Dysfunction of X-linked inhibitor of apoptosis protein (XIAP) triggers neuropathological processes via altered p53 activity in Huntington’s disease
[Display omitted] •This study found a new molecular mechanism that XIAP directly interacts with p53 and modulates p53 stability in medium spiny neuons.•XIAP modulates the turnover of p53 via autophagy pathway.•XIAP dysfunction leads to abnormal increase of p53 activity, mitochondrial dysfunction, an...
Saved in:
Published in | Progress in neurobiology Vol. 204; p. 102110 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•This study found a new molecular mechanism that XIAP directly interacts with p53 and modulates p53 stability in medium spiny neuons.•XIAP modulates the turnover of p53 via autophagy pathway.•XIAP dysfunction leads to abnormal increase of p53 activity, mitochondrial dysfunction, and striatal neuron damage in HD.•XIAP-p53 pathway can be a novel pathological marker and a therapeutic target in the pathogenesis of HD.
Mitochondrial dysfunction is associated with neuronal damage in Huntington’s disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD. |
---|---|
AbstractList | Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD. Mitochondrial dysfunction is associated with neuronal damage in Huntington’s disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo . Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro . In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD. [Display omitted] •This study found a new molecular mechanism that XIAP directly interacts with p53 and modulates p53 stability in medium spiny neuons.•XIAP modulates the turnover of p53 via autophagy pathway.•XIAP dysfunction leads to abnormal increase of p53 activity, mitochondrial dysfunction, and striatal neuron damage in HD.•XIAP-p53 pathway can be a novel pathological marker and a therapeutic target in the pathogenesis of HD. Mitochondrial dysfunction is associated with neuronal damage in Huntington’s disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD. Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD. |
ArticleNumber | 102110 |
Author | Ryu, Hannah L. Ryu, Hoon Kim, Yunha Lee, Junghee Kim, Key-Sun Kim, Seung-Chan Liu, Tian Park, Jinyoung Hwang, Yu Jin Hyeon, Seung Jae Woo, Jiwan Song, Eun Joo Shim, Hyun Soo Hwang, Eun Mi Yoo, Junsang Kowall, Neil W. Myers, Richard H. Cho, Yakdol Kim, Su-Hyun Seo, Hyemyung |
AuthorAffiliation | 2 Department of Molecular Life Sciences, Hanyang University, Ansan 15588, South Korea 10 Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea 7 Boston University Genome Medicine Institute and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA 3 Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea 8 Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA 6 KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea 1 Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea 4 Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea 5 USF Health Byrd Alzheimer’s Institute and Department of Molecula |
AuthorAffiliation_xml | – name: 10 Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea – name: 1 Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – name: 2 Department of Molecular Life Sciences, Hanyang University, Ansan 15588, South Korea – name: 8 Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA – name: 5 USF Health Byrd Alzheimer’s Institute and Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA – name: 3 Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea – name: 6 KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea – name: 7 Boston University Genome Medicine Institute and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA – name: 4 Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – name: 9 VA Boston Healthcare System, Boston, MA 02130, USA |
Author_xml | – sequence: 1 givenname: Seung Jae surname: Hyeon fullname: Hyeon, Seung Jae organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 2 givenname: Jinyoung surname: Park fullname: Park, Jinyoung organization: Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 3 givenname: Junsang surname: Yoo fullname: Yoo, Junsang organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 4 givenname: Su-Hyun surname: Kim fullname: Kim, Su-Hyun organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 5 givenname: Yu Jin surname: Hwang fullname: Hwang, Yu Jin organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 6 givenname: Seung-Chan surname: Kim fullname: Kim, Seung-Chan organization: Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 7 givenname: Tian surname: Liu fullname: Liu, Tian organization: USF Health Byrd Alzheimer’s Institute and Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA – sequence: 8 givenname: Hyun Soo surname: Shim fullname: Shim, Hyun Soo organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 9 givenname: Yunha surname: Kim fullname: Kim, Yunha organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 10 givenname: Yakdol surname: Cho fullname: Cho, Yakdol organization: KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 11 givenname: Jiwan surname: Woo fullname: Woo, Jiwan organization: KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 12 givenname: Key-Sun orcidid: 0000-0001-7282-9393 surname: Kim fullname: Kim, Key-Sun organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 13 givenname: Richard H. surname: Myers fullname: Myers, Richard H. organization: Boston University Genome Science Institute and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 14 givenname: Hannah L. surname: Ryu fullname: Ryu, Hannah L. organization: Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 15 givenname: Neil W. orcidid: 0000-0002-6624-0213 surname: Kowall fullname: Kowall, Neil W. organization: Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 16 givenname: Eun Joo surname: Song fullname: Song, Eun Joo organization: Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea – sequence: 17 givenname: Eun Mi surname: Hwang fullname: Hwang, Eun Mi organization: Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea – sequence: 18 givenname: Hyemyung surname: Seo fullname: Seo, Hyemyung email: hseo@hanyang.ac.kr organization: Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea – sequence: 19 givenname: Junghee surname: Lee fullname: Lee, Junghee email: junghee@bu.edu organization: Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 20 givenname: Hoon surname: Ryu fullname: Ryu, Hoon email: hoonryu@kist.re.kr organization: Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34166773$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1URKeFXwAvyyKDHSdOZgHSqBRaqRIsQOrOcpyXmTdk7GA7I82On2DR3-NLcJi2AjaVF5ae773HeveEHFlngZBXnM054_LNZj5YGL1r0M1zlvM0zTlnT8iM15XISs7rIzJjgvGMsTo_JichbBhjUjDxjByLgktZVWJGfr7fh260JqKz1HX0JuvRfoOWol1jg9H5aaoHN0QXMNDBuwho6dnN1fLzaxo9rlbgA_3zm0HHtevdCo3uJ6WBECDQHWqq-wg-xQ6loDrRdhj3iUEvRxvRrqKzv37cBtpiAB3gOXna6T7Ai7v7lHz9cPHl_DK7_vTx6nx5nZmiKmOmy7ytZStF3kngZQ55pRtZ1Qy0aU2-0PWiMO1ClzJtpVkUXdNpWHQlbwTIQjNxSt4dcoex2UJrwEavezV43Gq_V06j-vfF4lqt3E7VQhZpySng7C7Au-8jhKi2GAz0vbbgxqDysiglK9JJ0pd_sx4g910kwduDwHgXgodOGYx6KiahsVecqal7tVEP3aupe3XoPvmr__z3iMedy4MT0q53CF4Fg2ANtOjBRNU6fDTjN69P1BI |
CitedBy_id | crossref_primary_10_3390_antiox11071392 crossref_primary_10_1007_s00401_022_02462_z crossref_primary_10_1038_s41420_023_01529_4 crossref_primary_10_3390_ijms222212499 crossref_primary_10_1016_j_jbc_2025_108297 crossref_primary_10_3389_fncel_2022_852002 crossref_primary_10_1016_j_celrep_2023_112198 crossref_primary_10_3390_biomedicines10071718 crossref_primary_10_1016_j_neubiorev_2022_104961 |
Cites_doi | 10.1038/sj.cdd.4402084 10.1093/hmg/9.9.1259 10.1073/pnas.1105135108 10.1016/S0092-8674(00)00008-8 10.1093/emboj/17.8.2215 10.1038/sj.emboj.7601560 10.1182/blood-2009-03-212563 10.1016/j.phrs.2005.01.006 10.1073/pnas.161506698 10.1093/hmg/ddq306 10.1038/44617 10.1038/ncpneuro0199 10.4161/cc.25870 10.1073/pnas.0901864106 10.1038/13518 10.1038/35065125 10.1016/j.bbabio.2008.10.005 10.1002/mds.25159 10.1002/cne.20680 10.1007/s13311-013-0206-5 10.1007/s00401-010-0788-5 10.1074/jbc.273.14.7787 10.1126/science.288.5467.874 10.1128/jvi.68.4.2521-2528.1994 10.1097/00005072-198511000-00003 10.1074/jbc.M112.445148 10.1523/JNEUROSCI.23-28-09418.2003 10.1523/JNEUROSCI.23-09-03597.2003 10.1038/emboj.2013.133 10.1212/WNL.38.3.341 10.1101/gad.13.3.239 10.1038/sj.onc.1207637 10.1093/nar/gkt1041 10.1093/emboj/16.23.6914 10.1038/40901 10.1074/jbc.M410210200 10.1038/s41419-018-0508-y 10.1073/pnas.1303829110 10.4161/cc.3.12.1318 10.1136/gutjnl-2015-310382 10.4161/cc.6.14.4503 10.1158/0008-5472.CAN-04-3835 10.1038/cdd.2011.196 10.1038/s41388-019-0675-z 10.1093/hmg/ddn067 10.1073/pnas.100110097 10.1111/acel.12679 10.1073/pnas.0502878102 10.1016/0092-8674(93)90585-E 10.1016/j.nbd.2010.11.018 10.1006/nbdi.2001.0385 10.1016/S0962-8924(99)01609-8 10.1016/j.neuron.2005.06.005 10.1038/nn884 10.1073/pnas.0606373103 10.1038/nrn1386 10.1074/jbc.275.21.16202 10.1093/hmg/8.3.397 10.1016/S0092-8674(00)81369-0 10.1016/S0021-9258(19)61427-4 10.1128/jvi.67.4.2168-2174.1993 10.1093/hmg/9.19.2799 10.1080/15548627.2017.1393130 10.1007/s12035-015-9214-2 10.4161/cc.24128 10.1038/sj.onc.1207411 10.1016/S0092-8674(00)00009-X 10.1126/science.1056784 10.1016/j.biocel.2020.105715 10.1093/hmg/ddq285 10.1007/s00401-017-1732-8 10.1093/hmg/ddv052 10.1523/JNEUROSCI.0106-08.2008 10.1016/j.canlet.2014.11.028 10.1093/hmg/ddm064 10.1016/S0014-5793(00)02368-1 10.1074/jbc.M006226200 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Ltd. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.pneurobio.2021.102110 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-5118 |
EndPage | 102110 |
ExternalDocumentID | PMC8364511 34166773 10_1016_j_pneurobio_2021_102110 S0301008221001246 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS109537 – fundername: NIA NIH HHS grantid: R01 AG034156 – fundername: NIA NIH HHS grantid: RF1 AG054156 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1CY 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5RE 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K TEORI WUQ ZA5 ZGI ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c475t-a52d86d632f6e152e27ab6780eacdc29a894cd9a56187b94fbfae9f51b3e64a03 |
IEDL.DBID | .~1 |
ISSN | 0301-0082 1873-5118 |
IngestDate | Thu Aug 21 13:52:12 EDT 2025 Mon Jul 21 11:32:10 EDT 2025 Mon Jul 21 05:24:07 EDT 2025 Tue Jul 01 02:40:21 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Fri Feb 23 02:43:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | XIAP Mitochondria Huntington’s disease Neurodegeneration p53 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-a52d86d632f6e152e27ab6780eacdc29a894cd9a56187b94fbfae9f51b3e64a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact: Hoon Ryu, Ph.D. |
ORCID | 0000-0002-6624-0213 0000-0001-7282-9393 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0301008221001246 |
PMID | 34166773 |
PQID | 2545604040 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8364511 proquest_miscellaneous_2545604040 pubmed_primary_34166773 crossref_citationtrail_10_1016_j_pneurobio_2021_102110 crossref_primary_10_1016_j_pneurobio_2021_102110 elsevier_sciencedirect_doi_10_1016_j_pneurobio_2021_102110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Progress in neurobiology |
PublicationTitleAlternate | Prog Neurobiol |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Huntington’s Disease Collaborative Research Group (bib0115) 1993; 72 Zhao, Yu, Hou, Dong, Zhang, Chen (bib0395) 2020; 121 Yang, Li, Weissman (bib0380) 2000; 23 Poetsch, Ebner, Deszcz, Bachtrog, Stephani, Díaz (bib0240) 2018 Schilling, Jinnah, Gonzales, Coonfield, Kim, Wood (bib0285) 2001; 8 Gardian, Browne, Choi, Klivenyi, Ryu, Gregorio (bib0080) 2005; 280 Kim, Jeon, Cheong, Kim, Ryu, Seo (bib0130) 2016; 53 Vaughn, Deshmukh (bib0355) 2007; 14 Vonsattel, Myers, Stevens, Ferrante, Bird, Richardson (bib0365) 1985; 44 Takahashi, Deveraux, Tamm, Welsh, Assa-Munt, Salvesen (bib0335) 1998; 273 Goffredo, Rigamonti, Tartari, Valenza, Catteneo (bib0085) 2005; 52 Stack, Kubilus, Smith, Cormier, Del Signore, Guelin (bib0300) 2005; 490 Guo, Rudow, Pletnikova, Codispoti, Orr, Crain (bib0095) 2013; 27 Miller (bib0210) 1999; 9 Hwang, Han, Kim, Min, Kowall, Yang (bib0120) 2014; 42 Mihara, Moll (bib0205) 2003; 234 Birnbaum, Clem, Miller (bib0020) 1994; 68 Roy, Deveraux, Takahashi, Salvesen, Reed (bib0245) 1997; 16 Heng, Duong, Albin, Tallaksen-Greene, Hunter, Lesort (bib0100) 2010; 19 Stack, Del Signore, Matson, Goodrich, Markey, Cormier (bib0305) 2007; 16 Lee, Hong, Jeon, Hwang, Kim, Seon (bib0145) 2012; 19 Huang, Joazeiro, Bonfoco, Kamada, Leverson, Hunter (bib0105) 2000; 275 Sun, Cai, Gunasekera, Meadows, Wang, Chen (bib0315) 1999; 401 Suzuki, Nakabayashi, Takahashi (bib0330) 2001; 98 Mangiarini, Sathasivam, Seller, Cozens, Harper, Hetherington (bib0185) 1996; 87 Ryu, Lee, Hagerty, Soh, McAlpin, Cormier (bib0260) 2006; 103 Marchenko, Wolff, Erster, Becker, Moll (bib0200) 2007; 26 Schilling, Becher, Sharp, Jinnah, Duan, Kotzuk (bib0280) 1999; 8 Schwerd, Pandey, Yang, Bagola, Jameson, Jung (bib0290) 2017; 66 Luthi-Carter, Strand, Peters, Solano, Hollingsworth, Menon (bib0175) 2000; 9 Pfisterer, Kirkeby, Torper, Wood, Nelander, Dufour (bib0235) 2011; 108 Sun, Shi, Li, Yu, Liang, Zhang (bib0325) 2009; 106 Yang, Fang, Jensen, Weissman, Ashwell (bib0375) 2000; 288 Bae, Xu, Igarashi, Fujimuro, Agrawal, Taya (bib0005) 2005; 47 Ryu, Lee, Impey, Ratan, Ferrante (bib0255) 2005; 102 Crook, Clem, Miller (bib0035) 1993; 67 Sun, Cai, Meadows, Xu, Gunasekera, Herrmann (bib0320) 2000; 275 Bergeaud, Mathieu, Guillaume, Moll, Mignotte, Le Floch (bib0015) 2013; 12 Choudhury, Kolukula, Preet, Albanese, Avantaggiati (bib0030) 2013; 12 Vaseva, Moll (bib0350) 2009; 1787 Ferrante, Kubilus, Lee, Ryu, Beesen, Zucker (bib0070) 2003; 23 Verhagen, Ekert, Pakusch, Silke, Connolly, Reid (bib0360) 2000; 102 Sansome, Zaika, Marchenko, Moll (bib0270) 2001; 488 Marchenko, Moll (bib0190) 2007; 6 Nucifora, Sasaki, Peters, Huang, Cooper, Yamada (bib0220) 2001; 291 Du, Fang, Li, Li, Wang (bib0060) 2000; 102 Lee, Kim, Liu, Hwang, Hyeon, Im (bib0160) 2018; 17 Erster, Moll (bib0065) 2004; 3 Lee, Kosaras, Del Signore, Cormier, McKee, Ratan (bib0140) 2011; 121 Sawa, Wiegand, Cooper, Margolis, Sharp, Lawler (bib0275) 1999; 5 Ye, Zhang, Miao, Yao (bib0385) 2015; 357 Zhao, Chaiswing, Velez, Batinic-Haberle, Colburn, Oberley (bib0390) 2005; 65 Beal, Ferrante (bib0010) 2004; 5 Deveraux, Reed (bib0045) 1999; 13 Huang, Wu, Mei, Wu (bib0110) 2013; 32 Fu, Sun, Lu (bib0075) 2018; 14 Panov, Gutekunst, Leavitt, Hayden, Burke, Strittmatter (bib0230) 2002; 5 Steffan, Kazantsev, Spasic-Boskovic, Greenwald, Zhu, Gohler (bib0310) 2000; 97 Myers, Vonsattel, Stevens, Cupples, Richardson, Martin (bib0215) 1988; 38 Sadri-Vakili, Cha (bib0265) 2006; 2 Trettel, Rigamonti, Hilditch-Maguire, Wheeler, Sharp, Persichetti (bib0345) 2000; 9 Carter, Mak, Schober, Koller, Pinilla, Vassilev (bib0025) 2010; 115 Ryu, Lee, Zaman, Ross, Flemington, Neve (bib0250) 2003; 23 Lee, Hwang, Kim, Lee, Hyeon, Lee (bib0155) 2017; 134 Marchenko, Zaika, Moll (bib0195) 2000; 275 Orr, Li, Wang, Li, Wang, Rong (bib0225) 2008; 28 Deveraux, Roy, Stennicke, Van Arsdale, Zhou, Srinivasula (bib0055) 1998; 17 Kim, Moody, Edgerly, Bordiuk, Cormier, Smith (bib0125) 2010; 19 Wang, Xu, Yuan, Jia, Niu, Liu (bib0370) 2019; 38 Lee, Hagerty, Cormier, Kung, Ferrante, Ryu (bib0135) 2008; 17 Gradzka, Thomas, Kretz, Haimovici, Vasilikos, Wong (bib0090) 2018; 9 Torper, Pfisterer, Wolf, Pereira, Lau, Jakobsson (bib0340) 2013; 110 Li, Li (bib0165) 2011; 43 Lin, Ghislat, Luo, Renna, Siddiqi, Rubinsztein (bib0170) 2015; 24 Mahyar-Roemer, Fritzsche, Wagner, Laue, Roemer (bib0180) 2004; 23 Deveraux, Takahashi, Salvesen, Reed (bib0050) 1997; 388 Lee, Hwang, Kim, Kowall, Ryu (bib0150) 2013; 10 Srinivasula, Hegde, Saleh, Datta, Shiozaki, Chai (bib0295) 2001; 410 Dai, Shi, Chen, Iqbal, Liu, Gong (bib0040) 2013; 288 Vonsattel (10.1016/j.pneurobio.2021.102110_bib0365) 1985; 44 Stack (10.1016/j.pneurobio.2021.102110_bib0305) 2007; 16 Yang (10.1016/j.pneurobio.2021.102110_bib0375) 2000; 288 Sun (10.1016/j.pneurobio.2021.102110_bib0325) 2009; 106 Deveraux (10.1016/j.pneurobio.2021.102110_bib0055) 1998; 17 Sun (10.1016/j.pneurobio.2021.102110_bib0320) 2000; 275 Marchenko (10.1016/j.pneurobio.2021.102110_bib0190) 2007; 6 Huang (10.1016/j.pneurobio.2021.102110_bib0105) 2000; 275 Bae (10.1016/j.pneurobio.2021.102110_bib0005) 2005; 47 Verhagen (10.1016/j.pneurobio.2021.102110_bib0360) 2000; 102 Hwang (10.1016/j.pneurobio.2021.102110_bib0120) 2014; 42 Li (10.1016/j.pneurobio.2021.102110_bib0165) 2011; 43 Zhao (10.1016/j.pneurobio.2021.102110_bib0390) 2005; 65 Du (10.1016/j.pneurobio.2021.102110_bib0060) 2000; 102 Ryu (10.1016/j.pneurobio.2021.102110_bib0250) 2003; 23 Stack (10.1016/j.pneurobio.2021.102110_bib0300) 2005; 490 Mihara (10.1016/j.pneurobio.2021.102110_bib0205) 2003; 234 Choudhury (10.1016/j.pneurobio.2021.102110_bib0030) 2013; 12 Huntington’s Disease Collaborative Research Group (10.1016/j.pneurobio.2021.102110_bib0115) 1993; 72 Myers (10.1016/j.pneurobio.2021.102110_bib0215) 1988; 38 Lin (10.1016/j.pneurobio.2021.102110_bib0170) 2015; 24 Torper (10.1016/j.pneurobio.2021.102110_bib0340) 2013; 110 Panov (10.1016/j.pneurobio.2021.102110_bib0230) 2002; 5 Srinivasula (10.1016/j.pneurobio.2021.102110_bib0295) 2001; 410 Bergeaud (10.1016/j.pneurobio.2021.102110_bib0015) 2013; 12 Sun (10.1016/j.pneurobio.2021.102110_bib0315) 1999; 401 Heng (10.1016/j.pneurobio.2021.102110_bib0100) 2010; 19 Miller (10.1016/j.pneurobio.2021.102110_bib0210) 1999; 9 Mahyar-Roemer (10.1016/j.pneurobio.2021.102110_bib0180) 2004; 23 Beal (10.1016/j.pneurobio.2021.102110_bib0010) 2004; 5 Lee (10.1016/j.pneurobio.2021.102110_bib0155) 2017; 134 Roy (10.1016/j.pneurobio.2021.102110_bib0245) 1997; 16 Ryu (10.1016/j.pneurobio.2021.102110_bib0260) 2006; 103 Yang (10.1016/j.pneurobio.2021.102110_bib0380) 2000; 23 Zhao (10.1016/j.pneurobio.2021.102110_bib0395) 2020; 121 Erster (10.1016/j.pneurobio.2021.102110_bib0065) 2004; 3 Vaseva (10.1016/j.pneurobio.2021.102110_bib0350) 2009; 1787 Lee (10.1016/j.pneurobio.2021.102110_bib0140) 2011; 121 Orr (10.1016/j.pneurobio.2021.102110_bib0225) 2008; 28 Gardian (10.1016/j.pneurobio.2021.102110_bib0080) 2005; 280 Ryu (10.1016/j.pneurobio.2021.102110_bib0255) 2005; 102 Dai (10.1016/j.pneurobio.2021.102110_bib0040) 2013; 288 Marchenko (10.1016/j.pneurobio.2021.102110_bib0195) 2000; 275 Poetsch (10.1016/j.pneurobio.2021.102110_bib0240) 2018 Schilling (10.1016/j.pneurobio.2021.102110_bib0285) 2001; 8 Lee (10.1016/j.pneurobio.2021.102110_bib0145) 2012; 19 Ye (10.1016/j.pneurobio.2021.102110_bib0385) 2015; 357 Crook (10.1016/j.pneurobio.2021.102110_bib0035) 1993; 67 Luthi-Carter (10.1016/j.pneurobio.2021.102110_bib0175) 2000; 9 Nucifora (10.1016/j.pneurobio.2021.102110_bib0220) 2001; 291 Suzuki (10.1016/j.pneurobio.2021.102110_bib0330) 2001; 98 Steffan (10.1016/j.pneurobio.2021.102110_bib0310) 2000; 97 Deveraux (10.1016/j.pneurobio.2021.102110_bib0045) 1999; 13 Lee (10.1016/j.pneurobio.2021.102110_bib0135) 2008; 17 Carter (10.1016/j.pneurobio.2021.102110_bib0025) 2010; 115 Birnbaum (10.1016/j.pneurobio.2021.102110_bib0020) 1994; 68 Trettel (10.1016/j.pneurobio.2021.102110_bib0345) 2000; 9 Mangiarini (10.1016/j.pneurobio.2021.102110_bib0185) 1996; 87 Sansome (10.1016/j.pneurobio.2021.102110_bib0270) 2001; 488 Huang (10.1016/j.pneurobio.2021.102110_bib0110) 2013; 32 Schwerd (10.1016/j.pneurobio.2021.102110_bib0290) 2017; 66 Fu (10.1016/j.pneurobio.2021.102110_bib0075) 2018; 14 Takahashi (10.1016/j.pneurobio.2021.102110_bib0335) 1998; 273 Kim (10.1016/j.pneurobio.2021.102110_bib0125) 2010; 19 Lee (10.1016/j.pneurobio.2021.102110_bib0150) 2013; 10 Guo (10.1016/j.pneurobio.2021.102110_bib0095) 2013; 27 Ferrante (10.1016/j.pneurobio.2021.102110_bib0070) 2003; 23 Sadri-Vakili (10.1016/j.pneurobio.2021.102110_bib0265) 2006; 2 Gradzka (10.1016/j.pneurobio.2021.102110_bib0090) 2018; 9 Schilling (10.1016/j.pneurobio.2021.102110_bib0280) 1999; 8 Pfisterer (10.1016/j.pneurobio.2021.102110_bib0235) 2011; 108 Kim (10.1016/j.pneurobio.2021.102110_bib0130) 2016; 53 Wang (10.1016/j.pneurobio.2021.102110_bib0370) 2019; 38 Lee (10.1016/j.pneurobio.2021.102110_bib0160) 2018; 17 Sawa (10.1016/j.pneurobio.2021.102110_bib0275) 1999; 5 Deveraux (10.1016/j.pneurobio.2021.102110_bib0050) 1997; 388 Marchenko (10.1016/j.pneurobio.2021.102110_bib0200) 2007; 26 Vaughn (10.1016/j.pneurobio.2021.102110_bib0355) 2007; 14 Goffredo (10.1016/j.pneurobio.2021.102110_bib0085) 2005; 52 |
References_xml | – volume: 234 start-page: 203 year: 2003 end-page: 209 ident: bib0205 article-title: Detection of mitochondrial localization of p53 publication-title: Methods Mol. Biol. – volume: 8 start-page: 405 year: 2001 end-page: 418 ident: bib0285 article-title: Distinct behavioral and neuropathological abnormalities in transgenic mouse models of HD and DRPLA publication-title: Neurobiol. Dis. – volume: 115 start-page: 306 year: 2010 end-page: 314 ident: bib0025 article-title: Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML publication-title: Blood – volume: 288 start-page: 23875 year: 2013 end-page: 23883 ident: bib0040 article-title: Inhibition of protein synthesis alters protein degradation through activation of protein kinase B (AKT) publication-title: J. Biol. Chem. – volume: 5 start-page: 731 year: 2002 end-page: 736 ident: bib0230 article-title: Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines publication-title: Nat. Neurosci. – volume: 2 start-page: 330 year: 2006 end-page: 338 ident: bib0265 article-title: Mechanisms of disease: histone modifications in Huntington’s disease publication-title: Nat. Clin. Pract. Neurol. – volume: 19 start-page: 3702 year: 2010 end-page: 3720 ident: bib0100 article-title: Early autophagic response in a novel knock-in model of Huntington disease publication-title: Hum. Mol. Genet. – volume: 410 start-page: 112 year: 2001 end-page: 116 ident: bib0295 article-title: A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis publication-title: Nature – volume: 357 start-page: 196 year: 2015 end-page: 205 ident: bib0385 article-title: Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer publication-title: Cancer Lett. – year: 2018 ident: bib0240 article-title: The anti-apoptosis ubiquitin E3 ligase XIAP promotes autophagosome-lysosome fusion during autophagy publication-title: bioRxiv – volume: 68 start-page: 2521 year: 1994 end-page: 2528 ident: bib0020 article-title: An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs publication-title: J. Virol. – volume: 87 start-page: 493 year: 1996 end-page: 506 ident: bib0185 article-title: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice publication-title: Cell – volume: 28 start-page: 2783 year: 2008 end-page: 2792 ident: bib0225 article-title: N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking publication-title: J. Neurosci. – volume: 106 start-page: 10195 year: 2009 end-page: 10200 ident: bib0325 article-title: JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 19 start-page: 3919 year: 2010 end-page: 3935 ident: bib0125 article-title: Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease publication-title: Hum. Mol. Genet. – volume: 8 start-page: 397 year: 1999 end-page: 407 ident: bib0280 article-title: Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin publication-title: Hum. Mol. Genet. – volume: 288 start-page: 874 year: 2000 end-page: 877 ident: bib0375 article-title: Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli publication-title: Science – volume: 65 start-page: 3745 year: 2005 end-page: 3750 ident: bib0390 article-title: p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase publication-title: Cancer Res. – volume: 67 start-page: 2168 year: 1993 end-page: 2174 ident: bib0035 article-title: An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif publication-title: J. Virol. – volume: 52 start-page: 140 year: 2005 end-page: 150 ident: bib0085 article-title: Prevention of cytosolic IAPs degradation : a potential pharmacological target in Huntington’s disease publication-title: Pharmacol. Res. – volume: 12 start-page: 1022 year: 2013 end-page: 1029 ident: bib0030 article-title: Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? publication-title: Cell Cycle – volume: 121 year: 2020 ident: bib0395 article-title: Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells publication-title: Int. J. Biochem. Cell Biol. – volume: 103 start-page: 19176 year: 2006 end-page: 19181 ident: bib0260 article-title: ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 16 start-page: 6914 year: 1997 end-page: 6925 ident: bib0245 article-title: The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases publication-title: EMBO J. – volume: 66 start-page: 1060 year: 2017 end-page: 1073 ident: bib0290 article-title: Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn’s disease publication-title: Gut – volume: 5 start-page: 1194 year: 1999 end-page: 1198 ident: bib0275 article-title: Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization publication-title: Nat. Med. – volume: 12 start-page: 2781 year: 2013 end-page: 2793 ident: bib0015 article-title: Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F(1)F0-ATP synthase publication-title: Cell Cycle – volume: 3 start-page: 1492 year: 2004 end-page: 1495 ident: bib0065 article-title: Stress-induced p53 runs a direct mitochondrial death program: its role in physiologic and pathophysiologic stress responses in vivo publication-title: Cell Cycle – volume: 9 start-page: 1259 year: 2000 end-page: 12571 ident: bib0175 article-title: Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease publication-title: Hum. Mol. Genet. – volume: 102 start-page: 43 year: 2000 end-page: 53 ident: bib0360 article-title: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins publication-title: Cell – volume: 401 start-page: 818 year: 1999 end-page: 822 ident: bib0315 article-title: NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP publication-title: Nature – volume: 9 start-page: 529 year: 2018 ident: bib0090 article-title: Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes publication-title: Cell Death Dis. – volume: 108 start-page: 10343 year: 2011 end-page: 10348 ident: bib0235 article-title: Direct conversion of human fibroblasts to dopaminergic neurons publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 134 start-page: 729 year: 2017 end-page: 748 ident: bib0155 article-title: Remodeling of heterochromatin structure slows neuropathological progression and prolongs survival in an animal model of Huntington’s disease publication-title: Acta Neuropathol. – volume: 275 start-page: 16202 year: 2000 end-page: 16212 ident: bib0195 article-title: Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling publication-title: J. Biol. Chem. – volume: 9 start-page: 2799 year: 2000 end-page: 2809 ident: bib0345 article-title: Dominant phenotypes produced by the HD mutation in STHdh (Q111) striatal cell publication-title: Hum. Mol. Genet. – volume: 47 start-page: 29 year: 2005 end-page: 41 ident: bib0005 article-title: p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease publication-title: Neuron – volume: 24 start-page: 2899 year: 2015 end-page: 2913 ident: bib0170 article-title: XIAP and cIAP1 amplifications induce Beclin 1-dependent autophagy through NFκB activation publication-title: Hum. Mol. Genet. – volume: 23 start-page: 3597 year: 2003 end-page: 3606 ident: bib0250 article-title: Sp1 and Sp3 are oxidative stress-inducible, anti-death transcription factors in cortical neurons publication-title: J. Neurosci. – volume: 110 start-page: 7038 year: 2013 end-page: 7043 ident: bib0340 article-title: Generation of induced neurons via direct conversion in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 102 start-page: 33 year: 2000 end-page: 42 ident: bib0060 article-title: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition publication-title: Cell – volume: 280 start-page: 556 year: 2005 end-page: 563 ident: bib0080 article-title: Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s Disease publication-title: J. Biol. Chem. – volume: 121 start-page: 487 year: 2011 end-page: 498 ident: bib0140 article-title: Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice publication-title: Acta Neuropathol. – volume: 19 start-page: 1109 year: 2012 end-page: 1116 ident: bib0145 article-title: ATRX induction by mutant huntingtin via Cdx-2 modulates heterochromatin condensation and pathology in Huntington’s disease publication-title: Cell Death Differ. – volume: 273 start-page: 7787 year: 1998 end-page: 7790 ident: bib0335 article-title: A single BIR domain of XIAP sufficient for inhibiting caspases publication-title: J. Biol. Chem. – volume: 9 start-page: 323 year: 1999 end-page: 328 ident: bib0210 article-title: An exegesis of IAPs: salvation and surprises from BIR motifs publication-title: Trends Cell Biol. – volume: 1787 start-page: 414 year: 2009 end-page: 420 ident: bib0350 article-title: The mitochondrial p53 pathway publication-title: Biochim. Biophys. Acta – volume: 44 start-page: 559 year: 1985 end-page: 577 ident: bib0365 article-title: Neuropathological classification of Huntington’s disease publication-title: J. Neuropathol. Exp. Neurol. – volume: 14 start-page: 973 year: 2007 end-page: 981 ident: bib0355 article-title: Essential post mitochondrial function of p53 uncovered in DNA damage-induced apoptosis in neurons publication-title: Cell Death Differ. – volume: 488 start-page: 110 year: 2001 end-page: 115 ident: bib0270 article-title: Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells publication-title: FEBS Lett. – volume: 490 start-page: 354 year: 2005 end-page: 370 ident: bib0300 article-title: Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington’s disease transgenic mice publication-title: J. Comp. Neurol. – volume: 275 start-page: 33777 year: 2000 end-page: 33781 ident: bib0320 article-title: NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP publication-title: J. Biol. Chem. – volume: 43 start-page: 4 year: 2011 end-page: 8 ident: bib0165 article-title: Proteasomal dysfunction in aging and Huntington disease publication-title: Neurobiol. Dis. – volume: 38 start-page: 341 year: 1988 end-page: 347 ident: bib0215 article-title: Clinical and neuropathologic assessment of severity in Huntington’s disease publication-title: Neurology – volume: 38 start-page: 3458 year: 2019 end-page: 3474 ident: bib0370 article-title: Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab publication-title: Oncogene – volume: 291 start-page: 2423 year: 2001 end-page: 2428 ident: bib0220 article-title: Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity publication-title: Science – volume: 6 start-page: 1718 year: 2007 end-page: 1723 ident: bib0190 article-title: The role of ubiquitination in the direct mitochondrial death program of p53 publication-title: Cell Cycle – volume: 32 start-page: 2204 year: 2013 end-page: 2216 ident: bib0110 article-title: XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling publication-title: EMBO J. – volume: 98 start-page: 8662 year: 2001 end-page: 8667 ident: bib0330 article-title: Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 13 start-page: 239 year: 1999 end-page: 252 ident: bib0045 article-title: IAP family proteins--suppressors of apoptosis publication-title: Genes Dev. – volume: 23 start-page: 6226 year: 2004 end-page: 6236 ident: bib0180 article-title: Mitochondrial p53 levels parallel total p53 levels independent of stress response in human colorectal carcinoma and glioblastoma cells publication-title: Oncogene – volume: 388 start-page: 300 year: 1997 end-page: 304 ident: bib0050 article-title: X-linked IAP is a direct inhibitor of cell-death proteases publication-title: Nature – volume: 53 start-page: 2276 year: 2016 end-page: 2286 ident: bib0130 article-title: Neuroanatomical visualization of the impaired striatal connectivity in Huntington’s disease publication-title: Mol. Neurobiol. – volume: 275 start-page: 26661 year: 2000 end-page: 26664 ident: bib0105 article-title: The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7 publication-title: J. Biol. Chem. – volume: 17 year: 2018 ident: bib0160 article-title: SIRT3 deregulation leads to mitochondrial dysfunction and neuronal damage via p53 activation in Alzheimer’s disease publication-title: Aging Cell – volume: 5 start-page: 373 year: 2004 end-page: 384 ident: bib0010 article-title: Experimental therapeutics in transgenic mouse models of Huntington’s disease publication-title: Nat. Rev. Neurosci. – volume: 97 start-page: 6763 year: 2000 end-page: 6768 ident: bib0310 article-title: The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 9418 year: 2003 end-page: 9427 ident: bib0070 article-title: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice publication-title: J. Neurosci. – volume: 17 start-page: 1774 year: 2008 end-page: 1782 ident: bib0135 article-title: Monoallele deletion of CBP leads to pericentromeric heterochromatin condensation through ESET expression and histone H3 (K9) methylation publication-title: Hum. Mol. Genet. – volume: 23 start-page: 2096 year: 2000 end-page: 2106 ident: bib0380 article-title: Regulating the p53 system through ubiquitination publication-title: Oncogene – volume: 102 start-page: 13915 year: 2005 end-page: 13920 ident: bib0255 article-title: Antioxidants modulate mitochondrial protein kinase A and increase CREB binding to D-Loop DNA of the mitochondrial genome in neurons publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 169 year: 2018 end-page: 170 ident: bib0075 article-title: HIPK3 modulates autophagy and HTT protein levels in neuronal and mouse models of Huntington disease publication-title: Autophagy – volume: 17 start-page: 2215 year: 1998 end-page: 2223 ident: bib0055 article-title: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases publication-title: EMBO J. – volume: 26 start-page: 923 year: 2007 end-page: 934 ident: bib0200 article-title: Monoubiquitylation promotes mitochondrial p53 translocation publication-title: EMBO J. – volume: 27 start-page: 1379 year: 2013 end-page: 1386 ident: bib0095 article-title: Striatal neuronal loss correlates with clinical motor impairment in Huntington’s disease publication-title: Mov. Disord. – volume: 72 start-page: 971 year: 1993 end-page: 983 ident: bib0115 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes publication-title: Cell – volume: 42 start-page: 1628 year: 2014 end-page: 1643 ident: bib0120 article-title: ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription publication-title: Nucleic Acids Res. – volume: 10 start-page: 664 year: 2013 end-page: 676 ident: bib0150 article-title: Epigenetic mechanisms of neurodegeneration in Huntington’s disease publication-title: Neurotherapeutics – volume: 16 start-page: 1164 year: 2007 end-page: 1175 ident: bib0305 article-title: Modulation of nucleosome dynamics in Huntington’s Disease publication-title: Hum. Mol. Genet. – volume: 14 start-page: 973 year: 2007 ident: 10.1016/j.pneurobio.2021.102110_bib0355 article-title: Essential post mitochondrial function of p53 uncovered in DNA damage-induced apoptosis in neurons publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402084 – volume: 9 start-page: 1259 year: 2000 ident: 10.1016/j.pneurobio.2021.102110_bib0175 article-title: Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.9.1259 – volume: 108 start-page: 10343 year: 2011 ident: 10.1016/j.pneurobio.2021.102110_bib0235 article-title: Direct conversion of human fibroblasts to dopaminergic neurons publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1105135108 – volume: 102 start-page: 33 year: 2000 ident: 10.1016/j.pneurobio.2021.102110_bib0060 article-title: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition publication-title: Cell doi: 10.1016/S0092-8674(00)00008-8 – volume: 17 start-page: 2215 year: 1998 ident: 10.1016/j.pneurobio.2021.102110_bib0055 article-title: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases publication-title: EMBO J. doi: 10.1093/emboj/17.8.2215 – volume: 26 start-page: 923 issue: 4 year: 2007 ident: 10.1016/j.pneurobio.2021.102110_bib0200 article-title: Monoubiquitylation promotes mitochondrial p53 translocation publication-title: EMBO J. doi: 10.1038/sj.emboj.7601560 – volume: 115 start-page: 306 year: 2010 ident: 10.1016/j.pneurobio.2021.102110_bib0025 article-title: Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML publication-title: Blood doi: 10.1182/blood-2009-03-212563 – volume: 52 start-page: 140 year: 2005 ident: 10.1016/j.pneurobio.2021.102110_bib0085 article-title: Prevention of cytosolic IAPs degradation : a potential pharmacological target in Huntington’s disease publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2005.01.006 – volume: 98 start-page: 8662 year: 2001 ident: 10.1016/j.pneurobio.2021.102110_bib0330 article-title: Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.161506698 – volume: 19 start-page: 3919 year: 2010 ident: 10.1016/j.pneurobio.2021.102110_bib0125 article-title: Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq306 – volume: 401 start-page: 818 year: 1999 ident: 10.1016/j.pneurobio.2021.102110_bib0315 article-title: NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP publication-title: Nature doi: 10.1038/44617 – volume: 2 start-page: 330 year: 2006 ident: 10.1016/j.pneurobio.2021.102110_bib0265 article-title: Mechanisms of disease: histone modifications in Huntington’s disease publication-title: Nat. Clin. Pract. Neurol. doi: 10.1038/ncpneuro0199 – volume: 12 start-page: 2781 year: 2013 ident: 10.1016/j.pneurobio.2021.102110_bib0015 article-title: Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F(1)F0-ATP synthase publication-title: Cell Cycle doi: 10.4161/cc.25870 – volume: 106 start-page: 10195 year: 2009 ident: 10.1016/j.pneurobio.2021.102110_bib0325 article-title: JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0901864106 – volume: 5 start-page: 1194 year: 1999 ident: 10.1016/j.pneurobio.2021.102110_bib0275 article-title: Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization publication-title: Nat. Med. doi: 10.1038/13518 – volume: 410 start-page: 112 year: 2001 ident: 10.1016/j.pneurobio.2021.102110_bib0295 article-title: A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis publication-title: Nature doi: 10.1038/35065125 – volume: 1787 start-page: 414 year: 2009 ident: 10.1016/j.pneurobio.2021.102110_bib0350 article-title: The mitochondrial p53 pathway publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2008.10.005 – volume: 27 start-page: 1379 issue: 11 year: 2013 ident: 10.1016/j.pneurobio.2021.102110_bib0095 article-title: Striatal neuronal loss correlates with clinical motor impairment in Huntington’s disease publication-title: Mov. Disord. doi: 10.1002/mds.25159 – volume: 490 start-page: 354 year: 2005 ident: 10.1016/j.pneurobio.2021.102110_bib0300 article-title: Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington’s disease transgenic mice publication-title: J. Comp. Neurol. doi: 10.1002/cne.20680 – volume: 10 start-page: 664 year: 2013 ident: 10.1016/j.pneurobio.2021.102110_bib0150 article-title: Epigenetic mechanisms of neurodegeneration in Huntington’s disease publication-title: Neurotherapeutics doi: 10.1007/s13311-013-0206-5 – volume: 121 start-page: 487 year: 2011 ident: 10.1016/j.pneurobio.2021.102110_bib0140 article-title: Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice publication-title: Acta Neuropathol. doi: 10.1007/s00401-010-0788-5 – volume: 273 start-page: 7787 year: 1998 ident: 10.1016/j.pneurobio.2021.102110_bib0335 article-title: A single BIR domain of XIAP sufficient for inhibiting caspases publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.14.7787 – volume: 288 start-page: 874 year: 2000 ident: 10.1016/j.pneurobio.2021.102110_bib0375 article-title: Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli publication-title: Science doi: 10.1126/science.288.5467.874 – volume: 68 start-page: 2521 year: 1994 ident: 10.1016/j.pneurobio.2021.102110_bib0020 article-title: An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs publication-title: J. Virol. doi: 10.1128/jvi.68.4.2521-2528.1994 – volume: 44 start-page: 559 year: 1985 ident: 10.1016/j.pneurobio.2021.102110_bib0365 article-title: Neuropathological classification of Huntington’s disease publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-198511000-00003 – volume: 288 start-page: 23875 year: 2013 ident: 10.1016/j.pneurobio.2021.102110_bib0040 article-title: Inhibition of protein synthesis alters protein degradation through activation of protein kinase B (AKT) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.445148 – volume: 23 start-page: 9418 year: 2003 ident: 10.1016/j.pneurobio.2021.102110_bib0070 article-title: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-28-09418.2003 – volume: 23 start-page: 3597 year: 2003 ident: 10.1016/j.pneurobio.2021.102110_bib0250 article-title: Sp1 and Sp3 are oxidative stress-inducible, anti-death transcription factors in cortical neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-09-03597.2003 – volume: 32 start-page: 2204 year: 2013 ident: 10.1016/j.pneurobio.2021.102110_bib0110 article-title: XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling publication-title: EMBO J. doi: 10.1038/emboj.2013.133 – volume: 38 start-page: 341 year: 1988 ident: 10.1016/j.pneurobio.2021.102110_bib0215 article-title: Clinical and neuropathologic assessment of severity in Huntington’s disease publication-title: Neurology doi: 10.1212/WNL.38.3.341 – volume: 13 start-page: 239 year: 1999 ident: 10.1016/j.pneurobio.2021.102110_bib0045 article-title: IAP family proteins--suppressors of apoptosis publication-title: Genes Dev. doi: 10.1101/gad.13.3.239 – volume: 23 start-page: 6226 year: 2004 ident: 10.1016/j.pneurobio.2021.102110_bib0180 article-title: Mitochondrial p53 levels parallel total p53 levels independent of stress response in human colorectal carcinoma and glioblastoma cells publication-title: Oncogene doi: 10.1038/sj.onc.1207637 – volume: 42 start-page: 1628 year: 2014 ident: 10.1016/j.pneurobio.2021.102110_bib0120 article-title: ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1041 – volume: 16 start-page: 6914 year: 1997 ident: 10.1016/j.pneurobio.2021.102110_bib0245 article-title: The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases publication-title: EMBO J. doi: 10.1093/emboj/16.23.6914 – volume: 234 start-page: 203 year: 2003 ident: 10.1016/j.pneurobio.2021.102110_bib0205 article-title: Detection of mitochondrial localization of p53 publication-title: Methods Mol. Biol. – volume: 388 start-page: 300 year: 1997 ident: 10.1016/j.pneurobio.2021.102110_bib0050 article-title: X-linked IAP is a direct inhibitor of cell-death proteases publication-title: Nature doi: 10.1038/40901 – volume: 280 start-page: 556 year: 2005 ident: 10.1016/j.pneurobio.2021.102110_bib0080 article-title: Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s Disease publication-title: J. Biol. Chem. doi: 10.1074/jbc.M410210200 – volume: 9 start-page: 529 year: 2018 ident: 10.1016/j.pneurobio.2021.102110_bib0090 article-title: Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0508-y – volume: 110 start-page: 7038 year: 2013 ident: 10.1016/j.pneurobio.2021.102110_bib0340 article-title: Generation of induced neurons via direct conversion in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1303829110 – volume: 3 start-page: 1492 year: 2004 ident: 10.1016/j.pneurobio.2021.102110_bib0065 article-title: Stress-induced p53 runs a direct mitochondrial death program: its role in physiologic and pathophysiologic stress responses in vivo publication-title: Cell Cycle doi: 10.4161/cc.3.12.1318 – volume: 66 start-page: 1060 year: 2017 ident: 10.1016/j.pneurobio.2021.102110_bib0290 article-title: Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn’s disease publication-title: Gut doi: 10.1136/gutjnl-2015-310382 – volume: 6 start-page: 1718 year: 2007 ident: 10.1016/j.pneurobio.2021.102110_bib0190 article-title: The role of ubiquitination in the direct mitochondrial death program of p53 publication-title: Cell Cycle doi: 10.4161/cc.6.14.4503 – volume: 65 start-page: 3745 year: 2005 ident: 10.1016/j.pneurobio.2021.102110_bib0390 article-title: p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-3835 – volume: 19 start-page: 1109 year: 2012 ident: 10.1016/j.pneurobio.2021.102110_bib0145 article-title: ATRX induction by mutant huntingtin via Cdx-2 modulates heterochromatin condensation and pathology in Huntington’s disease publication-title: Cell Death Differ. doi: 10.1038/cdd.2011.196 – year: 2018 ident: 10.1016/j.pneurobio.2021.102110_bib0240 article-title: The anti-apoptosis ubiquitin E3 ligase XIAP promotes autophagosome-lysosome fusion during autophagy publication-title: bioRxiv – volume: 38 start-page: 3458 year: 2019 ident: 10.1016/j.pneurobio.2021.102110_bib0370 article-title: Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab publication-title: Oncogene doi: 10.1038/s41388-019-0675-z – volume: 17 start-page: 1774 year: 2008 ident: 10.1016/j.pneurobio.2021.102110_bib0135 article-title: Monoallele deletion of CBP leads to pericentromeric heterochromatin condensation through ESET expression and histone H3 (K9) methylation publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn067 – volume: 97 start-page: 6763 year: 2000 ident: 10.1016/j.pneurobio.2021.102110_bib0310 article-title: The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.100110097 – volume: 17 year: 2018 ident: 10.1016/j.pneurobio.2021.102110_bib0160 article-title: SIRT3 deregulation leads to mitochondrial dysfunction and neuronal damage via p53 activation in Alzheimer’s disease publication-title: Aging Cell doi: 10.1111/acel.12679 – volume: 102 start-page: 13915 year: 2005 ident: 10.1016/j.pneurobio.2021.102110_bib0255 article-title: Antioxidants modulate mitochondrial protein kinase A and increase CREB binding to D-Loop DNA of the mitochondrial genome in neurons publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0502878102 – volume: 72 start-page: 971 year: 1993 ident: 10.1016/j.pneurobio.2021.102110_bib0115 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes publication-title: Cell doi: 10.1016/0092-8674(93)90585-E – volume: 43 start-page: 4 year: 2011 ident: 10.1016/j.pneurobio.2021.102110_bib0165 article-title: Proteasomal dysfunction in aging and Huntington disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2010.11.018 – volume: 8 start-page: 405 year: 2001 ident: 10.1016/j.pneurobio.2021.102110_bib0285 article-title: Distinct behavioral and neuropathological abnormalities in transgenic mouse models of HD and DRPLA publication-title: Neurobiol. Dis. doi: 10.1006/nbdi.2001.0385 – volume: 9 start-page: 323 year: 1999 ident: 10.1016/j.pneurobio.2021.102110_bib0210 article-title: An exegesis of IAPs: salvation and surprises from BIR motifs publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(99)01609-8 – volume: 47 start-page: 29 year: 2005 ident: 10.1016/j.pneurobio.2021.102110_bib0005 article-title: p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease publication-title: Neuron doi: 10.1016/j.neuron.2005.06.005 – volume: 5 start-page: 731 year: 2002 ident: 10.1016/j.pneurobio.2021.102110_bib0230 article-title: Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines publication-title: Nat. Neurosci. doi: 10.1038/nn884 – volume: 103 start-page: 19176 year: 2006 ident: 10.1016/j.pneurobio.2021.102110_bib0260 article-title: ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0606373103 – volume: 5 start-page: 373 year: 2004 ident: 10.1016/j.pneurobio.2021.102110_bib0010 article-title: Experimental therapeutics in transgenic mouse models of Huntington’s disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1386 – volume: 275 start-page: 16202 year: 2000 ident: 10.1016/j.pneurobio.2021.102110_bib0195 article-title: Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.21.16202 – volume: 8 start-page: 397 year: 1999 ident: 10.1016/j.pneurobio.2021.102110_bib0280 article-title: Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/8.3.397 – volume: 87 start-page: 493 year: 1996 ident: 10.1016/j.pneurobio.2021.102110_bib0185 article-title: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice publication-title: Cell doi: 10.1016/S0092-8674(00)81369-0 – volume: 275 start-page: 26661 year: 2000 ident: 10.1016/j.pneurobio.2021.102110_bib0105 article-title: The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)61427-4 – volume: 67 start-page: 2168 year: 1993 ident: 10.1016/j.pneurobio.2021.102110_bib0035 article-title: An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif publication-title: J. Virol. doi: 10.1128/jvi.67.4.2168-2174.1993 – volume: 9 start-page: 2799 year: 2000 ident: 10.1016/j.pneurobio.2021.102110_bib0345 article-title: Dominant phenotypes produced by the HD mutation in STHdh (Q111) striatal cell publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.19.2799 – volume: 14 start-page: 169 year: 2018 ident: 10.1016/j.pneurobio.2021.102110_bib0075 article-title: HIPK3 modulates autophagy and HTT protein levels in neuronal and mouse models of Huntington disease publication-title: Autophagy doi: 10.1080/15548627.2017.1393130 – volume: 53 start-page: 2276 year: 2016 ident: 10.1016/j.pneurobio.2021.102110_bib0130 article-title: Neuroanatomical visualization of the impaired striatal connectivity in Huntington’s disease publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9214-2 – volume: 12 start-page: 1022 issue: 7 year: 2013 ident: 10.1016/j.pneurobio.2021.102110_bib0030 article-title: Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? publication-title: Cell Cycle doi: 10.4161/cc.24128 – volume: 23 start-page: 2096 year: 2000 ident: 10.1016/j.pneurobio.2021.102110_bib0380 article-title: Regulating the p53 system through ubiquitination publication-title: Oncogene doi: 10.1038/sj.onc.1207411 – volume: 102 start-page: 43 year: 2000 ident: 10.1016/j.pneurobio.2021.102110_bib0360 article-title: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins publication-title: Cell doi: 10.1016/S0092-8674(00)00009-X – volume: 291 start-page: 2423 year: 2001 ident: 10.1016/j.pneurobio.2021.102110_bib0220 article-title: Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity publication-title: Science doi: 10.1126/science.1056784 – volume: 121 year: 2020 ident: 10.1016/j.pneurobio.2021.102110_bib0395 article-title: Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2020.105715 – volume: 19 start-page: 3702 year: 2010 ident: 10.1016/j.pneurobio.2021.102110_bib0100 article-title: Early autophagic response in a novel knock-in model of Huntington disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq285 – volume: 134 start-page: 729 year: 2017 ident: 10.1016/j.pneurobio.2021.102110_bib0155 article-title: Remodeling of heterochromatin structure slows neuropathological progression and prolongs survival in an animal model of Huntington’s disease publication-title: Acta Neuropathol. doi: 10.1007/s00401-017-1732-8 – volume: 24 start-page: 2899 year: 2015 ident: 10.1016/j.pneurobio.2021.102110_bib0170 article-title: XIAP and cIAP1 amplifications induce Beclin 1-dependent autophagy through NFκB activation publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv052 – volume: 28 start-page: 2783 year: 2008 ident: 10.1016/j.pneurobio.2021.102110_bib0225 article-title: N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0106-08.2008 – volume: 357 start-page: 196 year: 2015 ident: 10.1016/j.pneurobio.2021.102110_bib0385 article-title: Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2014.11.028 – volume: 16 start-page: 1164 year: 2007 ident: 10.1016/j.pneurobio.2021.102110_bib0305 article-title: Modulation of nucleosome dynamics in Huntington’s Disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm064 – volume: 488 start-page: 110 year: 2001 ident: 10.1016/j.pneurobio.2021.102110_bib0270 article-title: Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)02368-1 – volume: 275 start-page: 33777 year: 2000 ident: 10.1016/j.pneurobio.2021.102110_bib0320 article-title: NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006226200 |
SSID | ssj0006303 |
Score | 2.4303157 |
Snippet | [Display omitted]
•This study found a new molecular mechanism that XIAP directly interacts with p53 and modulates p53 stability in medium spiny neuons.•XIAP... Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is... Mitochondrial dysfunction is associated with neuronal damage in Huntington’s disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102110 |
SubjectTerms | Animals Corpus Striatum Disease Models, Animal Humans Huntington Disease Huntington’s disease Mice Mice, Transgenic Mitochondria Neurodegeneration p53 Tumor Suppressor Protein p53 - genetics X-Linked Inhibitor of Apoptosis Protein - genetics XIAP |
Title | Dysfunction of X-linked inhibitor of apoptosis protein (XIAP) triggers neuropathological processes via altered p53 activity in Huntington’s disease |
URI | https://dx.doi.org/10.1016/j.pneurobio.2021.102110 https://www.ncbi.nlm.nih.gov/pubmed/34166773 https://www.proquest.com/docview/2545604040 https://pubmed.ncbi.nlm.nih.gov/PMC8364511 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5V5cIFAeUnFKpFQggOJvHuem1ziwJVCqiqgEq5WftLjaht1S5SL4iX4MDr8STMrO1AAKkHTlE2u8kmMzvzbWbmG0IeeW-UEtks0obbSHhmIs0Ni7yV1sTKMBjBbItDuTwWr1bJaossxloYTKscbH9v04O1Hkamw685bcpy-g7BfCAsRxohJpB2W4gUtfzZl19pHpLP-hbJeG2G2Rs5Xk0gjdQlVgGyGGkMYiyl_beH-huB_plI-Ztn2r9Org2Qks77Xd8gW666SXbmFVynTy_oYxqSPMO_5zvk24uLFl0ZioPWnq4ijOA6S8vqpNRwus9wVDV109Vt2dJA41BW9MnqYH70lHZwl_8AgJGGb4TdjEfbSZu-4sC19HOpaAjCw9s2CadYOoEdKuAz6LLvTAGA88fX7y0dwkO3yPH-y_eLZTR0ZoiMSJMuUgmzmbSSMy8dIADHUqXB7c3AjFvDcpXlwthcATjLUp0Lr71yuU9izZ0UasZvk-2qrtxdQnMeS-Wd1TqDy4rjWWq1zIx0iVOZiNWEyFEahRloy7F7xqdizE_7WKzFWKAYi16MEzJbL2x65o7LlzwfxV1sKGEB_uXyxQ9HBSngiGLcRVWuPm8LhigVjKWAOXd6hVnvCECElGnKJyTdUKX1BKT_3nylKk8CDXiGEeQ4vvc_m94lV_FZnzR3n2x3Z-fuAaCsTu-FY7RHrswXb98c4ePB6-XhT4aZMVE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKOcAFAQW6_BoJITiETWzHSbitCtUWSoVEK-3N8l9oECRRs0XqBfESHHg9noQZJ1lYQOqBq2MnTsae-ZyZ-YaQR2VptRZ5HBnLXSRKZiPDLYtKJ51NtGXQgtEWB3J-JF4t0sUG2RlzYTCsctD9vU4P2npomQ5fc9pW1fQdgvlAWI40QkzIC-SigO2LZQyeffkV5yF53NdIxnMzdF8L8moDa6SpMA2QJchjkGAu7b9N1N8Q9M9Iyt9M0-5VcmXAlHTWT_sa2fD1dbI1q-E8_emMPqYhyjP8Pt8i316cdWjLUB60KekiQheud7SqjysD2_sEW3XbtMumqzoaeByqmj5Z7M3ePqVLOMy_B8RIwxthOeNRedK2TznwHf1caRq88HDbNuUUcyewRAU8g8770hSAOH98_d7RwT90gxztvjzcmUdDaYbIiixdRjplLpdOclZKDxDAs0wbsHsx6HFnWaHzQlhXaEBneWYKUZpS-6JME8O9FDrmN8lm3dR-m9CCJ1KX3hmTw2nF8zxzRuZW-tTrXCR6QuQoDWUH3nIsn_FRjQFqH9RKjArFqHoxTki8Gtj21B3nD3k-ilutrUIFBub8wQ_HBaJgj6LjRde-Oe0UQ5gK2lJAn1v9glnNCFCElFnGJyRbW0qrDsj_vX6lro4DD3iOLuQkuf0_k35ALs0P3-yr_b2D13fIZbzSR9DdJZvLk1N_DyDX0twPW-onpHwxSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dysfunction+of+X-linked+inhibitor+of+apoptosis+protein+%28XIAP%29+triggers+neuropathological+processes+via+altered+p53+activity+in+Huntington%E2%80%99s+disease&rft.jtitle=Progress+in+neurobiology&rft.au=Hyeon%2C+Seung+Jae&rft.au=Park%2C+Jinyoung&rft.au=Yoo%2C+Junsang&rft.au=Kim%2C+Su-Hyun&rft.date=2021-09-01&rft.issn=0301-0082&rft.volume=204&rft.spage=102110&rft_id=info:doi/10.1016%2Fj.pneurobio.2021.102110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pneurobio_2021_102110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-0082&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-0082&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-0082&client=summon |