gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota
The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gut...
Saved in:
Published in | Nature biotechnology Vol. 41; no. 10; pp. 1416 - 1423 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.10.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.
Taxon-specific primary metabolic pathways are identified using profile hidden Markov models. |
---|---|
AbstractList | The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.Taxon-specific primary metabolic pathways are identified using profile hidden Markov models. The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome. Taxon-specific primary metabolic pathways are identified using profile hidden Markov models. The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome. The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here, we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters and use it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We find marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 subjects from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and faeces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome. The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome. |
Author | Fu, Jingyuan Medema, Marnix H. Pascal Andreu, Victòria Augustijn, Hannah E. Dodd, Dylan Zhernakova, Alexandra Fischbach, Michael A. Chen, Lianmin |
AuthorAffiliation | 5 Department of Microbiology and Immunology, Stanford University, Stanford, USA 6 Chan Zuckerberg Biohub, San Francisco, CA USA 2 Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands 4 Department of Bioengineering, Stanford University, Stanford, USA 1 Bioinformatics Group, Wageningen University, Wageningen, The Netherlands 7 Department of Pathology, Stanford University, Stanford, USA 3 Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands |
AuthorAffiliation_xml | – name: 5 Department of Microbiology and Immunology, Stanford University, Stanford, USA – name: 1 Bioinformatics Group, Wageningen University, Wageningen, The Netherlands – name: 6 Chan Zuckerberg Biohub, San Francisco, CA USA – name: 2 Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands – name: 3 Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands – name: 7 Department of Pathology, Stanford University, Stanford, USA – name: 4 Department of Bioengineering, Stanford University, Stanford, USA |
Author_xml | – sequence: 1 givenname: Victòria orcidid: 0000-0001-9609-9401 surname: Pascal Andreu fullname: Pascal Andreu, Victòria organization: Bioinformatics Group, Wageningen University – sequence: 2 givenname: Hannah E. orcidid: 0000-0002-1862-6699 surname: Augustijn fullname: Augustijn, Hannah E. organization: Bioinformatics Group, Wageningen University, Department of Genetics, University Medical Center Groningen, University of Groningen – sequence: 3 givenname: Lianmin orcidid: 0000-0003-0660-3518 surname: Chen fullname: Chen, Lianmin organization: Department of Genetics, University Medical Center Groningen, University of Groningen, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Changzhou Medical Center, Nanjing Medical University, Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University – sequence: 4 givenname: Alexandra orcidid: 0000-0002-4574-0841 surname: Zhernakova fullname: Zhernakova, Alexandra organization: Department of Genetics, University Medical Center Groningen, University of Groningen – sequence: 5 givenname: Jingyuan orcidid: 0000-0001-5578-1236 surname: Fu fullname: Fu, Jingyuan organization: Department of Genetics, University Medical Center Groningen, University of Groningen, Department of Pediatrics, University Medical Center Groningen, University of Groningen – sequence: 6 givenname: Michael A. orcidid: 0000-0003-3079-8247 surname: Fischbach fullname: Fischbach, Michael A. email: fischbach@fischbachgroup.org organization: Department of Bioengineering, Stanford University, Department of Microbiology and Immunology, Stanford University, Chan Zuckerberg Biohub – sequence: 7 givenname: Dylan orcidid: 0000-0001-6210-6239 surname: Dodd fullname: Dodd, Dylan email: ddodd2@stanford.edu organization: Department of Microbiology and Immunology, Stanford University, Department of Pathology, Stanford University – sequence: 8 givenname: Marnix H. orcidid: 0000-0002-2191-2821 surname: Medema fullname: Medema, Marnix H. email: marnix.medema@wur.nl organization: Bioinformatics Group, Wageningen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36782070$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vVCEYhYmpsR_6B1wYEjdurvINszJNY61JTRetbglwYYbm3ssI3Jr668s401q76ArCe87Jw3sOwd6UJg_AW4w-YkTVp8IwV7JDhHYIC8k7_AIcYM5Eh8VC7LU72owxF_vgsJRrhJBgQrwC-1RIRZBEB-Dncq6X348vz-A6-z66WmBZexfNEP_4vj3G0eRbOPpqbBqig2tTV7_NbYEhpxHWlYereTQTbDlwjC4nG1M1r8HLYIbi3-zOI_Dj9MvVyVl3fvH128nxeeeY5LWzgvW9DNYqgw1HilAsfeg5oYJz6nokiGI2eBF6xQyl1pEFlSEg4v3CGkmPwOdt7nq2o--dn2o2g95h62Si_n8yxZVephuNESOUItYSPuwScvo1-1L1GIvzw2Amn-aiiZSCY6nooknfP5FepzlP7X-aKMkFZ0zgpnr3GOmB5X7nTaC2grasUrIP2sVqakwbwjg0NL2pV2_r1a1e_bdevckmT6z36c-a6NZUmnha-vwP-xnXHa1kuMY |
CitedBy_id | crossref_primary_10_1038_s41522_025_00678_x crossref_primary_10_1038_s43586_024_00376_6 crossref_primary_10_1186_s40168_024_01975_x crossref_primary_10_1093_bib_bbae264 crossref_primary_10_3390_life14030364 crossref_primary_10_1128_mbio_00496_24 crossref_primary_10_1093_nar_gkae625 crossref_primary_10_1093_nar_gkae944 crossref_primary_10_1016_j_cbpa_2024_102565 crossref_primary_10_1038_s41564_024_01912_6 crossref_primary_10_1038_s41598_023_46052_9 crossref_primary_10_1093_bib_bbae085 crossref_primary_10_1016_j_tjnut_2024_08_012 crossref_primary_10_1080_19490976_2023_2274127 crossref_primary_10_1016_j_foodres_2024_114852 crossref_primary_10_1186_s40168_024_01876_z crossref_primary_10_1073_pnas_2316579120 crossref_primary_10_1186_s40168_024_01897_8 crossref_primary_10_3389_fbioe_2023_1267378 crossref_primary_10_1016_j_xgen_2024_100559 crossref_primary_10_1080_19490976_2024_2359677 crossref_primary_10_4103_1673_5374_382223 crossref_primary_10_1128_mbio_00012_24 crossref_primary_10_1093_ismejo_wrad022 crossref_primary_10_1093_nar_gkad344 crossref_primary_10_1097_HEP_0000000000000506 crossref_primary_10_1093_bib_bbae419 crossref_primary_10_1093_nar_gkaf045 crossref_primary_10_1038_s41564_024_01737_3 crossref_primary_10_1016_j_biopha_2024_117207 crossref_primary_10_1038_s42255_024_01074_z crossref_primary_10_1016_j_cell_2023_06_010 crossref_primary_10_1126_scitranslmed_adg8357 crossref_primary_10_1080_19490976_2024_2442522 crossref_primary_10_1128_spectrum_01927_24 crossref_primary_10_3390_antibiotics13121238 crossref_primary_10_1007_s00253_024_13393_y crossref_primary_10_1111_imcb_12798 crossref_primary_10_1016_j_tim_2024_07_005 crossref_primary_10_1016_j_jhazmat_2024_135669 crossref_primary_10_1021_acs_analchem_3c02408 crossref_primary_10_1038_s41522_024_00597_3 crossref_primary_10_1038_s41579_024_01107_0 crossref_primary_10_3390_metabo13070855 crossref_primary_10_1016_j_chom_2023_12_013 crossref_primary_10_1093_ismejo_wrae002 crossref_primary_10_1016_j_cbpa_2024_102539 |
Cites_doi | 10.1093/nar/gkz310 10.1128/mSystems.00937-21 10.1038/nature24460 10.1093/bib/bbx085 10.1038/nchembio.1884 10.1186/1471-2105-11-119 10.1093/nar/gky1013 10.1093/bib/bbz104 10.1093/nar/gkz239 10.1101/119214 10.1039/C6NP00025H 10.1038/s41564-019-0591-6 10.1038/nmicrobiol.2016.88 10.1101/gr.1239303 10.1038/s41586-020-2396-4 10.1016/j.freeradbiomed.2015.04.004 10.1128/IAI.05395-11 10.1038/s41467-019-10927-1 10.1078/072320203322346029 10.1136/gut.28.10.1221 10.1038/msb.2011.75 10.1371/journal.ppat.1006129 10.1038/s41587-020-0548-6 10.1093/molbev/mst025 10.1038/s41587-018-0008-8 10.1038/s41589-019-0400-9 10.1136/bmjopen-2014-006772 10.1038/nbt.4229 10.1038/s41592-018-0176-y 10.1186/1471-2105-10-421 10.1038/s41591-022-02014-8 10.1371/journal.pone.0018910 10.1016/j.copbio.2011.10.008 10.1126/science.aad3369 10.1186/s13059-016-0997-x 10.1093/bioinformatics/btp033 10.1038/s41576-021-00363-7 10.1371/journal.pone.0009490 10.1038/s41586-019-1237-9 10.1371/journal.pcbi.1002358 10.1038/nbt.3988 10.1038/s41564-022-01109-9 10.1093/nar/gkz862 10.1038/nature23889 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer Nature America, Inc. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer Nature America, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U RC3 7X8 5PM |
DOI | 10.1038/s41587-023-01675-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Agriculture Biology |
EISSN | 1546-1696 |
EndPage | 1423 |
ExternalDocumentID | PMC10423304 36782070 10_1038_s41587_023_01675_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council (CSC) grantid: CSC201708320268 funderid: https://doi.org/10.13039/501100004543 – fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA) grantid: HR0011-15-C-0084; HR0112020030; HR0011-15-C-0084; HR0112020030 funderid: https://doi.org/10.13039/100000185 – fundername: Chan-Zuckerberg BioHub, Leducq Foundation – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research) grantid: 024.004.017; VI.C.202.022; 024.003.001 funderid: https://doi.org/10.13039/501100003246 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 948770; 715772; 101001678; 948770 funderid: https://doi.org/10.13039/100010663 – fundername: Foundation de Cock-Hadders (20:20-13) – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: DP1 DK113598; P01 HL147823; K08 DK110335; R35 GM142873; R01 AT011396 funderid: https://doi.org/10.13039/100000002 – fundername: Hartstichting (Dutch Heart Foundation) grantid: CVON 2018-27 funderid: https://doi.org/10.13039/501100002996 – fundername: NIGMS NIH HHS grantid: R35 GM142873 – fundername: NIDDK NIH HHS grantid: K08 DK110335 – fundername: NHLBI NIH HHS grantid: P01 HL147823 – fundername: NCCIH NIH HHS grantid: R01 AT011396 – fundername: NIDDK NIH HHS grantid: R01 DK101674 – fundername: NIDDK NIH HHS grantid: DP1 DK113598 |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 3V. 4.4 4R4 53G 5BI 5M7 5RE 5S5 70F 7X7 88A 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAEEF AAHBH AAIKC AAMNW AARCD AAYOK AAYZH AAZLF ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M0L M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NNMJJ NXXTH O9- ODYON P2P PKN PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XI7 XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7T7 7TK 7TM 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c475t-b64dd7fbb8a1a5082317efd5236553cd06284bfe6fd84a33bc2937ff02ee9ba73 |
IEDL.DBID | 7X7 |
ISSN | 1087-0156 1546-1696 |
IngestDate | Thu Aug 21 18:34:58 EDT 2025 Mon Jul 21 11:37:23 EDT 2025 Fri Jul 25 09:10:58 EDT 2025 Wed Feb 19 02:17:49 EST 2025 Thu Apr 24 23:10:02 EDT 2025 Tue Jul 01 04:10:05 EDT 2025 Fri Feb 21 02:39:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer Nature America, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-b64dd7fbb8a1a5082317efd5236553cd06284bfe6fd84a33bc2937ff02ee9ba73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author Contributions Statement M.A.F. and M.H.M. initially conceived the project, with modifications and extensions introduced on the advice of V.P.A., A.Z., J.F. and D.D. The gutSMASH software was developed and used to analyze genomic data by V.P.A., with input from M.H.M., D.D. and M.A.F. Analysis of metagenomic and metatranscriptomics data was performed by H.E.A., V.P.A. and L.C. Correlations with metabolomic data were performed by L.C. M.H.M., D.D. and M.A.F. coordinated and supervised the study as a whole, and A.Z. and J.F. coordinated and supervised analysis of cohort data. All authors contributed to data interpretation. V.P.A., M.A.F., D.D. and M.H.M. drafted the initial manuscript with input from the other authors. All authors read and contributed to the final manuscript. Contributed equally |
ORCID | 0000-0002-4574-0841 0000-0003-3079-8247 0000-0001-9609-9401 0000-0001-6210-6239 0000-0002-2191-2821 0000-0003-0660-3518 0000-0001-5578-1236 0000-0002-1862-6699 |
OpenAccessLink | https://www.nature.com/articles/s41587-023-01675-1.pdf |
PMID | 36782070 |
PQID | 2875654461 |
PQPubID | 47191 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10423304 proquest_miscellaneous_2776517839 proquest_journals_2875654461 pubmed_primary_36782070 crossref_citationtrail_10_1038_s41587_023_01675_1 crossref_primary_10_1038_s41587_023_01675_1 springer_journals_10_1038_s41587_023_01675_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Science and Business of Biotechnology |
PublicationTitle | Nature biotechnology |
PublicationTitleAbbrev | Nat Biotechnol |
PublicationTitleAlternate | Nat Biotechnol |
PublicationYear | 2023 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Kitamoto (CR8) 2020; 5 Blin (CR1) 2019; 47 Parks (CR32) 2018; 36 Medema, de Rond, Moore (CR6) 2021; 22 Mallick (CR24) 2019; 10 Eddy (CR35) 2009; 23 Vandeputte (CR26) 2017; 551 Karp (CR2) 2019; 20 Andriamihaja (CR22) 2015; 85 CR14 Medema, Takano, Breitling (CR41) 2013; 30 Medema, Fischbach (CR4) 2015; 11 Jones (CR16) 2011; 79 Liu (CR18) 2022; 7 Tigchelaar (CR20) 2015; 5 Pascal Andreu, Fischbach, Medema (CR31) 2020; 6 Sievers (CR37) 2011; 7 Tremblay, Zhang, Dar, Leang, Lovley (CR17) 2012; 4 Shannon (CR44) 2003; 13 Ondov (CR46) 2016; 17 Steinegger, Söding (CR42) 2017; 35 Lloyd-Price (CR10) 2017; 550 Waterhouse, Procter, Martin, Clamp, Barton (CR38) 2009; 25 Andreu (CR19) 2021; 6 Zhernakova (CR45) 2016; 352 Chen (CR48) 2022; 28 Navarro-Muñoz (CR7) 2020; 16 Maguire (CR12) 2020; 6 Faber (CR21) 2017; 13 Chen (CR34) 2011; 6 Tracy, Jones, Fast, Indurthi, Papoutsakis (CR11) 2012; 23 Funabashi (CR23) 2020; 582 Zou (CR9) 2019; 37 Camacho (CR39) 2009; 10 Caspi (CR28) 2020; 48 Lloyd-Price (CR47) 2019; 569 Letunic, Bork (CR33) 2019; 47 Richardson (CR29) 2019; 47 Abubucker (CR3) 2012; 8 Franzosa (CR30) 2018; 15 CR40 Douglas (CR25) 2020; 38 Hyatt (CR43) 2010; 11 Cummings, Pomare, Branch, Naylor, Macfarlane (CR15) 1987; 28 Ziemert, Alanjary, Weber (CR5) 2016; 33 Vieira-Silva (CR13) 2016; 1 Karp (CR27) 2021; 22 Price, Dehal, Arkin (CR36) 2010; 5 BD Ondov (1675_CR46) 2016; 17 A Zhernakova (1675_CR45) 2016; 352 M Andriamihaja (1675_CR22) 2015; 85 SA Jones (1675_CR16) 2011; 79 Y Liu (1675_CR18) 2022; 7 BP Tracy (1675_CR11) 2012; 23 P Shannon (1675_CR44) 2003; 13 GM Douglas (1675_CR25) 2020; 38 JC Navarro-Muñoz (1675_CR7) 2020; 16 EA Franzosa (1675_CR30) 2018; 15 S Abubucker (1675_CR3) 2012; 8 EF Tigchelaar (1675_CR20) 2015; 5 PD Karp (1675_CR27) 2021; 22 1675_CR14 D Vandeputte (1675_CR26) 2017; 551 V Pascal Andreu (1675_CR31) 2020; 6 M Funabashi (1675_CR23) 2020; 582 R Caspi (1675_CR28) 2020; 48 MH Medema (1675_CR6) 2021; 22 S Kitamoto (1675_CR8) 2020; 5 F Maguire (1675_CR12) 2020; 6 F Faber (1675_CR21) 2017; 13 MN Price (1675_CR36) 2010; 5 MH Medema (1675_CR4) 2015; 11 F Sievers (1675_CR37) 2011; 7 PD Karp (1675_CR2) 2019; 20 DH Parks (1675_CR32) 2018; 36 J Lloyd-Price (1675_CR47) 2019; 569 K Blin (1675_CR1) 2019; 47 J Lloyd-Price (1675_CR10) 2017; 550 VP Andreu (1675_CR19) 2021; 6 AM Waterhouse (1675_CR38) 2009; 25 S Vieira-Silva (1675_CR13) 2016; 1 I Letunic (1675_CR33) 2019; 47 JH Cummings (1675_CR15) 1987; 28 D Hyatt (1675_CR43) 2010; 11 N Ziemert (1675_CR5) 2016; 33 H Mallick (1675_CR24) 2019; 10 M Steinegger (1675_CR42) 2017; 35 C Chen (1675_CR34) 2011; 6 SR Eddy (1675_CR35) 2009; 23 L Chen (1675_CR48) 2022; 28 MH Medema (1675_CR41) 2013; 30 C Camacho (1675_CR39) 2009; 10 PL Tremblay (1675_CR17) 2012; 4 Y Zou (1675_CR9) 2019; 37 LJ Richardson (1675_CR29) 2019; 47 1675_CR40 |
References_xml | – volume: 5 start-page: 116 year: 2020 end-page: 125 ident: CR8 article-title: Dietary -serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut publication-title: Nat. Microbiol – volume: 38 start-page: 685 year: 2020 end-page: 688 ident: CR25 article-title: PICRUSt2 for prediction of metagenome functions publication-title: Nat. Biotechnol. – volume: 15 start-page: 962 year: 2018 end-page: 968 ident: CR30 article-title: Species-level functional profiling of metagenomes and metatranscriptomes publication-title: Nat. Methods – volume: 85 start-page: 219 year: 2015 end-page: 227 ident: CR22 article-title: The deleterious metabolic and genotoxic effects of the bacterial metabolite -cresol on colonic epithelial cells publication-title: Free Radic. Biol. Med. – volume: 20 start-page: 1085 year: 2019 end-page: 1093 ident: CR2 article-title: The BioCyc collection of microbial genomes and metabolic pathways publication-title: Brief. Bioinform. – ident: CR14 – volume: 23 start-page: 205 year: 2009 end-page: 211 ident: CR35 article-title: A new generation of homology search tools based on probabilistic inference publication-title: Genome Inform. – volume: 5 start-page: e9490 year: 2010 ident: CR36 article-title: FastTree 2—approximately maximum-likelihood trees for large alignments publication-title: PLoS ONE – volume: 30 start-page: 1218 year: 2013 end-page: 1223 ident: CR41 article-title: Detecting sequence homology at the gene cluster level with MultiGeneBlast publication-title: Mol. Biol. Evol. – volume: 550 start-page: 61 year: 2017 end-page: 66 ident: CR10 article-title: Strains, functions and dynamics in the expanded Human Microbiome Project publication-title: Nature – volume: 551 start-page: 507 year: 2017 end-page: 511 ident: CR26 article-title: Quantitative microbiome profiling links gut community variation to microbial load publication-title: Nature – volume: 7 start-page: 695 year: 2022 end-page: 706 ident: CR18 article-title: uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites publication-title: Nat. Microbiol – volume: 35 start-page: 1026 year: 2017 end-page: 1028 ident: CR42 article-title: MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets publication-title: Nat. Biotechnol. – volume: 47 start-page: D564 year: 2019 end-page: D572 ident: CR29 article-title: Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes publication-title: Nucleic Acids Res. – volume: 28 start-page: 1221 year: 1987 end-page: 1227 ident: CR15 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut – volume: 4 start-page: e00406 year: 2012 end-page: e00412 ident: CR17 article-title: The Rnf complex of is a proton-translocating ferredoxin:NAD oxidoreductase essential for autotrophic growth publication-title: mBio – ident: CR40 – volume: 25 start-page: 1189 year: 2009 end-page: 1191 ident: CR38 article-title: Jalview Version 2—a multiple sequence alignment editor and analysis workbench publication-title: Bioinformatics – volume: 10 start-page: 421 year: 2009 ident: CR39 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics – volume: 37 start-page: 179 year: 2019 end-page: 185 ident: CR9 article-title: 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses publication-title: Nat. Biotechnol. – volume: 582 start-page: 566 year: 2020 end-page: 570 ident: CR23 article-title: A metabolic pathway for bile acid dehydroxylation by the gut microbiome publication-title: Nature – volume: 48 start-page: D445 year: 2020 end-page: D453 ident: CR28 article-title: The MetaCyc database of metabolic pathways and enzymes—a 2019 update publication-title: Nucleic Acids Res. – volume: 11 start-page: 119 year: 2010 ident: CR43 article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification publication-title: BMC Bioinformatics – volume: 16 start-page: 60 year: 2020 end-page: 68 ident: CR7 article-title: A computational framework to explore large-scale biosynthetic diversity publication-title: Nat. Chem. Biol. – volume: 13 start-page: 2498 year: 2003 end-page: 2504 ident: CR44 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. – volume: 13 start-page: e1006129 year: 2017 ident: CR21 article-title: Respiration of microbiota-derived 1,2-propanediol drives expansion during colitis publication-title: PLoS Pathog. – volume: 22 start-page: 109 year: 2021 end-page: 126 ident: CR27 article-title: Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology publication-title: Brief. Bioform. – volume: 47 start-page: W256 year: 2019 end-page: W259 ident: CR33 article-title: Interactive Tree Of Life (iTOL) v4: recent updates and new developments publication-title: Nucleic Acids Res. – volume: 1 start-page: 16088 year: 2016 ident: CR13 article-title: Species–function relationships shape ecological properties of the human gut microbiome publication-title: Nat. Microbiol – volume: 352 start-page: 565 year: 2016 end-page: 569 ident: CR45 article-title: Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity publication-title: Science – volume: 569 start-page: 655 year: 2019 end-page: 662 ident: CR47 article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases publication-title: Nature – volume: 47 start-page: W81 year: 2019 end-page: W87 ident: CR1 article-title: antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline publication-title: Nucleic Acids Res. – volume: 7 start-page: 539 year: 2011 ident: CR37 article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega publication-title: Mol. Syst. Biol. – volume: 36 start-page: 996 year: 2018 end-page: 1004 ident: CR32 article-title: A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life publication-title: Nat. Biotechnol. – volume: 17 year: 2016 ident: CR46 article-title: Mash: fast genome and metagenome distance estimation using MinHash publication-title: Genome Biol. – volume: 33 start-page: 988 year: 2016 end-page: 1005 ident: CR5 article-title: The evolution of genome mining in microbes—a review publication-title: Nat. Prod. Rep. – volume: 22 start-page: 553 year: 2021 end-page: 571 ident: CR6 article-title: Mining genomes to illuminate the specialized chemistry of life publication-title: Nat. Rev. Genet. – volume: 10 year: 2019 ident: CR24 article-title: Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences publication-title: Nat. Commun. – volume: 5 start-page: e006772 year: 2015 ident: CR20 article-title: Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics publication-title: BMJ Open – volume: 6 start-page: e18910 year: 2011 ident: CR34 article-title: Representative proteomes: a stable, scalable and unbiased proteome set for sequence analysis and functional annotation publication-title: PLoS ONE – volume: 11 start-page: 639 year: 2015 end-page: 648 ident: CR4 article-title: Computational approaches to natural product discovery publication-title: Nat. Chem. Biol. – volume: 8 start-page: e1002358 year: 2012 ident: CR3 article-title: Metabolic reconstruction for metagenomic data and its application to the human microbiome publication-title: PLoS Comput. Biol. – volume: 23 start-page: 364 year: 2012 end-page: 381 ident: CR11 article-title: Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications publication-title: Curr. Opin. Biotechnol. – volume: 6 start-page: e0093721 year: 2021 ident: CR19 article-title: BiG-MAP: an automated pipeline to profile metabolic gene cluster abundance and expression in microbiomes publication-title: mSystems – volume: 28 start-page: 2333 year: 2022 end-page: 2343 ident: CR48 article-title: Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome publication-title: Nat. Med. – volume: 6 start-page: mgen000436 year: 2020 ident: CR12 article-title: Metagenome-assembled genome binning methods with short reads disproportionately fail for plasmids and genomic islands publication-title: Microb. Genom. – volume: 79 start-page: 4218 year: 2011 end-page: 4226 ident: CR16 article-title: Anaerobic respiration of in the mouse intestine publication-title: Infect. Immun. – volume: 6 start-page: e000373 year: 2020 ident: CR31 article-title: Computational genomic discovery of diverse gene clusters harbouring Fe-S flavoenzymes in anaerobic gut microbiota publication-title: Microb. Genom. – volume: 47 start-page: W81 year: 2019 ident: 1675_CR1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz310 – volume: 6 start-page: e0093721 year: 2021 ident: 1675_CR19 publication-title: mSystems doi: 10.1128/mSystems.00937-21 – volume: 551 start-page: 507 year: 2017 ident: 1675_CR26 publication-title: Nature doi: 10.1038/nature24460 – volume: 20 start-page: 1085 year: 2019 ident: 1675_CR2 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx085 – volume: 11 start-page: 639 year: 2015 ident: 1675_CR4 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1884 – volume: 11 start-page: 119 year: 2010 ident: 1675_CR43 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-119 – volume: 47 start-page: D564 year: 2019 ident: 1675_CR29 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1013 – volume: 22 start-page: 109 year: 2021 ident: 1675_CR27 publication-title: Brief. Bioform. doi: 10.1093/bib/bbz104 – volume: 47 start-page: W256 year: 2019 ident: 1675_CR33 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz239 – volume: 6 start-page: e000373 year: 2020 ident: 1675_CR31 publication-title: Microb. Genom. – ident: 1675_CR40 doi: 10.1101/119214 – volume: 33 start-page: 988 year: 2016 ident: 1675_CR5 publication-title: Nat. Prod. Rep. doi: 10.1039/C6NP00025H – volume: 5 start-page: 116 year: 2020 ident: 1675_CR8 publication-title: Nat. Microbiol doi: 10.1038/s41564-019-0591-6 – volume: 1 start-page: 16088 year: 2016 ident: 1675_CR13 publication-title: Nat. Microbiol doi: 10.1038/nmicrobiol.2016.88 – volume: 13 start-page: 2498 year: 2003 ident: 1675_CR44 publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 582 start-page: 566 year: 2020 ident: 1675_CR23 publication-title: Nature doi: 10.1038/s41586-020-2396-4 – volume: 85 start-page: 219 year: 2015 ident: 1675_CR22 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.04.004 – volume: 79 start-page: 4218 year: 2011 ident: 1675_CR16 publication-title: Infect. Immun. doi: 10.1128/IAI.05395-11 – volume: 4 start-page: e00406 year: 2012 ident: 1675_CR17 publication-title: mBio – volume: 10 year: 2019 ident: 1675_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10927-1 – ident: 1675_CR14 doi: 10.1078/072320203322346029 – volume: 28 start-page: 1221 year: 1987 ident: 1675_CR15 publication-title: Gut doi: 10.1136/gut.28.10.1221 – volume: 7 start-page: 539 year: 2011 ident: 1675_CR37 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.75 – volume: 13 start-page: e1006129 year: 2017 ident: 1675_CR21 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006129 – volume: 38 start-page: 685 year: 2020 ident: 1675_CR25 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0548-6 – volume: 30 start-page: 1218 year: 2013 ident: 1675_CR41 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst025 – volume: 37 start-page: 179 year: 2019 ident: 1675_CR9 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-018-0008-8 – volume: 16 start-page: 60 year: 2020 ident: 1675_CR7 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0400-9 – volume: 5 start-page: e006772 year: 2015 ident: 1675_CR20 publication-title: BMJ Open doi: 10.1136/bmjopen-2014-006772 – volume: 36 start-page: 996 year: 2018 ident: 1675_CR32 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4229 – volume: 15 start-page: 962 year: 2018 ident: 1675_CR30 publication-title: Nat. Methods doi: 10.1038/s41592-018-0176-y – volume: 10 start-page: 421 year: 2009 ident: 1675_CR39 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 28 start-page: 2333 year: 2022 ident: 1675_CR48 publication-title: Nat. Med. doi: 10.1038/s41591-022-02014-8 – volume: 6 start-page: e18910 year: 2011 ident: 1675_CR34 publication-title: PLoS ONE doi: 10.1371/journal.pone.0018910 – volume: 23 start-page: 364 year: 2012 ident: 1675_CR11 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.10.008 – volume: 23 start-page: 205 year: 2009 ident: 1675_CR35 publication-title: Genome Inform. – volume: 352 start-page: 565 year: 2016 ident: 1675_CR45 publication-title: Science doi: 10.1126/science.aad3369 – volume: 6 start-page: mgen000436 year: 2020 ident: 1675_CR12 publication-title: Microb. Genom. – volume: 17 year: 2016 ident: 1675_CR46 publication-title: Genome Biol. doi: 10.1186/s13059-016-0997-x – volume: 25 start-page: 1189 year: 2009 ident: 1675_CR38 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp033 – volume: 22 start-page: 553 year: 2021 ident: 1675_CR6 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-021-00363-7 – volume: 5 start-page: e9490 year: 2010 ident: 1675_CR36 publication-title: PLoS ONE doi: 10.1371/journal.pone.0009490 – volume: 569 start-page: 655 year: 2019 ident: 1675_CR47 publication-title: Nature doi: 10.1038/s41586-019-1237-9 – volume: 8 start-page: e1002358 year: 2012 ident: 1675_CR3 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002358 – volume: 35 start-page: 1026 year: 2017 ident: 1675_CR42 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3988 – volume: 7 start-page: 695 year: 2022 ident: 1675_CR18 publication-title: Nat. Microbiol doi: 10.1038/s41564-022-01109-9 – volume: 48 start-page: D445 year: 2020 ident: 1675_CR28 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz862 – volume: 550 start-page: 61 year: 2017 ident: 1675_CR10 publication-title: Nature doi: 10.1038/nature23889 |
SSID | ssj0006466 |
Score | 2.6169465 |
Snippet | The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1416 |
SubjectTerms | 631/114/2390 631/326/2565/2134 639/638/92/1643 692/698/2741/2135 Acid production Agriculture Algorithms Bacteria Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Fatty acids Feces - microbiology Gastrointestinal Microbiome - genetics Gene clusters Gene regulation Genes Genomes Gut microbiota Humans Intestinal microflora Life Sciences Markov chains Metabolic Networks and Pathways - genetics Metabolic pathways Metabolism Metabolites Metagenomics Microbiomes Microbiota Microorganisms Secondary metabolites Taxa |
Title | gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota |
URI | https://link.springer.com/article/10.1038/s41587-023-01675-1 https://www.ncbi.nlm.nih.gov/pubmed/36782070 https://www.proquest.com/docview/2875654461 https://www.proquest.com/docview/2776517839 https://pubmed.ncbi.nlm.nih.gov/PMC10423304 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJtB4QFC-AmMyEm8QLZmd2HtCLVqpkFohxlDfovgjUGlLtyUVGn89d46bUSb20laO--Ge4_ud7_z7AbzNrBJcSkvy7SIWXOMrjDJiaaytDPr00tJ-x3SWT07E53k2DxtuTSirXK-JfqG2S0N75PuI7BF7YPCSfji_iEk1irKrQULjLmwTdRmVdMl5H3Cht_W5yjRRVF6Z5eHQTMLVfoOOi1oPqJoIQXOcbjqmG2jzZtHkP5lT75DGj-BhQJJs2Jn-Mdxx9QDuddqSVwN48BfT4ADuT0MO_Ql8_7Fqj6fD4wk7v6TGtmFNJ0K_-O0sNnr6CXbmWpwfpwvDSLT4V3nVMDqKwhAwMi_sx_Bz2NmiI3Jqy6dwMj769nESB3WF2AiZtbHOhbWy0lqVaZlRwi2VrrIYmOZZxo2lw5VCVy6v0Jwl59ogMpBVlRw4d6hLyZ_BVr2s3QtgymEcaZw0wuHCm2t9qFzmeXSMlrh-RpCu_9rCBOpxUsA4LXwKnKuiM0eB5ii8OYo0gnf9e8LIb-29u7ZYEW7CprieMhG86S_j7UM5kbJ2yxX2kTLPUokwMYLnnYH7r-M5kQnKJAK1Yfq-A1Fzb16pFz89RXdK5UY8ERG8X8-S69_1_2G8vH0Yr2CH1O67WsJd2GovV-41YqJW7_mJj49q_GkPtofj0WiGz6Oj2ZevfwAt8Avc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIl4HBMsrUMBIcKJRk9iJsweEKmDZ0m4vbVFvIX4EVmqzpcmqWn4Uv5EZ51GWit56ixzn4cw7M54P4HVsUsGlNATfLnzBFR5hlOFLbUyh0abnhv53THaT8YH4chgfrsDvbi8MlVV2OtEpajPT9I98Az179D0weAnfn_z0CTWKsqsdhEbDFtt2cYYhW_Vu6yPS900UjT7tfxj7LaqAr4WMa18lwhhZKJXmYR5ToimUtjAYkCVxzLWhTYVCFTYpcBk550qjRZRFEUTWDlUuOd73GlwXnA9JotLR517zJ01uNAxSKueMk3aTTsDTjQoNJY1GVL2ETrofLhvCC97txSLNfzK1zgCO7sHd1nNlmw2r3YcVWw7gRoNluRjAnb86Gw7g5qTN2T-Ar9_n9d5kc2_MTk5psK5Y1YDeT39Zg4Ou3QU7tjXy49FUMwJJPssXFaOtLwwdVOaABBnehx1Pm8ZRdf4QDq7kuz-C1XJW2ifAUotxq7ZSC4uKPlFqmNrY9e3RSqK-9iDsPm2m21bnhLhxlLmUO0-zhhwZkiNz5MhCD97217Qrv3T2WkexrBX6KjtnUQ9e9adRXCkHk5d2Nsc5UiZxKNEt9eBxQ-D-cTyh5oUy8CBdIn0_gVqBL58ppz9cS_CQypt4IDxY77jk_L3-v4ynly_jJdwa7092sp2t3e1ncDsi7nV1jGuwWp_O7XP0x2r1wgkBg29XLXV_AIhFRbI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KkUUcEBQdgMBQYJTmDF47E97gGhihKllFRIpSg341kMkVqn1I6q8Gl8He-NlxIqeuvNmhmPPX673wbwMjZpJKQ01L498iOh8AqtDF9qYwqNMj039L9jsp-MD6OP03i6Br-7XBgKq-x4omPUZq7pH_kQNXvUPdB44cOiDYv4vDN6d_LTpw5S5Gnt2mk0KLJnl2dovlVvd3cQ1q_CcPThy_ux33YY8HUk49pXSWSMLJRKc57H5HTi0hYGjbMkjoU2lGAYqcImBR4pF0JplI6yKILQ2i2VS4H7XoPrUsScaExOe2MPJb3zk_IgpdDOOGkTdgKRDisUmjQaUiQTKuw-XxWKFzTdiwGb_3htnTAc3YHbrRbLthu0uwtrthzAjaav5XIAt_6qcjiAjUnrv78HX78v6oPJ9sGYnZzSYF0xSvVEGpj9sgYHXekLdmxrxM2jmWbUMPksX1aM0mAYKqvMNRVkuA87njVFpOr8PhxeyXd_AOvlvLSPgKUWbVhtpY4sMv1Eqa3Uxq6Gj1YSebcHvPu0mW7LnlP3jaPMud9FmjXgyBAcmQNHxj143d_TnvzS1ZsdxLKWAVTZObp68KKfRtIlf0xe2vkC10iZxFyiiurBwwbA_eNEQoUMZeBBugL6fgGVBV-dKWc_XHlwTqFOIog8eNNhyfl7_f8Yjy8_xnPYQHrLPu3u7z2BmyEhrwtp3IT1-nRhn6JqVqtnjgYYfLtqovsDoMtJ3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=gutSMASH+predicts+specialized+primary+metabolic+pathways+from+the+human+gut+microbiota&rft.jtitle=Nature+biotechnology&rft.au=Pascal+Andreu%2C+Vict%C3%B2ria&rft.au=Augustijn%2C+Hannah+E&rft.au=Chen%2C+Lianmin&rft.au=Zhernakova%2C+Alexandra&rft.date=2023-10-01&rft.eissn=1546-1696&rft.volume=41&rft.issue=10&rft.spage=1416&rft_id=info:doi/10.1038%2Fs41587-023-01675-1&rft_id=info%3Apmid%2F36782070&rft.externalDocID=36782070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |