Smart brain tumor diagnosis system utilizing deep convolutional neural networks

The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnos...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 28; pp. 44527 - 44553
Main Author Anagun, Yildiray
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis.
AbstractList The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis.
The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis.The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis.
The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis.
Author Anagun, Yildiray
Author_xml – sequence: 1
  givenname: Yildiray
  orcidid: 0000-0002-7743-0709
  surname: Anagun
  fullname: Anagun, Yildiray
  email: yanagun@ogu.edu.tr
  organization: Department of Computer Engineering, Eskisehir Osmangazi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37362644$$D View this record in MEDLINE/PubMed
BookMark eNp9UctOHDEQtCKi8PwBDmikXHKZpNvP2ROKUCCRkDgkOVter2cxzNiL7WFFvj5elpCEA6e27KpyVdc-2QkxOEKOET4igPqUEYHTFihrUXBK2_UbsodCsVYpijv1zDpolQDcJfs53wCgFJS_I7tMMUkl53vk6vtoUmnmyfjQlGmMqVl4swwx-9zkh1zc2EzFD_6XD8tm4dyqsTHcx6FexmCGJrgpPY6yjuk2H5K3vRmyO3qaB-Tn-ZcfZ1_by6uLb2efL1vLlSitUZT1MKNGwUJKiRZ6rpRVQtl5xyywOQpZQzJuBAXogUuOlCGVzMyw79gBOd3qrqb56BbWhVJt6FXyNc-Djsbr_1-Cv9bLeK8RkIOiqip8eFJI8W5yuejRZ-uGwQQXp6xpx4Aip8gq9P0L6E2cUk2_QXUMlZh1UFEn_1p69vJn2RVAtwCbYs7J9c8QBL1pVG8b1bVR_dioXldS94JkfTGb5ddYfnidyrbUXP8JS5f-2n6F9RsHpbUo
CitedBy_id crossref_primary_10_1016_j_heliyon_2025_e41835
crossref_primary_10_1016_j_procs_2024_03_259
crossref_primary_10_3389_fradi_2023_1336902
crossref_primary_10_3389_fmed_2024_1504545
crossref_primary_10_3390_cancers16020300
crossref_primary_10_3390_diagnostics14232710
crossref_primary_10_1007_s11042_023_17139_2
crossref_primary_10_3390_diagnostics15050624
crossref_primary_10_1016_j_scienta_2024_113089
crossref_primary_10_3390_diagnostics15050639
crossref_primary_10_1007_s10586_024_04940_3
crossref_primary_10_51583_IJLTEMAS_2024_130907
crossref_primary_10_1007_s11042_024_18790_z
crossref_primary_10_1109_ACCESS_2024_3456599
crossref_primary_10_1007_s13721_023_00428_z
crossref_primary_10_1155_2024_7634426
Cites_doi 10.1002/cpe.4962
10.3390/diagnostics13010103
10.1007/978-3-030-67187-7_30
10.1007/s12539-022-00502-6
10.1016/j.jocs.2018.12.003
10.1038/s41598-020-64588-y
10.1109/ICCKE.2018.8566571
10.3390/s21227519
10.3390/cancers14102363
10.1016/j.media.2018.07.010
10.1007/978-3-030-36708-4_44
10.1016/j.compag.2022.106684
10.1186/s43057-021-00053-4
10.1371/journal.pone.0140381
10.1109/CVPR.2017.243
10.3390/bioengineering10020147
10.1109/ICRAIE51050.2020.9358337
10.1109/ICIT48102.2019.00023
10.1007/978-3-030-67187-7_35
10.1109/TSMC.2020.3018757
10.1002/jmri.26209
10.7860/JCDR/2022/51377.15889
10.3390/app10061999
10.1007/3-540-44795-4_13
10.1002/jemt.23688
10.1007/s00521-022-07029-3
10.1186/s12967-022-03438-z
10.1016/j.eswa.2021.116278
10.3390/electronics11162514
10.1016/j.compbiomed.2022.105604
10.1016/j.compag.2020.105652
10.1038/s41598-019-56767-3
10.1016/j.media.2016.05.004
10.1109/JIOT.2020.2975779
10.1016/j.jcmg.2018.07.031
10.1002/9781119769231.ch6
10.1016/j.neucom.2022.01.014
10.1177/001316446002000104
10.1109/TNNLS.2020.2991083
10.1109/CVPR.2016.90
10.1201/9781003102380-4
10.1109/CVPR.2015.7298594
10.1109/CVPR.2018.00907
10.1109/CSNT51715.2021.9509704
10.1007/978-3-030-11723-8_17
10.1109/TNNLS.2020.2995800
10.1109/ACCESS.2021.3133529
10.1093/biomet/37.3-4.256
10.5121/ijdkp.2015.5201
10.1016/j.neucom.2021.03.035
10.1002/ima.22641
10.1109/ICICICT54557.2022.9917904
10.3390/app12094221
10.3390/healthcare9020153
10.1158/1078-0432.CCR-17-2236
10.1016/j.imavis.2021.104229
10.3390/en15218233
10.1002/9781119792611.ch12
10.1007/s00521-020-05671-3
10.12928/TELKOMNIKA.v18i3.14753
10.1016/B978-0-12-824557-6.00008-X
10.1007/s11042-017-5243-3
10.1007/s00500-018-3618-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Nov 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Nov 2023
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s11042-023-15422-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 44553
ExternalDocumentID PMC10140727
37362644
10_1007_s11042_023_15422_w
Genre Journal Article
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
NPM
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c475t-a723f092a70d6661c0f477c757cb83c03b15610034a5200f04641231263a91f83
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Thu Aug 21 18:37:04 EDT 2025
Thu Aug 07 15:15:07 EDT 2025
Fri Jul 25 20:55:46 EDT 2025
Thu Apr 03 06:55:45 EDT 2025
Tue Jul 01 05:08:16 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Thu Apr 10 07:12:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords CNN
Diagnosis
MRI
Brain Tumor
Deep Learning
Classification
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-a723f092a70d6661c0f477c757cb83c03b15610034a5200f04641231263a91f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7743-0709
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10140727
PMID 37362644
PQID 2883175980
PQPubID 54626
PageCount 27
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10140727
proquest_miscellaneous_2830214213
proquest_journals_2883175980
pubmed_primary_37362644
crossref_primary_10_1007_s11042_023_15422_w
crossref_citationtrail_10_1007_s11042_023_15422_w
springer_journals_10_1007_s11042_023_15422_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 15422_CR30
15422_CR9
M Badza (15422_CR10) 2020; 10
Y-D Zhang (15422_CR73) 2019; 78
15422_CR6
R Fukuma (15422_CR24) 2019; 9
15422_CR7
15422_CR34
15422_CR33
15422_CR31
15422_CR75
15422_CR70
15422_CR5
15422_CR3
P Zhang (15422_CR74) 2020; 176
N Arunkumar (15422_CR8) 2019; 23
A Darbari (15422_CR21) 2021; 29
15422_CR26
15422_CR25
15422_CR69
D Liu (15422_CR45) 2019
AM Alhassan (15422_CR4) 2021; 33
E Frank (15422_CR23) 2001
15422_CR28
15422_CR41
15422_CR44
15422_CR43
M Abuhamad (15422_CR2) 2020; 7
M Sajjad (15422_CR61) 2019; 30
RF Mansour (15422_CR47) 2021; 112
KCL Wong (15422_CR71) 2018; 49
M-L Huang (15422_CR32) 2022; 146
Q Tong (15422_CR68) 2022; 481
J Cohen (15422_CR18) 1960; 20
F Díaz-Pernas (15422_CR22) 2021; 9
15422_CR38
T Sadad (15422_CR60) 2021; 84
15422_CR37
CE Brown (15422_CR12) 2022; 20
15422_CR39
15422_CR52
HA Abdelali (15422_CR1) 2021; 9
S Mekruksavanich (15422_CR50) 2021; 21
15422_CR56
15422_CR11
C Cabrera (15422_CR13) 2022; 34
P Lambin (15422_CR42) 2017; 14
15422_CR55
15422_CR54
15422_CR53
M Havaei (15422_CR27) 2017; 35
A Stadlbauer (15422_CR65) 2022; 14
WG Cochran (15422_CR17) 1950; 37
15422_CR48
Y Yu (15422_CR72) 2022; 52
15422_CR63
15422_CR62
15422_CR67
S Liu (15422_CR46) 2020; 10
15422_CR66
15422_CR20
15422_CR64
BV Kumar (15422_CR40) 2019; 8
C Cruzulloa (15422_CR19) 2022; 193
Z Ji (15422_CR35) 2021; 32
H Heidari (15422_CR29) 2022; 191
K Muhammad (15422_CR51) 2021; 32
P Maurovich-Horvat (15422_CR49) 2019; 12
15422_CR16
15422_CR15
15422_CR59
15422_CR14
15422_CR58
15422_CR57
S Jia (15422_CR36) 2021; 448
References_xml – volume: 8
  start-page: 244
  year: 2019
  ident: 15422_CR40
  publication-title: Int J Recent Technol Eng
– ident: 15422_CR9
  doi: 10.1002/cpe.4962
– ident: 15422_CR62
  doi: 10.3390/diagnostics13010103
– ident: 15422_CR20
  doi: 10.1007/978-3-030-67187-7_30
– ident: 15422_CR25
  doi: 10.1007/s12539-022-00502-6
– volume: 30
  start-page: 174
  year: 2019
  ident: 15422_CR61
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.12.003
– volume: 10
  start-page: 7733
  year: 2020
  ident: 15422_CR46
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-64588-y
– ident: 15422_CR57
  doi: 10.1109/ICCKE.2018.8566571
– volume: 21
  start-page: 7519
  year: 2021
  ident: 15422_CR50
  publication-title: Sensors
  doi: 10.3390/s21227519
– volume: 14
  start-page: 2363
  year: 2022
  ident: 15422_CR65
  publication-title: Cancers
  doi: 10.3390/cancers14102363
– volume: 49
  start-page: 105
  year: 2018
  ident: 15422_CR71
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.07.010
– start-page: 535
  volume-title: Neural Information Processing
  year: 2019
  ident: 15422_CR45
  doi: 10.1007/978-3-030-36708-4_44
– volume: 193
  start-page: 106684
  year: 2022
  ident: 15422_CR19
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.106684
– volume: 29
  start-page: 13
  year: 2021
  ident: 15422_CR21
  publication-title: Cardiothorac Surg
  doi: 10.1186/s43057-021-00053-4
– ident: 15422_CR15
  doi: 10.1371/journal.pone.0140381
– ident: 15422_CR33
  doi: 10.1109/CVPR.2017.243
– ident: 15422_CR69
  doi: 10.3390/bioengineering10020147
– ident: 15422_CR52
  doi: 10.1109/ICRAIE51050.2020.9358337
– ident: 15422_CR38
  doi: 10.1109/ICIT48102.2019.00023
– ident: 15422_CR41
  doi: 10.1007/978-3-030-67187-7_35
– volume: 52
  start-page: 1167
  year: 2022
  ident: 15422_CR72
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2020.3018757
– ident: 15422_CR37
  doi: 10.1002/jmri.26209
– ident: 15422_CR63
– ident: 15422_CR48
  doi: 10.7860/JCDR/2022/51377.15889
– volume: 10
  start-page: 1999
  year: 2020
  ident: 15422_CR10
  publication-title: Appl Sci
  doi: 10.3390/app10061999
– start-page: 145
  volume-title: Machine Learning: ECML 2001
  year: 2001
  ident: 15422_CR23
  doi: 10.1007/3-540-44795-4_13
– volume: 84
  start-page: 1296
  year: 2021
  ident: 15422_CR60
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.23688
– volume: 34
  start-page: 11035
  year: 2022
  ident: 15422_CR13
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07029-3
– volume: 20
  start-page: 236
  year: 2022
  ident: 15422_CR12
  publication-title: J Transl Med
  doi: 10.1186/s12967-022-03438-z
– volume: 191
  year: 2022
  ident: 15422_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116278
– ident: 15422_CR3
  doi: 10.3390/electronics11162514
– volume: 146
  year: 2022
  ident: 15422_CR32
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105604
– volume: 176
  year: 2020
  ident: 15422_CR74
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2020.105652
– volume: 9
  start-page: 20311
  year: 2019
  ident: 15422_CR24
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56767-3
– volume: 35
  start-page: 18
  year: 2017
  ident: 15422_CR27
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.05.004
– volume: 7
  start-page: 5008
  year: 2020
  ident: 15422_CR2
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2975779
– volume: 12
  start-page: 1377
  year: 2019
  ident: 15422_CR49
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2018.07.031
– ident: 15422_CR56
  doi: 10.1002/9781119769231.ch6
– volume: 481
  start-page: 333
  year: 2022
  ident: 15422_CR68
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.014
– volume: 20
  start-page: 37
  year: 1960
  ident: 15422_CR18
  publication-title: Educ Psychol Measur
  doi: 10.1177/001316446002000104
– ident: 15422_CR67
– ident: 15422_CR6
– volume: 32
  start-page: 1765
  year: 2021
  ident: 15422_CR35
  publication-title: IEEE Trans Neural Netw Learning Syst
  doi: 10.1109/TNNLS.2020.2991083
– ident: 15422_CR64
– ident: 15422_CR39
– ident: 15422_CR28
  doi: 10.1109/CVPR.2016.90
– ident: 15422_CR16
– ident: 15422_CR53
  doi: 10.1201/9781003102380-4
– ident: 15422_CR66
  doi: 10.1109/CVPR.2015.7298594
– ident: 15422_CR75
  doi: 10.1109/CVPR.2018.00907
– ident: 15422_CR26
– ident: 15422_CR5
  doi: 10.1109/CSNT51715.2021.9509704
– ident: 15422_CR11
  doi: 10.1007/978-3-030-11723-8_17
– ident: 15422_CR31
– volume: 32
  start-page: 507
  year: 2021
  ident: 15422_CR51
  publication-title: IEEE Trans Neural Netw Learning Syst
  doi: 10.1109/TNNLS.2020.2995800
– volume: 9
  start-page: 164282
  year: 2021
  ident: 15422_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3133529
– volume: 37
  start-page: 256
  year: 1950
  ident: 15422_CR17
  publication-title: Biometrika
  doi: 10.1093/biomet/37.3-4.256
– ident: 15422_CR30
  doi: 10.5121/ijdkp.2015.5201
– volume: 448
  start-page: 179
  year: 2021
  ident: 15422_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.035
– ident: 15422_CR7
  doi: 10.1002/ima.22641
– ident: 15422_CR59
  doi: 10.1109/ICICICT54557.2022.9917904
– ident: 15422_CR70
  doi: 10.3390/app12094221
– volume: 9
  start-page: 153
  year: 2021
  ident: 15422_CR22
  publication-title: Healthcare
  doi: 10.3390/healthcare9020153
– ident: 15422_CR14
  doi: 10.1158/1078-0432.CCR-17-2236
– ident: 15422_CR34
– volume: 14
  start-page: 749
  year: 2017
  ident: 15422_CR42
  publication-title: Clin Oncol
– volume: 112
  year: 2021
  ident: 15422_CR47
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2021.104229
– ident: 15422_CR43
  doi: 10.3390/en15218233
– ident: 15422_CR55
  doi: 10.1002/9781119792611.ch12
– volume: 33
  start-page: 9075
  year: 2021
  ident: 15422_CR4
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05671-3
– ident: 15422_CR58
  doi: 10.12928/TELKOMNIKA.v18i3.14753
– ident: 15422_CR54
  doi: 10.1016/B978-0-12-824557-6.00008-X
– ident: 15422_CR44
– volume: 78
  start-page: 3613
  year: 2019
  ident: 15422_CR73
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5243-3
– volume: 23
  start-page: 9083
  year: 2019
  ident: 15422_CR8
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3618-7
SSID ssj0016524
Score 2.5169525
Snippet The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging...
The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44527
SubjectTerms Artificial neural networks
Brain
Brain cancer
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Diagnosis
Machine learning
Magnetic resonance imaging
Medical imaging
Multimedia Information Systems
Neural networks
Optimization
Performance measurement
Special Purpose and Application-Based Systems
Track 2: Medical Applications of Multimedia
Tumors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcGu4zDYIyx8jFl0m5bpaRJm_SI0BCaxHbYnsStStNUPAn6EO89IfHXY6dp394Yk3bqIW7T1nZt1_bPAJ9sU_vWtR71W_lUZS5Ly0KVqealLTjaPxdgFy--F-cT9e0yv4xNYfOh2n1ISYYv9arZTVArCdqYFM0-hlD3G_Ayx9idCrkm2cmYOyjyOMrW8BTtoYitMn-_xro5euJjPi2V_CNfGszQ2Q68jv4jO-kZ_gZe-G4XtofZDCyq6i5s_QY0-BZ-_LxBEWE1zYNgi-XN7I41fY3ddM56MGeGEng9fUBy1nh_y6gcPYol7kewl-EQisbnezA5-_rr9DyNoxRSp3S-SK3OZMvLzGreYMAiHG-V1k7n2tVGOi5rQY4Ul8oSDlNLCU-0aSIrpC1Fa-Q72OxmnX8PTAnTmNrYNreZssYb63Tp0cvwtmwbYRMQwxutXMQZp3EX19UKIZm4UCEXqsCF6j6Bz-M5tz3Kxj-pjwZGVVHj5hVNTUZXqDQ8gY_jMuoKJUBs52dLopEBYk7IBPZ7vo7bSU3APEolYNY4PhIQDvf6Sje9CnjcNO6Yox-YwJdBOFb39fxjHPwf-SG8yoLg0u-fI9hc3C39MTpEi_pDkP9H2R4CLQ
  priority: 102
  providerName: Springer Nature
Title Smart brain tumor diagnosis system utilizing deep convolutional neural networks
URI https://link.springer.com/article/10.1007/s11042-023-15422-w
https://www.ncbi.nlm.nih.gov/pubmed/37362644
https://www.proquest.com/docview/2883175980
https://www.proquest.com/docview/2830214213
https://pubmed.ncbi.nlm.nih.gov/PMC10140727
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUe-BhfGaMyEm8QYSdO7TyhFrWbQBQEVBpPkeM4otKWdmurSfz13CVOSpnYUx7syHHuznf2nX8_gNemyF1pS4f2LV0oIxuF6VCmoeKpGXL0f7aGXfw8G57O5cez5MwfuK19WWW7JtYLdbG0dEb-jlhx0dWlmr9fXYbEGkXZVU-hcQB9XIK17kF_PJl9_dblEYaJp7XVPETfKPy1mebynKCrKeizQgwjcEt2ve-absSbN8sm_8md1i5p-hDu-1iSjRrhP4I7rjqEBy1PA_Nmewj3_gIdfAxfvl-gurCcuCHYZnuxvGJFU2-3WLMG2JmhNp4vfmN3Vji3YlSa7lUUxyMIzPpRF5Cvn8B8Ovnx4TT0tAqhlSrZhEZFccnTyChe4OZFWF5KpaxKlM11bHmcCwqqeCwNYTKVlPxE_yaiYWxSUer4KfSqZeWeA5NCFzrXpkxMJI122liVOow4nEnLQpgARPtHM-sxx4n64jzboSWTFDKUQlZLIbsO4E33zqpB3Li193ErqMxb3zrb6UoAr7pmtBtKhpjKLbfUJ67h5kQcwLNGrt1wsSKQHikD0HsS7zoQJvd-S7X4VWNzE_Uxx5gwgLetcuy-6__TOLp9Gi_gblQrKh39HENvc7V1LzEY2uQDONDTkwH0R9PxeEbPk5-fJgNvB9g6j0Z_AMLPCy8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOPMqjgQJGghNE2LGTOAeEELBs6YMDrdRb6jiOulKbXbq7WsGP4jcy4zyWpaK3nnKwEyeZGc8kM_N9AC9NWbjKVg7tW7lQRTYKs0RlYcozk3D0f9bDLu7tJ8ND9fUoPlqD310vDJVVdnui36jLsaV_5G-JFRddXab5-8mPkFijKLvaUWg0arHjfi7wk236bvsTyvdVFA0-H3wchi2rQGhVGs9Ck0ay4llkUl5i7C4sr1Sa2jRObaGl5bIQFFNwqQxBElWU-8PtXUSJNJmotMTrXoPrSqInp870wZc-a5HELYmu5iF6YtE26TSteoIaYdBDhhi04AfgYtURXohuLxZp_pOp9Q5wcBdut5Er-9Co2j1Yc_UG3OlYIVi7SWzArb8gDu_Dt-9nqJysICYKNpufjc9Z2VT3jaasgZFmqPuno184nZXOTRgVwrcGgesR4KY_-HL16QM4vJLX_RDW63HtNoEpoUtdaFPFJlJGO21smjmMb5zJqlKYAET3RnPbIpwT0cZpvsRmJinkKIXcSyFfBPC6P2fS4HtcOnurE1Te2vo0X2pmAC_6YbRSSr2Y2o3nNEd6cDshA3jUyLVfTqYECaRUAHpF4v0EQgBfHalHJx4JnIiWOUagAbzplGN5X_9_jMeXP8ZzuDE82NvNd7f3d57AzcgrLf102oL12fncPcUwbFY887rP4Piqje0Pj7M99g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgwKO8AgWMBCeIaifO2jkgBLSrlsJSAZV6Sx3HESu12aW7qxX8NH4dM4mTZanoracc7MRJZsYz9oy_D-C5KXJX2tKhfUsXyshGYdqXaah4avoc_Z-tYRc_Dfu7h_LDUXK0Br_bszBUVtnOifVEXYwt7ZFvESsuurpU863Sl0UcbA_eTH6ExCBFmdaWTqNRkX33c4HLt-nrvW2U9YsoGux8e78beoaB0EqVzEKjorjkaWQULzCOF5aXUimrEmVzHVse54LiCx5LQ_BEJeUBcaoXUT82qSh1jM-9AuuKVkU9WH-3Mzz40uUw-omn1NU8RL8s_JGd5uCeoGMx6C9DDGFwObhYdYvnYt3zJZv_5G1rdzi4BTd8HMveNop3G9ZctQE3W44I5qeMDbj-F-DhHfj89RRVleXES8Fm89PxGSuaWr_RlDWg0gwt4WT0C7uzwrkJo7J4bx44HsFv1pe6eH16Fw4v5Yffg141rtwDYFLoQufalImJpNFOG6tSh9GOM2lZCBOAaP9oZj3eOdFunGRLpGaSQoZSyGopZIsAXnb3TBq0jwt7b7aCyrzlT7OlngbwrGtGm6VEjKnceE594hrqTsQB3G_k2g0XKwIIkjIAvSLxrgPhga-2VKPvNS440S5zjEcDeNUqx_K9_v8ZDy_-jKdwFQ0t-7g33H8E16JaZ2kHahN6s7O5e4wx2Sx_4pWfwfFl29sfCsRDiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+brain+tumor+diagnosis+system+utilizing+deep+convolutional+neural+networks&rft.jtitle=Multimedia+tools+and+applications&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=28&rft.spage=44527&rft.epage=44553&rft_id=info:doi/10.1007%2Fs11042-023-15422-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon