Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata

High-rate production of acetate and other value-added products from the reduction of CO2 in microbial electrosynthesis (MES) using acetogens can be achieved with high reducing power where H2 appears as a key electron mediator. H2 evolution using metal cathodes can enhance the availability of H2 to s...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 287; no. Pt 3; p. 132188
Main Authors Bajracharya, Suman, Krige, Adolf, Matsakas, Leonidas, Rova, Ulrika, Christakopoulos, Paul
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-rate production of acetate and other value-added products from the reduction of CO2 in microbial electrosynthesis (MES) using acetogens can be achieved with high reducing power where H2 appears as a key electron mediator. H2 evolution using metal cathodes can enhance the availability of H2 to support high-rate microbial reduction of CO2. Due to the low solubility of H2, the availability of H2 remains limited to the bacteria. In this study, we investigated the performances of Sporomusa ovata for CO2 reduction when dual cathodes were used together in an MES, one was regular carbon cathode, and the other was a titanium mesh that allows higher hydrogen evolution. The dual cathode configuration was investigated in two sets of MES, one set had the usual S. ovata inoculated graphite rod, and another set had a synthetic biofilm-imprinted carbon cloth. Additionally, the headspace gas in MES was recirculated to increase the H2 availability to the bacteria in suspension. High-rate CO2 reduction was observed at −0.9 V vs Ag/AgCl with dual cathode configuration as compared to single cathodes. High titers of acetate (up to ∼11 g/L) with maximum instantaneous rates of 0.68–0.7 g/L/d at −0.9 V vs Ag/AgCl were observed, which are higher than the production rates reported in the literatures for S. ovata using MES with surface modified cathodes. A high H2 availability supported the high-rate acetate production from CO2 with diminished electricity input. [Display omitted] •A simple modification with an additional Ti cathode in MES promoted H2 evolution.•Headspace gas recirculation improves the gas-liquid mass transfer of H2 and CO2.•High rates up to 0.68–0.7 g acetate/L/d from CO2 reduction by Sporomusa ovata.•Long-term stability with up to 11 g/L acetate and 80% efficiency was attained.
AbstractList High-rate production of acetate and other value-added products from the reduction of CO 2 in microbial electrosynthesis (MES) using acetogens can be achieved with high reducing power where H 2 appears as a key electron mediator. H 2 evolution using metal cathodes can enhance the availability of H 2 to support high-rate microbial reduction of CO 2 . Due to the low solubility of H 2 , the availability of H 2 remains limited to the bacteria. In this study, we investigated the performances of Sporomusa ovata for CO 2 reduction when dual cathodes were used together in an MES, one was regular carbon cathode, and the other was a titanium mesh that allows higher hydrogen evolution. The dual cathode configuration was investigated in two sets of MES, one set had the usual S. ovata inoculated graphite rod, and another set had a synthetic biofilm-imprinted carbon cloth. Additionally, the headspace gas in MES was recirculated to increase the H 2 availability to the bacteria in suspension. High-rate CO 2 reduction was observed at −0.9 V vs Ag/AgCl with dual cathode configuration as compared to single cathodes. High titers of acetate (up to ∼11 g/L) with maximum instantaneous rates of 0.68–0.7 g/L/d at −0.9 V vs Ag/AgCl were observed, which are higher than the production rates reported in literatures for S. ovata using MES with surface modified cathodes. A high H 2 availability supported the high-rate acetate production from CO 2 with diminished electricity input.
High-rate production of acetate and other value-added products from the reduction of CO2 in microbial electrosynthesis (MES) using acetogens can be achieved with high reducing power where H2 appears as a key electron mediator. H2 evolution using metal cathodes can enhance the availability of H2 to support high-rate microbial reduction of CO2. Due to the low solubility of H2, the availability of H2 remains limited to the bacteria. In this study, we investigated the performances of Sporomusa ovata for CO2 reduction when dual cathodes were used together in an MES, one was regular carbon cathode, and the other was a titanium mesh that allows higher hydrogen evolution. The dual cathode configuration was investigated in two sets of MES, one set had the usual S. ovata inoculated graphite rod, and another set had a synthetic biofilm-imprinted carbon cloth. Additionally, the headspace gas in MES was recirculated to increase the H2 availability to the bacteria in suspension. High-rate CO2 reduction was observed at -0.9 V vs Ag/AgCl with dual cathode configuration as compared to single cathodes. High titers of acetate (up to ∼11 g/L) with maximum instantaneous rates of 0.68-0.7 g/L/d at -0.9 V vs Ag/AgCl were observed, which are higher than the production rates reported in the literatures for S. ovata using MES with surface modified cathodes. A high H2 availability supported the high-rate acetate production from CO2 with diminished electricity input.High-rate production of acetate and other value-added products from the reduction of CO2 in microbial electrosynthesis (MES) using acetogens can be achieved with high reducing power where H2 appears as a key electron mediator. H2 evolution using metal cathodes can enhance the availability of H2 to support high-rate microbial reduction of CO2. Due to the low solubility of H2, the availability of H2 remains limited to the bacteria. In this study, we investigated the performances of Sporomusa ovata for CO2 reduction when dual cathodes were used together in an MES, one was regular carbon cathode, and the other was a titanium mesh that allows higher hydrogen evolution. The dual cathode configuration was investigated in two sets of MES, one set had the usual S. ovata inoculated graphite rod, and another set had a synthetic biofilm-imprinted carbon cloth. Additionally, the headspace gas in MES was recirculated to increase the H2 availability to the bacteria in suspension. High-rate CO2 reduction was observed at -0.9 V vs Ag/AgCl with dual cathode configuration as compared to single cathodes. High titers of acetate (up to ∼11 g/L) with maximum instantaneous rates of 0.68-0.7 g/L/d at -0.9 V vs Ag/AgCl were observed, which are higher than the production rates reported in the literatures for S. ovata using MES with surface modified cathodes. A high H2 availability supported the high-rate acetate production from CO2 with diminished electricity input.
High-rate production of acetate and other value-added products from the reduction of CO₂ in microbial electrosynthesis (MES) using acetogens can be achieved with high reducing power where H₂ appears as a key electron mediator. H₂ evolution using metal cathodes can enhance the availability of H₂ to support high-rate microbial reduction of CO₂. Due to the low solubility of H₂, the availability of H₂ remains limited to the bacteria. In this study, we investigated the performances of Sporomusa ovata for CO₂ reduction when dual cathodes were used together in an MES, one was regular carbon cathode, and the other was a titanium mesh that allows higher hydrogen evolution. The dual cathode configuration was investigated in two sets of MES, one set had the usual S. ovata inoculated graphite rod, and another set had a synthetic biofilm-imprinted carbon cloth. Additionally, the headspace gas in MES was recirculated to increase the H₂ availability to the bacteria in suspension. High-rate CO₂ reduction was observed at −0.9 V vs Ag/AgCl with dual cathode configuration as compared to single cathodes. High titers of acetate (up to ∼11 g/L) with maximum instantaneous rates of 0.68–0.7 g/L/d at −0.9 V vs Ag/AgCl were observed, which are higher than the production rates reported in the literatures for S. ovata using MES with surface modified cathodes. A high H₂ availability supported the high-rate acetate production from CO₂ with diminished electricity input.
High-rate production of acetate and other value-added products from the reduction of CO2 in microbial electrosynthesis (MES) using acetogens can be achieved with high reducing power where H2 appears as a key electron mediator. H2 evolution using metal cathodes can enhance the availability of H2 to support high-rate microbial reduction of CO2. Due to the low solubility of H2, the availability of H2 remains limited to the bacteria. In this study, we investigated the performances of Sporomusa ovata for CO2 reduction when dual cathodes were used together in an MES, one was regular carbon cathode, and the other was a titanium mesh that allows higher hydrogen evolution. The dual cathode configuration was investigated in two sets of MES, one set had the usual S. ovata inoculated graphite rod, and another set had a synthetic biofilm-imprinted carbon cloth. Additionally, the headspace gas in MES was recirculated to increase the H2 availability to the bacteria in suspension. High-rate CO2 reduction was observed at −0.9 V vs Ag/AgCl with dual cathode configuration as compared to single cathodes. High titers of acetate (up to ∼11 g/L) with maximum instantaneous rates of 0.68–0.7 g/L/d at −0.9 V vs Ag/AgCl were observed, which are higher than the production rates reported in the literatures for S. ovata using MES with surface modified cathodes. A high H2 availability supported the high-rate acetate production from CO2 with diminished electricity input. [Display omitted] •A simple modification with an additional Ti cathode in MES promoted H2 evolution.•Headspace gas recirculation improves the gas-liquid mass transfer of H2 and CO2.•High rates up to 0.68–0.7 g acetate/L/d from CO2 reduction by Sporomusa ovata.•Long-term stability with up to 11 g/L acetate and 80% efficiency was attained.
ArticleNumber 132188
Author Krige, Adolf
Bajracharya, Suman
Matsakas, Leonidas
Christakopoulos, Paul
Rova, Ulrika
Author_xml – sequence: 1
  givenname: Suman
  orcidid: 0000-0003-1168-1430
  surname: Bajracharya
  fullname: Bajracharya, Suman
– sequence: 2
  givenname: Adolf
  surname: Krige
  fullname: Krige, Adolf
– sequence: 3
  givenname: Leonidas
  orcidid: 0000-0002-3687-6173
  surname: Matsakas
  fullname: Matsakas, Leonidas
– sequence: 4
  givenname: Ulrika
  orcidid: 0000-0001-7500-2367
  surname: Rova
  fullname: Rova, Ulrika
  email: ulrika.rova@ltu.se
– sequence: 5
  givenname: Paul
  orcidid: 0000-0003-0079-5950
  surname: Christakopoulos
  fullname: Christakopoulos, Paul
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87023$$DView record from Swedish Publication Index
BookMark eNqNkUtv1DAUhS1UJKaF_2B2LMhgO-M8VqiaAkWqxILH1rqxbyYeJXawnVbz7_E0ICE2dHV05e8cyedckgvnHRLymrMtZ7x6d9zqAScf5wEDbgUTfMtLwZvmGdnwpm4LLtrmgmwY28mikqV8QS5jPDKWzbLdkNPNAiPVkAZvkGrventYAiTrHQVn6IBg4gwa6QEiDaht0Mu4vvc-UHQDOG3dgU5WB9_ZnIYj6hR8PLk0YLSRLvEMfJ198NMSgfp7SPCSPO9hjPjqt16R7x8_fNvfFndfPn3eX98VelfLVIDoGtO3QvRCMr0THHqBjMGu0hzyrduqRWOYqDoQddYOWy77quYlGllCeUXerrnxAeelU3OwE4ST8mDVjf1xrXw4qDEtqqmZKDP-ZsXn4H8uGJOabNQ4juDQL1GJqqwqKZus_0VlLVlmhcjo-xXNHcUYsFfapscWUwA7Ks7UeU51VH_Nqc5zqnXOnND-k_DnI0_x7lcv5p7vLQYVtUWn0di8aFLG2yek_AKZtMfN
CitedBy_id crossref_primary_10_1016_j_biteb_2023_101740
crossref_primary_10_1016_j_biortech_2024_131733
crossref_primary_10_1016_j_ijhydene_2023_11_055
crossref_primary_10_1016_j_biortech_2022_128040
crossref_primary_10_1016_j_jece_2024_114027
crossref_primary_10_1016_j_jece_2024_113063
crossref_primary_10_1007_s00253_022_12031_9
crossref_primary_10_1016_j_oneear_2023_02_011
crossref_primary_10_1016_j_chemosphere_2021_132843
crossref_primary_10_1016_j_rser_2024_114704
crossref_primary_10_1016_j_scitotenv_2023_169766
crossref_primary_10_1016_j_biortech_2023_128637
crossref_primary_10_1016_j_jece_2024_114436
crossref_primary_10_1016_j_chemosphere_2023_140251
crossref_primary_10_1016_j_engmic_2024_100141
crossref_primary_10_1021_acsami_4c07363
crossref_primary_10_1039_D2MH01178F
crossref_primary_10_1016_j_scenv_2024_100106
crossref_primary_10_1016_j_scitotenv_2023_164795
crossref_primary_10_1016_j_cogsc_2022_100605
crossref_primary_10_1016_j_biotechadv_2024_108474
crossref_primary_10_1002_celc_202300440
crossref_primary_10_3390_fermentation10010034
crossref_primary_10_1039_D4CB00099D
Cites_doi 10.1016/j.jcou.2016.03.003
10.1128/mBio.00103-10
10.1016/j.biteb.2019.100284
10.1016/j.bioelechem.2016.09.001
10.1038/srep16168
10.1038/s41598-017-09841-7
10.1016/j.scitotenv.2020.142668
10.1021/es400341b
10.1128/AEM.02401-12
10.1016/j.enconman.2018.09.064
10.1016/j.bioelechem.2019.03.011
10.1016/j.biortech.2015.05.081
10.1039/C6TA02036D
10.3389/fmicb.2017.00756
10.1128/AEM.02642-10
10.1039/C7GC01801K
10.3390/en12173297
10.3389/fenrg.2018.00007
10.3389/fenrg.2018.00072
10.1016/j.joule.2020.03.001
10.1039/D0SE01200A
10.1021/acs.est.5b03821
10.1039/C2EE23350A
10.1039/c3cp52697f
10.1016/j.actbio.2021.03.027
10.1038/s41598-017-08877-z
10.1016/j.jece.2021.106189
10.1016/j.jechem.2019.04.020
10.1016/j.copbio.2015.02.014
10.1016/j.ohx.2021.e00186
10.1039/C5EE03088A
10.1039/C4TA03101F
10.1016/j.electacta.2016.09.063
10.3389/fmicb.2015.00468
10.1002/mawe.19910221007
10.1016/j.biortech.2017.02.128
10.1016/j.biortech.2020.124177
10.1007/BF02936525
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1016/j.chemosphere.2021.132188
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID oai_DiVA_org_ltu_87023
10_1016_j_chemosphere_2021_132188
S0045653521026606
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSH
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7X8
7S9
L.6
ADTPV
AOWAS
D8T
EFKBS
ZZAVC
ID FETCH-LOGICAL-c475t-a2b8df922f250c421af2e00a46c1ac42c969edd026ba27d02be915f6713ed53a3
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Thu Aug 21 06:54:26 EDT 2025
Fri Jul 11 16:52:17 EDT 2025
Fri Jul 11 00:34:15 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Tue Jul 01 02:08:05 EDT 2025
Sun Apr 06 06:53:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt 3
Keywords Bioprinting
Microbial electrosynthesis
Dual cathode
Synthetic biofilm
Hydrogen evolution
Gas recirculation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-a2b8df922f250c421af2e00a46c1ac42c969edd026ba27d02be915f6713ed53a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1168-1430
0000-0002-3687-6173
0000-0001-7500-2367
0000-0003-0079-5950
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0045653521026606
PQID 2575065522
PQPubID 23479
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_87023
proquest_miscellaneous_2636655826
proquest_miscellaneous_2575065522
crossref_citationtrail_10_1016_j_chemosphere_2021_132188
crossref_primary_10_1016_j_chemosphere_2021_132188
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2021_132188
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Chemosphere (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mateos, Escapa, San-Martín, De Wever, Sotres, Pant (bib28) 2020; 41
Mateos, Sotres, Alonso, Morán, Escapa (bib29) 2019; 12
Giddings, Nevin, Woodward, Lovley, Butler (bib15) 2015; 6
Nie, Zhang, Cui, Lu, Lovley, Russell (bib33) 2013; 15
Jourdin, Winkelhorst, Rawls, Buisman, Strik (bib20) 2019; 7
Bajracharya, Heijne, Benetton, Vanbroekhoven, Buisman, Strik, Pant, ter Heijne, Dominguez, Strik, Vanbroekhoven, Buisman, Pant (bib8) 2015; 15
Marshall, Ross, Handley, Weisenhorn, Edirisinghe, Henry, Gilbert, May, Norman (bib27) 2017; 7
Marshall, Ross, Fichot, Norman, May (bib25) 2013; 47
Aryal, Tremblay, Xu, Daugaard, Zhang (bib5) 2018; 6
del Pilar Anzola Rojas, Mateos, Sotres, Zaiat, Gonzalez, Escapa, De Wever, Pant (bib14) 2018; 177
Jourdin, Grieger, Monetti, Flexer, Freguia, Lu, Chen, Romano, Wallace, Keller (bib18) 2015; 49
Krige, Haluška, Rova, Christakopoulos (bib22) 2021; 9
Bajracharya, Yuliasni, Vanbroekhoven, Buisman, Strik, Pant (bib9) 2017; 113
Blanchet, Duquenne, Rafrafi, Etcheverry, Erable, Bergel (bib11) 2015; 8
Jourdin, Freguia, Donose, Chen, Wallace, Keller, Flexer (bib17) 2014; 2
Alqahtani, Bajracharya, Katuri, Ali, Xu, Alarawi, Saikaly (bib1) 2020; 766
Chopra, Gulati, Ivanovski (bib13) 2021
Mohanakrishna, Vanbroekhoven, Pant (bib30) 2016
Aryal, Ammam, Patil, Pant (bib2) 2017; 19
Krige, Rova, Christakopoulos (bib23) 2021; 9
Khalil, Abdel Rahim (bib21) 1991; 22
Zhang, Nie, Bain, Lu, Cui, Snoeyenbos-West, Franks, Nevin, Russell, Lovley (bib39) 2013; 6
Tremblay, Höglund, Koza, Bonde, Zhang (bib37) 2015; 5
Bian, Xu, Katuri, Saikaly (bib10) 2021; 319
Aryal, Wan, Overgaard, Stoot, Chen, Tremblay, Zhang (bib7) 2019; 128
Rojas, del, Zaiat, González, De Wever, Pant (bib34) 2020
Song, Kim, Baek, Im, Seol, Jae, Nygård, Kim (bib35) 2020; 4
Nevin, Woodard, Franks, Summers, Lovley (bib32) 2010; 1
Guo, Prévoteau, Patil, Rabaey (bib16) 2015; 33
Aryal, Halder, Tremblay, Chi, Zhang (bib3) 2016; 217
Nevin, Hensley, Franks, Summers, Ou, Woodard, Snoeyenbos-West, Lovley (bib31) 2011; 77
Aryal, Tremblay, Lizak, Zhang (bib6) 2017; 233
Jourdin, Raes, Buisman, Strik (bib19) 2018; 6
Vega, Prieto, Elmore, Clausen, Gaddy (bib38) 1989; 20–21
LaBelle, May (bib24) 2017; 8
Chen, Tremblay, Mohanty, Xu, Zhang (bib12) 2016; 4
Aryal, Halder, Zhang, Whelan, Tremblay, Chi, Zhang (bib4) 2017; 7
Marshall, Ross, Fichot, Norman, May (bib26) 2012; 78
Su, Cestellos-Blanco, Kim, Shen, Kong, Lu, Liu, Zhang, Cao, Yang (bib36) 2020; 4
Mohanakrishna (10.1016/j.chemosphere.2021.132188_bib30) 2016
Aryal (10.1016/j.chemosphere.2021.132188_bib2) 2017; 19
Krige (10.1016/j.chemosphere.2021.132188_bib22) 2021; 9
Aryal (10.1016/j.chemosphere.2021.132188_bib4) 2017; 7
Bian (10.1016/j.chemosphere.2021.132188_bib10) 2021; 319
Blanchet (10.1016/j.chemosphere.2021.132188_bib11) 2015; 8
del Pilar Anzola Rojas (10.1016/j.chemosphere.2021.132188_bib14) 2018; 177
Aryal (10.1016/j.chemosphere.2021.132188_bib7) 2019; 128
Marshall (10.1016/j.chemosphere.2021.132188_bib25) 2013; 47
Tremblay (10.1016/j.chemosphere.2021.132188_bib37) 2015; 5
Jourdin (10.1016/j.chemosphere.2021.132188_bib17) 2014; 2
Nevin (10.1016/j.chemosphere.2021.132188_bib31) 2011; 77
Chen (10.1016/j.chemosphere.2021.132188_bib12) 2016; 4
Zhang (10.1016/j.chemosphere.2021.132188_bib39) 2013; 6
Chopra (10.1016/j.chemosphere.2021.132188_bib13) 2021
Guo (10.1016/j.chemosphere.2021.132188_bib16) 2015; 33
Krige (10.1016/j.chemosphere.2021.132188_bib23) 2021; 9
Rojas (10.1016/j.chemosphere.2021.132188_bib34) 2020
Song (10.1016/j.chemosphere.2021.132188_bib35) 2020; 4
Giddings (10.1016/j.chemosphere.2021.132188_bib15) 2015; 6
Marshall (10.1016/j.chemosphere.2021.132188_bib26) 2012; 78
Marshall (10.1016/j.chemosphere.2021.132188_bib27) 2017; 7
Jourdin (10.1016/j.chemosphere.2021.132188_bib19) 2018; 6
LaBelle (10.1016/j.chemosphere.2021.132188_bib24) 2017; 8
Vega (10.1016/j.chemosphere.2021.132188_bib38) 1989; 20–21
Jourdin (10.1016/j.chemosphere.2021.132188_bib20) 2019; 7
Nie (10.1016/j.chemosphere.2021.132188_bib33) 2013; 15
Bajracharya (10.1016/j.chemosphere.2021.132188_bib9) 2017; 113
Nevin (10.1016/j.chemosphere.2021.132188_bib32) 2010; 1
Aryal (10.1016/j.chemosphere.2021.132188_bib5) 2018; 6
Jourdin (10.1016/j.chemosphere.2021.132188_bib18) 2015; 49
Khalil (10.1016/j.chemosphere.2021.132188_bib21) 1991; 22
Mateos (10.1016/j.chemosphere.2021.132188_bib29) 2019; 12
Bajracharya (10.1016/j.chemosphere.2021.132188_bib8) 2015; 15
Su (10.1016/j.chemosphere.2021.132188_bib36) 2020; 4
Mateos (10.1016/j.chemosphere.2021.132188_bib28) 2020; 41
Alqahtani (10.1016/j.chemosphere.2021.132188_bib1) 2020; 766
Aryal (10.1016/j.chemosphere.2021.132188_bib3) 2016; 217
Aryal (10.1016/j.chemosphere.2021.132188_bib6) 2017; 233
References_xml – volume: 1
  start-page: e00103
  year: 2010
  end-page: e00110
  ident: bib32
  article-title: Microbial Electrosynthesis : feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic
  publication-title: mBio
– volume: 49
  start-page: 13566
  year: 2015
  end-page: 13574
  ident: bib18
  article-title: High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
  publication-title: Environ. Sci. Technol.
– year: 2016
  ident: bib30
  article-title: Imperative role of applied potential and inorganic carbon source on acetate production through microbial electrosynthesis
  publication-title: J. CO2 Util.
– volume: 19
  start-page: 5748
  year: 2017
  end-page: 5760
  ident: bib2
  article-title: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide
  publication-title: Green Chem.
– volume: 41
  start-page: 3
  year: 2020
  end-page: 6
  ident: bib28
  article-title: Long-term open circuit microbial electrosynthesis system promotes methanogenesis
  publication-title: J. Energy Chem.
– volume: 12
  year: 2019
  ident: bib29
  article-title: Enhanced CO2 conversion to acetate through microbial electrosynthesis (MES) by continuous headspace gas recirculation
  publication-title: Energies
– volume: 6
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib15
  article-title: Simplifying microbial electrosynthesis reactor design
  publication-title: Front. Microbiol.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib4
  article-title: Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion
  publication-title: Sci. Rep.
– volume: 7
  start-page: 100284
  year: 2019
  ident: bib20
  article-title: Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO2: steering with CO2 loading rate and hydraulic retention time
  publication-title: Bioresour. Technol. Rep.
– volume: 4
  start-page: 8395
  year: 2016
  end-page: 8401
  ident: bib12
  article-title: Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 5952
  year: 2020
  end-page: 5957
  ident: bib35
  article-title: Increased CODH activity in a bioelectrochemical system improves microbial electrosynthesis with CO
  publication-title: Sustain. Energy Fuels
– volume: 8
  start-page: 756
  year: 2017
  ident: bib24
  article-title: Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate
  publication-title: Front. Microbiol.
– volume: 128
  start-page: 83
  year: 2019
  end-page: 93
  ident: bib7
  article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode
  publication-title: Bioelectrochemistry
– volume: 20–21
  start-page: 781
  year: 1989
  end-page: 797
  ident: bib38
  article-title: The Biological production of ethanol from synthesis gas
  publication-title: Appl. Biochem. Biotechnol.
– volume: 766
  start-page: 142668
  year: 2020
  ident: bib1
  article-title: Enrichment of salt-tolerant CO2–fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply
  publication-title: Sci. Total Environ.
– volume: 113
  start-page: 26
  year: 2017
  end-page: 34
  ident: bib9
  article-title: Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis
  publication-title: Bioelectrochemistry
– volume: 177
  start-page: 272
  year: 2018
  end-page: 279
  ident: bib14
  article-title: Microbial electrosynthesis (MES) from CO2 is resilient to fluctuations in renewable energy supply
  publication-title: Energy Convers. Manag.
– volume: 2
  start-page: 13093
  year: 2014
  end-page: 13102
  ident: bib17
  article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 800
  year: 2020
  end-page: 811
  ident: bib36
  article-title: Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation
  publication-title: Joule
– volume: 78
  start-page: 8412
  year: 2012
  end-page: 8420
  ident: bib26
  article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  start-page: 217
  year: 2013
  ident: bib39
  article-title: Improved cathode materials for microbial electrosynthesis
  publication-title: Energy Environ. Sci.
– volume: 217
  start-page: 117
  year: 2016
  end-page: 122
  ident: bib3
  article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis
  publication-title: Electrochim. Acta
– volume: 47
  start-page: 6023
  year: 2013
  end-page: 6029
  ident: bib25
  article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
  publication-title: Environ. Sci. Technol.
– year: 2020
  ident: bib34
  article-title: Enhancing the gas-liquid mass transfer during microbial electrosynthesis by the variation of CO2 flow rate
  publication-title: Process Biochem.
– volume: 15
  start-page: 14
  year: 2015
  end-page: 24
  ident: bib8
  article-title: CO2 reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 7
  year: 2018
  ident: bib19
  article-title: Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density
  publication-title: Front. Energy Res.
– volume: 8
  start-page: 3731
  year: 2015
  end-page: 3744
  ident: bib11
  article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction
  publication-title: Energy Environ. Sci.
– year: 2021
  ident: bib13
  article-title: Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants
  publication-title: Acta Biomater.
– volume: 77
  start-page: 2882
  year: 2011
  end-page: 2886
  ident: bib31
  article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  start-page: 72
  year: 2018
  ident: bib5
  article-title: Highly conductive poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate polymer coated cathode for the microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Front. Energy Res.
– volume: 9
  year: 2021
  ident: bib22
  article-title: Design and implementation of a low cost bio-printer modification, allowing for switching between plastic and gel extrusion
  publication-title: HardwareX
– volume: 15
  start-page: 14290
  year: 2013
  end-page: 14294
  ident: bib33
  article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 390
  year: 1991
  end-page: 395
  ident: bib21
  article-title: Hydrogen evolution reaction on Titanium and oxide-covered titanium electrodes
  publication-title: Mater. Werkst.
– volume: 33
  start-page: 149
  year: 2015
  end-page: 156
  ident: bib16
  article-title: Engineering electrodes for microbial electrocatalysis
  publication-title: Curr. Opin. Biotechnol.
– volume: 233
  start-page: 184
  year: 2017
  end-page: 190
  ident: bib6
  article-title: Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 16168
  year: 2015
  ident: bib37
  article-title: Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib27
  article-title: Metabolic reconstruction and modeling microbial electrosynthesis
  publication-title: Sci. Rep.
– volume: 319
  start-page: 124177
  year: 2021
  ident: bib10
  article-title: Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO2 flow rates
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 106189
  year: 2021
  ident: bib23
  article-title: 3D bioprinting on cathodes in microbial electrosynthesis for increased acetate production rate using Sporomusa ovata
  publication-title: J. Environ. Chem. Eng.
– year: 2016
  ident: 10.1016/j.chemosphere.2021.132188_bib30
  article-title: Imperative role of applied potential and inorganic carbon source on acetate production through microbial electrosynthesis
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2016.03.003
– volume: 1
  start-page: e00103
  year: 2010
  ident: 10.1016/j.chemosphere.2021.132188_bib32
  article-title: Microbial Electrosynthesis : feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic
  publication-title: mBio
  doi: 10.1128/mBio.00103-10
– volume: 7
  start-page: 100284
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132188_bib20
  article-title: Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO2: steering with CO2 loading rate and hydraulic retention time
  publication-title: Bioresour. Technol. Rep.
  doi: 10.1016/j.biteb.2019.100284
– volume: 113
  start-page: 26
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132188_bib9
  article-title: Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2016.09.001
– volume: 5
  start-page: 16168
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132188_bib37
  article-title: Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products
  publication-title: Sci. Rep.
  doi: 10.1038/srep16168
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132188_bib4
  article-title: Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09841-7
– volume: 766
  start-page: 142668
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132188_bib1
  article-title: Enrichment of salt-tolerant CO2–fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142668
– volume: 47
  start-page: 6023
  year: 2013
  ident: 10.1016/j.chemosphere.2021.132188_bib25
  article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400341b
– volume: 78
  start-page: 8412
  year: 2012
  ident: 10.1016/j.chemosphere.2021.132188_bib26
  article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02401-12
– volume: 177
  start-page: 272
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132188_bib14
  article-title: Microbial electrosynthesis (MES) from CO2 is resilient to fluctuations in renewable energy supply
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.09.064
– volume: 128
  start-page: 83
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132188_bib7
  article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2019.03.011
– volume: 15
  start-page: 14
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132188_bib8
  article-title: CO2 reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.05.081
– volume: 4
  start-page: 8395
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132188_bib12
  article-title: Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA02036D
– volume: 8
  start-page: 756
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132188_bib24
  article-title: Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00756
– volume: 77
  start-page: 2882
  year: 2011
  ident: 10.1016/j.chemosphere.2021.132188_bib31
  article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02642-10
– volume: 19
  start-page: 5748
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132188_bib2
  article-title: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide
  publication-title: Green Chem.
  doi: 10.1039/C7GC01801K
– volume: 12
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132188_bib29
  article-title: Enhanced CO2 conversion to acetate through microbial electrosynthesis (MES) by continuous headspace gas recirculation
  publication-title: Energies
  doi: 10.3390/en12173297
– volume: 6
  start-page: 7
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132188_bib19
  article-title: Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2018.00007
– volume: 6
  start-page: 72
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132188_bib5
  article-title: Highly conductive poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate polymer coated cathode for the microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2018.00072
– volume: 4
  start-page: 800
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132188_bib36
  article-title: Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.001
– volume: 4
  start-page: 5952
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132188_bib35
  article-title: Increased CODH activity in a bioelectrochemical system improves microbial electrosynthesis with CO
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D0SE01200A
– volume: 49
  start-page: 13566
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132188_bib18
  article-title: High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03821
– volume: 6
  start-page: 217
  year: 2013
  ident: 10.1016/j.chemosphere.2021.132188_bib39
  article-title: Improved cathode materials for microbial electrosynthesis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23350A
– volume: 15
  start-page: 14290
  year: 2013
  ident: 10.1016/j.chemosphere.2021.132188_bib33
  article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52697f
– year: 2021
  ident: 10.1016/j.chemosphere.2021.132188_bib13
  article-title: Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.03.027
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132188_bib27
  article-title: Metabolic reconstruction and modeling microbial electrosynthesis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08877-z
– volume: 9
  start-page: 106189
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132188_bib23
  article-title: 3D bioprinting on cathodes in microbial electrosynthesis for increased acetate production rate using Sporomusa ovata
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106189
– volume: 41
  start-page: 3
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132188_bib28
  article-title: Long-term open circuit microbial electrosynthesis system promotes methanogenesis
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.04.020
– volume: 33
  start-page: 149
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132188_bib16
  article-title: Engineering electrodes for microbial electrocatalysis
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.02.014
– volume: 9
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132188_bib22
  article-title: Design and implementation of a low cost bio-printer modification, allowing for switching between plastic and gel extrusion
  publication-title: HardwareX
  doi: 10.1016/j.ohx.2021.e00186
– volume: 8
  start-page: 3731
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132188_bib11
  article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03088A
– volume: 2
  start-page: 13093
  year: 2014
  ident: 10.1016/j.chemosphere.2021.132188_bib17
  article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
  publication-title: J. Mater. Chem.
  doi: 10.1039/C4TA03101F
– year: 2020
  ident: 10.1016/j.chemosphere.2021.132188_bib34
  article-title: Enhancing the gas-liquid mass transfer during microbial electrosynthesis by the variation of CO2 flow rate
  publication-title: Process Biochem.
– volume: 217
  start-page: 117
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132188_bib3
  article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.09.063
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132188_bib15
  article-title: Simplifying microbial electrosynthesis reactor design
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00468
– volume: 22
  start-page: 390
  year: 1991
  ident: 10.1016/j.chemosphere.2021.132188_bib21
  article-title: Hydrogen evolution reaction on Titanium and oxide-covered titanium electrodes
  publication-title: Mater. Werkst.
  doi: 10.1002/mawe.19910221007
– volume: 233
  start-page: 184
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132188_bib6
  article-title: Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.02.128
– volume: 319
  start-page: 124177
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132188_bib10
  article-title: Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO2 flow rates
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124177
– volume: 20–21
  start-page: 781
  year: 1989
  ident: 10.1016/j.chemosphere.2021.132188_bib38
  article-title: The Biological production of ethanol from synthesis gas
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/BF02936525
SSID ssj0001659
Score 2.5029902
Snippet High-rate production of acetate and other value-added products from the reduction of CO2 in microbial electrosynthesis (MES) using acetogens can be achieved...
High-rate production of acetate and other value-added products from the reduction of CO₂ in microbial electrosynthesis (MES) using acetogens can be achieved...
High-rate production of acetate and other value-added products from the reduction of CO 2 in microbial electrosynthesis (MES) using acetogens can be achieved...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 132188
SubjectTerms acetates
acetogens
Biochemical Process Engineering
Biokemisk processteknik
Bioprinting
carbon dioxide
cathodes
Dual cathode
electricity
electrosynthesis
Gas recirculation
graphene
headspace analysis
Hydrogen evolution
hydrogen production
Microbial electrosynthesis
solubility
Sporomusa ovata
Synthetic biofilm
titanium
value added
Title Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata
URI https://dx.doi.org/10.1016/j.chemosphere.2021.132188
https://www.proquest.com/docview/2575065522
https://www.proquest.com/docview/2636655826
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87023
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhoY9LaNOWbtMGBdqjk9XLXkEuyyZh29KcmpKbkGXJccnaYb0-7CW_PTN-JFsoJdCTsRkZMSOPvrFmviHksw8ucKd1FIKGAEX6cWS1YJFVIRFOMCcCnuj-uIjnl_LblbraIrOhFgbTKnvf3_n01lv3T457bR7fFgXW-CIaAQABe2Qct7TbUia4yo_uHtM8WKw6CCxVhNLPyeFjjhfoZVHVWL-PjJmcHUFsxtomLH_dozYx6CavaLsXnb8iuz2IpNNunq_Jli_3yIvZ0Lttjzw7a8mo12_I-rQBSSRnrTJPIfgNRd50Vqe2zCj44gycivM0tzVFqoul6zt6UcCz1JfXyMhR5nRRtJxN8La-dU69LgE91kVNMXk-p9gwvVo0taXYZ9W-JZfnZz9n86hvtxA5mahVZHk6yYLmPAAscpIzG7gfj62MHbNw73SsfZaBslPLE7imXjMVYghzfaaEFe_IdlmV_j2hgSeWy0w7lSoJAedE2EnmPfNKMw-IYUQmg4KN67nIsSXGjRmSzn6bDdsYtI3pbDMi_GHobUfI8ZRBJ4MVzR-ry8DG8ZThh4PlDRgSj1Rs6aumNuDwFIA4ALH_kIlFDCIQx43Il27ZPMwcyb1Pi19TUy1zc7NqDLhPLj7833T3yUuORRrtj6KPZHu1bPwngE6r9KD9Ng7IzvTr9_nFPYZnHiw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIigXBAXE8nQlOKZd27F3LXGptq0WaHtqUW-W40cI6ibVZnPYC7-dmTzaRUKoEqco0TiyPM74m3j8fYR8DNFF7rROYtSQoKRhnFgtWGJlnAgnmBMRd3TPztX8Mv16Ja-2yGw4C4NllX3s72J6G637Jwf9aB7cFAWe8UU0AgAC1kilkHb7QQqfL8oY7P-6q_NgSnYYOJUJmj8ie3dFXjAwi6rGA_xImcnZPiRnrFVh-esitQlCN4lF28Xo5Cl50qNIeth19BnZCuUu2ZkN4m275OFxy0a9fk7WRw1YIjtr5QOF7DcWedO5ndrSUwjGHqKKCzS3NUWui6XrJb0oAFoayh9IyVHmdFG0pE3wtl47p16XAB_roqZYPZ9TVEyvFk1tKQqt2hfk8uT4YjZPer2FxKUTuUosz6Y-as4j4CKXcmYjD-OxTZVjFu6dVjp4D6OdWT6BaxY0k1FBnhu8FFa8JNtlVYZXhEY-sTz12slMppBxToWd-hBYkJoFgAwjMh0G2LiejBw1Ma7NUHX202z4xqBvTOebEeG3TW86Ro77NPo8eNH8Mb0MrBz3ab43eN6AI3FPxZahamoDEU8CigMU-w8bJRSYQCI3Ip-6aXPbc2T3Piq-H5pqmZvrVWMgfnLx-v-6-4HszC_OTs3pl_Nvb8hjjic22r9Gb8n2atmEd4CjVtn79jv5DdhzH7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+cathode+configuration+and+headspace+gas+recirculation+for+enhancing+microbial+electrosynthesis+using%C2%A0+Sporomusa+ovata&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Bajracharya%2C+Suman&rft.au=Krige%2C+Adolf&rft.au=Matsakas%2C+Leonidas&rft.au=Rova%2C+Ulrika&rft.date=2022&rft.issn=1879-1298&rft.volume=287%2C+Part+3&rft_id=info:doi/10.1016%2Fj.chemosphere.2021.132188&rft.externalDocID=oai_DiVA_org_ltu_87023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon