Smart brain tumor diagnosis system utilizing deep convolutional neural networks
The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnos...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 28; pp. 44527 - 44553 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis. |
---|---|
AbstractList | The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis. The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis.The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis. The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging (MRI), are the first preferred method for diagnosis. However, these tests have some limitations which can cause a delay in detection and diagnosis. The use of computer-aided intelligent systems can assist physicians in diagnosis. In this study, we established a Convolutional Neural Network (CNN)-based brain tumor diagnosis system using EfficientNetv2s architecture, which was improved with the Ranger optimization and extensive pre-processing. We also compared the proposed model with state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 in discriminating brain tumors based on their spatial features. We achieved the best micro-average results with 99.85% test accuracy, 99.89% Area under the Curve (AUC), 98.16% precision, 98.17% recall, and 98.21% f1-score. Furthermore, the experimental results of the improved model were compared to various CNN-based architectures using key performance metrics and were shown to have a strong impact on tumor categorization. The proposed system has been experimentally evaluated with different optimizers and compared with recent CNN architectures, on both augmented and original data. The results demonstrated a convincing performance in tumor detection and diagnosis. |
Author | Anagun, Yildiray |
Author_xml | – sequence: 1 givenname: Yildiray orcidid: 0000-0002-7743-0709 surname: Anagun fullname: Anagun, Yildiray email: yanagun@ogu.edu.tr organization: Department of Computer Engineering, Eskisehir Osmangazi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37362644$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctOHDEQtCKi8PwBDmikXHKZpNvP2ROKUCCRkDgkOVter2cxzNiL7WFFvj5elpCEA6e27KpyVdc-2QkxOEKOET4igPqUEYHTFihrUXBK2_UbsodCsVYpijv1zDpolQDcJfs53wCgFJS_I7tMMUkl53vk6vtoUmnmyfjQlGmMqVl4swwx-9zkh1zc2EzFD_6XD8tm4dyqsTHcx6FexmCGJrgpPY6yjuk2H5K3vRmyO3qaB-Tn-ZcfZ1_by6uLb2efL1vLlSitUZT1MKNGwUJKiRZ6rpRVQtl5xyywOQpZQzJuBAXogUuOlCGVzMyw79gBOd3qrqb56BbWhVJt6FXyNc-Djsbr_1-Cv9bLeK8RkIOiqip8eFJI8W5yuejRZ-uGwQQXp6xpx4Aip8gq9P0L6E2cUk2_QXUMlZh1UFEn_1p69vJn2RVAtwCbYs7J9c8QBL1pVG8b1bVR_dioXldS94JkfTGb5ddYfnidyrbUXP8JS5f-2n6F9RsHpbUo |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2025_e41835 crossref_primary_10_1016_j_procs_2024_03_259 crossref_primary_10_3389_fradi_2023_1336902 crossref_primary_10_3389_fmed_2024_1504545 crossref_primary_10_3390_cancers16020300 crossref_primary_10_3390_diagnostics14232710 crossref_primary_10_1007_s11042_023_17139_2 crossref_primary_10_3390_diagnostics15050624 crossref_primary_10_1016_j_scienta_2024_113089 crossref_primary_10_3390_diagnostics15050639 crossref_primary_10_1007_s10586_024_04940_3 crossref_primary_10_51583_IJLTEMAS_2024_130907 crossref_primary_10_1007_s11042_024_18790_z crossref_primary_10_1109_ACCESS_2024_3456599 crossref_primary_10_1007_s13721_023_00428_z crossref_primary_10_1155_2024_7634426 |
Cites_doi | 10.1002/cpe.4962 10.3390/diagnostics13010103 10.1007/978-3-030-67187-7_30 10.1007/s12539-022-00502-6 10.1016/j.jocs.2018.12.003 10.1038/s41598-020-64588-y 10.1109/ICCKE.2018.8566571 10.3390/s21227519 10.3390/cancers14102363 10.1016/j.media.2018.07.010 10.1007/978-3-030-36708-4_44 10.1016/j.compag.2022.106684 10.1186/s43057-021-00053-4 10.1371/journal.pone.0140381 10.1109/CVPR.2017.243 10.3390/bioengineering10020147 10.1109/ICRAIE51050.2020.9358337 10.1109/ICIT48102.2019.00023 10.1007/978-3-030-67187-7_35 10.1109/TSMC.2020.3018757 10.1002/jmri.26209 10.7860/JCDR/2022/51377.15889 10.3390/app10061999 10.1007/3-540-44795-4_13 10.1002/jemt.23688 10.1007/s00521-022-07029-3 10.1186/s12967-022-03438-z 10.1016/j.eswa.2021.116278 10.3390/electronics11162514 10.1016/j.compbiomed.2022.105604 10.1016/j.compag.2020.105652 10.1038/s41598-019-56767-3 10.1016/j.media.2016.05.004 10.1109/JIOT.2020.2975779 10.1016/j.jcmg.2018.07.031 10.1002/9781119769231.ch6 10.1016/j.neucom.2022.01.014 10.1177/001316446002000104 10.1109/TNNLS.2020.2991083 10.1109/CVPR.2016.90 10.1201/9781003102380-4 10.1109/CVPR.2015.7298594 10.1109/CVPR.2018.00907 10.1109/CSNT51715.2021.9509704 10.1007/978-3-030-11723-8_17 10.1109/TNNLS.2020.2995800 10.1109/ACCESS.2021.3133529 10.1093/biomet/37.3-4.256 10.5121/ijdkp.2015.5201 10.1016/j.neucom.2021.03.035 10.1002/ima.22641 10.1109/ICICICT54557.2022.9917904 10.3390/app12094221 10.3390/healthcare9020153 10.1158/1078-0432.CCR-17-2236 10.1016/j.imavis.2021.104229 10.3390/en15218233 10.1002/9781119792611.ch12 10.1007/s00521-020-05671-3 10.12928/TELKOMNIKA.v18i3.14753 10.1016/B978-0-12-824557-6.00008-X 10.1007/s11042-017-5243-3 10.1007/s00500-018-3618-7 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Nov 2023 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Nov 2023 |
DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s11042-023-15422-w |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 44553 |
ExternalDocumentID | PMC10140727 37362644 10_1007_s11042_023_15422_w |
Genre | Journal Article |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM NPM 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D M0N MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c475t-a723f092a70d6661c0f477c757cb83c03b15610034a5200f04641231263a91f83 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Thu Aug 21 18:37:04 EDT 2025 Thu Aug 07 15:15:07 EDT 2025 Fri Jul 25 20:55:46 EDT 2025 Thu Apr 03 06:55:45 EDT 2025 Tue Jul 01 05:08:16 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Thu Apr 10 07:12:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | CNN Diagnosis MRI Brain Tumor Deep Learning Classification |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-a723f092a70d6661c0f477c757cb83c03b15610034a5200f04641231263a91f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7743-0709 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10140727 |
PMID | 37362644 |
PQID | 2883175980 |
PQPubID | 54626 |
PageCount | 27 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10140727 proquest_miscellaneous_2830214213 proquest_journals_2883175980 pubmed_primary_37362644 crossref_primary_10_1007_s11042_023_15422_w crossref_citationtrail_10_1007_s11042_023_15422_w springer_journals_10_1007_s11042_023_15422_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationTitleAlternate | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 15422_CR30 15422_CR9 M Badza (15422_CR10) 2020; 10 Y-D Zhang (15422_CR73) 2019; 78 15422_CR6 R Fukuma (15422_CR24) 2019; 9 15422_CR7 15422_CR34 15422_CR33 15422_CR31 15422_CR75 15422_CR70 15422_CR5 15422_CR3 P Zhang (15422_CR74) 2020; 176 N Arunkumar (15422_CR8) 2019; 23 A Darbari (15422_CR21) 2021; 29 15422_CR26 15422_CR25 15422_CR69 D Liu (15422_CR45) 2019 AM Alhassan (15422_CR4) 2021; 33 E Frank (15422_CR23) 2001 15422_CR28 15422_CR41 15422_CR44 15422_CR43 M Abuhamad (15422_CR2) 2020; 7 M Sajjad (15422_CR61) 2019; 30 RF Mansour (15422_CR47) 2021; 112 KCL Wong (15422_CR71) 2018; 49 M-L Huang (15422_CR32) 2022; 146 Q Tong (15422_CR68) 2022; 481 J Cohen (15422_CR18) 1960; 20 F Díaz-Pernas (15422_CR22) 2021; 9 15422_CR38 T Sadad (15422_CR60) 2021; 84 15422_CR37 CE Brown (15422_CR12) 2022; 20 15422_CR39 15422_CR52 HA Abdelali (15422_CR1) 2021; 9 S Mekruksavanich (15422_CR50) 2021; 21 15422_CR56 15422_CR11 C Cabrera (15422_CR13) 2022; 34 P Lambin (15422_CR42) 2017; 14 15422_CR55 15422_CR54 15422_CR53 M Havaei (15422_CR27) 2017; 35 A Stadlbauer (15422_CR65) 2022; 14 WG Cochran (15422_CR17) 1950; 37 15422_CR48 Y Yu (15422_CR72) 2022; 52 15422_CR63 15422_CR62 15422_CR67 S Liu (15422_CR46) 2020; 10 15422_CR66 15422_CR20 15422_CR64 BV Kumar (15422_CR40) 2019; 8 C Cruzulloa (15422_CR19) 2022; 193 Z Ji (15422_CR35) 2021; 32 H Heidari (15422_CR29) 2022; 191 K Muhammad (15422_CR51) 2021; 32 P Maurovich-Horvat (15422_CR49) 2019; 12 15422_CR16 15422_CR15 15422_CR59 15422_CR14 15422_CR58 15422_CR57 S Jia (15422_CR36) 2021; 448 |
References_xml | – volume: 8 start-page: 244 year: 2019 ident: 15422_CR40 publication-title: Int J Recent Technol Eng – ident: 15422_CR9 doi: 10.1002/cpe.4962 – ident: 15422_CR62 doi: 10.3390/diagnostics13010103 – ident: 15422_CR20 doi: 10.1007/978-3-030-67187-7_30 – ident: 15422_CR25 doi: 10.1007/s12539-022-00502-6 – volume: 30 start-page: 174 year: 2019 ident: 15422_CR61 publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.12.003 – volume: 10 start-page: 7733 year: 2020 ident: 15422_CR46 publication-title: Sci Rep doi: 10.1038/s41598-020-64588-y – ident: 15422_CR57 doi: 10.1109/ICCKE.2018.8566571 – volume: 21 start-page: 7519 year: 2021 ident: 15422_CR50 publication-title: Sensors doi: 10.3390/s21227519 – volume: 14 start-page: 2363 year: 2022 ident: 15422_CR65 publication-title: Cancers doi: 10.3390/cancers14102363 – volume: 49 start-page: 105 year: 2018 ident: 15422_CR71 publication-title: Med Image Anal doi: 10.1016/j.media.2018.07.010 – start-page: 535 volume-title: Neural Information Processing year: 2019 ident: 15422_CR45 doi: 10.1007/978-3-030-36708-4_44 – volume: 193 start-page: 106684 year: 2022 ident: 15422_CR19 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.106684 – volume: 29 start-page: 13 year: 2021 ident: 15422_CR21 publication-title: Cardiothorac Surg doi: 10.1186/s43057-021-00053-4 – ident: 15422_CR15 doi: 10.1371/journal.pone.0140381 – ident: 15422_CR33 doi: 10.1109/CVPR.2017.243 – ident: 15422_CR69 doi: 10.3390/bioengineering10020147 – ident: 15422_CR52 doi: 10.1109/ICRAIE51050.2020.9358337 – ident: 15422_CR38 doi: 10.1109/ICIT48102.2019.00023 – ident: 15422_CR41 doi: 10.1007/978-3-030-67187-7_35 – volume: 52 start-page: 1167 year: 2022 ident: 15422_CR72 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2020.3018757 – ident: 15422_CR37 doi: 10.1002/jmri.26209 – ident: 15422_CR63 – ident: 15422_CR48 doi: 10.7860/JCDR/2022/51377.15889 – volume: 10 start-page: 1999 year: 2020 ident: 15422_CR10 publication-title: Appl Sci doi: 10.3390/app10061999 – start-page: 145 volume-title: Machine Learning: ECML 2001 year: 2001 ident: 15422_CR23 doi: 10.1007/3-540-44795-4_13 – volume: 84 start-page: 1296 year: 2021 ident: 15422_CR60 publication-title: Microsc Res Tech doi: 10.1002/jemt.23688 – volume: 34 start-page: 11035 year: 2022 ident: 15422_CR13 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07029-3 – volume: 20 start-page: 236 year: 2022 ident: 15422_CR12 publication-title: J Transl Med doi: 10.1186/s12967-022-03438-z – volume: 191 year: 2022 ident: 15422_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116278 – ident: 15422_CR3 doi: 10.3390/electronics11162514 – volume: 146 year: 2022 ident: 15422_CR32 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105604 – volume: 176 year: 2020 ident: 15422_CR74 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2020.105652 – volume: 9 start-page: 20311 year: 2019 ident: 15422_CR24 publication-title: Sci Rep doi: 10.1038/s41598-019-56767-3 – volume: 35 start-page: 18 year: 2017 ident: 15422_CR27 publication-title: Med Image Anal doi: 10.1016/j.media.2016.05.004 – volume: 7 start-page: 5008 year: 2020 ident: 15422_CR2 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2975779 – volume: 12 start-page: 1377 year: 2019 ident: 15422_CR49 publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2018.07.031 – ident: 15422_CR56 doi: 10.1002/9781119769231.ch6 – volume: 481 start-page: 333 year: 2022 ident: 15422_CR68 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.014 – volume: 20 start-page: 37 year: 1960 ident: 15422_CR18 publication-title: Educ Psychol Measur doi: 10.1177/001316446002000104 – ident: 15422_CR67 – ident: 15422_CR6 – volume: 32 start-page: 1765 year: 2021 ident: 15422_CR35 publication-title: IEEE Trans Neural Netw Learning Syst doi: 10.1109/TNNLS.2020.2991083 – ident: 15422_CR64 – ident: 15422_CR39 – ident: 15422_CR28 doi: 10.1109/CVPR.2016.90 – ident: 15422_CR16 – ident: 15422_CR53 doi: 10.1201/9781003102380-4 – ident: 15422_CR66 doi: 10.1109/CVPR.2015.7298594 – ident: 15422_CR75 doi: 10.1109/CVPR.2018.00907 – ident: 15422_CR26 – ident: 15422_CR5 doi: 10.1109/CSNT51715.2021.9509704 – ident: 15422_CR11 doi: 10.1007/978-3-030-11723-8_17 – ident: 15422_CR31 – volume: 32 start-page: 507 year: 2021 ident: 15422_CR51 publication-title: IEEE Trans Neural Netw Learning Syst doi: 10.1109/TNNLS.2020.2995800 – volume: 9 start-page: 164282 year: 2021 ident: 15422_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3133529 – volume: 37 start-page: 256 year: 1950 ident: 15422_CR17 publication-title: Biometrika doi: 10.1093/biomet/37.3-4.256 – ident: 15422_CR30 doi: 10.5121/ijdkp.2015.5201 – volume: 448 start-page: 179 year: 2021 ident: 15422_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.035 – ident: 15422_CR7 doi: 10.1002/ima.22641 – ident: 15422_CR59 doi: 10.1109/ICICICT54557.2022.9917904 – ident: 15422_CR70 doi: 10.3390/app12094221 – volume: 9 start-page: 153 year: 2021 ident: 15422_CR22 publication-title: Healthcare doi: 10.3390/healthcare9020153 – ident: 15422_CR14 doi: 10.1158/1078-0432.CCR-17-2236 – ident: 15422_CR34 – volume: 14 start-page: 749 year: 2017 ident: 15422_CR42 publication-title: Clin Oncol – volume: 112 year: 2021 ident: 15422_CR47 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2021.104229 – ident: 15422_CR43 doi: 10.3390/en15218233 – ident: 15422_CR55 doi: 10.1002/9781119792611.ch12 – volume: 33 start-page: 9075 year: 2021 ident: 15422_CR4 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05671-3 – ident: 15422_CR58 doi: 10.12928/TELKOMNIKA.v18i3.14753 – ident: 15422_CR54 doi: 10.1016/B978-0-12-824557-6.00008-X – ident: 15422_CR44 – volume: 78 start-page: 3613 year: 2019 ident: 15422_CR73 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5243-3 – volume: 23 start-page: 9083 year: 2019 ident: 15422_CR8 publication-title: Soft Comput doi: 10.1007/s00500-018-3618-7 |
SSID | ssj0016524 |
Score | 2.5169525 |
Snippet | The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging... The early diagnosis of cancer is crucial to provide prompt and adequate management of the diseases. Imaging tests, in particular magnetic resonance imaging... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44527 |
SubjectTerms | Artificial neural networks Brain Brain cancer Computer Communication Networks Computer Science Data Structures and Information Theory Diagnosis Machine learning Magnetic resonance imaging Medical imaging Multimedia Information Systems Neural networks Optimization Performance measurement Special Purpose and Application-Based Systems Track 2: Medical Applications of Multimedia Tumors |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcGu4zDYIyx8jFl0m5bpaRJm_SI0BCaxHbYnsStStNUPAn6EO89IfHXY6dp394Yk3bqIW7T1nZt1_bPAJ9sU_vWtR71W_lUZS5Ly0KVqealLTjaPxdgFy--F-cT9e0yv4xNYfOh2n1ISYYv9arZTVArCdqYFM0-hlD3G_Ayx9idCrkm2cmYOyjyOMrW8BTtoYitMn-_xro5euJjPi2V_CNfGszQ2Q68jv4jO-kZ_gZe-G4XtofZDCyq6i5s_QY0-BZ-_LxBEWE1zYNgi-XN7I41fY3ddM56MGeGEng9fUBy1nh_y6gcPYol7kewl-EQisbnezA5-_rr9DyNoxRSp3S-SK3OZMvLzGreYMAiHG-V1k7n2tVGOi5rQY4Ul8oSDlNLCU-0aSIrpC1Fa-Q72OxmnX8PTAnTmNrYNreZssYb63Tp0cvwtmwbYRMQwxutXMQZp3EX19UKIZm4UCEXqsCF6j6Bz-M5tz3Kxj-pjwZGVVHj5hVNTUZXqDQ8gY_jMuoKJUBs52dLopEBYk7IBPZ7vo7bSU3APEolYNY4PhIQDvf6Sje9CnjcNO6Yox-YwJdBOFb39fxjHPwf-SG8yoLg0u-fI9hc3C39MTpEi_pDkP9H2R4CLQ priority: 102 providerName: Springer Nature |
Title | Smart brain tumor diagnosis system utilizing deep convolutional neural networks |
URI | https://link.springer.com/article/10.1007/s11042-023-15422-w https://www.ncbi.nlm.nih.gov/pubmed/37362644 https://www.proquest.com/docview/2883175980 https://www.proquest.com/docview/2830214213 https://pubmed.ncbi.nlm.nih.gov/PMC10140727 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUe-BhfGaMyEm8QYSdO7TyhFrWbQBQEVBpPkeM4otKWdmurSfz13CVOSpnYUx7syHHuznf2nX8_gNemyF1pS4f2LV0oIxuF6VCmoeKpGXL0f7aGXfw8G57O5cez5MwfuK19WWW7JtYLdbG0dEb-jlhx0dWlmr9fXYbEGkXZVU-hcQB9XIK17kF_PJl9_dblEYaJp7XVPETfKPy1mebynKCrKeizQgwjcEt2ve-absSbN8sm_8md1i5p-hDu-1iSjRrhP4I7rjqEBy1PA_Nmewj3_gIdfAxfvl-gurCcuCHYZnuxvGJFU2-3WLMG2JmhNp4vfmN3Vji3YlSa7lUUxyMIzPpRF5Cvn8B8Ovnx4TT0tAqhlSrZhEZFccnTyChe4OZFWF5KpaxKlM11bHmcCwqqeCwNYTKVlPxE_yaiYWxSUer4KfSqZeWeA5NCFzrXpkxMJI122liVOow4nEnLQpgARPtHM-sxx4n64jzboSWTFDKUQlZLIbsO4E33zqpB3Li193ErqMxb3zrb6UoAr7pmtBtKhpjKLbfUJ67h5kQcwLNGrt1wsSKQHikD0HsS7zoQJvd-S7X4VWNzE_Uxx5gwgLetcuy-6__TOLp9Gi_gblQrKh39HENvc7V1LzEY2uQDONDTkwH0R9PxeEbPk5-fJgNvB9g6j0Z_AMLPCy8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOPMqjgQJGghNE2LGTOAeEELBs6YMDrdRb6jiOulKbXbq7WsGP4jcy4zyWpaK3nnKwEyeZGc8kM_N9AC9NWbjKVg7tW7lQRTYKs0RlYcozk3D0f9bDLu7tJ8ND9fUoPlqD310vDJVVdnui36jLsaV_5G-JFRddXab5-8mPkFijKLvaUWg0arHjfi7wk236bvsTyvdVFA0-H3wchi2rQGhVGs9Ck0ay4llkUl5i7C4sr1Sa2jRObaGl5bIQFFNwqQxBElWU-8PtXUSJNJmotMTrXoPrSqInp870wZc-a5HELYmu5iF6YtE26TSteoIaYdBDhhi04AfgYtURXohuLxZp_pOp9Q5wcBdut5Er-9Co2j1Yc_UG3OlYIVi7SWzArb8gDu_Dt-9nqJysICYKNpufjc9Z2VT3jaasgZFmqPuno184nZXOTRgVwrcGgesR4KY_-HL16QM4vJLX_RDW63HtNoEpoUtdaFPFJlJGO21smjmMb5zJqlKYAET3RnPbIpwT0cZpvsRmJinkKIXcSyFfBPC6P2fS4HtcOnurE1Te2vo0X2pmAC_6YbRSSr2Y2o3nNEd6cDshA3jUyLVfTqYECaRUAHpF4v0EQgBfHalHJx4JnIiWOUagAbzplGN5X_9_jMeXP8ZzuDE82NvNd7f3d57AzcgrLf102oL12fncPcUwbFY887rP4Piqje0Pj7M99g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgwKO8AgWMBCeIaifO2jkgBLSrlsJSAZV6Sx3HESu12aW7qxX8NH4dM4mTZanoracc7MRJZsYz9oy_D-C5KXJX2tKhfUsXyshGYdqXaah4avoc_Z-tYRc_Dfu7h_LDUXK0Br_bszBUVtnOifVEXYwt7ZFvESsuurpU863Sl0UcbA_eTH6ExCBFmdaWTqNRkX33c4HLt-nrvW2U9YsoGux8e78beoaB0EqVzEKjorjkaWQULzCOF5aXUimrEmVzHVse54LiCx5LQ_BEJeUBcaoXUT82qSh1jM-9AuuKVkU9WH-3Mzz40uUw-omn1NU8RL8s_JGd5uCeoGMx6C9DDGFwObhYdYvnYt3zJZv_5G1rdzi4BTd8HMveNop3G9ZctQE3W44I5qeMDbj-F-DhHfj89RRVleXES8Fm89PxGSuaWr_RlDWg0gwt4WT0C7uzwrkJo7J4bx44HsFv1pe6eH16Fw4v5Yffg141rtwDYFLoQufalImJpNFOG6tSh9GOM2lZCBOAaP9oZj3eOdFunGRLpGaSQoZSyGopZIsAXnb3TBq0jwt7b7aCyrzlT7OlngbwrGtGm6VEjKnceE594hrqTsQB3G_k2g0XKwIIkjIAvSLxrgPhga-2VKPvNS440S5zjEcDeNUqx_K9_v8ZDy_-jKdwFQ0t-7g33H8E16JaZ2kHahN6s7O5e4wx2Sx_4pWfwfFl29sfCsRDiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+brain+tumor+diagnosis+system+utilizing+deep+convolutional+neural+networks&rft.jtitle=Multimedia+tools+and+applications&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=28&rft.spage=44527&rft.epage=44553&rft_id=info:doi/10.1007%2Fs11042-023-15422-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |