Automated real-world data integration improves cancer outcome prediction
The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing an...
Saved in:
Published in | Nature (London) Vol. 636; no. 8043; pp. 728 - 736 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.12.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations
1
,
2
with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung (
n
= 7,809), breast (
n
= 5,368), colorectal (
n
= 5,543), prostate (
n
= 3,211) and pancreatic (
n
= 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between
SETD2
mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research.
A study generates a clinicogenomics dataset resource, MSK-CHORD, that combines natural language processing-derived clinical annotations with patient medical data from various sources to improve models of cancer outcome. |
---|---|
AbstractList | The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations1,2 with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung (n = 7,809), breast (n = 5,368), colorectal (n = 5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between SETD2 mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research.The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations1,2 with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung (n = 7,809), breast (n = 5,368), colorectal (n = 5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between SETD2 mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research. The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung (n = 7,809), breast (n = 5,368), colorectal (n = 5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between SETD2 mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research. The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations 1 , 2 with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung ( n = 7,809), breast ( n = 5,368), colorectal ( n = 5,543), prostate ( n = 3,211) and pancreatic ( n = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between SETD2 mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research. A study generates a clinicogenomics dataset resource, MSK-CHORD, that combines natural language processing-derived clinical annotations with patient medical data from various sources to improve models of cancer outcome. The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations? with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate aclinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung (n = 7,809), breast (n = 5,368), colorectal (n = 5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organsites, including a relationship between SETD2 mutation and lower metastatic potential inimmunotherapy-treated lung adenocarcinoma corroborated inindependent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research. |
Author | Bandlamudi, Chaitanya Martin, Axel Schultz, Nikolaus Razavi, Pedram Chen, Yuan Gross, Benjamin Abida, Wassim Liu, David Scher, Howard Safonov, Anton Levine, Ross Loudon, Lisa Riely, Gregory J. Gao, JianJiong Liu, Si-Yang Li, Bob T. Robson, Mark Socci, Nicholas Kehl, Kenneth L. Reis-Filho, Jorge S. Ahmed, Mehnaj Satravada, Baby Anusha Fu, Chenlian Perry, Maria Pirun, Mono Pasha, Arfath Maron, Steven B. Donoghue, Mark Yaeger, Rona de Bruijn, Ino Pichotta, Karl Chang, Jason Berger, Michael F. Mastrogiacomo, Brooke Kundra, Ritika Pekala, Kelly Tran, Thinh Ngoc Garcia-Aguilar, Julio Stetson, Peter D. Yu, Helena Li, Anyi Waters, Michele Shen, Ronglai Shah, Sohrab P. Luthra, Anisha Stonestrom, Aaron Solit, David B. O’Reilly, Eileen M. Altoe, Mirella Park, Wungki Capelletti, Marzia Carrot-Zhang, Jian Kim, Susie Schrag, Deborah Chatila, Walid K. Brannon, A. Rose Fong, Christopher Ladanyi, Marc Braunstein, Lior Sanchez-Vega, Francisco Gomez, Daniel Chakravarty, Debyani Rudin, Charles M. Jee, Justin Jones, David R. Sanchez-Vela, Pablo Aprati, Tyler J. Wilhelm, C |
Author_xml | – sequence: 1 givenname: Justin orcidid: 0000-0001-9783-0139 surname: Jee fullname: Jee, Justin organization: Memorial Sloan Kettering Cancer Center – sequence: 2 givenname: Christopher surname: Fong fullname: Fong, Christopher organization: Memorial Sloan Kettering Cancer Center – sequence: 3 givenname: Karl surname: Pichotta fullname: Pichotta, Karl organization: Memorial Sloan Kettering Cancer Center – sequence: 4 givenname: Thinh Ngoc orcidid: 0000-0002-3428-2507 surname: Tran fullname: Tran, Thinh Ngoc organization: Memorial Sloan Kettering Cancer Center – sequence: 5 givenname: Anisha surname: Luthra fullname: Luthra, Anisha organization: Memorial Sloan Kettering Cancer Center – sequence: 6 givenname: Michele orcidid: 0000-0002-5416-5172 surname: Waters fullname: Waters, Michele organization: Memorial Sloan Kettering Cancer Center – sequence: 7 givenname: Chenlian orcidid: 0000-0002-2755-4359 surname: Fu fullname: Fu, Chenlian organization: Memorial Sloan Kettering Cancer Center – sequence: 8 givenname: Mirella surname: Altoe fullname: Altoe, Mirella organization: Memorial Sloan Kettering Cancer Center – sequence: 9 givenname: Si-Yang surname: Liu fullname: Liu, Si-Yang organization: Memorial Sloan Kettering Cancer Center – sequence: 10 givenname: Steven B. surname: Maron fullname: Maron, Steven B. organization: Memorial Sloan Kettering Cancer Center, Dana Farber Cancer Institute – sequence: 11 givenname: Mehnaj surname: Ahmed fullname: Ahmed, Mehnaj organization: Memorial Sloan Kettering Cancer Center – sequence: 12 givenname: Susie surname: Kim fullname: Kim, Susie organization: Memorial Sloan Kettering Cancer Center – sequence: 13 givenname: Mono orcidid: 0000-0001-7845-8060 surname: Pirun fullname: Pirun, Mono organization: Memorial Sloan Kettering Cancer Center – sequence: 14 givenname: Walid K. orcidid: 0000-0001-5474-218X surname: Chatila fullname: Chatila, Walid K. organization: Memorial Sloan Kettering Cancer Center – sequence: 15 givenname: Ino orcidid: 0000-0001-5427-4750 surname: de Bruijn fullname: de Bruijn, Ino organization: Memorial Sloan Kettering Cancer Center – sequence: 16 givenname: Arfath surname: Pasha fullname: Pasha, Arfath organization: Memorial Sloan Kettering Cancer Center – sequence: 17 givenname: Ritika orcidid: 0000-0001-6723-2859 surname: Kundra fullname: Kundra, Ritika organization: Memorial Sloan Kettering Cancer Center – sequence: 18 givenname: Benjamin surname: Gross fullname: Gross, Benjamin organization: Memorial Sloan Kettering Cancer Center – sequence: 19 givenname: Brooke surname: Mastrogiacomo fullname: Mastrogiacomo, Brooke organization: Memorial Sloan Kettering Cancer Center – sequence: 20 givenname: Tyler J. surname: Aprati fullname: Aprati, Tyler J. organization: Dana Farber Cancer Institute – sequence: 21 givenname: David orcidid: 0000-0003-0346-5033 surname: Liu fullname: Liu, David organization: Dana Farber Cancer Institute – sequence: 22 givenname: JianJiong orcidid: 0000-0002-5739-1781 surname: Gao fullname: Gao, JianJiong organization: Caris Life Sciences – sequence: 23 givenname: Marzia surname: Capelletti fullname: Capelletti, Marzia organization: Caris Life Sciences – sequence: 24 givenname: Kelly surname: Pekala fullname: Pekala, Kelly organization: Memorial Sloan Kettering Cancer Center – sequence: 25 givenname: Lisa surname: Loudon fullname: Loudon, Lisa organization: Memorial Sloan Kettering Cancer Center – sequence: 26 givenname: Maria orcidid: 0000-0002-8789-251X surname: Perry fullname: Perry, Maria organization: Memorial Sloan Kettering Cancer Center – sequence: 27 givenname: Chaitanya orcidid: 0000-0003-1108-4919 surname: Bandlamudi fullname: Bandlamudi, Chaitanya organization: Memorial Sloan Kettering Cancer Center – sequence: 28 givenname: Mark orcidid: 0000-0003-4538-6069 surname: Donoghue fullname: Donoghue, Mark organization: Memorial Sloan Kettering Cancer Center – sequence: 29 givenname: Baby Anusha surname: Satravada fullname: Satravada, Baby Anusha organization: Memorial Sloan Kettering Cancer Center – sequence: 30 givenname: Axel surname: Martin fullname: Martin, Axel organization: Memorial Sloan Kettering Cancer Center – sequence: 31 givenname: Ronglai orcidid: 0000-0001-9694-584X surname: Shen fullname: Shen, Ronglai organization: Memorial Sloan Kettering Cancer Center – sequence: 32 givenname: Yuan surname: Chen fullname: Chen, Yuan organization: Memorial Sloan Kettering Cancer Center – sequence: 33 givenname: A. Rose orcidid: 0000-0003-4610-0149 surname: Brannon fullname: Brannon, A. Rose organization: Memorial Sloan Kettering Cancer Center – sequence: 34 givenname: Jason surname: Chang fullname: Chang, Jason organization: Memorial Sloan Kettering Cancer Center – sequence: 35 givenname: Lior surname: Braunstein fullname: Braunstein, Lior organization: Memorial Sloan Kettering Cancer Center, Dana Farber Cancer Institute – sequence: 36 givenname: Anyi orcidid: 0000-0002-1238-2072 surname: Li fullname: Li, Anyi organization: Memorial Sloan Kettering Cancer Center – sequence: 37 givenname: Anton surname: Safonov fullname: Safonov, Anton organization: Memorial Sloan Kettering Cancer Center – sequence: 38 givenname: Aaron orcidid: 0000-0002-0602-1158 surname: Stonestrom fullname: Stonestrom, Aaron organization: Memorial Sloan Kettering Cancer Center – sequence: 39 givenname: Pablo orcidid: 0000-0002-9286-8290 surname: Sanchez-Vela fullname: Sanchez-Vela, Pablo organization: Memorial Sloan Kettering Cancer Center – sequence: 40 givenname: Clare orcidid: 0000-0003-2437-5387 surname: Wilhelm fullname: Wilhelm, Clare organization: Memorial Sloan Kettering Cancer Center – sequence: 41 givenname: Mark orcidid: 0000-0002-3109-1692 surname: Robson fullname: Robson, Mark organization: Memorial Sloan Kettering Cancer Center, Dana Farber Cancer Institute – sequence: 42 givenname: Howard orcidid: 0000-0002-6791-9324 surname: Scher fullname: Scher, Howard organization: Memorial Sloan Kettering Cancer Center, Dana Farber Cancer Institute – sequence: 43 givenname: Marc orcidid: 0000-0001-9055-7213 surname: Ladanyi fullname: Ladanyi, Marc organization: Memorial Sloan Kettering Cancer Center – sequence: 44 givenname: Jorge S. surname: Reis-Filho fullname: Reis-Filho, Jorge S. organization: Memorial Sloan Kettering Cancer Center – sequence: 45 givenname: David B. orcidid: 0000-0002-6614-802X surname: Solit fullname: Solit, David B. organization: Memorial Sloan Kettering Cancer Center – sequence: 46 givenname: David R. orcidid: 0000-0002-3318-0146 surname: Jones fullname: Jones, David R. organization: Memorial Sloan Kettering Cancer Center – sequence: 47 givenname: Daniel surname: Gomez fullname: Gomez, Daniel organization: Memorial Sloan Kettering Cancer Center – sequence: 48 givenname: Helena orcidid: 0000-0002-0377-9510 surname: Yu fullname: Yu, Helena organization: Memorial Sloan Kettering Cancer Center – sequence: 49 givenname: Debyani orcidid: 0000-0001-8629-5732 surname: Chakravarty fullname: Chakravarty, Debyani organization: Memorial Sloan Kettering Cancer Center – sequence: 50 givenname: Rona orcidid: 0000-0002-7233-5454 surname: Yaeger fullname: Yaeger, Rona organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 51 givenname: Wassim surname: Abida fullname: Abida, Wassim organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 52 givenname: Wungki orcidid: 0000-0002-8006-3102 surname: Park fullname: Park, Wungki organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 53 givenname: Eileen M. orcidid: 0000-0002-8076-9199 surname: O’Reilly fullname: O’Reilly, Eileen M. organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 54 givenname: Julio orcidid: 0000-0003-2451-0948 surname: Garcia-Aguilar fullname: Garcia-Aguilar, Julio organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 55 givenname: Nicholas surname: Socci fullname: Socci, Nicholas organization: Memorial Sloan Kettering Cancer Center – sequence: 56 givenname: Francisco orcidid: 0000-0002-2990-4893 surname: Sanchez-Vega fullname: Sanchez-Vega, Francisco organization: Memorial Sloan Kettering Cancer Center – sequence: 57 givenname: Jian orcidid: 0000-0002-0103-9965 surname: Carrot-Zhang fullname: Carrot-Zhang, Jian organization: Memorial Sloan Kettering Cancer Center – sequence: 58 givenname: Peter D. surname: Stetson fullname: Stetson, Peter D. organization: Memorial Sloan Kettering Cancer Center – sequence: 59 givenname: Ross orcidid: 0000-0002-7884-1905 surname: Levine fullname: Levine, Ross organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 60 givenname: Charles M. orcidid: 0000-0001-5204-3465 surname: Rudin fullname: Rudin, Charles M. organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 61 givenname: Michael F. orcidid: 0000-0003-3882-5000 surname: Berger fullname: Berger, Michael F. organization: Memorial Sloan Kettering Cancer Center – sequence: 62 givenname: Sohrab P. orcidid: 0000-0001-6402-523X surname: Shah fullname: Shah, Sohrab P. organization: Memorial Sloan Kettering Cancer Center – sequence: 63 givenname: Deborah surname: Schrag fullname: Schrag, Deborah organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 64 givenname: Pedram orcidid: 0000-0003-4236-0576 surname: Razavi fullname: Razavi, Pedram organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 65 givenname: Kenneth L. surname: Kehl fullname: Kehl, Kenneth L. organization: Dana Farber Cancer Institute – sequence: 66 givenname: Bob T. orcidid: 0000-0001-6661-8733 surname: Li fullname: Li, Bob T. organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 67 givenname: Gregory J. surname: Riely fullname: Riely, Gregory J. organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University – sequence: 68 givenname: Nikolaus orcidid: 0000-0002-0131-4904 surname: Schultz fullname: Schultz, Nikolaus email: schultzn@mskcc.org organization: Memorial Sloan Kettering Cancer Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39506116$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtPHDEQhK0IBMvjD-QQjZQLlwG_7TlFCIWAhJRLcrY8np6N0Yy9sT1E-ffxshASDpz60F-VqruO0F6IARB6T_A5wUxfZE6Eli2mvMWaSNWKd2hFuJItl1rtoRXGVNcVk4foKOd7jLEgih-gQ9YJLAmRK3RzuZQ42wJDk8BO7a-YpqEZbLGNDwXWyRYfQ-PnTYoPkBtng4PUxKW4OEOzSTB4t0VO0P5opwynT_MYfb_-_O3qpr37-uX26vKudVyJ0lpqFcfYdqTXmHHZU0FHy50Ug-ZYy1FJyh3t-VjTjgowJT3juFe9G0Gojh2jTzvfzdLPMDgIJdnJbJKfbfptovXm_03wP8w6Pph6rhBM6Opw9uSQ4s8FcjGzzw6myQaISzaMUMG7GkZV9OMr9D4uKdT7KiUUpV2toFIf_o30N8vzlyugd4BLMecEo3G-PD62JvSTIdhsCzW7Qk0t1DwWarbe9JX02f1NEduJcoXDGtJL7DdUfwDH6LK0 |
CitedBy_id | crossref_primary_10_1016_j_neo_2024_101090 crossref_primary_10_3390_ijms26052353 crossref_primary_10_1016_j_gassur_2025_101990 crossref_primary_10_1186_s12967_025_06139_5 crossref_primary_10_1186_s40644_025_00841_9 crossref_primary_10_1016_j_esmoop_2025_104479 crossref_primary_10_62347_GJCX1238 crossref_primary_10_3390_cancers17020281 |
Cites_doi | 10.1200/JCO.2007.13.9030 10.1038/nm.4333 10.1001/jama.2023.5321 10.1056/NEJMoa2017699 10.1200/JCO.19.03123 10.1200/CCI.20.00184 10.1038/s41586-022-05496-1 10.1158/1538-7445.AM2024-2750 10.1016/j.ccell.2018.08.008 10.1038/s41467-021-27358-6 10.1200/po.18.00307 10.1200/PO.17.00029 10.1038/s41379-019-0414-6 10.1038/s43018-022-00416-8 10.1214/08-AOAS169 10.1038/s41586-023-06160-y 10.1038/s41591-022-02047-z 10.1038/s41587-021-01070-8 10.1158/1078-0432.CCR-23-0580 10.1158/1078-0432.CCR-11-3265 10.1038/s41467-021-22328-4 10.1200/JCO.2015.65.1067 10.1038/s43018-023-00689-7 10.1200/CCI.21.00105 10.1200/po.17.00011 10.18653/v1/W19-1909 10.1038/s41467-023-40793-x 10.1001/jama.2014.3741 10.1158/0008-5472.CAN-23-0816 10.1093/jamia/ocac225 10.1038/s41588-020-00710-0 10.1016/j.cell.2018.03.035 10.1200/PO.19.00081 10.1038/s41698-021-00193-0 10.1038/s41591-022-01873-5 10.1001/jamaoncol.2019.3985 10.1158/2159-8290.CD-22-0312 10.1016/j.cell.2018.02.052 10.1016/j.cell.2022.01.003 10.1093/bioinformatics/btz682 10.1038/sdata.2016.35 10.1016/S2589-7500(21)00104-7 10.1073/pnas.1902651116 10.1016/j.ccell.2023.10.003 10.1016/j.annonc.2022.09.151 10.1200/PO.17.00084 10.1038/s41591-022-01930-z 10.1016/j.ccell.2023.03.018 10.1001/jama.2019.3241 10.1038/s41568-021-00408-3 10.1002/pros.24363 10.1200/PO.22.00220 |
ContentType | Journal Article |
Contributor | Rachuri, Naveen Nandakumar, Subhiksha Wang, Avery Manca, Paolo Wilson, Manda Parker, Mitchell Kris, Ayush Rangavajhala, Surya Bai, Xuechun Chatila, Walid K Li, Xiang Subramanian, Guru Lisman, Aaron Zhang, Hongxin U, Justin Moore, Darin Pimienta, Robert Lim, Raymond Agbamu, Tejiri Sheridan, Robert Pollard, Tom Boehm, Kevin Kohli, Aarman Chennault, Calla Zhao, Gaofei de Bruijn, Ino Eichholz, Jordan Walch, Henry Bi, Xinran Garcia, Jowel |
Contributor_xml | – sequence: 1 givenname: Aaron surname: Lisman fullname: Lisman, Aaron – sequence: 2 givenname: Gaofei surname: Zhao fullname: Zhao, Gaofei – sequence: 3 givenname: Ino surname: de Bruijn fullname: de Bruijn, Ino – sequence: 4 givenname: Walid K surname: Chatila fullname: Chatila, Walid K – sequence: 5 givenname: Xiang surname: Li fullname: Li, Xiang – sequence: 6 givenname: Aarman surname: Kohli fullname: Kohli, Aarman – sequence: 7 givenname: Darin surname: Moore fullname: Moore, Darin – sequence: 8 givenname: Raymond surname: Lim fullname: Lim, Raymond – sequence: 9 givenname: Tom surname: Pollard fullname: Pollard, Tom – sequence: 10 givenname: Robert surname: Sheridan fullname: Sheridan, Robert – sequence: 11 givenname: Avery surname: Wang fullname: Wang, Avery – sequence: 12 givenname: Calla surname: Chennault fullname: Chennault, Calla – sequence: 13 givenname: Manda surname: Wilson fullname: Wilson, Manda – sequence: 14 givenname: Hongxin surname: Zhang fullname: Zhang, Hongxin – sequence: 15 givenname: Robert surname: Pimienta fullname: Pimienta, Robert – sequence: 16 givenname: Surya surname: Rangavajhala fullname: Rangavajhala, Surya – sequence: 17 givenname: Guru surname: Subramanian fullname: Subramanian, Guru – sequence: 18 givenname: Jowel surname: Garcia fullname: Garcia, Jowel – sequence: 19 givenname: Naveen surname: Rachuri fullname: Rachuri, Naveen – sequence: 20 givenname: Kevin surname: Boehm fullname: Boehm, Kevin – sequence: 21 givenname: Mitchell surname: Parker fullname: Parker, Mitchell – sequence: 22 givenname: Henry surname: Walch fullname: Walch, Henry – sequence: 23 givenname: Subhiksha surname: Nandakumar fullname: Nandakumar, Subhiksha – sequence: 24 givenname: Jordan surname: Eichholz fullname: Eichholz, Jordan – sequence: 25 givenname: Ayush surname: Kris fullname: Kris, Ayush – sequence: 26 givenname: Paolo surname: Manca fullname: Manca, Paolo – sequence: 27 givenname: Xuechun surname: Bai fullname: Bai, Xuechun – sequence: 28 givenname: Tejiri surname: Agbamu fullname: Agbamu, Tejiri – sequence: 29 givenname: Justin surname: U fullname: U, Justin – sequence: 30 givenname: Xinran surname: Bi fullname: Bi, Xinran |
Copyright | The Author(s) 2024 2024. The Author(s). Copyright Nature Publishing Group Dec 19-Dec 26, 2024 The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group Dec 19-Dec 26, 2024 – notice: The Author(s) 2024 2024 |
CorporateAuthor | MSK Cancer Data Science Initiative Group |
CorporateAuthor_xml | – name: MSK Cancer Data Science Initiative Group |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N NAPCQ P64 RC3 SOI 7X8 5PM |
DOI | 10.1038/s41586-024-08167-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Nursing & Allied Health Premium Genetics Abstracts Meteorological & Geoastrophysical Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 736 |
ExternalDocumentID | PMC11655358 39506116 10_1038_s41586_024_08167_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA240472 – fundername: NCI NIH HHS grantid: T32 CA009207 – fundername: NCI NIH HHS grantid: R01 CA234361 – fundername: NCI NIH HHS grantid: P01 CA228696 – fundername: NCI NIH HHS grantid: R01 CA217169 – fundername: NCI NIH HHS grantid: P01 CA275746 – fundername: NCI NIH HHS grantid: P50 CA092629 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: K08 CA286842 – fundername: NCI NIH HHS grantid: K12 CA184746 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 53G 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFBBN AFFNX AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO C6C CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NEPJS NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PKN PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKR UMD UQL VQA VVN WH7 X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NAPCQ NFIDA .-4 .GJ .HR 00M 08P 0WA 1CY 1VR 1VW 2XV 354 3EH 3O- 4.4 41X 41~ 42X 4R4 663 79B 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABJCF ABNNU ABUWG ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AEUYN AFFDN AFHKK AFKRA AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT AZQEC B0M BBNVY BCR BCU BDKGC BEC BES BGLVJ BKEYQ BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CGR CUY CVF D1I D1J D1K DB5 DO4 DWQXO EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMH EMK EMOBN EPL ESE ESN ESX EX3 FA8 FYUFA GNUQQ GUQSH HMCUK I-F INR ISR ITC J5H K6- KB. L-9 L6V LK5 LK8 M1P M2M M2P M7R M7S MVM N4W NEJ NPM OHT P-O P62 PATMY PCBAR PDBOC PEA PHGZM PHGZT PJZUB PM3 PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X QS- R05 R4F RHI S0X SJFOW SKT SV3 TH9 TUD TUS UBY UHB UKHRP USG VOH WOW X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~7V ~8M ~G0 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD AFKWF C1K FR3 H94 K9. KL. M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c475t-a2a7400a91b80346b252fa4c65d84086f7624c2b4f000f7e021b340b7bcfe5793 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:30:18 EDT 2025 Thu Jul 10 17:29:10 EDT 2025 Sat Aug 23 13:07:55 EDT 2025 Sun Jul 20 01:30:31 EDT 2025 Tue Jul 01 02:59:03 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Fri Feb 21 02:38:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8043 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-a2a7400a91b80346b252fa4c65d84086f7624c2b4f000f7e021b340b7bcfe5793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0131-4904 0000-0001-7845-8060 0000-0003-2451-0948 0000-0003-2437-5387 0000-0002-3109-1692 0000-0002-3428-2507 0000-0002-2990-4893 0000-0002-1238-2072 0000-0002-5416-5172 0000-0001-6402-523X 0000-0001-6723-2859 0000-0003-1108-4919 0000-0003-4538-6069 0000-0001-9783-0139 0000-0002-8789-251X 0000-0001-5427-4750 0000-0002-0377-9510 0000-0001-5474-218X 0000-0001-6661-8733 0000-0003-0346-5033 0000-0002-7233-5454 0000-0002-8076-9199 0000-0002-0103-9965 0000-0003-4610-0149 0000-0003-4236-0576 0000-0002-5739-1781 0000-0002-3318-0146 0000-0002-8006-3102 0000-0003-3882-5000 0000-0002-2755-4359 0000-0002-6791-9324 0000-0002-6614-802X 0000-0001-9694-584X 0000-0002-0602-1158 0000-0001-8629-5732 0000-0002-7884-1905 0000-0001-9055-7213 0000-0002-9286-8290 0000-0001-5204-3465 |
OpenAccessLink | https://www.nature.com/articles/s41586-024-08167-5 |
PMID | 39506116 |
PQID | 3157229415 |
PQPubID | 40569 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11655358 proquest_miscellaneous_3125494087 proquest_journals_3157229415 pubmed_primary_39506116 crossref_citationtrail_10_1038_s41586_024_08167_5 crossref_primary_10_1038_s41586_024_08167_5 springer_journals_10_1038_s41586_024_08167_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-19 |
PublicationDateYYYYMMDD | 2024-12-19 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | KL Kehl (8167_CR1) 2021; 12 8167_CR47 8167_CR46 8167_CR45 8167_CR41 8167_CR40 I de Bruijn (8167_CR21) 2023; 83 J Liu (8167_CR31) 2018; 173 M Lu (8167_CR37) 2021; 5 MA Molina (8167_CR7) 2001; 61 Y Li (8167_CR5) 2023; 30 8167_CR49 8167_CR48 MG Zauderer (8167_CR59) 2021; 3 8167_CR14 8167_CR56 8167_CR55 8167_CR10 8167_CR54 8167_CR53 8167_CR52 G Singal (8167_CR9) 2019; 321 NM Keegan (8167_CR18) 2022; 82 WK Chatila (8167_CR19) 2022; 28 8167_CR17 8167_CR16 S Dogan (8167_CR30) 2012; 18 F Sanchez-Vega (8167_CR35) 2018; 173 J-P Pignon (8167_CR38) 2008; 26 J Jee (8167_CR39) 2022; 28 K Arora (8167_CR42) 2022; 12 JA Fries (8167_CR2) 2021; 12 AEW Johnson (8167_CR51) 2016; 3 W Abida (8167_CR24) 2019; 116 A Skakodub (8167_CR36) 2023; 14 A Penson (8167_CR44) 2020; 6 8167_CR25 J Lee (8167_CR50) 2020; 36 8167_CR23 P Razavi (8167_CR22) 2018; 34 8167_CR20 8167_CR62 8167_CR8 KM Boehm (8167_CR13) 2022; 22 8167_CR4 8167_CR26 T André (8167_CR27) 2020; 383 R Liu (8167_CR11) 2022; 28 HB Lengel (8167_CR33) 2023; 41 8167_CR60 D Chowell (8167_CR15) 2022; 40 CE Haupt (8167_CR6) 2023; 329 P Selenica (8167_CR29) 2022; 33 8167_CR34 T Aprati (8167_CR61) 2024; 84 8167_CR32 H Ishwaran (8167_CR58) 2008; 2 ZK Stadler (8167_CR57) 2016; 34 B Nguyen (8167_CR12) 2022; 185 8167_CR3 I Vázquez-García (8167_CR43) 2022; 612 JF Hechtman (8167_CR28) 2020; 33 |
References_xml | – volume: 26 start-page: 3552 year: 2008 ident: 8167_CR38 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2007.13.9030 – ident: 8167_CR20 doi: 10.1038/nm.4333 – volume: 329 start-page: 1349 year: 2023 ident: 8167_CR6 publication-title: JAMA doi: 10.1001/jama.2023.5321 – volume: 383 start-page: 2207 year: 2020 ident: 8167_CR27 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2017699 – ident: 8167_CR23 doi: 10.1200/JCO.19.03123 – ident: 8167_CR40 doi: 10.1200/CCI.20.00184 – volume: 612 start-page: 778 year: 2022 ident: 8167_CR43 publication-title: Nature doi: 10.1038/s41586-022-05496-1 – volume: 84 start-page: 2750 year: 2024 ident: 8167_CR61 publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2024-2750 – volume: 34 start-page: 427 year: 2018 ident: 8167_CR22 publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.08.008 – ident: 8167_CR45 – volume: 12 year: 2021 ident: 8167_CR1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27358-6 – ident: 8167_CR60 doi: 10.1200/po.18.00307 – ident: 8167_CR56 doi: 10.1200/PO.17.00029 – volume: 33 start-page: 871 year: 2020 ident: 8167_CR28 publication-title: Mod. Pathol. doi: 10.1038/s41379-019-0414-6 – ident: 8167_CR48 – ident: 8167_CR14 doi: 10.1038/s43018-022-00416-8 – ident: 8167_CR55 – volume: 2 start-page: 841 year: 2008 ident: 8167_CR58 publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS169 – ident: 8167_CR4 doi: 10.1038/s41586-023-06160-y – volume: 28 start-page: 2353 year: 2022 ident: 8167_CR39 publication-title: Nat. Med. doi: 10.1038/s41591-022-02047-z – volume: 40 start-page: 499 year: 2022 ident: 8167_CR15 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01070-8 – ident: 8167_CR16 doi: 10.1158/1078-0432.CCR-23-0580 – volume: 18 start-page: 6169 year: 2012 ident: 8167_CR30 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-3265 – volume: 12 year: 2021 ident: 8167_CR2 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22328-4 – volume: 34 start-page: 2141 year: 2016 ident: 8167_CR57 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2015.65.1067 – ident: 8167_CR47 – ident: 8167_CR10 doi: 10.1038/s43018-023-00689-7 – ident: 8167_CR17 doi: 10.1200/CCI.21.00105 – ident: 8167_CR34 doi: 10.1200/po.17.00011 – ident: 8167_CR49 doi: 10.18653/v1/W19-1909 – volume: 14 year: 2023 ident: 8167_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-023-40793-x – volume: 61 start-page: 4744 year: 2001 ident: 8167_CR7 publication-title: Cancer Res. – ident: 8167_CR8 doi: 10.1001/jama.2014.3741 – volume: 83 start-page: 3861 year: 2023 ident: 8167_CR21 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-23-0816 – volume: 30 start-page: 340 year: 2023 ident: 8167_CR5 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocac225 – ident: 8167_CR25 doi: 10.1038/s41588-020-00710-0 – volume: 173 start-page: 321 year: 2018 ident: 8167_CR35 publication-title: Cell doi: 10.1016/j.cell.2018.03.035 – ident: 8167_CR26 doi: 10.1200/PO.19.00081 – volume: 5 year: 2021 ident: 8167_CR37 publication-title: npj Precis. Oncol. doi: 10.1038/s41698-021-00193-0 – ident: 8167_CR46 – volume: 28 start-page: 1656 year: 2022 ident: 8167_CR11 publication-title: Nat. Med. doi: 10.1038/s41591-022-01873-5 – volume: 6 start-page: 84 year: 2020 ident: 8167_CR44 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2019.3985 – volume: 12 start-page: 2552 year: 2022 ident: 8167_CR42 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-22-0312 – volume: 173 start-page: 400 year: 2018 ident: 8167_CR31 publication-title: Cell doi: 10.1016/j.cell.2018.02.052 – ident: 8167_CR53 – volume: 185 start-page: 563 year: 2022 ident: 8167_CR12 publication-title: Cell doi: 10.1016/j.cell.2022.01.003 – volume: 36 start-page: 1234 year: 2020 ident: 8167_CR50 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – volume: 3 start-page: 1 year: 2016 ident: 8167_CR51 publication-title: Sci. Data doi: 10.1038/sdata.2016.35 – volume: 3 start-page: e565 year: 2021 ident: 8167_CR59 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(21)00104-7 – volume: 116 start-page: 11428 year: 2019 ident: 8167_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1902651116 – ident: 8167_CR41 doi: 10.1016/j.ccell.2023.10.003 – volume: 33 start-page: 1284 year: 2022 ident: 8167_CR29 publication-title: Ann. Oncol. doi: 10.1016/j.annonc.2022.09.151 – ident: 8167_CR62 doi: 10.1200/PO.17.00084 – volume: 28 start-page: 1646 year: 2022 ident: 8167_CR19 publication-title: Nat. Med. doi: 10.1038/s41591-022-01930-z – volume: 41 start-page: 970 year: 2023 ident: 8167_CR33 publication-title: Cancer Cell doi: 10.1016/j.ccell.2023.03.018 – volume: 321 start-page: 1391 year: 2019 ident: 8167_CR9 publication-title: JAMA doi: 10.1001/jama.2019.3241 – volume: 22 start-page: 114 year: 2022 ident: 8167_CR13 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-021-00408-3 – volume: 82 start-page: 1107 year: 2022 ident: 8167_CR18 publication-title: Prostate doi: 10.1002/pros.24363 – ident: 8167_CR32 doi: 10.1200/PO.22.00220 – ident: 8167_CR54 doi: 10.1093/jamia/ocac225 – ident: 8167_CR52 – ident: 8167_CR3 |
SSID | ssj0005174 |
Score | 2.5945373 |
Snippet | The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 728 |
SubjectTerms | 45/23 692/308/575 692/699/67 Accuracy Adenocarcinoma Annotations Automation Cancer Cancer therapies Data integration Datasets Datasets as Topic DNA sequencing Electronic Health Records Female Gene sequencing Genomics Histopathology Humanities and Social Sciences Humans Immunotherapy Lung cancer Lungs Machine Learning Male Medical research Metastases Metastasis Models, Biological multidisciplinary Natural Language Processing Neoplasm Metastasis - diagnosis Neoplasms - drug therapy Neoplasms - genetics Neoplasms - pathology Oncology Patients Prognosis Prostate Radiation Radiology Registries Science Science (multidisciplinary) Tumors Unstructured data |
Title | Automated real-world data integration improves cancer outcome prediction |
URI | https://link.springer.com/article/10.1038/s41586-024-08167-5 https://www.ncbi.nlm.nih.gov/pubmed/39506116 https://www.proquest.com/docview/3157229415 https://www.proquest.com/docview/3125494087 https://pubmed.ncbi.nlm.nih.gov/PMC11655358 |
Volume | 636 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6waAvpe3W1W1aNNjDxiYW68OSH9PQEAbr0wp9M7Ii00JxQuL8_71T7JSk7WDPOtvSfejufKefAL5KiU5JuZw7j1ugmmQ5t9IS5H6QAeXtMkGHk__cZuM79fte3--A6M7CxKb9CGkZt-muO-zXAh2NpXZZxemqCMP1LuwTdDslXMNs-NLWsYW83B6U6Uv7xjs2ndGrCPN1o-RWtTQ6odERHLbRIxus5nsMO6E-gQ-xi9MvTuC4tdQF-9bCSX__COPBspliXBomDAPEJx4xUhl1hrIOKwJlwx7j3wV81JMezNl02SBrApvNqZRDJJ_gbnTzdzjm7f0J3CujG-6EM2iiLk9L25cqK4UWlVM-0xNM62xW4UaovChVhXyrTEB3X0rVL03pq6DRcE9hr57W4QxYSjiD3lnldV9NMKsypTUm1VWF8aFxIYG0Y2ThW3BxuuPiqYhFbmmLFfMLZH4RmV_oBH6sn5mtoDX-Sd3r5FO0ZrYoZKqNEDkSJ_BlPYwGQlUPV4fpkmgoB8b1mgQ-r8S5_pzMNcYzaZaA3RD0moDAtzdH6seHCMJNsEVaapvAz04nXub1_jLO_4_8Ag4E6WsqeJr3YK-ZL8MlRkFNeQX7g9H19e1VVP9n0pL-cQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NIQQviA3YAhsYiQcQWDT-ncepYiqw7WmT9mY5riMmTenUpv8_d27SqRsg7dmXxL7z-T7nzp8BPkqJQUmFioeIS6Camoo76YhyP8mE9g5G0OHk0zMzuVA_L_XlFojhLEwu2s-UlnmZHqrDvi0w0Dgql1WcroqwXD-Cx4i1Dc3ksRnflnXcYV7uD8qMpPvLOzaD0T2Eeb9Q8k62NAeh4xfwvEeP7GjV3x3YSu0uPMlVnHGxCzu9py7Yp55O-vNLmBwtuxni0jRlCBCveeZIZVQZygauCLQNu8p_F_DRSPNgzmbLDlWT2M2cUjkk8goujr-fjye8vz-BR2V1x4MIFl00VGXtRlKZWmjRBBWNnuK2zpkGF0IVRa0a1FtjE4b7WqpRbevYJI2O-xq221mb9oGVxDMYg1NRj9QUd1W2dtaWumkQH9qQCigHRfrYk4vTHRfXPie5pfMr5XtUvs_K97qAL-tnblbUGv-VPhjs43s3W3hZaitEhcIFfFg3o4NQ1iO0abYkGdoD43htAXsrc64_JyuNeKY0BbgNQ68FiHx7s6W9-p1JuIm2SEvtCvg6zInbfv17GG8eJv4enk7OT0_8yY-zX2_hmaC5WwpeVgew3c2X6RARUVe_yy7wB_Dr_-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlAvFS2PhhZwJQ4gMCR-51htWS0UKg5U6s1yHEdUqrKr3ez_Z-xNttoWkHr2JLFnPJ5x5vNngLecY1ASrqTO4xIoalVSw02k3A88oL2dYvFw8o9zNbkQ3y7l5Rao4SxMAu0nSsu0TA_osM8LDDQmwmUFjVdFaCo_zermATzEfDuPUK6RGt1AO26xL_eHZXJu_vKezYB0J8u8C5a8VTFNgWj8BHb7DJKcrPq8B1uh3YdHCcnpF_uw13vrgrzrKaXfP4XJybKbYm4aaoJJ4jVNPKkkokPJwBeB9iFX6Q8DPurjXJiT6bJD9QQym8dyThR5BhfjL79GE9rfoUC90LKjjjmNburKojI5F6pikjVOeCVr3NoZ1eBiKDyrRIN6a3TAkF9xkVe68k2Q6LzPYbudtuEASBG5Br0zwstc1Liz0pXRupBNgzmidiGDYlCk9T3BeLzn4tqmQjc3dqV8i8q3SflWZvBh_cxsRa_xX-mjwT62d7WF5YXUjJUonMHxuhmdJFY-XBumyygT98E4Xp3Bi5U515_jpcScplAZmA1DrwUiAfdmS3v1OxFxR-oiyaXJ4OMwJ2769e9hvLyf-Bt4_PN0bL9_PT87hB0Wp27BaFEewXY3X4ZXmBR11evkAX8ApI4A_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+real-world+data+integration+improves+cancer+outcome+prediction&rft.jtitle=Nature+%28London%29&rft.au=Jee%2C+Justin&rft.au=Fong%2C+Christopher&rft.au=Pichotta%2C+Karl&rft.au=Tran%2C+Thinh+Ngoc&rft.date=2024-12-19&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=636&rft.issue=8043&rft.spage=728&rft.epage=736&rft_id=info:doi/10.1038%2Fs41586-024-08167-5&rft_id=info%3Apmid%2F39506116&rft.externalDocID=PMC11655358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |