Automated real-world data integration improves cancer outcome prediction

The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing an...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 636; no. 8043; pp. 728 - 736
Main Authors Jee, Justin, Fong, Christopher, Pichotta, Karl, Tran, Thinh Ngoc, Luthra, Anisha, Waters, Michele, Fu, Chenlian, Altoe, Mirella, Liu, Si-Yang, Maron, Steven B., Ahmed, Mehnaj, Kim, Susie, Pirun, Mono, Chatila, Walid K., de Bruijn, Ino, Pasha, Arfath, Kundra, Ritika, Gross, Benjamin, Mastrogiacomo, Brooke, Aprati, Tyler J., Liu, David, Gao, JianJiong, Capelletti, Marzia, Pekala, Kelly, Loudon, Lisa, Perry, Maria, Bandlamudi, Chaitanya, Donoghue, Mark, Satravada, Baby Anusha, Martin, Axel, Shen, Ronglai, Chen, Yuan, Brannon, A. Rose, Chang, Jason, Braunstein, Lior, Li, Anyi, Safonov, Anton, Stonestrom, Aaron, Sanchez-Vela, Pablo, Wilhelm, Clare, Robson, Mark, Scher, Howard, Ladanyi, Marc, Reis-Filho, Jorge S., Solit, David B., Jones, David R., Gomez, Daniel, Yu, Helena, Chakravarty, Debyani, Yaeger, Rona, Abida, Wassim, Park, Wungki, O’Reilly, Eileen M., Garcia-Aguilar, Julio, Socci, Nicholas, Sanchez-Vega, Francisco, Carrot-Zhang, Jian, Stetson, Peter D., Levine, Ross, Rudin, Charles M., Berger, Michael F., Shah, Sohrab P., Schrag, Deborah, Razavi, Pedram, Kehl, Kenneth L., Li, Bob T., Riely, Gregory J., Schultz, Nikolaus
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.12.2024
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations 1 , 2 with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung ( n  = 7,809), breast ( n  = 5,368), colorectal ( n  = 5,543), prostate ( n  = 3,211) and pancreatic ( n  = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between SETD2 mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research. A study generates a clinicogenomics dataset resource, MSK-CHORD, that combines natural language processing-derived clinical annotations with patient medical data from various sources to improve models of cancer outcome.
AbstractList The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations1,2 with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung (n = 7,809), breast (n = 5,368), colorectal (n = 5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between SETD2 mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research.The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations1,2 with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung (n = 7,809), breast (n = 5,368), colorectal (n = 5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between SETD2 mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research.
The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung (n = 7,809), breast (n = 5,368), colorectal (n = 5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between SETD2 mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research.
The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations 1 , 2 with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung ( n  = 7,809), breast ( n  = 5,368), colorectal ( n  = 5,543), prostate ( n  = 3,211) and pancreatic ( n  = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between SETD2 mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research. A study generates a clinicogenomics dataset resource, MSK-CHORD, that combines natural language processing-derived clinical annotations with patient medical data from various sources to improve models of cancer outcome.
The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations? with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate aclinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung (n = 7,809), breast (n = 5,368), colorectal (n = 5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organsites, including a relationship between SETD2 mutation and lower metastatic potential inimmunotherapy-treated lung adenocarcinoma corroborated inindependent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research.
Author Bandlamudi, Chaitanya
Martin, Axel
Schultz, Nikolaus
Razavi, Pedram
Chen, Yuan
Gross, Benjamin
Abida, Wassim
Liu, David
Scher, Howard
Safonov, Anton
Levine, Ross
Loudon, Lisa
Riely, Gregory J.
Gao, JianJiong
Liu, Si-Yang
Li, Bob T.
Robson, Mark
Socci, Nicholas
Kehl, Kenneth L.
Reis-Filho, Jorge S.
Ahmed, Mehnaj
Satravada, Baby Anusha
Fu, Chenlian
Perry, Maria
Pirun, Mono
Pasha, Arfath
Maron, Steven B.
Donoghue, Mark
Yaeger, Rona
de Bruijn, Ino
Pichotta, Karl
Chang, Jason
Berger, Michael F.
Mastrogiacomo, Brooke
Kundra, Ritika
Pekala, Kelly
Tran, Thinh Ngoc
Garcia-Aguilar, Julio
Stetson, Peter D.
Yu, Helena
Li, Anyi
Waters, Michele
Shen, Ronglai
Shah, Sohrab P.
Luthra, Anisha
Stonestrom, Aaron
Solit, David B.
O’Reilly, Eileen M.
Altoe, Mirella
Park, Wungki
Capelletti, Marzia
Carrot-Zhang, Jian
Kim, Susie
Schrag, Deborah
Chatila, Walid K.
Brannon, A. Rose
Fong, Christopher
Ladanyi, Marc
Braunstein, Lior
Sanchez-Vega, Francisco
Gomez, Daniel
Chakravarty, Debyani
Rudin, Charles M.
Jee, Justin
Jones, David R.
Sanchez-Vela, Pablo
Aprati, Tyler J.
Wilhelm, C
Author_xml – sequence: 1
  givenname: Justin
  orcidid: 0000-0001-9783-0139
  surname: Jee
  fullname: Jee, Justin
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 2
  givenname: Christopher
  surname: Fong
  fullname: Fong, Christopher
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 3
  givenname: Karl
  surname: Pichotta
  fullname: Pichotta, Karl
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 4
  givenname: Thinh Ngoc
  orcidid: 0000-0002-3428-2507
  surname: Tran
  fullname: Tran, Thinh Ngoc
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 5
  givenname: Anisha
  surname: Luthra
  fullname: Luthra, Anisha
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 6
  givenname: Michele
  orcidid: 0000-0002-5416-5172
  surname: Waters
  fullname: Waters, Michele
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 7
  givenname: Chenlian
  orcidid: 0000-0002-2755-4359
  surname: Fu
  fullname: Fu, Chenlian
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 8
  givenname: Mirella
  surname: Altoe
  fullname: Altoe, Mirella
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 9
  givenname: Si-Yang
  surname: Liu
  fullname: Liu, Si-Yang
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 10
  givenname: Steven B.
  surname: Maron
  fullname: Maron, Steven B.
  organization: Memorial Sloan Kettering Cancer Center, Dana Farber Cancer Institute
– sequence: 11
  givenname: Mehnaj
  surname: Ahmed
  fullname: Ahmed, Mehnaj
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 12
  givenname: Susie
  surname: Kim
  fullname: Kim, Susie
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 13
  givenname: Mono
  orcidid: 0000-0001-7845-8060
  surname: Pirun
  fullname: Pirun, Mono
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 14
  givenname: Walid K.
  orcidid: 0000-0001-5474-218X
  surname: Chatila
  fullname: Chatila, Walid K.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 15
  givenname: Ino
  orcidid: 0000-0001-5427-4750
  surname: de Bruijn
  fullname: de Bruijn, Ino
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 16
  givenname: Arfath
  surname: Pasha
  fullname: Pasha, Arfath
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 17
  givenname: Ritika
  orcidid: 0000-0001-6723-2859
  surname: Kundra
  fullname: Kundra, Ritika
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 18
  givenname: Benjamin
  surname: Gross
  fullname: Gross, Benjamin
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 19
  givenname: Brooke
  surname: Mastrogiacomo
  fullname: Mastrogiacomo, Brooke
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 20
  givenname: Tyler J.
  surname: Aprati
  fullname: Aprati, Tyler J.
  organization: Dana Farber Cancer Institute
– sequence: 21
  givenname: David
  orcidid: 0000-0003-0346-5033
  surname: Liu
  fullname: Liu, David
  organization: Dana Farber Cancer Institute
– sequence: 22
  givenname: JianJiong
  orcidid: 0000-0002-5739-1781
  surname: Gao
  fullname: Gao, JianJiong
  organization: Caris Life Sciences
– sequence: 23
  givenname: Marzia
  surname: Capelletti
  fullname: Capelletti, Marzia
  organization: Caris Life Sciences
– sequence: 24
  givenname: Kelly
  surname: Pekala
  fullname: Pekala, Kelly
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 25
  givenname: Lisa
  surname: Loudon
  fullname: Loudon, Lisa
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 26
  givenname: Maria
  orcidid: 0000-0002-8789-251X
  surname: Perry
  fullname: Perry, Maria
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 27
  givenname: Chaitanya
  orcidid: 0000-0003-1108-4919
  surname: Bandlamudi
  fullname: Bandlamudi, Chaitanya
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 28
  givenname: Mark
  orcidid: 0000-0003-4538-6069
  surname: Donoghue
  fullname: Donoghue, Mark
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 29
  givenname: Baby Anusha
  surname: Satravada
  fullname: Satravada, Baby Anusha
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 30
  givenname: Axel
  surname: Martin
  fullname: Martin, Axel
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 31
  givenname: Ronglai
  orcidid: 0000-0001-9694-584X
  surname: Shen
  fullname: Shen, Ronglai
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 32
  givenname: Yuan
  surname: Chen
  fullname: Chen, Yuan
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 33
  givenname: A. Rose
  orcidid: 0000-0003-4610-0149
  surname: Brannon
  fullname: Brannon, A. Rose
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 34
  givenname: Jason
  surname: Chang
  fullname: Chang, Jason
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 35
  givenname: Lior
  surname: Braunstein
  fullname: Braunstein, Lior
  organization: Memorial Sloan Kettering Cancer Center, Dana Farber Cancer Institute
– sequence: 36
  givenname: Anyi
  orcidid: 0000-0002-1238-2072
  surname: Li
  fullname: Li, Anyi
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 37
  givenname: Anton
  surname: Safonov
  fullname: Safonov, Anton
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 38
  givenname: Aaron
  orcidid: 0000-0002-0602-1158
  surname: Stonestrom
  fullname: Stonestrom, Aaron
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 39
  givenname: Pablo
  orcidid: 0000-0002-9286-8290
  surname: Sanchez-Vela
  fullname: Sanchez-Vela, Pablo
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 40
  givenname: Clare
  orcidid: 0000-0003-2437-5387
  surname: Wilhelm
  fullname: Wilhelm, Clare
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 41
  givenname: Mark
  orcidid: 0000-0002-3109-1692
  surname: Robson
  fullname: Robson, Mark
  organization: Memorial Sloan Kettering Cancer Center, Dana Farber Cancer Institute
– sequence: 42
  givenname: Howard
  orcidid: 0000-0002-6791-9324
  surname: Scher
  fullname: Scher, Howard
  organization: Memorial Sloan Kettering Cancer Center, Dana Farber Cancer Institute
– sequence: 43
  givenname: Marc
  orcidid: 0000-0001-9055-7213
  surname: Ladanyi
  fullname: Ladanyi, Marc
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 44
  givenname: Jorge S.
  surname: Reis-Filho
  fullname: Reis-Filho, Jorge S.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 45
  givenname: David B.
  orcidid: 0000-0002-6614-802X
  surname: Solit
  fullname: Solit, David B.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 46
  givenname: David R.
  orcidid: 0000-0002-3318-0146
  surname: Jones
  fullname: Jones, David R.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 47
  givenname: Daniel
  surname: Gomez
  fullname: Gomez, Daniel
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 48
  givenname: Helena
  orcidid: 0000-0002-0377-9510
  surname: Yu
  fullname: Yu, Helena
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 49
  givenname: Debyani
  orcidid: 0000-0001-8629-5732
  surname: Chakravarty
  fullname: Chakravarty, Debyani
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 50
  givenname: Rona
  orcidid: 0000-0002-7233-5454
  surname: Yaeger
  fullname: Yaeger, Rona
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 51
  givenname: Wassim
  surname: Abida
  fullname: Abida, Wassim
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 52
  givenname: Wungki
  orcidid: 0000-0002-8006-3102
  surname: Park
  fullname: Park, Wungki
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 53
  givenname: Eileen M.
  orcidid: 0000-0002-8076-9199
  surname: O’Reilly
  fullname: O’Reilly, Eileen M.
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 54
  givenname: Julio
  orcidid: 0000-0003-2451-0948
  surname: Garcia-Aguilar
  fullname: Garcia-Aguilar, Julio
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 55
  givenname: Nicholas
  surname: Socci
  fullname: Socci, Nicholas
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 56
  givenname: Francisco
  orcidid: 0000-0002-2990-4893
  surname: Sanchez-Vega
  fullname: Sanchez-Vega, Francisco
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 57
  givenname: Jian
  orcidid: 0000-0002-0103-9965
  surname: Carrot-Zhang
  fullname: Carrot-Zhang, Jian
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 58
  givenname: Peter D.
  surname: Stetson
  fullname: Stetson, Peter D.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 59
  givenname: Ross
  orcidid: 0000-0002-7884-1905
  surname: Levine
  fullname: Levine, Ross
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 60
  givenname: Charles M.
  orcidid: 0000-0001-5204-3465
  surname: Rudin
  fullname: Rudin, Charles M.
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 61
  givenname: Michael F.
  orcidid: 0000-0003-3882-5000
  surname: Berger
  fullname: Berger, Michael F.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 62
  givenname: Sohrab P.
  orcidid: 0000-0001-6402-523X
  surname: Shah
  fullname: Shah, Sohrab P.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 63
  givenname: Deborah
  surname: Schrag
  fullname: Schrag, Deborah
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 64
  givenname: Pedram
  orcidid: 0000-0003-4236-0576
  surname: Razavi
  fullname: Razavi, Pedram
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 65
  givenname: Kenneth L.
  surname: Kehl
  fullname: Kehl, Kenneth L.
  organization: Dana Farber Cancer Institute
– sequence: 66
  givenname: Bob T.
  orcidid: 0000-0001-6661-8733
  surname: Li
  fullname: Li, Bob T.
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 67
  givenname: Gregory J.
  surname: Riely
  fullname: Riely, Gregory J.
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, Cornell University
– sequence: 68
  givenname: Nikolaus
  orcidid: 0000-0002-0131-4904
  surname: Schultz
  fullname: Schultz, Nikolaus
  email: schultzn@mskcc.org
  organization: Memorial Sloan Kettering Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39506116$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPHDEQhK0IBMvjD-QQjZQLlwG_7TlFCIWAhJRLcrY8np6N0Yy9sT1E-ffxshASDpz60F-VqruO0F6IARB6T_A5wUxfZE6Eli2mvMWaSNWKd2hFuJItl1rtoRXGVNcVk4foKOd7jLEgih-gQ9YJLAmRK3RzuZQ42wJDk8BO7a-YpqEZbLGNDwXWyRYfQ-PnTYoPkBtng4PUxKW4OEOzSTB4t0VO0P5opwynT_MYfb_-_O3qpr37-uX26vKudVyJ0lpqFcfYdqTXmHHZU0FHy50Ug-ZYy1FJyh3t-VjTjgowJT3juFe9G0Gojh2jTzvfzdLPMDgIJdnJbJKfbfptovXm_03wP8w6Pph6rhBM6Opw9uSQ4s8FcjGzzw6myQaISzaMUMG7GkZV9OMr9D4uKdT7KiUUpV2toFIf_o30N8vzlyugd4BLMecEo3G-PD62JvSTIdhsCzW7Qk0t1DwWarbe9JX02f1NEduJcoXDGtJL7DdUfwDH6LK0
CitedBy_id crossref_primary_10_1016_j_neo_2024_101090
crossref_primary_10_3390_ijms26052353
crossref_primary_10_1016_j_gassur_2025_101990
crossref_primary_10_1186_s12967_025_06139_5
crossref_primary_10_1186_s40644_025_00841_9
crossref_primary_10_1016_j_esmoop_2025_104479
crossref_primary_10_62347_GJCX1238
crossref_primary_10_3390_cancers17020281
Cites_doi 10.1200/JCO.2007.13.9030
10.1038/nm.4333
10.1001/jama.2023.5321
10.1056/NEJMoa2017699
10.1200/JCO.19.03123
10.1200/CCI.20.00184
10.1038/s41586-022-05496-1
10.1158/1538-7445.AM2024-2750
10.1016/j.ccell.2018.08.008
10.1038/s41467-021-27358-6
10.1200/po.18.00307
10.1200/PO.17.00029
10.1038/s41379-019-0414-6
10.1038/s43018-022-00416-8
10.1214/08-AOAS169
10.1038/s41586-023-06160-y
10.1038/s41591-022-02047-z
10.1038/s41587-021-01070-8
10.1158/1078-0432.CCR-23-0580
10.1158/1078-0432.CCR-11-3265
10.1038/s41467-021-22328-4
10.1200/JCO.2015.65.1067
10.1038/s43018-023-00689-7
10.1200/CCI.21.00105
10.1200/po.17.00011
10.18653/v1/W19-1909
10.1038/s41467-023-40793-x
10.1001/jama.2014.3741
10.1158/0008-5472.CAN-23-0816
10.1093/jamia/ocac225
10.1038/s41588-020-00710-0
10.1016/j.cell.2018.03.035
10.1200/PO.19.00081
10.1038/s41698-021-00193-0
10.1038/s41591-022-01873-5
10.1001/jamaoncol.2019.3985
10.1158/2159-8290.CD-22-0312
10.1016/j.cell.2018.02.052
10.1016/j.cell.2022.01.003
10.1093/bioinformatics/btz682
10.1038/sdata.2016.35
10.1016/S2589-7500(21)00104-7
10.1073/pnas.1902651116
10.1016/j.ccell.2023.10.003
10.1016/j.annonc.2022.09.151
10.1200/PO.17.00084
10.1038/s41591-022-01930-z
10.1016/j.ccell.2023.03.018
10.1001/jama.2019.3241
10.1038/s41568-021-00408-3
10.1002/pros.24363
10.1200/PO.22.00220
ContentType Journal Article
Contributor Rachuri, Naveen
Nandakumar, Subhiksha
Wang, Avery
Manca, Paolo
Wilson, Manda
Parker, Mitchell
Kris, Ayush
Rangavajhala, Surya
Bai, Xuechun
Chatila, Walid K
Li, Xiang
Subramanian, Guru
Lisman, Aaron
Zhang, Hongxin
U, Justin
Moore, Darin
Pimienta, Robert
Lim, Raymond
Agbamu, Tejiri
Sheridan, Robert
Pollard, Tom
Boehm, Kevin
Kohli, Aarman
Chennault, Calla
Zhao, Gaofei
de Bruijn, Ino
Eichholz, Jordan
Walch, Henry
Bi, Xinran
Garcia, Jowel
Contributor_xml – sequence: 1
  givenname: Aaron
  surname: Lisman
  fullname: Lisman, Aaron
– sequence: 2
  givenname: Gaofei
  surname: Zhao
  fullname: Zhao, Gaofei
– sequence: 3
  givenname: Ino
  surname: de Bruijn
  fullname: de Bruijn, Ino
– sequence: 4
  givenname: Walid K
  surname: Chatila
  fullname: Chatila, Walid K
– sequence: 5
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
– sequence: 6
  givenname: Aarman
  surname: Kohli
  fullname: Kohli, Aarman
– sequence: 7
  givenname: Darin
  surname: Moore
  fullname: Moore, Darin
– sequence: 8
  givenname: Raymond
  surname: Lim
  fullname: Lim, Raymond
– sequence: 9
  givenname: Tom
  surname: Pollard
  fullname: Pollard, Tom
– sequence: 10
  givenname: Robert
  surname: Sheridan
  fullname: Sheridan, Robert
– sequence: 11
  givenname: Avery
  surname: Wang
  fullname: Wang, Avery
– sequence: 12
  givenname: Calla
  surname: Chennault
  fullname: Chennault, Calla
– sequence: 13
  givenname: Manda
  surname: Wilson
  fullname: Wilson, Manda
– sequence: 14
  givenname: Hongxin
  surname: Zhang
  fullname: Zhang, Hongxin
– sequence: 15
  givenname: Robert
  surname: Pimienta
  fullname: Pimienta, Robert
– sequence: 16
  givenname: Surya
  surname: Rangavajhala
  fullname: Rangavajhala, Surya
– sequence: 17
  givenname: Guru
  surname: Subramanian
  fullname: Subramanian, Guru
– sequence: 18
  givenname: Jowel
  surname: Garcia
  fullname: Garcia, Jowel
– sequence: 19
  givenname: Naveen
  surname: Rachuri
  fullname: Rachuri, Naveen
– sequence: 20
  givenname: Kevin
  surname: Boehm
  fullname: Boehm, Kevin
– sequence: 21
  givenname: Mitchell
  surname: Parker
  fullname: Parker, Mitchell
– sequence: 22
  givenname: Henry
  surname: Walch
  fullname: Walch, Henry
– sequence: 23
  givenname: Subhiksha
  surname: Nandakumar
  fullname: Nandakumar, Subhiksha
– sequence: 24
  givenname: Jordan
  surname: Eichholz
  fullname: Eichholz, Jordan
– sequence: 25
  givenname: Ayush
  surname: Kris
  fullname: Kris, Ayush
– sequence: 26
  givenname: Paolo
  surname: Manca
  fullname: Manca, Paolo
– sequence: 27
  givenname: Xuechun
  surname: Bai
  fullname: Bai, Xuechun
– sequence: 28
  givenname: Tejiri
  surname: Agbamu
  fullname: Agbamu, Tejiri
– sequence: 29
  givenname: Justin
  surname: U
  fullname: U, Justin
– sequence: 30
  givenname: Xinran
  surname: Bi
  fullname: Bi, Xinran
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group Dec 19-Dec 26, 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group Dec 19-Dec 26, 2024
– notice: The Author(s) 2024 2024
CorporateAuthor MSK Cancer Data Science Initiative Group
CorporateAuthor_xml – name: MSK Cancer Data Science Initiative Group
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
NAPCQ
P64
RC3
SOI
7X8
5PM
DOI 10.1038/s41586-024-08167-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Meteorological & Geoastrophysical Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 736
ExternalDocumentID PMC11655358
39506116
10_1038_s41586_024_08167_5
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA240472
– fundername: NCI NIH HHS
  grantid: T32 CA009207
– fundername: NCI NIH HHS
  grantid: R01 CA234361
– fundername: NCI NIH HHS
  grantid: P01 CA228696
– fundername: NCI NIH HHS
  grantid: R01 CA217169
– fundername: NCI NIH HHS
  grantid: P01 CA275746
– fundername: NCI NIH HHS
  grantid: P50 CA092629
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: K08 CA286842
– fundername: NCI NIH HHS
  grantid: K12 CA184746
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
53G
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AFBBN
AFFNX
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
C6C
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NEPJS
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PKN
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKR
UMD
UQL
VQA
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NAPCQ
NFIDA
.-4
.GJ
.HR
00M
08P
0WA
1CY
1VR
1VW
2XV
354
3EH
3O-
4.4
41X
41~
42X
4R4
663
79B
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABNNU
ABUWG
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AEUYN
AFFDN
AFHKK
AFKRA
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BES
BGLVJ
BKEYQ
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
D1I
D1J
D1K
DB5
DO4
DWQXO
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
ESE
ESN
ESX
EX3
FA8
FYUFA
GNUQQ
GUQSH
HMCUK
I-F
INR
ISR
ITC
J5H
K6-
KB.
L-9
L6V
LK5
LK8
M1P
M2M
M2P
M7R
M7S
MVM
N4W
NEJ
NPM
OHT
P-O
P62
PATMY
PCBAR
PDBOC
PEA
PHGZM
PHGZT
PJZUB
PM3
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
QS-
R05
R4F
RHI
S0X
SJFOW
SKT
SV3
TH9
TUD
TUS
UBY
UHB
UKHRP
USG
VOH
WOW
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~7V
~8M
~G0
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
AFKWF
C1K
FR3
H94
K9.
KL.
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c475t-a2a7400a91b80346b252fa4c65d84086f7624c2b4f000f7e021b340b7bcfe5793
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:30:18 EDT 2025
Thu Jul 10 17:29:10 EDT 2025
Sat Aug 23 13:07:55 EDT 2025
Sun Jul 20 01:30:31 EDT 2025
Tue Jul 01 02:59:03 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Fri Feb 21 02:38:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8043
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-a2a7400a91b80346b252fa4c65d84086f7624c2b4f000f7e021b340b7bcfe5793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0131-4904
0000-0001-7845-8060
0000-0003-2451-0948
0000-0003-2437-5387
0000-0002-3109-1692
0000-0002-3428-2507
0000-0002-2990-4893
0000-0002-1238-2072
0000-0002-5416-5172
0000-0001-6402-523X
0000-0001-6723-2859
0000-0003-1108-4919
0000-0003-4538-6069
0000-0001-9783-0139
0000-0002-8789-251X
0000-0001-5427-4750
0000-0002-0377-9510
0000-0001-5474-218X
0000-0001-6661-8733
0000-0003-0346-5033
0000-0002-7233-5454
0000-0002-8076-9199
0000-0002-0103-9965
0000-0003-4610-0149
0000-0003-4236-0576
0000-0002-5739-1781
0000-0002-3318-0146
0000-0002-8006-3102
0000-0003-3882-5000
0000-0002-2755-4359
0000-0002-6791-9324
0000-0002-6614-802X
0000-0001-9694-584X
0000-0002-0602-1158
0000-0001-8629-5732
0000-0002-7884-1905
0000-0001-9055-7213
0000-0002-9286-8290
0000-0001-5204-3465
OpenAccessLink https://www.nature.com/articles/s41586-024-08167-5
PMID 39506116
PQID 3157229415
PQPubID 40569
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11655358
proquest_miscellaneous_3125494087
proquest_journals_3157229415
pubmed_primary_39506116
crossref_citationtrail_10_1038_s41586_024_08167_5
crossref_primary_10_1038_s41586_024_08167_5
springer_journals_10_1038_s41586_024_08167_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-19
PublicationDateYYYYMMDD 2024-12-19
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References KL Kehl (8167_CR1) 2021; 12
8167_CR47
8167_CR46
8167_CR45
8167_CR41
8167_CR40
I de Bruijn (8167_CR21) 2023; 83
J Liu (8167_CR31) 2018; 173
M Lu (8167_CR37) 2021; 5
MA Molina (8167_CR7) 2001; 61
Y Li (8167_CR5) 2023; 30
8167_CR49
8167_CR48
MG Zauderer (8167_CR59) 2021; 3
8167_CR14
8167_CR56
8167_CR55
8167_CR10
8167_CR54
8167_CR53
8167_CR52
G Singal (8167_CR9) 2019; 321
NM Keegan (8167_CR18) 2022; 82
WK Chatila (8167_CR19) 2022; 28
8167_CR17
8167_CR16
S Dogan (8167_CR30) 2012; 18
F Sanchez-Vega (8167_CR35) 2018; 173
J-P Pignon (8167_CR38) 2008; 26
J Jee (8167_CR39) 2022; 28
K Arora (8167_CR42) 2022; 12
JA Fries (8167_CR2) 2021; 12
AEW Johnson (8167_CR51) 2016; 3
W Abida (8167_CR24) 2019; 116
A Skakodub (8167_CR36) 2023; 14
A Penson (8167_CR44) 2020; 6
8167_CR25
J Lee (8167_CR50) 2020; 36
8167_CR23
P Razavi (8167_CR22) 2018; 34
8167_CR20
8167_CR62
8167_CR8
KM Boehm (8167_CR13) 2022; 22
8167_CR4
8167_CR26
T André (8167_CR27) 2020; 383
R Liu (8167_CR11) 2022; 28
HB Lengel (8167_CR33) 2023; 41
8167_CR60
D Chowell (8167_CR15) 2022; 40
CE Haupt (8167_CR6) 2023; 329
P Selenica (8167_CR29) 2022; 33
8167_CR34
T Aprati (8167_CR61) 2024; 84
8167_CR32
H Ishwaran (8167_CR58) 2008; 2
ZK Stadler (8167_CR57) 2016; 34
B Nguyen (8167_CR12) 2022; 185
8167_CR3
I Vázquez-García (8167_CR43) 2022; 612
JF Hechtman (8167_CR28) 2020; 33
References_xml – volume: 26
  start-page: 3552
  year: 2008
  ident: 8167_CR38
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2007.13.9030
– ident: 8167_CR20
  doi: 10.1038/nm.4333
– volume: 329
  start-page: 1349
  year: 2023
  ident: 8167_CR6
  publication-title: JAMA
  doi: 10.1001/jama.2023.5321
– volume: 383
  start-page: 2207
  year: 2020
  ident: 8167_CR27
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2017699
– ident: 8167_CR23
  doi: 10.1200/JCO.19.03123
– ident: 8167_CR40
  doi: 10.1200/CCI.20.00184
– volume: 612
  start-page: 778
  year: 2022
  ident: 8167_CR43
  publication-title: Nature
  doi: 10.1038/s41586-022-05496-1
– volume: 84
  start-page: 2750
  year: 2024
  ident: 8167_CR61
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2024-2750
– volume: 34
  start-page: 427
  year: 2018
  ident: 8167_CR22
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.08.008
– ident: 8167_CR45
– volume: 12
  year: 2021
  ident: 8167_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27358-6
– ident: 8167_CR60
  doi: 10.1200/po.18.00307
– ident: 8167_CR56
  doi: 10.1200/PO.17.00029
– volume: 33
  start-page: 871
  year: 2020
  ident: 8167_CR28
  publication-title: Mod. Pathol.
  doi: 10.1038/s41379-019-0414-6
– ident: 8167_CR48
– ident: 8167_CR14
  doi: 10.1038/s43018-022-00416-8
– ident: 8167_CR55
– volume: 2
  start-page: 841
  year: 2008
  ident: 8167_CR58
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS169
– ident: 8167_CR4
  doi: 10.1038/s41586-023-06160-y
– volume: 28
  start-page: 2353
  year: 2022
  ident: 8167_CR39
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-02047-z
– volume: 40
  start-page: 499
  year: 2022
  ident: 8167_CR15
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01070-8
– ident: 8167_CR16
  doi: 10.1158/1078-0432.CCR-23-0580
– volume: 18
  start-page: 6169
  year: 2012
  ident: 8167_CR30
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-3265
– volume: 12
  year: 2021
  ident: 8167_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22328-4
– volume: 34
  start-page: 2141
  year: 2016
  ident: 8167_CR57
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2015.65.1067
– ident: 8167_CR47
– ident: 8167_CR10
  doi: 10.1038/s43018-023-00689-7
– ident: 8167_CR17
  doi: 10.1200/CCI.21.00105
– ident: 8167_CR34
  doi: 10.1200/po.17.00011
– ident: 8167_CR49
  doi: 10.18653/v1/W19-1909
– volume: 14
  year: 2023
  ident: 8167_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40793-x
– volume: 61
  start-page: 4744
  year: 2001
  ident: 8167_CR7
  publication-title: Cancer Res.
– ident: 8167_CR8
  doi: 10.1001/jama.2014.3741
– volume: 83
  start-page: 3861
  year: 2023
  ident: 8167_CR21
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-23-0816
– volume: 30
  start-page: 340
  year: 2023
  ident: 8167_CR5
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocac225
– ident: 8167_CR25
  doi: 10.1038/s41588-020-00710-0
– volume: 173
  start-page: 321
  year: 2018
  ident: 8167_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.035
– ident: 8167_CR26
  doi: 10.1200/PO.19.00081
– volume: 5
  year: 2021
  ident: 8167_CR37
  publication-title: npj Precis. Oncol.
  doi: 10.1038/s41698-021-00193-0
– ident: 8167_CR46
– volume: 28
  start-page: 1656
  year: 2022
  ident: 8167_CR11
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01873-5
– volume: 6
  start-page: 84
  year: 2020
  ident: 8167_CR44
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2019.3985
– volume: 12
  start-page: 2552
  year: 2022
  ident: 8167_CR42
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-22-0312
– volume: 173
  start-page: 400
  year: 2018
  ident: 8167_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.052
– ident: 8167_CR53
– volume: 185
  start-page: 563
  year: 2022
  ident: 8167_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2022.01.003
– volume: 36
  start-page: 1234
  year: 2020
  ident: 8167_CR50
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– volume: 3
  start-page: 1
  year: 2016
  ident: 8167_CR51
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.35
– volume: 3
  start-page: e565
  year: 2021
  ident: 8167_CR59
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(21)00104-7
– volume: 116
  start-page: 11428
  year: 2019
  ident: 8167_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1902651116
– ident: 8167_CR41
  doi: 10.1016/j.ccell.2023.10.003
– volume: 33
  start-page: 1284
  year: 2022
  ident: 8167_CR29
  publication-title: Ann. Oncol.
  doi: 10.1016/j.annonc.2022.09.151
– ident: 8167_CR62
  doi: 10.1200/PO.17.00084
– volume: 28
  start-page: 1646
  year: 2022
  ident: 8167_CR19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01930-z
– volume: 41
  start-page: 970
  year: 2023
  ident: 8167_CR33
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2023.03.018
– volume: 321
  start-page: 1391
  year: 2019
  ident: 8167_CR9
  publication-title: JAMA
  doi: 10.1001/jama.2019.3241
– volume: 22
  start-page: 114
  year: 2022
  ident: 8167_CR13
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-021-00408-3
– volume: 82
  start-page: 1107
  year: 2022
  ident: 8167_CR18
  publication-title: Prostate
  doi: 10.1002/pros.24363
– ident: 8167_CR32
  doi: 10.1200/PO.22.00220
– ident: 8167_CR54
  doi: 10.1093/jamia/ocac225
– ident: 8167_CR52
– ident: 8167_CR3
SSID ssj0005174
Score 2.5945373
Snippet The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 728
SubjectTerms 45/23
692/308/575
692/699/67
Accuracy
Adenocarcinoma
Annotations
Automation
Cancer
Cancer therapies
Data integration
Datasets
Datasets as Topic
DNA sequencing
Electronic Health Records
Female
Gene sequencing
Genomics
Histopathology
Humanities and Social Sciences
Humans
Immunotherapy
Lung cancer
Lungs
Machine Learning
Male
Medical research
Metastases
Metastasis
Models, Biological
multidisciplinary
Natural Language Processing
Neoplasm Metastasis - diagnosis
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - pathology
Oncology
Patients
Prognosis
Prostate
Radiation
Radiology
Registries
Science
Science (multidisciplinary)
Tumors
Unstructured data
Title Automated real-world data integration improves cancer outcome prediction
URI https://link.springer.com/article/10.1038/s41586-024-08167-5
https://www.ncbi.nlm.nih.gov/pubmed/39506116
https://www.proquest.com/docview/3157229415
https://www.proquest.com/docview/3125494087
https://pubmed.ncbi.nlm.nih.gov/PMC11655358
Volume 636
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6waAvpe3W1W1aNNjDxiYW68OSH9PQEAbr0wp9M7Ii00JxQuL8_71T7JSk7WDPOtvSfejufKefAL5KiU5JuZw7j1ugmmQ5t9IS5H6QAeXtMkGHk__cZuM79fte3--A6M7CxKb9CGkZt-muO-zXAh2NpXZZxemqCMP1LuwTdDslXMNs-NLWsYW83B6U6Uv7xjs2ndGrCPN1o-RWtTQ6odERHLbRIxus5nsMO6E-gQ-xi9MvTuC4tdQF-9bCSX__COPBspliXBomDAPEJx4xUhl1hrIOKwJlwx7j3wV81JMezNl02SBrApvNqZRDJJ_gbnTzdzjm7f0J3CujG-6EM2iiLk9L25cqK4UWlVM-0xNM62xW4UaovChVhXyrTEB3X0rVL03pq6DRcE9hr57W4QxYSjiD3lnldV9NMKsypTUm1VWF8aFxIYG0Y2ThW3BxuuPiqYhFbmmLFfMLZH4RmV_oBH6sn5mtoDX-Sd3r5FO0ZrYoZKqNEDkSJ_BlPYwGQlUPV4fpkmgoB8b1mgQ-r8S5_pzMNcYzaZaA3RD0moDAtzdH6seHCMJNsEVaapvAz04nXub1_jLO_4_8Ag4E6WsqeJr3YK-ZL8MlRkFNeQX7g9H19e1VVP9n0pL-cQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NIQQviA3YAhsYiQcQWDT-ncepYiqw7WmT9mY5riMmTenUpv8_d27SqRsg7dmXxL7z-T7nzp8BPkqJQUmFioeIS6Camoo76YhyP8mE9g5G0OHk0zMzuVA_L_XlFojhLEwu2s-UlnmZHqrDvi0w0Dgql1WcroqwXD-Cx4i1Dc3ksRnflnXcYV7uD8qMpPvLOzaD0T2Eeb9Q8k62NAeh4xfwvEeP7GjV3x3YSu0uPMlVnHGxCzu9py7Yp55O-vNLmBwtuxni0jRlCBCveeZIZVQZygauCLQNu8p_F_DRSPNgzmbLDlWT2M2cUjkk8goujr-fjye8vz-BR2V1x4MIFl00VGXtRlKZWmjRBBWNnuK2zpkGF0IVRa0a1FtjE4b7WqpRbevYJI2O-xq221mb9oGVxDMYg1NRj9QUd1W2dtaWumkQH9qQCigHRfrYk4vTHRfXPie5pfMr5XtUvs_K97qAL-tnblbUGv-VPhjs43s3W3hZaitEhcIFfFg3o4NQ1iO0abYkGdoD43htAXsrc64_JyuNeKY0BbgNQ68FiHx7s6W9-p1JuIm2SEvtCvg6zInbfv17GG8eJv4enk7OT0_8yY-zX2_hmaC5WwpeVgew3c2X6RARUVe_yy7wB_Dr_-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlAvFS2PhhZwJQ4gMCR-51htWS0UKg5U6s1yHEdUqrKr3ez_Z-xNttoWkHr2JLFnPJ5x5vNngLecY1ASrqTO4xIoalVSw02k3A88oL2dYvFw8o9zNbkQ3y7l5Rao4SxMAu0nSsu0TA_osM8LDDQmwmUFjVdFaCo_zermATzEfDuPUK6RGt1AO26xL_eHZXJu_vKezYB0J8u8C5a8VTFNgWj8BHb7DJKcrPq8B1uh3YdHCcnpF_uw13vrgrzrKaXfP4XJybKbYm4aaoJJ4jVNPKkkokPJwBeB9iFX6Q8DPurjXJiT6bJD9QQym8dyThR5BhfjL79GE9rfoUC90LKjjjmNburKojI5F6pikjVOeCVr3NoZ1eBiKDyrRIN6a3TAkF9xkVe68k2Q6LzPYbudtuEASBG5Br0zwstc1Liz0pXRupBNgzmidiGDYlCk9T3BeLzn4tqmQjc3dqV8i8q3SflWZvBh_cxsRa_xX-mjwT62d7WF5YXUjJUonMHxuhmdJFY-XBumyygT98E4Xp3Bi5U515_jpcScplAZmA1DrwUiAfdmS3v1OxFxR-oiyaXJ4OMwJ2769e9hvLyf-Bt4_PN0bL9_PT87hB0Wp27BaFEewXY3X4ZXmBR11evkAX8ApI4A_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+real-world+data+integration+improves+cancer+outcome+prediction&rft.jtitle=Nature+%28London%29&rft.au=Jee%2C+Justin&rft.au=Fong%2C+Christopher&rft.au=Pichotta%2C+Karl&rft.au=Tran%2C+Thinh+Ngoc&rft.date=2024-12-19&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=636&rft.issue=8043&rft.spage=728&rft.epage=736&rft_id=info:doi/10.1038%2Fs41586-024-08167-5&rft_id=info%3Apmid%2F39506116&rft.externalDocID=PMC11655358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon