thalamocortical oscillations in the sleeping and aroused brain publication-title: Science doi: 10.1126/science.8235588 – volume: 85 start-page: 1969 year: 2001 ident: bib82 article-title: Natural waking and sleep states: a view from inside neocortical neurons publication-title: Journal of Neurophysiology doi: 10.1152/jn.2001.85.5.1969 |
SSID | ssj0000748819 |
Score | 2.3971288 |
Snippet | The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Acetylcholine Acetylcholine - metabolism Animal models Animals Cats Cerebral cortex Cerebral Cortex - anatomy & histology Cerebral Cortex - physiology Cluster analysis EEG Electrodes Electroencephalography Eye movements Fourier transforms gamma-Aminobutyric Acid - metabolism Histamine - metabolism Humans Mice Monoamines Nerve Net - physiology Neuromodulation neuromodulator Neuroscience Neurosciences NREM sleep Oscillations REM sleep Sleep and wakefulness sleep slow oscillations sleep spindles sleep stages Sleep Stages - physiology Species Specificity Standard deviation Thalamus Thalamus - anatomy & histology Thalamus - physiology Vigilance Wakefulness - physiology γ-Aminobutyric acid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VSEi9VNCWNkCRK3FCSoljx3aOLQIhRNtLkbhFjj0pK62yK3Y58O-ZccJqFyH10kMu8SRyxuO85683AMcMIyagzj2ha661b_OW562kck4Zp6IJfDj55y9zeaOvbqvbtVRfvCdskAceHHeKxmHVha5GRUMZosOOQMkFbVmYS4WkXkqYtzaYSv9gS4Ep6-FAniXIPMXrSYffpDOcOHYNgpJS_2v08uUuyTXYudiBdyNfFN-Heu7CG-zfw_aQQfLxA_w-w-mUd5IK30eRxCnDKAEgCKAmCzHrxGKKOBdEA__iQkx6QZyPLk-xMKOxZ5rMpkfTdvCPcHNx_ufsMh9zJOTkgmqZt7X0Osq6jUXpyxAstjV5TBcRJaFS1FWsgrN1LDriWkjsLyrHi3HoVdERHdmDrX7W42cQVlnq3mRWtF6Xpfc2lFVblLU2SK-wGZw8u60Jo4A457GYNjSQYB83ycdN8nEGxyvj-aCb8brZD_b_yoTFrtMNCoFmDIHmXyGQweFz6zVjD1w0vDyoiL1VLoOvq2LqO7wg4nucPZCN01IqPmWYwaehsVc14QXZuiqLDOxGGGxUdbOkn9wlfW7isFQ_u_8_vu0A3hJFM3z6UZpD2FreP-AXokHL9ihF_BNdDgTK priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDDelZbCXse9l64YHfRrkFsefeRpdWSlj3V520Lfg2Ep3EJLu7grrfz_JyR27cuwhL7EcbFmKfrItibETMiMmgMo9WtdcKd_kDe1bCemcNE5GEyg4-fK7uZirr1f66oBtinFODFztde2ontR82c3-_L77hAqP-HVm0Rp-hG-LFmbCGYoqP0KTZElDLyecn37JFuVUVGN83v0-OxYpJe7fhzbvX5r8xwqdP2aPJvjIT8f1fsIOoH_KHowFJe-esR9n0HV0sZT7PvKUqzJMGQE42qvFig8tX3UANxxR4TWs-KLnCAHx8SgaA7qiaW8bu6bb4c_Z_PzLz7OLfCqZkAdl9TpvKuFVFFUTi9KXIVhoKuNAFREEGqmodNTB2SoWLUIvQDAYpaOzOfCyaBGdvGCH_dDDK8attKjtSFY0XpWl9zaUuinKShnAT9iMfdiwrQ5TPnEqa9HV6FcQj-vE4zrxOGMnW-KbMY3GfrLPxP8tCeW-Ti-G5XU9qVINOCHdhrYCic4tOkgOYYrD-VOqNhl0xo43q1dv5Kmm00KJYE67jL3fNqMq0fmI72G4RRqnhJAUdJixl-Nib0dC57OVLouM2R0x2Bnqbku_-JXSdSOkxfHZ1_8f1hv2ELGYoTBHYY7Z4Xp5C28R76ybd0mW_wLdcv_R priority: 102 providerName: Scholars Portal |
Title | Cellular and neurochemical basis of sleep stages in the thalamocortical network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27849520 https://www.proquest.com/docview/1953312558 https://www.proquest.com/docview/1841131998 https://pubmed.ncbi.nlm.nih.gov/PMC5111887 https://doaj.org/article/e68e5fcf9e354911882188c4785953c5 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3ahEIvpd91mi4q5FRwY1uyJZ9KExJCadJSGtibkaVxurDY23hzyL_vjOx1syX0YB_ssZFHkt_TzGgG4IBhpHCoYkvoGitl67hmu1UqjZGFkb5wvDn5_KI4u1Rf5vl8NLj1Y1jl5p8YftS-c2wjP2R3jyQ0zs2n1e-Yq0axd3UsofEQdjl1GYd06bmebCwEj4YQb9iWpwk4D_HrosGPqSm4fOwdIAr5-u8jmf_GSt4Bn9On8GRkjeLz0M3P4AG2z-HRUEfy9gV8O8blkuNJhW29CCkq3ZgIQBBMLXrRNaJfIq4EkcEr7MWiFcT86LA0IjpagQaTNj0agsJfwuXpyc_js3islBA7pfN1XJepVT4ta59kNnNOY10WBlXiMSVs8ir3uTO69ElDjAuJA3pp2CWHViYNkZJXsNN2Lb4BoaWmSU5iSW1VllmrXZbXSVaqAukVOoIPG7VVbkwjztUslhUtJ1jHVdBxFXQcwcEkvBqyZ9wvdsT6n0Q45XW40F1fVeMMqpA-KG9cU6KkNS2tiwyxE0PfzxnapMsj2N_0XjXOw776O2oieD_dphnEbhHbYndDMkalqeS9hhG8Hjp7agm7Zcs8SyLQW8Ngq6nbd9rFr5Clm5gstU_v_b9Zb-ExUbCCdzemxT7srK9v8B3RnHU9C2N5BrtHJxfff8yCsYDO58r8AS2pANI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYxULkihSezEzgEhWlpt6XZBqJV6Sx3bKSutkqXZCvVP8RuZyYsuqrj1kEsyiZzx2N83HnsGYJNgJDFO-BrR1RdC535O61YhV4onitvE0OHkw2kyPhZfTuKTNfjdn4WhbZX9nNhM1LYytEa-ReEejmgcq4-Lnz5VjaLoal9CozWLA3f5C122-sP-Z-zft1G0t3u0M_a7qgK-ETJe-nkaamHDNLdBpCNjpMvTRDkRWBfiPG5FbGOjZGqDAtmJQ75kuaLwldM8KBDA8bu3YF1wdGVGsL69O_32fVjVQUBWiLHtQUCJUL3lJrPCvQ9VQgVrr0BfUyHgOlr77-7MK3C3dx_udTyVfWoN6wGsufIh3G4rV14-gq87bj6nHaxMl5Y1STFNl3qAITDOalYVrJ47t2BIP89czWYlQ66Jl0YbrNDnbRbR8dVmG_pjOL4RLT6BUVmV7hkwySVOKygW5FpEkdbSRHEeRKlIHH5CevCuV1tmusTlVD9jnqEDQzrOGh1njY492ByEF22-juvFtkn_gwgl2W5uVOdnWTdmM4c_FBemSB1HLxo9MYV8SOH_U044bmIPNvrey7qRX2d_7dSDN8NjHLMUiNGlqy5QRokw5HS60YOnbWcPLaFAcBpHgQdyxQxWmrr6pJz9aPKCI3fG9snn_2_Wa7gzPjqcZJP96cELuIsEMKGzlWGyAaPl-YV7iSRrmb_qLJvB6U0Ppj-C4jsI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQFwQbwIFjFQuSGGT2I6dA0LQsmppKRyotLfg2E5ZaZUszVaov8bXMZMXXVRx6yGXZBI543l6XgDbpEZS60VoULuGQpgiLOjcKuZa81Rzl1oqTv58lO4di08zOduA30MtDKVVDjKxFdSutnRGPqFwD0dtLPWk7NMivu5O3y1_hjRBiiKtwziNjkQO_PkvdN-at_u7uNevkmT68dvOXthPGAitUHIVFllshIuzwkWJSaxVvshS7UXkfIwy3QnppNUqc1GJlopH28lxTaEsb3hUojLH716D64rLmHhMzdR4voOqWaO27UoCFSrtiT-cl_5NrFMaXXtBCbazAi4zcP_N07yg-KZ34HZvsbL3HYndhQ1f3YMb3QzL8_vwZccvFpTLykzlWNse0_ZNCBiqyHnD6pI1C--XDA3RE9-wecXQ6sTLIDXW6P22x-n4apuQ_gCOrwSHD2Gzqiv_GJjiCgUMgkWFEUlijLKJLKIkE6nHT6gAXg9oy23fwpwmaSxydGUIx3mL47zFcQDbI_Cy69xxOdgHwv8IQu222xv16Unec2_u8YdkacvMc_Sn0SfTaBlp_H_qDsetDGBr2L28lwFN_pdiA3g5PkbupZCMqXx9hjBaxDGnOscAHnWbPa6EQsKZTKIA1BoZrC11_Uk1_9F2CEcrGtennvx_WS_gJrJQfrh_dPAUbqElmFKRZZxuwebq9Mw_Q2trVTxvyZrB96vmoz-hfz3Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellular+and+neurochemical+basis+of+sleep+stages+in+the+thalamocortical+network&rft.jtitle=eLife&rft.au=Krishnan%2C+Giri+P&rft.au=Chauvette+Sylvain&rft.au=Shamie+Isaac&rft.au=Soltani%2C+Sara&rft.date=2016-11-16&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=5&rft_id=info:doi/10.7554%2FeLife.18607&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |