gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota

The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gut...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 41; no. 10; pp. 1416 - 1423
Main Authors Pascal Andreu, Victòria, Augustijn, Hannah E., Chen, Lianmin, Zhernakova, Alexandra, Fu, Jingyuan, Fischbach, Michael A., Dodd, Dylan, Medema, Marnix H.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.10.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome. Taxon-specific primary metabolic pathways are identified using profile hidden Markov models.
AbstractList The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.Taxon-specific primary metabolic pathways are identified using profile hidden Markov models.
The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome. Taxon-specific primary metabolic pathways are identified using profile hidden Markov models.
The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.
The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here, we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters and use it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We find marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 subjects from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and faeces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.
The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.
Author Fu, Jingyuan
Medema, Marnix H.
Pascal Andreu, Victòria
Augustijn, Hannah E.
Dodd, Dylan
Zhernakova, Alexandra
Fischbach, Michael A.
Chen, Lianmin
AuthorAffiliation 5 Department of Microbiology and Immunology, Stanford University, Stanford, USA
6 Chan Zuckerberg Biohub, San Francisco, CA USA
2 Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
4 Department of Bioengineering, Stanford University, Stanford, USA
1 Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
7 Department of Pathology, Stanford University, Stanford, USA
3 Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
AuthorAffiliation_xml – name: 5 Department of Microbiology and Immunology, Stanford University, Stanford, USA
– name: 1 Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
– name: 6 Chan Zuckerberg Biohub, San Francisco, CA USA
– name: 2 Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
– name: 3 Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
– name: 7 Department of Pathology, Stanford University, Stanford, USA
– name: 4 Department of Bioengineering, Stanford University, Stanford, USA
Author_xml – sequence: 1
  givenname: Victòria
  orcidid: 0000-0001-9609-9401
  surname: Pascal Andreu
  fullname: Pascal Andreu, Victòria
  organization: Bioinformatics Group, Wageningen University
– sequence: 2
  givenname: Hannah E.
  orcidid: 0000-0002-1862-6699
  surname: Augustijn
  fullname: Augustijn, Hannah E.
  organization: Bioinformatics Group, Wageningen University, Department of Genetics, University Medical Center Groningen, University of Groningen
– sequence: 3
  givenname: Lianmin
  orcidid: 0000-0003-0660-3518
  surname: Chen
  fullname: Chen, Lianmin
  organization: Department of Genetics, University Medical Center Groningen, University of Groningen, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Changzhou Medical Center, Nanjing Medical University, Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University
– sequence: 4
  givenname: Alexandra
  orcidid: 0000-0002-4574-0841
  surname: Zhernakova
  fullname: Zhernakova, Alexandra
  organization: Department of Genetics, University Medical Center Groningen, University of Groningen
– sequence: 5
  givenname: Jingyuan
  orcidid: 0000-0001-5578-1236
  surname: Fu
  fullname: Fu, Jingyuan
  organization: Department of Genetics, University Medical Center Groningen, University of Groningen, Department of Pediatrics, University Medical Center Groningen, University of Groningen
– sequence: 6
  givenname: Michael A.
  orcidid: 0000-0003-3079-8247
  surname: Fischbach
  fullname: Fischbach, Michael A.
  email: fischbach@fischbachgroup.org
  organization: Department of Bioengineering, Stanford University, Department of Microbiology and Immunology, Stanford University, Chan Zuckerberg Biohub
– sequence: 7
  givenname: Dylan
  orcidid: 0000-0001-6210-6239
  surname: Dodd
  fullname: Dodd, Dylan
  email: ddodd2@stanford.edu
  organization: Department of Microbiology and Immunology, Stanford University, Department of Pathology, Stanford University
– sequence: 8
  givenname: Marnix H.
  orcidid: 0000-0002-2191-2821
  surname: Medema
  fullname: Medema, Marnix H.
  email: marnix.medema@wur.nl
  organization: Bioinformatics Group, Wageningen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36782070$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vVCEYhYmpsR_6B1wYEjdurvINszJNY61JTRetbglwYYbm3ssI3Jr668s401q76ArCe87Jw3sOwd6UJg_AW4w-YkTVp8IwV7JDhHYIC8k7_AIcYM5Eh8VC7LU72owxF_vgsJRrhJBgQrwC-1RIRZBEB-Dncq6X348vz-A6-z66WmBZexfNEP_4vj3G0eRbOPpqbBqig2tTV7_NbYEhpxHWlYereTQTbDlwjC4nG1M1r8HLYIbi3-zOI_Dj9MvVyVl3fvH128nxeeeY5LWzgvW9DNYqgw1HilAsfeg5oYJz6nokiGI2eBF6xQyl1pEFlSEg4v3CGkmPwOdt7nq2o--dn2o2g95h62Si_n8yxZVephuNESOUItYSPuwScvo1-1L1GIvzw2Amn-aiiZSCY6nooknfP5FepzlP7X-aKMkFZ0zgpnr3GOmB5X7nTaC2grasUrIP2sVqakwbwjg0NL2pV2_r1a1e_bdevckmT6z36c-a6NZUmnha-vwP-xnXHa1kuMY
CitedBy_id crossref_primary_10_1038_s41522_025_00678_x
crossref_primary_10_1038_s43586_024_00376_6
crossref_primary_10_1186_s40168_024_01975_x
crossref_primary_10_1093_bib_bbae264
crossref_primary_10_3390_life14030364
crossref_primary_10_1128_mbio_00496_24
crossref_primary_10_1093_nar_gkae625
crossref_primary_10_1093_nar_gkae944
crossref_primary_10_1016_j_cbpa_2024_102565
crossref_primary_10_1038_s41564_024_01912_6
crossref_primary_10_1038_s41598_023_46052_9
crossref_primary_10_1093_bib_bbae085
crossref_primary_10_1016_j_tjnut_2024_08_012
crossref_primary_10_1080_19490976_2023_2274127
crossref_primary_10_1016_j_foodres_2024_114852
crossref_primary_10_1186_s40168_024_01876_z
crossref_primary_10_1073_pnas_2316579120
crossref_primary_10_1186_s40168_024_01897_8
crossref_primary_10_3389_fbioe_2023_1267378
crossref_primary_10_1016_j_xgen_2024_100559
crossref_primary_10_1080_19490976_2024_2359677
crossref_primary_10_4103_1673_5374_382223
crossref_primary_10_1128_mbio_00012_24
crossref_primary_10_1093_ismejo_wrad022
crossref_primary_10_1093_nar_gkad344
crossref_primary_10_1097_HEP_0000000000000506
crossref_primary_10_1093_bib_bbae419
crossref_primary_10_1093_nar_gkaf045
crossref_primary_10_1038_s41564_024_01737_3
crossref_primary_10_1016_j_biopha_2024_117207
crossref_primary_10_1038_s42255_024_01074_z
crossref_primary_10_1016_j_cell_2023_06_010
crossref_primary_10_1126_scitranslmed_adg8357
crossref_primary_10_1080_19490976_2024_2442522
crossref_primary_10_1128_spectrum_01927_24
crossref_primary_10_3390_antibiotics13121238
crossref_primary_10_1007_s00253_024_13393_y
crossref_primary_10_1111_imcb_12798
crossref_primary_10_1016_j_tim_2024_07_005
crossref_primary_10_1016_j_jhazmat_2024_135669
crossref_primary_10_1021_acs_analchem_3c02408
crossref_primary_10_1038_s41522_024_00597_3
crossref_primary_10_1038_s41579_024_01107_0
crossref_primary_10_3390_metabo13070855
crossref_primary_10_1016_j_chom_2023_12_013
crossref_primary_10_1093_ismejo_wrae002
crossref_primary_10_1016_j_cbpa_2024_102539
Cites_doi 10.1093/nar/gkz310
10.1128/mSystems.00937-21
10.1038/nature24460
10.1093/bib/bbx085
10.1038/nchembio.1884
10.1186/1471-2105-11-119
10.1093/nar/gky1013
10.1093/bib/bbz104
10.1093/nar/gkz239
10.1101/119214
10.1039/C6NP00025H
10.1038/s41564-019-0591-6
10.1038/nmicrobiol.2016.88
10.1101/gr.1239303
10.1038/s41586-020-2396-4
10.1016/j.freeradbiomed.2015.04.004
10.1128/IAI.05395-11
10.1038/s41467-019-10927-1
10.1078/072320203322346029
10.1136/gut.28.10.1221
10.1038/msb.2011.75
10.1371/journal.ppat.1006129
10.1038/s41587-020-0548-6
10.1093/molbev/mst025
10.1038/s41587-018-0008-8
10.1038/s41589-019-0400-9
10.1136/bmjopen-2014-006772
10.1038/nbt.4229
10.1038/s41592-018-0176-y
10.1186/1471-2105-10-421
10.1038/s41591-022-02014-8
10.1371/journal.pone.0018910
10.1016/j.copbio.2011.10.008
10.1126/science.aad3369
10.1186/s13059-016-0997-x
10.1093/bioinformatics/btp033
10.1038/s41576-021-00363-7
10.1371/journal.pone.0009490
10.1038/s41586-019-1237-9
10.1371/journal.pcbi.1002358
10.1038/nbt.3988
10.1038/s41564-022-01109-9
10.1093/nar/gkz862
10.1038/nature23889
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
RC3
7X8
5PM
DOI 10.1038/s41587-023-01675-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 1423
ExternalDocumentID PMC10423304
36782070
10_1038_s41587_023_01675_1
Genre Journal Article
GrantInformation_xml – fundername: China Scholarship Council (CSC)
  grantid: CSC201708320268
  funderid: https://doi.org/10.13039/501100004543
– fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)
  grantid: HR0011-15-C-0084; HR0112020030; HR0011-15-C-0084; HR0112020030
  funderid: https://doi.org/10.13039/100000185
– fundername: Chan-Zuckerberg BioHub, Leducq Foundation
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
  grantid: 024.004.017; VI.C.202.022; 024.003.001
  funderid: https://doi.org/10.13039/501100003246
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 948770; 715772; 101001678; 948770
  funderid: https://doi.org/10.13039/100010663
– fundername: Foundation de Cock-Hadders (20:20-13)
– fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: DP1 DK113598; P01 HL147823; K08 DK110335; R35 GM142873; R01 AT011396
  funderid: https://doi.org/10.13039/100000002
– fundername: Hartstichting (Dutch Heart Foundation)
  grantid: CVON 2018-27
  funderid: https://doi.org/10.13039/501100002996
– fundername: NIGMS NIH HHS
  grantid: R35 GM142873
– fundername: NIDDK NIH HHS
  grantid: K08 DK110335
– fundername: NHLBI NIH HHS
  grantid: P01 HL147823
– fundername: NCCIH NIH HHS
  grantid: R01 AT011396
– fundername: NIDDK NIH HHS
  grantid: R01 DK101674
– fundername: NIDDK NIH HHS
  grantid: DP1 DK113598
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
3V.
4.4
4R4
53G
5BI
5M7
5RE
5S5
70F
7X7
88A
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAEEF
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NNMJJ
NXXTH
O9-
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XI7
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c475t-b64dd7fbb8a1a5082317efd5236553cd06284bfe6fd84a33bc2937ff02ee9ba73
IEDL.DBID 7X7
ISSN 1087-0156
1546-1696
IngestDate Thu Aug 21 18:34:58 EDT 2025
Mon Jul 21 11:37:23 EDT 2025
Fri Jul 25 09:10:58 EDT 2025
Wed Feb 19 02:17:49 EST 2025
Thu Apr 24 23:10:02 EDT 2025
Tue Jul 01 04:10:05 EDT 2025
Fri Feb 21 02:39:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-b64dd7fbb8a1a5082317efd5236553cd06284bfe6fd84a33bc2937ff02ee9ba73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions Statement
M.A.F. and M.H.M. initially conceived the project, with modifications and extensions introduced on the advice of V.P.A., A.Z., J.F. and D.D. The gutSMASH software was developed and used to analyze genomic data by V.P.A., with input from M.H.M., D.D. and M.A.F. Analysis of metagenomic and metatranscriptomics data was performed by H.E.A., V.P.A. and L.C. Correlations with metabolomic data were performed by L.C. M.H.M., D.D. and M.A.F. coordinated and supervised the study as a whole, and A.Z. and J.F. coordinated and supervised analysis of cohort data. All authors contributed to data interpretation. V.P.A., M.A.F., D.D. and M.H.M. drafted the initial manuscript with input from the other authors. All authors read and contributed to the final manuscript.
Contributed equally
ORCID 0000-0002-4574-0841
0000-0003-3079-8247
0000-0001-9609-9401
0000-0001-6210-6239
0000-0002-2191-2821
0000-0003-0660-3518
0000-0001-5578-1236
0000-0002-1862-6699
OpenAccessLink https://www.nature.com/articles/s41587-023-01675-1.pdf
PMID 36782070
PQID 2875654461
PQPubID 47191
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10423304
proquest_miscellaneous_2776517839
proquest_journals_2875654461
pubmed_primary_36782070
crossref_citationtrail_10_1038_s41587_023_01675_1
crossref_primary_10_1038_s41587_023_01675_1
springer_journals_10_1038_s41587_023_01675_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2023
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Kitamoto (CR8) 2020; 5
Blin (CR1) 2019; 47
Parks (CR32) 2018; 36
Medema, de Rond, Moore (CR6) 2021; 22
Mallick (CR24) 2019; 10
Eddy (CR35) 2009; 23
Vandeputte (CR26) 2017; 551
Karp (CR2) 2019; 20
Andriamihaja (CR22) 2015; 85
CR14
Medema, Takano, Breitling (CR41) 2013; 30
Medema, Fischbach (CR4) 2015; 11
Jones (CR16) 2011; 79
Liu (CR18) 2022; 7
Tigchelaar (CR20) 2015; 5
Pascal Andreu, Fischbach, Medema (CR31) 2020; 6
Sievers (CR37) 2011; 7
Tremblay, Zhang, Dar, Leang, Lovley (CR17) 2012; 4
Shannon (CR44) 2003; 13
Ondov (CR46) 2016; 17
Steinegger, Söding (CR42) 2017; 35
Lloyd-Price (CR10) 2017; 550
Waterhouse, Procter, Martin, Clamp, Barton (CR38) 2009; 25
Andreu (CR19) 2021; 6
Zhernakova (CR45) 2016; 352
Chen (CR48) 2022; 28
Navarro-Muñoz (CR7) 2020; 16
Maguire (CR12) 2020; 6
Faber (CR21) 2017; 13
Chen (CR34) 2011; 6
Tracy, Jones, Fast, Indurthi, Papoutsakis (CR11) 2012; 23
Funabashi (CR23) 2020; 582
Zou (CR9) 2019; 37
Camacho (CR39) 2009; 10
Caspi (CR28) 2020; 48
Lloyd-Price (CR47) 2019; 569
Letunic, Bork (CR33) 2019; 47
Richardson (CR29) 2019; 47
Abubucker (CR3) 2012; 8
Franzosa (CR30) 2018; 15
CR40
Douglas (CR25) 2020; 38
Hyatt (CR43) 2010; 11
Cummings, Pomare, Branch, Naylor, Macfarlane (CR15) 1987; 28
Ziemert, Alanjary, Weber (CR5) 2016; 33
Vieira-Silva (CR13) 2016; 1
Karp (CR27) 2021; 22
Price, Dehal, Arkin (CR36) 2010; 5
BD Ondov (1675_CR46) 2016; 17
A Zhernakova (1675_CR45) 2016; 352
M Andriamihaja (1675_CR22) 2015; 85
SA Jones (1675_CR16) 2011; 79
Y Liu (1675_CR18) 2022; 7
BP Tracy (1675_CR11) 2012; 23
P Shannon (1675_CR44) 2003; 13
GM Douglas (1675_CR25) 2020; 38
JC Navarro-Muñoz (1675_CR7) 2020; 16
EA Franzosa (1675_CR30) 2018; 15
S Abubucker (1675_CR3) 2012; 8
EF Tigchelaar (1675_CR20) 2015; 5
PD Karp (1675_CR27) 2021; 22
1675_CR14
D Vandeputte (1675_CR26) 2017; 551
V Pascal Andreu (1675_CR31) 2020; 6
M Funabashi (1675_CR23) 2020; 582
R Caspi (1675_CR28) 2020; 48
MH Medema (1675_CR6) 2021; 22
S Kitamoto (1675_CR8) 2020; 5
F Maguire (1675_CR12) 2020; 6
F Faber (1675_CR21) 2017; 13
MN Price (1675_CR36) 2010; 5
MH Medema (1675_CR4) 2015; 11
F Sievers (1675_CR37) 2011; 7
PD Karp (1675_CR2) 2019; 20
DH Parks (1675_CR32) 2018; 36
J Lloyd-Price (1675_CR47) 2019; 569
K Blin (1675_CR1) 2019; 47
J Lloyd-Price (1675_CR10) 2017; 550
VP Andreu (1675_CR19) 2021; 6
AM Waterhouse (1675_CR38) 2009; 25
S Vieira-Silva (1675_CR13) 2016; 1
I Letunic (1675_CR33) 2019; 47
JH Cummings (1675_CR15) 1987; 28
D Hyatt (1675_CR43) 2010; 11
N Ziemert (1675_CR5) 2016; 33
H Mallick (1675_CR24) 2019; 10
M Steinegger (1675_CR42) 2017; 35
C Chen (1675_CR34) 2011; 6
SR Eddy (1675_CR35) 2009; 23
L Chen (1675_CR48) 2022; 28
MH Medema (1675_CR41) 2013; 30
C Camacho (1675_CR39) 2009; 10
PL Tremblay (1675_CR17) 2012; 4
Y Zou (1675_CR9) 2019; 37
LJ Richardson (1675_CR29) 2019; 47
1675_CR40
References_xml – volume: 5
  start-page: 116
  year: 2020
  end-page: 125
  ident: CR8
  article-title: Dietary -serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut
  publication-title: Nat. Microbiol
– volume: 38
  start-page: 685
  year: 2020
  end-page: 688
  ident: CR25
  article-title: PICRUSt2 for prediction of metagenome functions
  publication-title: Nat. Biotechnol.
– volume: 15
  start-page: 962
  year: 2018
  end-page: 968
  ident: CR30
  article-title: Species-level functional profiling of metagenomes and metatranscriptomes
  publication-title: Nat. Methods
– volume: 85
  start-page: 219
  year: 2015
  end-page: 227
  ident: CR22
  article-title: The deleterious metabolic and genotoxic effects of the bacterial metabolite -cresol on colonic epithelial cells
  publication-title: Free Radic. Biol. Med.
– volume: 20
  start-page: 1085
  year: 2019
  end-page: 1093
  ident: CR2
  article-title: The BioCyc collection of microbial genomes and metabolic pathways
  publication-title: Brief. Bioinform.
– ident: CR14
– volume: 23
  start-page: 205
  year: 2009
  end-page: 211
  ident: CR35
  article-title: A new generation of homology search tools based on probabilistic inference
  publication-title: Genome Inform.
– volume: 5
  start-page: e9490
  year: 2010
  ident: CR36
  article-title: FastTree 2—approximately maximum-likelihood trees for large alignments
  publication-title: PLoS ONE
– volume: 30
  start-page: 1218
  year: 2013
  end-page: 1223
  ident: CR41
  article-title: Detecting sequence homology at the gene cluster level with MultiGeneBlast
  publication-title: Mol. Biol. Evol.
– volume: 550
  start-page: 61
  year: 2017
  end-page: 66
  ident: CR10
  article-title: Strains, functions and dynamics in the expanded Human Microbiome Project
  publication-title: Nature
– volume: 551
  start-page: 507
  year: 2017
  end-page: 511
  ident: CR26
  article-title: Quantitative microbiome profiling links gut community variation to microbial load
  publication-title: Nature
– volume: 7
  start-page: 695
  year: 2022
  end-page: 706
  ident: CR18
  article-title: uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites
  publication-title: Nat. Microbiol
– volume: 35
  start-page: 1026
  year: 2017
  end-page: 1028
  ident: CR42
  article-title: MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets
  publication-title: Nat. Biotechnol.
– volume: 47
  start-page: D564
  year: 2019
  end-page: D572
  ident: CR29
  article-title: Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes
  publication-title: Nucleic Acids Res.
– volume: 28
  start-page: 1221
  year: 1987
  end-page: 1227
  ident: CR15
  article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood
  publication-title: Gut
– volume: 4
  start-page: e00406
  year: 2012
  end-page: e00412
  ident: CR17
  article-title: The Rnf complex of is a proton-translocating ferredoxin:NAD oxidoreductase essential for autotrophic growth
  publication-title: mBio
– ident: CR40
– volume: 25
  start-page: 1189
  year: 2009
  end-page: 1191
  ident: CR38
  article-title: Jalview Version 2—a multiple sequence alignment editor and analysis workbench
  publication-title: Bioinformatics
– volume: 10
  start-page: 421
  year: 2009
  ident: CR39
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
– volume: 37
  start-page: 179
  year: 2019
  end-page: 185
  ident: CR9
  article-title: 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses
  publication-title: Nat. Biotechnol.
– volume: 582
  start-page: 566
  year: 2020
  end-page: 570
  ident: CR23
  article-title: A metabolic pathway for bile acid dehydroxylation by the gut microbiome
  publication-title: Nature
– volume: 48
  start-page: D445
  year: 2020
  end-page: D453
  ident: CR28
  article-title: The MetaCyc database of metabolic pathways and enzymes—a 2019 update
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 119
  year: 2010
  ident: CR43
  article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification
  publication-title: BMC Bioinformatics
– volume: 16
  start-page: 60
  year: 2020
  end-page: 68
  ident: CR7
  article-title: A computational framework to explore large-scale biosynthetic diversity
  publication-title: Nat. Chem. Biol.
– volume: 13
  start-page: 2498
  year: 2003
  end-page: 2504
  ident: CR44
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
– volume: 13
  start-page: e1006129
  year: 2017
  ident: CR21
  article-title: Respiration of microbiota-derived 1,2-propanediol drives expansion during colitis
  publication-title: PLoS Pathog.
– volume: 22
  start-page: 109
  year: 2021
  end-page: 126
  ident: CR27
  article-title: Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology
  publication-title: Brief. Bioform.
– volume: 47
  start-page: W256
  year: 2019
  end-page: W259
  ident: CR33
  article-title: Interactive Tree Of Life (iTOL) v4: recent updates and new developments
  publication-title: Nucleic Acids Res.
– volume: 1
  start-page: 16088
  year: 2016
  ident: CR13
  article-title: Species–function relationships shape ecological properties of the human gut microbiome
  publication-title: Nat. Microbiol
– volume: 352
  start-page: 565
  year: 2016
  end-page: 569
  ident: CR45
  article-title: Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity
  publication-title: Science
– volume: 569
  start-page: 655
  year: 2019
  end-page: 662
  ident: CR47
  article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases
  publication-title: Nature
– volume: 47
  start-page: W81
  year: 2019
  end-page: W87
  ident: CR1
  article-title: antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 539
  year: 2011
  ident: CR37
  article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
  publication-title: Mol. Syst. Biol.
– volume: 36
  start-page: 996
  year: 2018
  end-page: 1004
  ident: CR32
  article-title: A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life
  publication-title: Nat. Biotechnol.
– volume: 17
  year: 2016
  ident: CR46
  article-title: Mash: fast genome and metagenome distance estimation using MinHash
  publication-title: Genome Biol.
– volume: 33
  start-page: 988
  year: 2016
  end-page: 1005
  ident: CR5
  article-title: The evolution of genome mining in microbes—a review
  publication-title: Nat. Prod. Rep.
– volume: 22
  start-page: 553
  year: 2021
  end-page: 571
  ident: CR6
  article-title: Mining genomes to illuminate the specialized chemistry of life
  publication-title: Nat. Rev. Genet.
– volume: 10
  year: 2019
  ident: CR24
  article-title: Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences
  publication-title: Nat. Commun.
– volume: 5
  start-page: e006772
  year: 2015
  ident: CR20
  article-title: Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics
  publication-title: BMJ Open
– volume: 6
  start-page: e18910
  year: 2011
  ident: CR34
  article-title: Representative proteomes: a stable, scalable and unbiased proteome set for sequence analysis and functional annotation
  publication-title: PLoS ONE
– volume: 11
  start-page: 639
  year: 2015
  end-page: 648
  ident: CR4
  article-title: Computational approaches to natural product discovery
  publication-title: Nat. Chem. Biol.
– volume: 8
  start-page: e1002358
  year: 2012
  ident: CR3
  article-title: Metabolic reconstruction for metagenomic data and its application to the human microbiome
  publication-title: PLoS Comput. Biol.
– volume: 23
  start-page: 364
  year: 2012
  end-page: 381
  ident: CR11
  article-title: Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications
  publication-title: Curr. Opin. Biotechnol.
– volume: 6
  start-page: e0093721
  year: 2021
  ident: CR19
  article-title: BiG-MAP: an automated pipeline to profile metabolic gene cluster abundance and expression in microbiomes
  publication-title: mSystems
– volume: 28
  start-page: 2333
  year: 2022
  end-page: 2343
  ident: CR48
  article-title: Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome
  publication-title: Nat. Med.
– volume: 6
  start-page: mgen000436
  year: 2020
  ident: CR12
  article-title: Metagenome-assembled genome binning methods with short reads disproportionately fail for plasmids and genomic islands
  publication-title: Microb. Genom.
– volume: 79
  start-page: 4218
  year: 2011
  end-page: 4226
  ident: CR16
  article-title: Anaerobic respiration of in the mouse intestine
  publication-title: Infect. Immun.
– volume: 6
  start-page: e000373
  year: 2020
  ident: CR31
  article-title: Computational genomic discovery of diverse gene clusters harbouring Fe-S flavoenzymes in anaerobic gut microbiota
  publication-title: Microb. Genom.
– volume: 47
  start-page: W81
  year: 2019
  ident: 1675_CR1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz310
– volume: 6
  start-page: e0093721
  year: 2021
  ident: 1675_CR19
  publication-title: mSystems
  doi: 10.1128/mSystems.00937-21
– volume: 551
  start-page: 507
  year: 2017
  ident: 1675_CR26
  publication-title: Nature
  doi: 10.1038/nature24460
– volume: 20
  start-page: 1085
  year: 2019
  ident: 1675_CR2
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx085
– volume: 11
  start-page: 639
  year: 2015
  ident: 1675_CR4
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1884
– volume: 11
  start-page: 119
  year: 2010
  ident: 1675_CR43
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-119
– volume: 47
  start-page: D564
  year: 2019
  ident: 1675_CR29
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1013
– volume: 22
  start-page: 109
  year: 2021
  ident: 1675_CR27
  publication-title: Brief. Bioform.
  doi: 10.1093/bib/bbz104
– volume: 47
  start-page: W256
  year: 2019
  ident: 1675_CR33
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz239
– volume: 6
  start-page: e000373
  year: 2020
  ident: 1675_CR31
  publication-title: Microb. Genom.
– ident: 1675_CR40
  doi: 10.1101/119214
– volume: 33
  start-page: 988
  year: 2016
  ident: 1675_CR5
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C6NP00025H
– volume: 5
  start-page: 116
  year: 2020
  ident: 1675_CR8
  publication-title: Nat. Microbiol
  doi: 10.1038/s41564-019-0591-6
– volume: 1
  start-page: 16088
  year: 2016
  ident: 1675_CR13
  publication-title: Nat. Microbiol
  doi: 10.1038/nmicrobiol.2016.88
– volume: 13
  start-page: 2498
  year: 2003
  ident: 1675_CR44
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– volume: 582
  start-page: 566
  year: 2020
  ident: 1675_CR23
  publication-title: Nature
  doi: 10.1038/s41586-020-2396-4
– volume: 85
  start-page: 219
  year: 2015
  ident: 1675_CR22
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.04.004
– volume: 79
  start-page: 4218
  year: 2011
  ident: 1675_CR16
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.05395-11
– volume: 4
  start-page: e00406
  year: 2012
  ident: 1675_CR17
  publication-title: mBio
– volume: 10
  year: 2019
  ident: 1675_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10927-1
– ident: 1675_CR14
  doi: 10.1078/072320203322346029
– volume: 28
  start-page: 1221
  year: 1987
  ident: 1675_CR15
  publication-title: Gut
  doi: 10.1136/gut.28.10.1221
– volume: 7
  start-page: 539
  year: 2011
  ident: 1675_CR37
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.75
– volume: 13
  start-page: e1006129
  year: 2017
  ident: 1675_CR21
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006129
– volume: 38
  start-page: 685
  year: 2020
  ident: 1675_CR25
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0548-6
– volume: 30
  start-page: 1218
  year: 2013
  ident: 1675_CR41
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst025
– volume: 37
  start-page: 179
  year: 2019
  ident: 1675_CR9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-018-0008-8
– volume: 16
  start-page: 60
  year: 2020
  ident: 1675_CR7
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0400-9
– volume: 5
  start-page: e006772
  year: 2015
  ident: 1675_CR20
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2014-006772
– volume: 36
  start-page: 996
  year: 2018
  ident: 1675_CR32
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4229
– volume: 15
  start-page: 962
  year: 2018
  ident: 1675_CR30
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0176-y
– volume: 10
  start-page: 421
  year: 2009
  ident: 1675_CR39
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-421
– volume: 28
  start-page: 2333
  year: 2022
  ident: 1675_CR48
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-02014-8
– volume: 6
  start-page: e18910
  year: 2011
  ident: 1675_CR34
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0018910
– volume: 23
  start-page: 364
  year: 2012
  ident: 1675_CR11
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.10.008
– volume: 23
  start-page: 205
  year: 2009
  ident: 1675_CR35
  publication-title: Genome Inform.
– volume: 352
  start-page: 565
  year: 2016
  ident: 1675_CR45
  publication-title: Science
  doi: 10.1126/science.aad3369
– volume: 6
  start-page: mgen000436
  year: 2020
  ident: 1675_CR12
  publication-title: Microb. Genom.
– volume: 17
  year: 2016
  ident: 1675_CR46
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0997-x
– volume: 25
  start-page: 1189
  year: 2009
  ident: 1675_CR38
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp033
– volume: 22
  start-page: 553
  year: 2021
  ident: 1675_CR6
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00363-7
– volume: 5
  start-page: e9490
  year: 2010
  ident: 1675_CR36
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009490
– volume: 569
  start-page: 655
  year: 2019
  ident: 1675_CR47
  publication-title: Nature
  doi: 10.1038/s41586-019-1237-9
– volume: 8
  start-page: e1002358
  year: 2012
  ident: 1675_CR3
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002358
– volume: 35
  start-page: 1026
  year: 2017
  ident: 1675_CR42
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3988
– volume: 7
  start-page: 695
  year: 2022
  ident: 1675_CR18
  publication-title: Nat. Microbiol
  doi: 10.1038/s41564-022-01109-9
– volume: 48
  start-page: D445
  year: 2020
  ident: 1675_CR28
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz862
– volume: 550
  start-page: 61
  year: 2017
  ident: 1675_CR10
  publication-title: Nature
  doi: 10.1038/nature23889
SSID ssj0006466
Score 2.6169465
Snippet The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1416
SubjectTerms 631/114/2390
631/326/2565/2134
639/638/92/1643
692/698/2741/2135
Acid production
Agriculture
Algorithms
Bacteria
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Fatty acids
Feces - microbiology
Gastrointestinal Microbiome - genetics
Gene clusters
Gene regulation
Genes
Genomes
Gut microbiota
Humans
Intestinal microflora
Life Sciences
Markov chains
Metabolic Networks and Pathways - genetics
Metabolic pathways
Metabolism
Metabolites
Metagenomics
Microbiomes
Microbiota
Microorganisms
Secondary metabolites
Taxa
Title gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota
URI https://link.springer.com/article/10.1038/s41587-023-01675-1
https://www.ncbi.nlm.nih.gov/pubmed/36782070
https://www.proquest.com/docview/2875654461
https://www.proquest.com/docview/2776517839
https://pubmed.ncbi.nlm.nih.gov/PMC10423304
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJtB4QFC-AmMyEm8QLZmd2HtCLVqpkFohxlDfovgjUGlLtyUVGn89d46bUSb20laO--Ge4_ud7_z7AbzNrBJcSkvy7SIWXOMrjDJiaaytDPr00tJ-x3SWT07E53k2DxtuTSirXK-JfqG2S0N75PuI7BF7YPCSfji_iEk1irKrQULjLmwTdRmVdMl5H3Cht_W5yjRRVF6Z5eHQTMLVfoOOi1oPqJoIQXOcbjqmG2jzZtHkP5lT75DGj-BhQJJs2Jn-Mdxx9QDuddqSVwN48BfT4ADuT0MO_Ql8_7Fqj6fD4wk7v6TGtmFNJ0K_-O0sNnr6CXbmWpwfpwvDSLT4V3nVMDqKwhAwMi_sx_Bz2NmiI3Jqy6dwMj769nESB3WF2AiZtbHOhbWy0lqVaZlRwi2VrrIYmOZZxo2lw5VCVy6v0Jwl59ogMpBVlRw4d6hLyZ_BVr2s3QtgymEcaZw0wuHCm2t9qFzmeXSMlrh-RpCu_9rCBOpxUsA4LXwKnKuiM0eB5ii8OYo0gnf9e8LIb-29u7ZYEW7CprieMhG86S_j7UM5kbJ2yxX2kTLPUokwMYLnnYH7r-M5kQnKJAK1Yfq-A1Fzb16pFz89RXdK5UY8ERG8X8-S69_1_2G8vH0Yr2CH1O67WsJd2GovV-41YqJW7_mJj49q_GkPtofj0WiGz6Oj2ZevfwAt8Avc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIl4HBMsrUMBIcKJRk9iJsweEKmDZ0m4vbVFvIX4EVmqzpcmqWn4Uv5EZ51GWit56ixzn4cw7M54P4HVsUsGlNATfLnzBFR5hlOFLbUyh0abnhv53THaT8YH4chgfrsDvbi8MlVV2OtEpajPT9I98Az179D0weAnfn_z0CTWKsqsdhEbDFtt2cYYhW_Vu6yPS900UjT7tfxj7LaqAr4WMa18lwhhZKJXmYR5ToimUtjAYkCVxzLWhTYVCFTYpcBk550qjRZRFEUTWDlUuOd73GlwXnA9JotLR517zJ01uNAxSKueMk3aTTsDTjQoNJY1GVL2ETrofLhvCC97txSLNfzK1zgCO7sHd1nNlmw2r3YcVWw7gRoNluRjAnb86Gw7g5qTN2T-Ar9_n9d5kc2_MTk5psK5Y1YDeT39Zg4Ou3QU7tjXy49FUMwJJPssXFaOtLwwdVOaABBnehx1Pm8ZRdf4QDq7kuz-C1XJW2ifAUotxq7ZSC4uKPlFqmNrY9e3RSqK-9iDsPm2m21bnhLhxlLmUO0-zhhwZkiNz5MhCD97217Qrv3T2WkexrBX6KjtnUQ9e9adRXCkHk5d2Nsc5UiZxKNEt9eBxQ-D-cTyh5oUy8CBdIn0_gVqBL58ppz9cS_CQypt4IDxY77jk_L3-v4ynly_jJdwa7092sp2t3e1ncDsi7nV1jGuwWp_O7XP0x2r1wgkBg29XLXV_AIhFRbI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KkUUcEBQdgMBQYJTmDF47E97gGhihKllFRIpSg341kMkVqn1I6q8Gl8He-NlxIqeuvNmhmPPX673wbwMjZpJKQ01L498iOh8AqtDF9qYwqNMj039L9jsp-MD6OP03i6Br-7XBgKq-x4omPUZq7pH_kQNXvUPdB44cOiDYv4vDN6d_LTpw5S5Gnt2mk0KLJnl2dovlVvd3cQ1q_CcPThy_ux33YY8HUk49pXSWSMLJRKc57H5HTi0hYGjbMkjoU2lGAYqcImBR4pF0JplI6yKILQ2i2VS4H7XoPrUsScaExOe2MPJb3zk_IgpdDOOGkTdgKRDisUmjQaUiQTKuw-XxWKFzTdiwGb_3htnTAc3YHbrRbLthu0uwtrthzAjaav5XIAt_6qcjiAjUnrv78HX78v6oPJ9sGYnZzSYF0xSvVEGpj9sgYHXekLdmxrxM2jmWbUMPksX1aM0mAYKqvMNRVkuA87njVFpOr8PhxeyXd_AOvlvLSPgKUWbVhtpY4sMv1Eqa3Uxq6Gj1YSebcHvPu0mW7LnlP3jaPMud9FmjXgyBAcmQNHxj143d_TnvzS1ZsdxLKWAVTZObp68KKfRtIlf0xe2vkC10iZxFyiiurBwwbA_eNEQoUMZeBBugL6fgGVBV-dKWc_XHlwTqFOIog8eNNhyfl7_f8Yjy8_xnPYQHrLPu3u7z2BmyEhrwtp3IT1-nRhn6JqVqtnjgYYfLtqovsDoMtJ3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=gutSMASH+predicts+specialized+primary+metabolic+pathways+from+the+human+gut+microbiota&rft.jtitle=Nature+biotechnology&rft.au=Pascal+Andreu%2C+Vict%C3%B2ria&rft.au=Augustijn%2C+Hannah+E&rft.au=Chen%2C+Lianmin&rft.au=Zhernakova%2C+Alexandra&rft.date=2023-10-01&rft.eissn=1546-1696&rft.volume=41&rft.issue=10&rft.spage=1416&rft_id=info:doi/10.1038%2Fs41587-023-01675-1&rft_id=info%3Apmid%2F36782070&rft.externalDocID=36782070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon