Dysfunction of X-linked inhibitor of apoptosis protein (XIAP) triggers neuropathological processes via altered p53 activity in Huntington’s disease

[Display omitted] •This study found a new molecular mechanism that XIAP directly interacts with p53 and modulates p53 stability in medium spiny neuons.•XIAP modulates the turnover of p53 via autophagy pathway.•XIAP dysfunction leads to abnormal increase of p53 activity, mitochondrial dysfunction, an...

Full description

Saved in:
Bibliographic Details
Published inProgress in neurobiology Vol. 204; p. 102110
Main Authors Hyeon, Seung Jae, Park, Jinyoung, Yoo, Junsang, Kim, Su-Hyun, Hwang, Yu Jin, Kim, Seung-Chan, Liu, Tian, Shim, Hyun Soo, Kim, Yunha, Cho, Yakdol, Woo, Jiwan, Kim, Key-Sun, Myers, Richard H., Ryu, Hannah L., Kowall, Neil W., Song, Eun Joo, Hwang, Eun Mi, Seo, Hyemyung, Lee, Junghee, Ryu, Hoon
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •This study found a new molecular mechanism that XIAP directly interacts with p53 and modulates p53 stability in medium spiny neuons.•XIAP modulates the turnover of p53 via autophagy pathway.•XIAP dysfunction leads to abnormal increase of p53 activity, mitochondrial dysfunction, and striatal neuron damage in HD.•XIAP-p53 pathway can be a novel pathological marker and a therapeutic target in the pathogenesis of HD. Mitochondrial dysfunction is associated with neuronal damage in Huntington’s disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.
AbstractList Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.
Mitochondrial dysfunction is associated with neuronal damage in Huntington’s disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo . Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro . In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.
[Display omitted] •This study found a new molecular mechanism that XIAP directly interacts with p53 and modulates p53 stability in medium spiny neuons.•XIAP modulates the turnover of p53 via autophagy pathway.•XIAP dysfunction leads to abnormal increase of p53 activity, mitochondrial dysfunction, and striatal neuron damage in HD.•XIAP-p53 pathway can be a novel pathological marker and a therapeutic target in the pathogenesis of HD. Mitochondrial dysfunction is associated with neuronal damage in Huntington’s disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.
Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.
ArticleNumber 102110
Author Ryu, Hannah L.
Ryu, Hoon
Kim, Yunha
Lee, Junghee
Kim, Key-Sun
Kim, Seung-Chan
Liu, Tian
Park, Jinyoung
Hwang, Yu Jin
Hyeon, Seung Jae
Woo, Jiwan
Song, Eun Joo
Shim, Hyun Soo
Hwang, Eun Mi
Yoo, Junsang
Kowall, Neil W.
Myers, Richard H.
Cho, Yakdol
Kim, Su-Hyun
Seo, Hyemyung
AuthorAffiliation 2 Department of Molecular Life Sciences, Hanyang University, Ansan 15588, South Korea
10 Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
7 Boston University Genome Medicine Institute and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
3 Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
8 Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
6 KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
1 Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
4 Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
5 USF Health Byrd Alzheimer’s Institute and Department of Molecula
AuthorAffiliation_xml – name: 10 Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
– name: 1 Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– name: 2 Department of Molecular Life Sciences, Hanyang University, Ansan 15588, South Korea
– name: 8 Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
– name: 5 USF Health Byrd Alzheimer’s Institute and Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
– name: 3 Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
– name: 6 KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
– name: 7 Boston University Genome Medicine Institute and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
– name: 4 Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– name: 9 VA Boston Healthcare System, Boston, MA 02130, USA
Author_xml – sequence: 1
  givenname: Seung Jae
  surname: Hyeon
  fullname: Hyeon, Seung Jae
  organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 2
  givenname: Jinyoung
  surname: Park
  fullname: Park, Jinyoung
  organization: Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 3
  givenname: Junsang
  surname: Yoo
  fullname: Yoo, Junsang
  organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 4
  givenname: Su-Hyun
  surname: Kim
  fullname: Kim, Su-Hyun
  organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 5
  givenname: Yu Jin
  surname: Hwang
  fullname: Hwang, Yu Jin
  organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 6
  givenname: Seung-Chan
  surname: Kim
  fullname: Kim, Seung-Chan
  organization: Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 7
  givenname: Tian
  surname: Liu
  fullname: Liu, Tian
  organization: USF Health Byrd Alzheimer’s Institute and Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
– sequence: 8
  givenname: Hyun Soo
  surname: Shim
  fullname: Shim, Hyun Soo
  organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 9
  givenname: Yunha
  surname: Kim
  fullname: Kim, Yunha
  organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 10
  givenname: Yakdol
  surname: Cho
  fullname: Cho, Yakdol
  organization: KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 11
  givenname: Jiwan
  surname: Woo
  fullname: Woo, Jiwan
  organization: KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 12
  givenname: Key-Sun
  orcidid: 0000-0001-7282-9393
  surname: Kim
  fullname: Kim, Key-Sun
  organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 13
  givenname: Richard H.
  surname: Myers
  fullname: Myers, Richard H.
  organization: Boston University Genome Science Institute and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
– sequence: 14
  givenname: Hannah L.
  surname: Ryu
  fullname: Ryu, Hannah L.
  organization: Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
– sequence: 15
  givenname: Neil W.
  orcidid: 0000-0002-6624-0213
  surname: Kowall
  fullname: Kowall, Neil W.
  organization: Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
– sequence: 16
  givenname: Eun Joo
  surname: Song
  fullname: Song, Eun Joo
  organization: Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
– sequence: 17
  givenname: Eun Mi
  surname: Hwang
  fullname: Hwang, Eun Mi
  organization: Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
– sequence: 18
  givenname: Hyemyung
  surname: Seo
  fullname: Seo, Hyemyung
  email: hseo@hanyang.ac.kr
  organization: Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
– sequence: 19
  givenname: Junghee
  surname: Lee
  fullname: Lee, Junghee
  email: junghee@bu.edu
  organization: Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
– sequence: 20
  givenname: Hoon
  surname: Ryu
  fullname: Ryu, Hoon
  email: hoonryu@kist.re.kr
  organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34166773$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFXwAvyyKDHSdOZgHSqBRaqRIsQOrOcpyXmTdk7GA7I82On2DR3-NLcJi2AjaVF5ae773HeveEHFlngZBXnM054_LNZj5YGL1r0M1zlvM0zTlnT8iM15XISs7rIzJjgvGMsTo_JichbBhjUjDxjByLgktZVWJGfr7fh260JqKz1HX0JuvRfoOWol1jg9H5aaoHN0QXMNDBuwho6dnN1fLzaxo9rlbgA_3zm0HHtevdCo3uJ6WBECDQHWqq-wg-xQ6loDrRdhj3iUEvRxvRrqKzv37cBtpiAB3gOXna6T7Ai7v7lHz9cPHl_DK7_vTx6nx5nZmiKmOmy7ytZStF3kngZQ55pRtZ1Qy0aU2-0PWiMO1ClzJtpVkUXdNpWHQlbwTIQjNxSt4dcoex2UJrwEavezV43Gq_V06j-vfF4lqt3E7VQhZpySng7C7Au-8jhKi2GAz0vbbgxqDysiglK9JJ0pd_sx4g910kwduDwHgXgodOGYx6KiahsVecqal7tVEP3aupe3XoPvmr__z3iMedy4MT0q53CF4Fg2ANtOjBRNU6fDTjN69P1BI
CitedBy_id crossref_primary_10_3390_antiox11071392
crossref_primary_10_1007_s00401_022_02462_z
crossref_primary_10_1038_s41420_023_01529_4
crossref_primary_10_3390_ijms222212499
crossref_primary_10_1016_j_jbc_2025_108297
crossref_primary_10_3389_fncel_2022_852002
crossref_primary_10_1016_j_celrep_2023_112198
crossref_primary_10_3390_biomedicines10071718
crossref_primary_10_1016_j_neubiorev_2022_104961
Cites_doi 10.1038/sj.cdd.4402084
10.1093/hmg/9.9.1259
10.1073/pnas.1105135108
10.1016/S0092-8674(00)00008-8
10.1093/emboj/17.8.2215
10.1038/sj.emboj.7601560
10.1182/blood-2009-03-212563
10.1016/j.phrs.2005.01.006
10.1073/pnas.161506698
10.1093/hmg/ddq306
10.1038/44617
10.1038/ncpneuro0199
10.4161/cc.25870
10.1073/pnas.0901864106
10.1038/13518
10.1038/35065125
10.1016/j.bbabio.2008.10.005
10.1002/mds.25159
10.1002/cne.20680
10.1007/s13311-013-0206-5
10.1007/s00401-010-0788-5
10.1074/jbc.273.14.7787
10.1126/science.288.5467.874
10.1128/jvi.68.4.2521-2528.1994
10.1097/00005072-198511000-00003
10.1074/jbc.M112.445148
10.1523/JNEUROSCI.23-28-09418.2003
10.1523/JNEUROSCI.23-09-03597.2003
10.1038/emboj.2013.133
10.1212/WNL.38.3.341
10.1101/gad.13.3.239
10.1038/sj.onc.1207637
10.1093/nar/gkt1041
10.1093/emboj/16.23.6914
10.1038/40901
10.1074/jbc.M410210200
10.1038/s41419-018-0508-y
10.1073/pnas.1303829110
10.4161/cc.3.12.1318
10.1136/gutjnl-2015-310382
10.4161/cc.6.14.4503
10.1158/0008-5472.CAN-04-3835
10.1038/cdd.2011.196
10.1038/s41388-019-0675-z
10.1093/hmg/ddn067
10.1073/pnas.100110097
10.1111/acel.12679
10.1073/pnas.0502878102
10.1016/0092-8674(93)90585-E
10.1016/j.nbd.2010.11.018
10.1006/nbdi.2001.0385
10.1016/S0962-8924(99)01609-8
10.1016/j.neuron.2005.06.005
10.1038/nn884
10.1073/pnas.0606373103
10.1038/nrn1386
10.1074/jbc.275.21.16202
10.1093/hmg/8.3.397
10.1016/S0092-8674(00)81369-0
10.1016/S0021-9258(19)61427-4
10.1128/jvi.67.4.2168-2174.1993
10.1093/hmg/9.19.2799
10.1080/15548627.2017.1393130
10.1007/s12035-015-9214-2
10.4161/cc.24128
10.1038/sj.onc.1207411
10.1016/S0092-8674(00)00009-X
10.1126/science.1056784
10.1016/j.biocel.2020.105715
10.1093/hmg/ddq285
10.1007/s00401-017-1732-8
10.1093/hmg/ddv052
10.1523/JNEUROSCI.0106-08.2008
10.1016/j.canlet.2014.11.028
10.1093/hmg/ddm064
10.1016/S0014-5793(00)02368-1
10.1074/jbc.M006226200
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Ltd.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Ltd.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.pneurobio.2021.102110
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-5118
EndPage 102110
ExternalDocumentID PMC8364511
34166773
10_1016_j_pneurobio_2021_102110
S0301008221001246
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS109537
– fundername: NIA NIH HHS
  grantid: R01 AG034156
– fundername: NIA NIH HHS
  grantid: RF1 AG054156
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1CY
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5RE
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
TEORI
WUQ
ZA5
ZGI
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c475t-a52d86d632f6e152e27ab6780eacdc29a894cd9a56187b94fbfae9f51b3e64a03
IEDL.DBID .~1
ISSN 0301-0082
1873-5118
IngestDate Thu Aug 21 13:52:12 EDT 2025
Mon Jul 21 11:32:10 EDT 2025
Mon Jul 21 05:24:07 EDT 2025
Tue Jul 01 02:40:21 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Fri Feb 23 02:43:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords XIAP
Mitochondria
Huntington’s disease
Neurodegeneration
p53
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-a52d86d632f6e152e27ab6780eacdc29a894cd9a56187b94fbfae9f51b3e64a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact: Hoon Ryu, Ph.D.
ORCID 0000-0002-6624-0213
0000-0001-7282-9393
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0301008221001246
PMID 34166773
PQID 2545604040
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8364511
proquest_miscellaneous_2545604040
pubmed_primary_34166773
crossref_citationtrail_10_1016_j_pneurobio_2021_102110
crossref_primary_10_1016_j_pneurobio_2021_102110
elsevier_sciencedirect_doi_10_1016_j_pneurobio_2021_102110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Progress in neurobiology
PublicationTitleAlternate Prog Neurobiol
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huntington’s Disease Collaborative Research Group (bib0115) 1993; 72
Zhao, Yu, Hou, Dong, Zhang, Chen (bib0395) 2020; 121
Yang, Li, Weissman (bib0380) 2000; 23
Poetsch, Ebner, Deszcz, Bachtrog, Stephani, Díaz (bib0240) 2018
Schilling, Jinnah, Gonzales, Coonfield, Kim, Wood (bib0285) 2001; 8
Gardian, Browne, Choi, Klivenyi, Ryu, Gregorio (bib0080) 2005; 280
Kim, Jeon, Cheong, Kim, Ryu, Seo (bib0130) 2016; 53
Vaughn, Deshmukh (bib0355) 2007; 14
Vonsattel, Myers, Stevens, Ferrante, Bird, Richardson (bib0365) 1985; 44
Takahashi, Deveraux, Tamm, Welsh, Assa-Munt, Salvesen (bib0335) 1998; 273
Goffredo, Rigamonti, Tartari, Valenza, Catteneo (bib0085) 2005; 52
Stack, Kubilus, Smith, Cormier, Del Signore, Guelin (bib0300) 2005; 490
Guo, Rudow, Pletnikova, Codispoti, Orr, Crain (bib0095) 2013; 27
Miller (bib0210) 1999; 9
Hwang, Han, Kim, Min, Kowall, Yang (bib0120) 2014; 42
Mihara, Moll (bib0205) 2003; 234
Birnbaum, Clem, Miller (bib0020) 1994; 68
Roy, Deveraux, Takahashi, Salvesen, Reed (bib0245) 1997; 16
Heng, Duong, Albin, Tallaksen-Greene, Hunter, Lesort (bib0100) 2010; 19
Stack, Del Signore, Matson, Goodrich, Markey, Cormier (bib0305) 2007; 16
Lee, Hong, Jeon, Hwang, Kim, Seon (bib0145) 2012; 19
Huang, Joazeiro, Bonfoco, Kamada, Leverson, Hunter (bib0105) 2000; 275
Sun, Cai, Gunasekera, Meadows, Wang, Chen (bib0315) 1999; 401
Suzuki, Nakabayashi, Takahashi (bib0330) 2001; 98
Mangiarini, Sathasivam, Seller, Cozens, Harper, Hetherington (bib0185) 1996; 87
Ryu, Lee, Hagerty, Soh, McAlpin, Cormier (bib0260) 2006; 103
Marchenko, Wolff, Erster, Becker, Moll (bib0200) 2007; 26
Schilling, Becher, Sharp, Jinnah, Duan, Kotzuk (bib0280) 1999; 8
Schwerd, Pandey, Yang, Bagola, Jameson, Jung (bib0290) 2017; 66
Luthi-Carter, Strand, Peters, Solano, Hollingsworth, Menon (bib0175) 2000; 9
Pfisterer, Kirkeby, Torper, Wood, Nelander, Dufour (bib0235) 2011; 108
Sun, Shi, Li, Yu, Liang, Zhang (bib0325) 2009; 106
Yang, Fang, Jensen, Weissman, Ashwell (bib0375) 2000; 288
Bae, Xu, Igarashi, Fujimuro, Agrawal, Taya (bib0005) 2005; 47
Ryu, Lee, Impey, Ratan, Ferrante (bib0255) 2005; 102
Crook, Clem, Miller (bib0035) 1993; 67
Sun, Cai, Meadows, Xu, Gunasekera, Herrmann (bib0320) 2000; 275
Bergeaud, Mathieu, Guillaume, Moll, Mignotte, Le Floch (bib0015) 2013; 12
Choudhury, Kolukula, Preet, Albanese, Avantaggiati (bib0030) 2013; 12
Vaseva, Moll (bib0350) 2009; 1787
Ferrante, Kubilus, Lee, Ryu, Beesen, Zucker (bib0070) 2003; 23
Verhagen, Ekert, Pakusch, Silke, Connolly, Reid (bib0360) 2000; 102
Sansome, Zaika, Marchenko, Moll (bib0270) 2001; 488
Marchenko, Moll (bib0190) 2007; 6
Nucifora, Sasaki, Peters, Huang, Cooper, Yamada (bib0220) 2001; 291
Du, Fang, Li, Li, Wang (bib0060) 2000; 102
Lee, Kim, Liu, Hwang, Hyeon, Im (bib0160) 2018; 17
Erster, Moll (bib0065) 2004; 3
Lee, Kosaras, Del Signore, Cormier, McKee, Ratan (bib0140) 2011; 121
Sawa, Wiegand, Cooper, Margolis, Sharp, Lawler (bib0275) 1999; 5
Ye, Zhang, Miao, Yao (bib0385) 2015; 357
Zhao, Chaiswing, Velez, Batinic-Haberle, Colburn, Oberley (bib0390) 2005; 65
Beal, Ferrante (bib0010) 2004; 5
Deveraux, Reed (bib0045) 1999; 13
Huang, Wu, Mei, Wu (bib0110) 2013; 32
Fu, Sun, Lu (bib0075) 2018; 14
Panov, Gutekunst, Leavitt, Hayden, Burke, Strittmatter (bib0230) 2002; 5
Steffan, Kazantsev, Spasic-Boskovic, Greenwald, Zhu, Gohler (bib0310) 2000; 97
Myers, Vonsattel, Stevens, Cupples, Richardson, Martin (bib0215) 1988; 38
Sadri-Vakili, Cha (bib0265) 2006; 2
Trettel, Rigamonti, Hilditch-Maguire, Wheeler, Sharp, Persichetti (bib0345) 2000; 9
Carter, Mak, Schober, Koller, Pinilla, Vassilev (bib0025) 2010; 115
Ryu, Lee, Zaman, Ross, Flemington, Neve (bib0250) 2003; 23
Lee, Hwang, Kim, Lee, Hyeon, Lee (bib0155) 2017; 134
Marchenko, Zaika, Moll (bib0195) 2000; 275
Orr, Li, Wang, Li, Wang, Rong (bib0225) 2008; 28
Deveraux, Roy, Stennicke, Van Arsdale, Zhou, Srinivasula (bib0055) 1998; 17
Kim, Moody, Edgerly, Bordiuk, Cormier, Smith (bib0125) 2010; 19
Wang, Xu, Yuan, Jia, Niu, Liu (bib0370) 2019; 38
Lee, Hagerty, Cormier, Kung, Ferrante, Ryu (bib0135) 2008; 17
Gradzka, Thomas, Kretz, Haimovici, Vasilikos, Wong (bib0090) 2018; 9
Torper, Pfisterer, Wolf, Pereira, Lau, Jakobsson (bib0340) 2013; 110
Li, Li (bib0165) 2011; 43
Lin, Ghislat, Luo, Renna, Siddiqi, Rubinsztein (bib0170) 2015; 24
Mahyar-Roemer, Fritzsche, Wagner, Laue, Roemer (bib0180) 2004; 23
Deveraux, Takahashi, Salvesen, Reed (bib0050) 1997; 388
Lee, Hwang, Kim, Kowall, Ryu (bib0150) 2013; 10
Srinivasula, Hegde, Saleh, Datta, Shiozaki, Chai (bib0295) 2001; 410
Dai, Shi, Chen, Iqbal, Liu, Gong (bib0040) 2013; 288
Vonsattel (10.1016/j.pneurobio.2021.102110_bib0365) 1985; 44
Stack (10.1016/j.pneurobio.2021.102110_bib0305) 2007; 16
Yang (10.1016/j.pneurobio.2021.102110_bib0375) 2000; 288
Sun (10.1016/j.pneurobio.2021.102110_bib0325) 2009; 106
Deveraux (10.1016/j.pneurobio.2021.102110_bib0055) 1998; 17
Sun (10.1016/j.pneurobio.2021.102110_bib0320) 2000; 275
Marchenko (10.1016/j.pneurobio.2021.102110_bib0190) 2007; 6
Huang (10.1016/j.pneurobio.2021.102110_bib0105) 2000; 275
Bae (10.1016/j.pneurobio.2021.102110_bib0005) 2005; 47
Verhagen (10.1016/j.pneurobio.2021.102110_bib0360) 2000; 102
Hwang (10.1016/j.pneurobio.2021.102110_bib0120) 2014; 42
Li (10.1016/j.pneurobio.2021.102110_bib0165) 2011; 43
Zhao (10.1016/j.pneurobio.2021.102110_bib0390) 2005; 65
Du (10.1016/j.pneurobio.2021.102110_bib0060) 2000; 102
Ryu (10.1016/j.pneurobio.2021.102110_bib0250) 2003; 23
Stack (10.1016/j.pneurobio.2021.102110_bib0300) 2005; 490
Mihara (10.1016/j.pneurobio.2021.102110_bib0205) 2003; 234
Choudhury (10.1016/j.pneurobio.2021.102110_bib0030) 2013; 12
Huntington’s Disease Collaborative Research Group (10.1016/j.pneurobio.2021.102110_bib0115) 1993; 72
Myers (10.1016/j.pneurobio.2021.102110_bib0215) 1988; 38
Lin (10.1016/j.pneurobio.2021.102110_bib0170) 2015; 24
Torper (10.1016/j.pneurobio.2021.102110_bib0340) 2013; 110
Panov (10.1016/j.pneurobio.2021.102110_bib0230) 2002; 5
Srinivasula (10.1016/j.pneurobio.2021.102110_bib0295) 2001; 410
Bergeaud (10.1016/j.pneurobio.2021.102110_bib0015) 2013; 12
Sun (10.1016/j.pneurobio.2021.102110_bib0315) 1999; 401
Heng (10.1016/j.pneurobio.2021.102110_bib0100) 2010; 19
Miller (10.1016/j.pneurobio.2021.102110_bib0210) 1999; 9
Mahyar-Roemer (10.1016/j.pneurobio.2021.102110_bib0180) 2004; 23
Beal (10.1016/j.pneurobio.2021.102110_bib0010) 2004; 5
Lee (10.1016/j.pneurobio.2021.102110_bib0155) 2017; 134
Roy (10.1016/j.pneurobio.2021.102110_bib0245) 1997; 16
Ryu (10.1016/j.pneurobio.2021.102110_bib0260) 2006; 103
Yang (10.1016/j.pneurobio.2021.102110_bib0380) 2000; 23
Zhao (10.1016/j.pneurobio.2021.102110_bib0395) 2020; 121
Erster (10.1016/j.pneurobio.2021.102110_bib0065) 2004; 3
Vaseva (10.1016/j.pneurobio.2021.102110_bib0350) 2009; 1787
Lee (10.1016/j.pneurobio.2021.102110_bib0140) 2011; 121
Orr (10.1016/j.pneurobio.2021.102110_bib0225) 2008; 28
Gardian (10.1016/j.pneurobio.2021.102110_bib0080) 2005; 280
Ryu (10.1016/j.pneurobio.2021.102110_bib0255) 2005; 102
Dai (10.1016/j.pneurobio.2021.102110_bib0040) 2013; 288
Marchenko (10.1016/j.pneurobio.2021.102110_bib0195) 2000; 275
Poetsch (10.1016/j.pneurobio.2021.102110_bib0240) 2018
Schilling (10.1016/j.pneurobio.2021.102110_bib0285) 2001; 8
Lee (10.1016/j.pneurobio.2021.102110_bib0145) 2012; 19
Ye (10.1016/j.pneurobio.2021.102110_bib0385) 2015; 357
Crook (10.1016/j.pneurobio.2021.102110_bib0035) 1993; 67
Luthi-Carter (10.1016/j.pneurobio.2021.102110_bib0175) 2000; 9
Nucifora (10.1016/j.pneurobio.2021.102110_bib0220) 2001; 291
Suzuki (10.1016/j.pneurobio.2021.102110_bib0330) 2001; 98
Steffan (10.1016/j.pneurobio.2021.102110_bib0310) 2000; 97
Deveraux (10.1016/j.pneurobio.2021.102110_bib0045) 1999; 13
Lee (10.1016/j.pneurobio.2021.102110_bib0135) 2008; 17
Carter (10.1016/j.pneurobio.2021.102110_bib0025) 2010; 115
Birnbaum (10.1016/j.pneurobio.2021.102110_bib0020) 1994; 68
Trettel (10.1016/j.pneurobio.2021.102110_bib0345) 2000; 9
Mangiarini (10.1016/j.pneurobio.2021.102110_bib0185) 1996; 87
Sansome (10.1016/j.pneurobio.2021.102110_bib0270) 2001; 488
Huang (10.1016/j.pneurobio.2021.102110_bib0110) 2013; 32
Schwerd (10.1016/j.pneurobio.2021.102110_bib0290) 2017; 66
Fu (10.1016/j.pneurobio.2021.102110_bib0075) 2018; 14
Takahashi (10.1016/j.pneurobio.2021.102110_bib0335) 1998; 273
Kim (10.1016/j.pneurobio.2021.102110_bib0125) 2010; 19
Lee (10.1016/j.pneurobio.2021.102110_bib0150) 2013; 10
Guo (10.1016/j.pneurobio.2021.102110_bib0095) 2013; 27
Ferrante (10.1016/j.pneurobio.2021.102110_bib0070) 2003; 23
Sadri-Vakili (10.1016/j.pneurobio.2021.102110_bib0265) 2006; 2
Gradzka (10.1016/j.pneurobio.2021.102110_bib0090) 2018; 9
Schilling (10.1016/j.pneurobio.2021.102110_bib0280) 1999; 8
Pfisterer (10.1016/j.pneurobio.2021.102110_bib0235) 2011; 108
Kim (10.1016/j.pneurobio.2021.102110_bib0130) 2016; 53
Wang (10.1016/j.pneurobio.2021.102110_bib0370) 2019; 38
Lee (10.1016/j.pneurobio.2021.102110_bib0160) 2018; 17
Sawa (10.1016/j.pneurobio.2021.102110_bib0275) 1999; 5
Deveraux (10.1016/j.pneurobio.2021.102110_bib0050) 1997; 388
Marchenko (10.1016/j.pneurobio.2021.102110_bib0200) 2007; 26
Vaughn (10.1016/j.pneurobio.2021.102110_bib0355) 2007; 14
Goffredo (10.1016/j.pneurobio.2021.102110_bib0085) 2005; 52
References_xml – volume: 234
  start-page: 203
  year: 2003
  end-page: 209
  ident: bib0205
  article-title: Detection of mitochondrial localization of p53
  publication-title: Methods Mol. Biol.
– volume: 8
  start-page: 405
  year: 2001
  end-page: 418
  ident: bib0285
  article-title: Distinct behavioral and neuropathological abnormalities in transgenic mouse models of HD and DRPLA
  publication-title: Neurobiol. Dis.
– volume: 115
  start-page: 306
  year: 2010
  end-page: 314
  ident: bib0025
  article-title: Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML
  publication-title: Blood
– volume: 288
  start-page: 23875
  year: 2013
  end-page: 23883
  ident: bib0040
  article-title: Inhibition of protein synthesis alters protein degradation through activation of protein kinase B (AKT)
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 731
  year: 2002
  end-page: 736
  ident: bib0230
  article-title: Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines
  publication-title: Nat. Neurosci.
– volume: 2
  start-page: 330
  year: 2006
  end-page: 338
  ident: bib0265
  article-title: Mechanisms of disease: histone modifications in Huntington’s disease
  publication-title: Nat. Clin. Pract. Neurol.
– volume: 19
  start-page: 3702
  year: 2010
  end-page: 3720
  ident: bib0100
  article-title: Early autophagic response in a novel knock-in model of Huntington disease
  publication-title: Hum. Mol. Genet.
– volume: 410
  start-page: 112
  year: 2001
  end-page: 116
  ident: bib0295
  article-title: A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis
  publication-title: Nature
– volume: 357
  start-page: 196
  year: 2015
  end-page: 205
  ident: bib0385
  article-title: Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer
  publication-title: Cancer Lett.
– year: 2018
  ident: bib0240
  article-title: The anti-apoptosis ubiquitin E3 ligase XIAP promotes autophagosome-lysosome fusion during autophagy
  publication-title: bioRxiv
– volume: 68
  start-page: 2521
  year: 1994
  end-page: 2528
  ident: bib0020
  article-title: An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs
  publication-title: J. Virol.
– volume: 87
  start-page: 493
  year: 1996
  end-page: 506
  ident: bib0185
  article-title: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice
  publication-title: Cell
– volume: 28
  start-page: 2783
  year: 2008
  end-page: 2792
  ident: bib0225
  article-title: N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking
  publication-title: J. Neurosci.
– volume: 106
  start-page: 10195
  year: 2009
  end-page: 10200
  ident: bib0325
  article-title: JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 19
  start-page: 3919
  year: 2010
  end-page: 3935
  ident: bib0125
  article-title: Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease
  publication-title: Hum. Mol. Genet.
– volume: 8
  start-page: 397
  year: 1999
  end-page: 407
  ident: bib0280
  article-title: Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin
  publication-title: Hum. Mol. Genet.
– volume: 288
  start-page: 874
  year: 2000
  end-page: 877
  ident: bib0375
  article-title: Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli
  publication-title: Science
– volume: 65
  start-page: 3745
  year: 2005
  end-page: 3750
  ident: bib0390
  article-title: p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase
  publication-title: Cancer Res.
– volume: 67
  start-page: 2168
  year: 1993
  end-page: 2174
  ident: bib0035
  article-title: An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif
  publication-title: J. Virol.
– volume: 52
  start-page: 140
  year: 2005
  end-page: 150
  ident: bib0085
  article-title: Prevention of cytosolic IAPs degradation : a potential pharmacological target in Huntington’s disease
  publication-title: Pharmacol. Res.
– volume: 12
  start-page: 1022
  year: 2013
  end-page: 1029
  ident: bib0030
  article-title: Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy?
  publication-title: Cell Cycle
– volume: 121
  year: 2020
  ident: bib0395
  article-title: Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 103
  start-page: 19176
  year: 2006
  end-page: 19181
  ident: bib0260
  article-title: ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 16
  start-page: 6914
  year: 1997
  end-page: 6925
  ident: bib0245
  article-title: The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases
  publication-title: EMBO J.
– volume: 66
  start-page: 1060
  year: 2017
  end-page: 1073
  ident: bib0290
  article-title: Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn’s disease
  publication-title: Gut
– volume: 5
  start-page: 1194
  year: 1999
  end-page: 1198
  ident: bib0275
  article-title: Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization
  publication-title: Nat. Med.
– volume: 12
  start-page: 2781
  year: 2013
  end-page: 2793
  ident: bib0015
  article-title: Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F(1)F0-ATP synthase
  publication-title: Cell Cycle
– volume: 3
  start-page: 1492
  year: 2004
  end-page: 1495
  ident: bib0065
  article-title: Stress-induced p53 runs a direct mitochondrial death program: its role in physiologic and pathophysiologic stress responses in vivo
  publication-title: Cell Cycle
– volume: 9
  start-page: 1259
  year: 2000
  end-page: 12571
  ident: bib0175
  article-title: Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease
  publication-title: Hum. Mol. Genet.
– volume: 102
  start-page: 43
  year: 2000
  end-page: 53
  ident: bib0360
  article-title: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins
  publication-title: Cell
– volume: 401
  start-page: 818
  year: 1999
  end-page: 822
  ident: bib0315
  article-title: NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP
  publication-title: Nature
– volume: 9
  start-page: 529
  year: 2018
  ident: bib0090
  article-title: Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes
  publication-title: Cell Death Dis.
– volume: 108
  start-page: 10343
  year: 2011
  end-page: 10348
  ident: bib0235
  article-title: Direct conversion of human fibroblasts to dopaminergic neurons
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 134
  start-page: 729
  year: 2017
  end-page: 748
  ident: bib0155
  article-title: Remodeling of heterochromatin structure slows neuropathological progression and prolongs survival in an animal model of Huntington’s disease
  publication-title: Acta Neuropathol.
– volume: 275
  start-page: 16202
  year: 2000
  end-page: 16212
  ident: bib0195
  article-title: Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 2799
  year: 2000
  end-page: 2809
  ident: bib0345
  article-title: Dominant phenotypes produced by the HD mutation in STHdh (Q111) striatal cell
  publication-title: Hum. Mol. Genet.
– volume: 47
  start-page: 29
  year: 2005
  end-page: 41
  ident: bib0005
  article-title: p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease
  publication-title: Neuron
– volume: 24
  start-page: 2899
  year: 2015
  end-page: 2913
  ident: bib0170
  article-title: XIAP and cIAP1 amplifications induce Beclin 1-dependent autophagy through NFκB activation
  publication-title: Hum. Mol. Genet.
– volume: 23
  start-page: 3597
  year: 2003
  end-page: 3606
  ident: bib0250
  article-title: Sp1 and Sp3 are oxidative stress-inducible, anti-death transcription factors in cortical neurons
  publication-title: J. Neurosci.
– volume: 110
  start-page: 7038
  year: 2013
  end-page: 7043
  ident: bib0340
  article-title: Generation of induced neurons via direct conversion in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 102
  start-page: 33
  year: 2000
  end-page: 42
  ident: bib0060
  article-title: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition
  publication-title: Cell
– volume: 280
  start-page: 556
  year: 2005
  end-page: 563
  ident: bib0080
  article-title: Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s Disease
  publication-title: J. Biol. Chem.
– volume: 121
  start-page: 487
  year: 2011
  end-page: 498
  ident: bib0140
  article-title: Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice
  publication-title: Acta Neuropathol.
– volume: 19
  start-page: 1109
  year: 2012
  end-page: 1116
  ident: bib0145
  article-title: ATRX induction by mutant huntingtin via Cdx-2 modulates heterochromatin condensation and pathology in Huntington’s disease
  publication-title: Cell Death Differ.
– volume: 273
  start-page: 7787
  year: 1998
  end-page: 7790
  ident: bib0335
  article-title: A single BIR domain of XIAP sufficient for inhibiting caspases
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 323
  year: 1999
  end-page: 328
  ident: bib0210
  article-title: An exegesis of IAPs: salvation and surprises from BIR motifs
  publication-title: Trends Cell Biol.
– volume: 1787
  start-page: 414
  year: 2009
  end-page: 420
  ident: bib0350
  article-title: The mitochondrial p53 pathway
  publication-title: Biochim. Biophys. Acta
– volume: 44
  start-page: 559
  year: 1985
  end-page: 577
  ident: bib0365
  article-title: Neuropathological classification of Huntington’s disease
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 14
  start-page: 973
  year: 2007
  end-page: 981
  ident: bib0355
  article-title: Essential post mitochondrial function of p53 uncovered in DNA damage-induced apoptosis in neurons
  publication-title: Cell Death Differ.
– volume: 488
  start-page: 110
  year: 2001
  end-page: 115
  ident: bib0270
  article-title: Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells
  publication-title: FEBS Lett.
– volume: 490
  start-page: 354
  year: 2005
  end-page: 370
  ident: bib0300
  article-title: Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington’s disease transgenic mice
  publication-title: J. Comp. Neurol.
– volume: 275
  start-page: 33777
  year: 2000
  end-page: 33781
  ident: bib0320
  article-title: NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 4
  year: 2011
  end-page: 8
  ident: bib0165
  article-title: Proteasomal dysfunction in aging and Huntington disease
  publication-title: Neurobiol. Dis.
– volume: 38
  start-page: 341
  year: 1988
  end-page: 347
  ident: bib0215
  article-title: Clinical and neuropathologic assessment of severity in Huntington’s disease
  publication-title: Neurology
– volume: 38
  start-page: 3458
  year: 2019
  end-page: 3474
  ident: bib0370
  article-title: Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab
  publication-title: Oncogene
– volume: 291
  start-page: 2423
  year: 2001
  end-page: 2428
  ident: bib0220
  article-title: Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity
  publication-title: Science
– volume: 6
  start-page: 1718
  year: 2007
  end-page: 1723
  ident: bib0190
  article-title: The role of ubiquitination in the direct mitochondrial death program of p53
  publication-title: Cell Cycle
– volume: 32
  start-page: 2204
  year: 2013
  end-page: 2216
  ident: bib0110
  article-title: XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling
  publication-title: EMBO J.
– volume: 98
  start-page: 8662
  year: 2001
  end-page: 8667
  ident: bib0330
  article-title: Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 13
  start-page: 239
  year: 1999
  end-page: 252
  ident: bib0045
  article-title: IAP family proteins--suppressors of apoptosis
  publication-title: Genes Dev.
– volume: 23
  start-page: 6226
  year: 2004
  end-page: 6236
  ident: bib0180
  article-title: Mitochondrial p53 levels parallel total p53 levels independent of stress response in human colorectal carcinoma and glioblastoma cells
  publication-title: Oncogene
– volume: 388
  start-page: 300
  year: 1997
  end-page: 304
  ident: bib0050
  article-title: X-linked IAP is a direct inhibitor of cell-death proteases
  publication-title: Nature
– volume: 53
  start-page: 2276
  year: 2016
  end-page: 2286
  ident: bib0130
  article-title: Neuroanatomical visualization of the impaired striatal connectivity in Huntington’s disease
  publication-title: Mol. Neurobiol.
– volume: 275
  start-page: 26661
  year: 2000
  end-page: 26664
  ident: bib0105
  article-title: The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7
  publication-title: J. Biol. Chem.
– volume: 17
  year: 2018
  ident: bib0160
  article-title: SIRT3 deregulation leads to mitochondrial dysfunction and neuronal damage via p53 activation in Alzheimer’s disease
  publication-title: Aging Cell
– volume: 5
  start-page: 373
  year: 2004
  end-page: 384
  ident: bib0010
  article-title: Experimental therapeutics in transgenic mouse models of Huntington’s disease
  publication-title: Nat. Rev. Neurosci.
– volume: 97
  start-page: 6763
  year: 2000
  end-page: 6768
  ident: bib0310
  article-title: The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 23
  start-page: 9418
  year: 2003
  end-page: 9427
  ident: bib0070
  article-title: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice
  publication-title: J. Neurosci.
– volume: 17
  start-page: 1774
  year: 2008
  end-page: 1782
  ident: bib0135
  article-title: Monoallele deletion of CBP leads to pericentromeric heterochromatin condensation through ESET expression and histone H3 (K9) methylation
  publication-title: Hum. Mol. Genet.
– volume: 23
  start-page: 2096
  year: 2000
  end-page: 2106
  ident: bib0380
  article-title: Regulating the p53 system through ubiquitination
  publication-title: Oncogene
– volume: 102
  start-page: 13915
  year: 2005
  end-page: 13920
  ident: bib0255
  article-title: Antioxidants modulate mitochondrial protein kinase A and increase CREB binding to D-Loop DNA of the mitochondrial genome in neurons
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 14
  start-page: 169
  year: 2018
  end-page: 170
  ident: bib0075
  article-title: HIPK3 modulates autophagy and HTT protein levels in neuronal and mouse models of Huntington disease
  publication-title: Autophagy
– volume: 17
  start-page: 2215
  year: 1998
  end-page: 2223
  ident: bib0055
  article-title: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases
  publication-title: EMBO J.
– volume: 26
  start-page: 923
  year: 2007
  end-page: 934
  ident: bib0200
  article-title: Monoubiquitylation promotes mitochondrial p53 translocation
  publication-title: EMBO J.
– volume: 27
  start-page: 1379
  year: 2013
  end-page: 1386
  ident: bib0095
  article-title: Striatal neuronal loss correlates with clinical motor impairment in Huntington’s disease
  publication-title: Mov. Disord.
– volume: 72
  start-page: 971
  year: 1993
  end-page: 983
  ident: bib0115
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes
  publication-title: Cell
– volume: 42
  start-page: 1628
  year: 2014
  end-page: 1643
  ident: bib0120
  article-title: ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 664
  year: 2013
  end-page: 676
  ident: bib0150
  article-title: Epigenetic mechanisms of neurodegeneration in Huntington’s disease
  publication-title: Neurotherapeutics
– volume: 16
  start-page: 1164
  year: 2007
  end-page: 1175
  ident: bib0305
  article-title: Modulation of nucleosome dynamics in Huntington’s Disease
  publication-title: Hum. Mol. Genet.
– volume: 14
  start-page: 973
  year: 2007
  ident: 10.1016/j.pneurobio.2021.102110_bib0355
  article-title: Essential post mitochondrial function of p53 uncovered in DNA damage-induced apoptosis in neurons
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402084
– volume: 9
  start-page: 1259
  year: 2000
  ident: 10.1016/j.pneurobio.2021.102110_bib0175
  article-title: Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/9.9.1259
– volume: 108
  start-page: 10343
  year: 2011
  ident: 10.1016/j.pneurobio.2021.102110_bib0235
  article-title: Direct conversion of human fibroblasts to dopaminergic neurons
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1105135108
– volume: 102
  start-page: 33
  year: 2000
  ident: 10.1016/j.pneurobio.2021.102110_bib0060
  article-title: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00008-8
– volume: 17
  start-page: 2215
  year: 1998
  ident: 10.1016/j.pneurobio.2021.102110_bib0055
  article-title: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.8.2215
– volume: 26
  start-page: 923
  issue: 4
  year: 2007
  ident: 10.1016/j.pneurobio.2021.102110_bib0200
  article-title: Monoubiquitylation promotes mitochondrial p53 translocation
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601560
– volume: 115
  start-page: 306
  year: 2010
  ident: 10.1016/j.pneurobio.2021.102110_bib0025
  article-title: Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML
  publication-title: Blood
  doi: 10.1182/blood-2009-03-212563
– volume: 52
  start-page: 140
  year: 2005
  ident: 10.1016/j.pneurobio.2021.102110_bib0085
  article-title: Prevention of cytosolic IAPs degradation : a potential pharmacological target in Huntington’s disease
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2005.01.006
– volume: 98
  start-page: 8662
  year: 2001
  ident: 10.1016/j.pneurobio.2021.102110_bib0330
  article-title: Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.161506698
– volume: 19
  start-page: 3919
  year: 2010
  ident: 10.1016/j.pneurobio.2021.102110_bib0125
  article-title: Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq306
– volume: 401
  start-page: 818
  year: 1999
  ident: 10.1016/j.pneurobio.2021.102110_bib0315
  article-title: NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP
  publication-title: Nature
  doi: 10.1038/44617
– volume: 2
  start-page: 330
  year: 2006
  ident: 10.1016/j.pneurobio.2021.102110_bib0265
  article-title: Mechanisms of disease: histone modifications in Huntington’s disease
  publication-title: Nat. Clin. Pract. Neurol.
  doi: 10.1038/ncpneuro0199
– volume: 12
  start-page: 2781
  year: 2013
  ident: 10.1016/j.pneurobio.2021.102110_bib0015
  article-title: Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F(1)F0-ATP synthase
  publication-title: Cell Cycle
  doi: 10.4161/cc.25870
– volume: 106
  start-page: 10195
  year: 2009
  ident: 10.1016/j.pneurobio.2021.102110_bib0325
  article-title: JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0901864106
– volume: 5
  start-page: 1194
  year: 1999
  ident: 10.1016/j.pneurobio.2021.102110_bib0275
  article-title: Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization
  publication-title: Nat. Med.
  doi: 10.1038/13518
– volume: 410
  start-page: 112
  year: 2001
  ident: 10.1016/j.pneurobio.2021.102110_bib0295
  article-title: A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis
  publication-title: Nature
  doi: 10.1038/35065125
– volume: 1787
  start-page: 414
  year: 2009
  ident: 10.1016/j.pneurobio.2021.102110_bib0350
  article-title: The mitochondrial p53 pathway
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2008.10.005
– volume: 27
  start-page: 1379
  issue: 11
  year: 2013
  ident: 10.1016/j.pneurobio.2021.102110_bib0095
  article-title: Striatal neuronal loss correlates with clinical motor impairment in Huntington’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25159
– volume: 490
  start-page: 354
  year: 2005
  ident: 10.1016/j.pneurobio.2021.102110_bib0300
  article-title: Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington’s disease transgenic mice
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20680
– volume: 10
  start-page: 664
  year: 2013
  ident: 10.1016/j.pneurobio.2021.102110_bib0150
  article-title: Epigenetic mechanisms of neurodegeneration in Huntington’s disease
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-013-0206-5
– volume: 121
  start-page: 487
  year: 2011
  ident: 10.1016/j.pneurobio.2021.102110_bib0140
  article-title: Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-010-0788-5
– volume: 273
  start-page: 7787
  year: 1998
  ident: 10.1016/j.pneurobio.2021.102110_bib0335
  article-title: A single BIR domain of XIAP sufficient for inhibiting caspases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.14.7787
– volume: 288
  start-page: 874
  year: 2000
  ident: 10.1016/j.pneurobio.2021.102110_bib0375
  article-title: Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli
  publication-title: Science
  doi: 10.1126/science.288.5467.874
– volume: 68
  start-page: 2521
  year: 1994
  ident: 10.1016/j.pneurobio.2021.102110_bib0020
  article-title: An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs
  publication-title: J. Virol.
  doi: 10.1128/jvi.68.4.2521-2528.1994
– volume: 44
  start-page: 559
  year: 1985
  ident: 10.1016/j.pneurobio.2021.102110_bib0365
  article-title: Neuropathological classification of Huntington’s disease
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/00005072-198511000-00003
– volume: 288
  start-page: 23875
  year: 2013
  ident: 10.1016/j.pneurobio.2021.102110_bib0040
  article-title: Inhibition of protein synthesis alters protein degradation through activation of protein kinase B (AKT)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.445148
– volume: 23
  start-page: 9418
  year: 2003
  ident: 10.1016/j.pneurobio.2021.102110_bib0070
  article-title: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-28-09418.2003
– volume: 23
  start-page: 3597
  year: 2003
  ident: 10.1016/j.pneurobio.2021.102110_bib0250
  article-title: Sp1 and Sp3 are oxidative stress-inducible, anti-death transcription factors in cortical neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-09-03597.2003
– volume: 32
  start-page: 2204
  year: 2013
  ident: 10.1016/j.pneurobio.2021.102110_bib0110
  article-title: XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.133
– volume: 38
  start-page: 341
  year: 1988
  ident: 10.1016/j.pneurobio.2021.102110_bib0215
  article-title: Clinical and neuropathologic assessment of severity in Huntington’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.38.3.341
– volume: 13
  start-page: 239
  year: 1999
  ident: 10.1016/j.pneurobio.2021.102110_bib0045
  article-title: IAP family proteins--suppressors of apoptosis
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.3.239
– volume: 23
  start-page: 6226
  year: 2004
  ident: 10.1016/j.pneurobio.2021.102110_bib0180
  article-title: Mitochondrial p53 levels parallel total p53 levels independent of stress response in human colorectal carcinoma and glioblastoma cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207637
– volume: 42
  start-page: 1628
  year: 2014
  ident: 10.1016/j.pneurobio.2021.102110_bib0120
  article-title: ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1041
– volume: 16
  start-page: 6914
  year: 1997
  ident: 10.1016/j.pneurobio.2021.102110_bib0245
  article-title: The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases
  publication-title: EMBO J.
  doi: 10.1093/emboj/16.23.6914
– volume: 234
  start-page: 203
  year: 2003
  ident: 10.1016/j.pneurobio.2021.102110_bib0205
  article-title: Detection of mitochondrial localization of p53
  publication-title: Methods Mol. Biol.
– volume: 388
  start-page: 300
  year: 1997
  ident: 10.1016/j.pneurobio.2021.102110_bib0050
  article-title: X-linked IAP is a direct inhibitor of cell-death proteases
  publication-title: Nature
  doi: 10.1038/40901
– volume: 280
  start-page: 556
  year: 2005
  ident: 10.1016/j.pneurobio.2021.102110_bib0080
  article-title: Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s Disease
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M410210200
– volume: 9
  start-page: 529
  year: 2018
  ident: 10.1016/j.pneurobio.2021.102110_bib0090
  article-title: Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-0508-y
– volume: 110
  start-page: 7038
  year: 2013
  ident: 10.1016/j.pneurobio.2021.102110_bib0340
  article-title: Generation of induced neurons via direct conversion in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1303829110
– volume: 3
  start-page: 1492
  year: 2004
  ident: 10.1016/j.pneurobio.2021.102110_bib0065
  article-title: Stress-induced p53 runs a direct mitochondrial death program: its role in physiologic and pathophysiologic stress responses in vivo
  publication-title: Cell Cycle
  doi: 10.4161/cc.3.12.1318
– volume: 66
  start-page: 1060
  year: 2017
  ident: 10.1016/j.pneurobio.2021.102110_bib0290
  article-title: Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn’s disease
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310382
– volume: 6
  start-page: 1718
  year: 2007
  ident: 10.1016/j.pneurobio.2021.102110_bib0190
  article-title: The role of ubiquitination in the direct mitochondrial death program of p53
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.14.4503
– volume: 65
  start-page: 3745
  year: 2005
  ident: 10.1016/j.pneurobio.2021.102110_bib0390
  article-title: p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-3835
– volume: 19
  start-page: 1109
  year: 2012
  ident: 10.1016/j.pneurobio.2021.102110_bib0145
  article-title: ATRX induction by mutant huntingtin via Cdx-2 modulates heterochromatin condensation and pathology in Huntington’s disease
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2011.196
– year: 2018
  ident: 10.1016/j.pneurobio.2021.102110_bib0240
  article-title: The anti-apoptosis ubiquitin E3 ligase XIAP promotes autophagosome-lysosome fusion during autophagy
  publication-title: bioRxiv
– volume: 38
  start-page: 3458
  year: 2019
  ident: 10.1016/j.pneurobio.2021.102110_bib0370
  article-title: Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0675-z
– volume: 17
  start-page: 1774
  year: 2008
  ident: 10.1016/j.pneurobio.2021.102110_bib0135
  article-title: Monoallele deletion of CBP leads to pericentromeric heterochromatin condensation through ESET expression and histone H3 (K9) methylation
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddn067
– volume: 97
  start-page: 6763
  year: 2000
  ident: 10.1016/j.pneurobio.2021.102110_bib0310
  article-title: The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.100110097
– volume: 17
  year: 2018
  ident: 10.1016/j.pneurobio.2021.102110_bib0160
  article-title: SIRT3 deregulation leads to mitochondrial dysfunction and neuronal damage via p53 activation in Alzheimer’s disease
  publication-title: Aging Cell
  doi: 10.1111/acel.12679
– volume: 102
  start-page: 13915
  year: 2005
  ident: 10.1016/j.pneurobio.2021.102110_bib0255
  article-title: Antioxidants modulate mitochondrial protein kinase A and increase CREB binding to D-Loop DNA of the mitochondrial genome in neurons
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0502878102
– volume: 72
  start-page: 971
  year: 1993
  ident: 10.1016/j.pneurobio.2021.102110_bib0115
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90585-E
– volume: 43
  start-page: 4
  year: 2011
  ident: 10.1016/j.pneurobio.2021.102110_bib0165
  article-title: Proteasomal dysfunction in aging and Huntington disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2010.11.018
– volume: 8
  start-page: 405
  year: 2001
  ident: 10.1016/j.pneurobio.2021.102110_bib0285
  article-title: Distinct behavioral and neuropathological abnormalities in transgenic mouse models of HD and DRPLA
  publication-title: Neurobiol. Dis.
  doi: 10.1006/nbdi.2001.0385
– volume: 9
  start-page: 323
  year: 1999
  ident: 10.1016/j.pneurobio.2021.102110_bib0210
  article-title: An exegesis of IAPs: salvation and surprises from BIR motifs
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(99)01609-8
– volume: 47
  start-page: 29
  year: 2005
  ident: 10.1016/j.pneurobio.2021.102110_bib0005
  article-title: p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.06.005
– volume: 5
  start-page: 731
  year: 2002
  ident: 10.1016/j.pneurobio.2021.102110_bib0230
  article-title: Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn884
– volume: 103
  start-page: 19176
  year: 2006
  ident: 10.1016/j.pneurobio.2021.102110_bib0260
  article-title: ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0606373103
– volume: 5
  start-page: 373
  year: 2004
  ident: 10.1016/j.pneurobio.2021.102110_bib0010
  article-title: Experimental therapeutics in transgenic mouse models of Huntington’s disease
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1386
– volume: 275
  start-page: 16202
  year: 2000
  ident: 10.1016/j.pneurobio.2021.102110_bib0195
  article-title: Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.21.16202
– volume: 8
  start-page: 397
  year: 1999
  ident: 10.1016/j.pneurobio.2021.102110_bib0280
  article-title: Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/8.3.397
– volume: 87
  start-page: 493
  year: 1996
  ident: 10.1016/j.pneurobio.2021.102110_bib0185
  article-title: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81369-0
– volume: 275
  start-page: 26661
  year: 2000
  ident: 10.1016/j.pneurobio.2021.102110_bib0105
  article-title: The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)61427-4
– volume: 67
  start-page: 2168
  year: 1993
  ident: 10.1016/j.pneurobio.2021.102110_bib0035
  article-title: An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif
  publication-title: J. Virol.
  doi: 10.1128/jvi.67.4.2168-2174.1993
– volume: 9
  start-page: 2799
  year: 2000
  ident: 10.1016/j.pneurobio.2021.102110_bib0345
  article-title: Dominant phenotypes produced by the HD mutation in STHdh (Q111) striatal cell
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/9.19.2799
– volume: 14
  start-page: 169
  year: 2018
  ident: 10.1016/j.pneurobio.2021.102110_bib0075
  article-title: HIPK3 modulates autophagy and HTT protein levels in neuronal and mouse models of Huntington disease
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1393130
– volume: 53
  start-page: 2276
  year: 2016
  ident: 10.1016/j.pneurobio.2021.102110_bib0130
  article-title: Neuroanatomical visualization of the impaired striatal connectivity in Huntington’s disease
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-015-9214-2
– volume: 12
  start-page: 1022
  issue: 7
  year: 2013
  ident: 10.1016/j.pneurobio.2021.102110_bib0030
  article-title: Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy?
  publication-title: Cell Cycle
  doi: 10.4161/cc.24128
– volume: 23
  start-page: 2096
  year: 2000
  ident: 10.1016/j.pneurobio.2021.102110_bib0380
  article-title: Regulating the p53 system through ubiquitination
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207411
– volume: 102
  start-page: 43
  year: 2000
  ident: 10.1016/j.pneurobio.2021.102110_bib0360
  article-title: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00009-X
– volume: 291
  start-page: 2423
  year: 2001
  ident: 10.1016/j.pneurobio.2021.102110_bib0220
  article-title: Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity
  publication-title: Science
  doi: 10.1126/science.1056784
– volume: 121
  year: 2020
  ident: 10.1016/j.pneurobio.2021.102110_bib0395
  article-title: Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2020.105715
– volume: 19
  start-page: 3702
  year: 2010
  ident: 10.1016/j.pneurobio.2021.102110_bib0100
  article-title: Early autophagic response in a novel knock-in model of Huntington disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq285
– volume: 134
  start-page: 729
  year: 2017
  ident: 10.1016/j.pneurobio.2021.102110_bib0155
  article-title: Remodeling of heterochromatin structure slows neuropathological progression and prolongs survival in an animal model of Huntington’s disease
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-017-1732-8
– volume: 24
  start-page: 2899
  year: 2015
  ident: 10.1016/j.pneurobio.2021.102110_bib0170
  article-title: XIAP and cIAP1 amplifications induce Beclin 1-dependent autophagy through NFκB activation
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv052
– volume: 28
  start-page: 2783
  year: 2008
  ident: 10.1016/j.pneurobio.2021.102110_bib0225
  article-title: N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0106-08.2008
– volume: 357
  start-page: 196
  year: 2015
  ident: 10.1016/j.pneurobio.2021.102110_bib0385
  article-title: Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2014.11.028
– volume: 16
  start-page: 1164
  year: 2007
  ident: 10.1016/j.pneurobio.2021.102110_bib0305
  article-title: Modulation of nucleosome dynamics in Huntington’s Disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm064
– volume: 488
  start-page: 110
  year: 2001
  ident: 10.1016/j.pneurobio.2021.102110_bib0270
  article-title: Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)02368-1
– volume: 275
  start-page: 33777
  year: 2000
  ident: 10.1016/j.pneurobio.2021.102110_bib0320
  article-title: NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006226200
SSID ssj0006303
Score 2.4303157
Snippet [Display omitted] •This study found a new molecular mechanism that XIAP directly interacts with p53 and modulates p53 stability in medium spiny neuons.•XIAP...
Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is...
Mitochondrial dysfunction is associated with neuronal damage in Huntington’s disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102110
SubjectTerms Animals
Corpus Striatum
Disease Models, Animal
Humans
Huntington Disease
Huntington’s disease
Mice
Mice, Transgenic
Mitochondria
Neurodegeneration
p53
Tumor Suppressor Protein p53 - genetics
X-Linked Inhibitor of Apoptosis Protein - genetics
XIAP
Title Dysfunction of X-linked inhibitor of apoptosis protein (XIAP) triggers neuropathological processes via altered p53 activity in Huntington’s disease
URI https://dx.doi.org/10.1016/j.pneurobio.2021.102110
https://www.ncbi.nlm.nih.gov/pubmed/34166773
https://www.proquest.com/docview/2545604040
https://pubmed.ncbi.nlm.nih.gov/PMC8364511
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5V5cIFAeUnFKpFQggOJvHuem1ziwJVCqiqgEq5WftLjaht1S5SL4iX4MDr8STMrO1AAKkHTlE2u8kmMzvzbWbmG0IeeW-UEtks0obbSHhmIs0Ni7yV1sTKMBjBbItDuTwWr1bJaossxloYTKscbH9v04O1Hkamw685bcpy-g7BfCAsRxohJpB2W4gUtfzZl19pHpLP-hbJeG2G2Rs5Xk0gjdQlVgGyGGkMYiyl_beH-huB_plI-Ztn2r9Org2Qks77Xd8gW666SXbmFVynTy_oYxqSPMO_5zvk24uLFl0ZioPWnq4ijOA6S8vqpNRwus9wVDV109Vt2dJA41BW9MnqYH70lHZwl_8AgJGGb4TdjEfbSZu-4sC19HOpaAjCw9s2CadYOoEdKuAz6LLvTAGA88fX7y0dwkO3yPH-y_eLZTR0ZoiMSJMuUgmzmbSSMy8dIADHUqXB7c3AjFvDcpXlwthcATjLUp0Lr71yuU9izZ0UasZvk-2qrtxdQnMeS-Wd1TqDy4rjWWq1zIx0iVOZiNWEyFEahRloy7F7xqdizE_7WKzFWKAYi16MEzJbL2x65o7LlzwfxV1sKGEB_uXyxQ9HBSngiGLcRVWuPm8LhigVjKWAOXd6hVnvCECElGnKJyTdUKX1BKT_3nylKk8CDXiGEeQ4vvc_m94lV_FZnzR3n2x3Z-fuAaCsTu-FY7RHrswXb98c4ePB6-XhT4aZMVE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKOcAFAQW6_BoJITiETWzHSbitCtUWSoVEK-3N8l9oECRRs0XqBfESHHg9noQZJ1lYQOqBq2MnTsae-ZyZ-YaQR2VptRZ5HBnLXSRKZiPDLYtKJ51NtGXQgtEWB3J-JF4t0sUG2RlzYTCsctD9vU4P2npomQ5fc9pW1fQdgvlAWI40QkzIC-SigO2LZQyeffkV5yF53NdIxnMzdF8L8moDa6SpMA2QJchjkGAu7b9N1N8Q9M9Iyt9M0-5VcmXAlHTWT_sa2fD1dbI1q-E8_emMPqYhyjP8Pt8i316cdWjLUB60KekiQheud7SqjysD2_sEW3XbtMumqzoaeByqmj5Z7M3ePqVLOMy_B8RIwxthOeNRedK2TznwHf1caRq88HDbNuUUcyewRAU8g8770hSAOH98_d7RwT90gxztvjzcmUdDaYbIiixdRjplLpdOclZKDxDAs0wbsHsx6HFnWaHzQlhXaEBneWYKUZpS-6JME8O9FDrmN8lm3dR-m9CCJ1KX3hmTw2nF8zxzRuZW-tTrXCR6QuQoDWUH3nIsn_FRjQFqH9RKjArFqHoxTki8Gtj21B3nD3k-ilutrUIFBub8wQ_HBaJgj6LjRde-Oe0UQ5gK2lJAn1v9glnNCFCElFnGJyRbW0qrDsj_vX6lro4DD3iOLuQkuf0_k35ALs0P3-yr_b2D13fIZbzSR9DdJZvLk1N_DyDX0twPW-onpHwxSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dysfunction+of+X-linked+inhibitor+of+apoptosis+protein+%28XIAP%29+triggers+neuropathological+processes+via+altered+p53+activity+in+Huntington%E2%80%99s+disease&rft.jtitle=Progress+in+neurobiology&rft.au=Hyeon%2C+Seung+Jae&rft.au=Park%2C+Jinyoung&rft.au=Yoo%2C+Junsang&rft.au=Kim%2C+Su-Hyun&rft.date=2021-09-01&rft.issn=0301-0082&rft.volume=204&rft.spage=102110&rft_id=info:doi/10.1016%2Fj.pneurobio.2021.102110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pneurobio_2021_102110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-0082&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-0082&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-0082&client=summon