Autonomous chemical research with large language models
Transformer-based large language models are making significant strides in various fields, such as natural language processing 1 – 5 , biology 6 , 7 , chemistry 8 – 10 and computer programming 11 , 12 . Here, we show the development and capabilities of Coscientist, an artificial intelligence system d...
Saved in:
Published in | Nature (London) Vol. 624; no. 7992; pp. 570 - 578 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.12.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transformer-based large language models are making significant strides in various fields, such as natural language processing
1
–
5
, biology
6
,
7
, chemistry
8
–
10
and computer programming
11
,
12
. Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research.
Coscientist is an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. |
---|---|
AbstractList | Transformer-based large language models are making significant strides in various fields, such as natural language processing1-5, biology6,7, chemistry8-10 and computer programming11,12. Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research.Transformer-based large language models are making significant strides in various fields, such as natural language processing1-5, biology6,7, chemistry8-10 and computer programming11,12. Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research. Transformer-based large language models are making significant strides in various fields, such as natural language processing 1–5 , biology 6,7 , chemistry 8–10 and computer programming 11,12 . Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research. Transformer-based large language models are making significant strides in various fields, such as natural language processing 1 – 5 , biology 6 , 7 , chemistry 8 – 10 and computer programming 11 , 12 . Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research. Coscientist is an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Transformer-based large language models are making significant strides in various fields, such as natural language processing , biology , chemistry and computer programming . Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research. Transformer-based large language models are making significant strides in various fields, such as natural language processing1-5, biology6,7, chemistry8-10 and computer programming11,12. Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research. |
Author | Kline, Ben Gomes, Gabe MacKnight, Robert Boiko, Daniil A. |
Author_xml | – sequence: 1 givenname: Daniil A. orcidid: 0000-0003-4140-4645 surname: Boiko fullname: Boiko, Daniil A. organization: Department of Chemical Engineering, Carnegie Mellon University – sequence: 2 givenname: Robert surname: MacKnight fullname: MacKnight, Robert organization: Department of Chemical Engineering, Carnegie Mellon University – sequence: 3 givenname: Ben surname: Kline fullname: Kline, Ben organization: Emerald Cloud Lab – sequence: 4 givenname: Gabe orcidid: 0000-0002-8235-5969 surname: Gomes fullname: Gomes, Gabe email: gabegomes@cmu.edu organization: Department of Chemical Engineering, Carnegie Mellon University, Department of Chemistry, Carnegie Mellon University, Wilton E. Scott Institute for Energy Innovation, Carnegie Mellon University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38123806$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1P3DAUtCqqsiz8AQ5oJS5c0j5_O6cKIfohIfVSzpbjvOwaJTG1ExD_Hi8LtOXAxbbkmXkzbw7I3hhHJOSYwmcK3HzJgkqjKmC8AqVrVsEHsqBCq0ooo_fIAoCZCgxX--Qg5xsAkFSLT2SfG8q4AbUg-nye4hiHOOeV3-AQvOtXCTO65Der-zBtVr1LayznuJ5deQyxxT4fko-d6zMePd9Lcv3t8vfFj-rq1_efF-dXlRdaTpWjXErOGKspA4kMQTRKInRdXbet5l4hcN10rKHcoXdt4zpX6w6lB1mj4kvydad7OzcDth7HKbne3qYwuPRgowv2_58xbOw63lkKmnPKtwpnzwop_pkxT3YI2WNfAmFJbVkNQmphCnhJTt9Ab-KcxpJvi1JCSla2uSQn_1p69fKy1AJgO4BPMeeE3SuEgt02Z3fN2dKcfWrOQiGZNyQfJjeFuI0V-vepfEfNZc64xvTX9jusR5SErPw |
CitedBy_id | crossref_primary_10_1007_s10698_024_09521_1 crossref_primary_10_1016_j_aichem_2024_100075 crossref_primary_10_1016_j_rcim_2024_102883 crossref_primary_10_2196_58158 crossref_primary_10_1021_acs_nanolett_4c03208 crossref_primary_10_1002_anie_202423950 crossref_primary_10_1016_j_aichem_2024_100070 crossref_primary_10_1021_acsinfecdis_4c00585 crossref_primary_10_1016_j_coelec_2024_101526 crossref_primary_10_1007_s12195_024_00820_3 crossref_primary_10_1002_smtd_202401757 crossref_primary_10_1002_jsde_12766 crossref_primary_10_1126_science_adq1977 crossref_primary_10_1021_jacs_4c11674 crossref_primary_10_1016_j_slast_2024_100214 crossref_primary_10_1557_s43577_024_00846_y crossref_primary_10_1016_j_mejo_2025_106607 crossref_primary_10_1063_5_0169961 crossref_primary_10_1016_j_neunet_2024_107106 crossref_primary_10_1038_s41524_025_01554_0 crossref_primary_10_1038_d41586_023_03790_0 crossref_primary_10_1088_1674_1056_ad3c30 crossref_primary_10_1038_d41586_024_03815_2 crossref_primary_10_1039_D4MD00159A crossref_primary_10_1371_journal_pone_0310724 crossref_primary_10_1016_j_compbiomed_2024_108796 crossref_primary_10_1016_j_matdes_2024_113506 crossref_primary_10_1016_j_slast_2024_100180 crossref_primary_10_1016_j_bbadis_2025_167680 crossref_primary_10_1038_s41591_024_03434_4 crossref_primary_10_1039_D4DD00398E crossref_primary_10_1186_s13321_025_00984_8 crossref_primary_10_1136_bjo_2024_326254 crossref_primary_10_1007_s44212_024_00060_w crossref_primary_10_1021_jacs_4c10294 crossref_primary_10_1007_s11426_024_2072_4 crossref_primary_10_1093_nsr_nwae076 crossref_primary_10_1021_acs_nanolett_3c05137 crossref_primary_10_1038_s41428_024_00930_9 crossref_primary_10_1016_j_enbuild_2024_114691 crossref_primary_10_1002_admt_202400084 crossref_primary_10_1039_D4DD00143E crossref_primary_10_1093_burnst_tkae053 crossref_primary_10_1038_s42256_024_00832_8 crossref_primary_10_5114_bta_200803 crossref_primary_10_1039_D4DD00252K crossref_primary_10_1080_27660400_2024_2395242 crossref_primary_10_1016_j_matt_2024_10_015 crossref_primary_10_1021_acs_jchemed_4c00058 crossref_primary_10_1039_D4GC01745E crossref_primary_10_1021_acs_chemrev_4c00055 crossref_primary_10_1021_jacs_4c05840 crossref_primary_10_1021_acs_jcim_4c01653 crossref_primary_10_1038_s41598_024_69021_2 crossref_primary_10_1039_D4DD00046C crossref_primary_10_1039_D4SC03921A crossref_primary_10_1039_D4DD00074A crossref_primary_10_1002_asia_202400010 crossref_primary_10_1038_s41586_024_08173_7 crossref_primary_10_1039_D4CY00693C crossref_primary_10_1038_s41467_024_53457_1 crossref_primary_10_1002_ange_202407116 crossref_primary_10_1007_s42452_024_06206_4 crossref_primary_10_1002_anie_202418074 crossref_primary_10_1021_acs_jchemed_4c01033 crossref_primary_10_1039_D4BM00169A crossref_primary_10_1002_wcms_1723 crossref_primary_10_1021_acs_jcim_4c01529 crossref_primary_10_1021_acs_analchem_5c00099 crossref_primary_10_1038_s41598_024_61124_0 crossref_primary_10_1016_j_isci_2024_109451 crossref_primary_10_1038_s41568_024_00694_7 crossref_primary_10_1063_5_0201522 crossref_primary_10_1007_s10956_024_10173_1 crossref_primary_10_3762_bjoc_20_196 crossref_primary_10_1038_s42256_024_00930_7 crossref_primary_10_1039_D4DD00178H crossref_primary_10_1039_D4DD00130C crossref_primary_10_1093_bib_bbae495 crossref_primary_10_1021_acs_iecr_4c04636 crossref_primary_10_1016_j_jare_2025_02_011 crossref_primary_10_1021_acs_langmuir_4c04262 crossref_primary_10_1038_s41578_025_00772_8 crossref_primary_10_1038_s42004_024_01393_y crossref_primary_10_1039_D3SC07012C crossref_primary_10_2139_ssrn_4621210 crossref_primary_10_1002_ange_202423950 crossref_primary_10_1021_acs_jchemed_4c00226 crossref_primary_10_1021_jacsau_4c00624 crossref_primary_10_1016_j_autcon_2025_105995 crossref_primary_10_1016_j_matt_2024_06_003 crossref_primary_10_1021_acs_jchemed_4c00193 crossref_primary_10_1016_j_apenergy_2024_124378 crossref_primary_10_1039_D4CS00077C crossref_primary_10_1021_acsphyschemau_4c00004 crossref_primary_10_5059_yukigoseikyokaishi_82_915 crossref_primary_10_1002_anie_202407116 crossref_primary_10_1039_D4DD00248B crossref_primary_10_1007_s44243_024_00046_x crossref_primary_10_1016_j_ces_2024_120916 crossref_primary_10_1039_D4DD90010C crossref_primary_10_6087_kcse_343 crossref_primary_10_3390_s24196424 crossref_primary_10_1039_D4SC04757E crossref_primary_10_1038_s44160_024_00649_8 crossref_primary_10_1016_j_actamat_2024_120663 crossref_primary_10_1016_j_cjche_2024_10_014 crossref_primary_10_1021_acssynbio_4c00091 crossref_primary_10_1038_s41586_024_07930_y crossref_primary_10_1039_D4FD00153B crossref_primary_10_1088_0256_307X_42_2_027403 crossref_primary_10_1016_j_earscirev_2024_104765 crossref_primary_10_1038_s41597_024_03821_z crossref_primary_10_1039_D4MD00522H crossref_primary_10_1039_D4MH00797B crossref_primary_10_1021_jacs_4c17738 crossref_primary_10_1039_D4NR01445F crossref_primary_10_1097_CM9_0000000000003387 crossref_primary_10_1116_6_0004277 crossref_primary_10_1039_D4ME00174E crossref_primary_10_1080_10739149_2024_2390907 crossref_primary_10_3390_knowledge4040031 crossref_primary_10_1016_j_cell_2024_09_022 crossref_primary_10_1016_j_neucom_2024_129272 crossref_primary_10_1038_s41589_024_01679_1 crossref_primary_10_1039_D3DD00239J crossref_primary_10_1039_D4DD00330F crossref_primary_10_1016_j_knosys_2024_112889 crossref_primary_10_1016_j_scitotenv_2024_175971 crossref_primary_10_1038_s41467_024_54457_x crossref_primary_10_1039_D4CC00010B crossref_primary_10_1021_acs_jchemed_4c01498 crossref_primary_10_1039_D4EE03063J crossref_primary_10_1039_D4DD00366G crossref_primary_10_1021_acs_est_4c07842 crossref_primary_10_1016_j_coelec_2025_101679 crossref_primary_10_1039_D4SC08677E crossref_primary_10_1002_adsc_202301205 crossref_primary_10_1002_ange_202418074 crossref_primary_10_1109_TSMC_2024_3501318 crossref_primary_10_1002_adma_202402369 crossref_primary_10_1007_s00146_024_02165_x crossref_primary_10_1016_j_ress_2025_110834 crossref_primary_10_1039_D4MH00051J crossref_primary_10_1002_adma_202405163 crossref_primary_10_1002_marc_202500065 crossref_primary_10_1039_D5SC00541H crossref_primary_10_1039_D4DD00199K crossref_primary_10_1038_s42256_024_00812_y crossref_primary_10_1039_D4CS00913D crossref_primary_10_1073_pnas_2404328121 crossref_primary_10_1021_acsanm_4c00255 crossref_primary_10_1016_j_ces_2025_121567 crossref_primary_10_1016_j_jag_2024_104312 crossref_primary_10_1016_j_dibe_2024_100488 crossref_primary_10_1016_j_tibtech_2025_02_008 crossref_primary_10_1039_D4DD00313F crossref_primary_10_1007_s12274_024_6621_6 crossref_primary_10_1038_d41586_023_04073_4 crossref_primary_10_1186_s13321_024_00886_1 crossref_primary_10_1021_acs_analchem_4c01734 crossref_primary_10_2478_jdis_2024_0011 crossref_primary_10_1016_j_rser_2025_115481 crossref_primary_10_1063_5_0213542 crossref_primary_10_1038_s41467_024_54639_7 crossref_primary_10_1021_acsnano_4c02094 crossref_primary_10_1007_s10916_024_02093_9 crossref_primary_10_1360_TB_2024_0404 crossref_primary_10_3390_electronics14061175 crossref_primary_10_1039_D4DD00013G crossref_primary_10_1007_s11096_024_01839_2 crossref_primary_10_1016_j_matt_2024_11_012 crossref_primary_10_1002_mgea_77 crossref_primary_10_3390_molecules30030650 crossref_primary_10_1016_j_joule_2024_07_002 crossref_primary_10_1021_acssuschemeng_4c10430 crossref_primary_10_4196_kjpp_2024_28_5_393 crossref_primary_10_3390_en17122997 crossref_primary_10_1080_24694452_2024_2435920 crossref_primary_10_1056_AIoa2400555 crossref_primary_10_1016_j_compchemeng_2024_108723 crossref_primary_10_59717_j_xinn_med_2024_100091 crossref_primary_10_1016_j_matt_2024_11_007 crossref_primary_10_1038_s44286_024_00170_x crossref_primary_10_1016_j_cossms_2024_101188 crossref_primary_10_1073_pnas_2401238121 |
Cites_doi | 10.1561/1500000019 10.1126/science.aax1566 10.1038/s41586-020-2442-2 10.1021/acscentsci.1c00435 10.1039/D2DD00071G 10.1145/3560815 10.1145/3571730 10.1109/TBDATA.2019.2921572 10.1088/2632-2153/ac3ffb 10.1093/bib/bbac409 10.1145/3520312.3534862 10.1126/science.adc8743 10.26434/chemrxiv-2023-fw8n4-v3 10.1126/science.aaf1337 10.1021/acs.jcim.1c01289 10.1126/science.aap9112 10.1145/3409256.3409818 10.1145/3404835.3463238 10.26434/chemrxiv-2023-8nrxx 10.1177/0165551506065787 10.1126/science.aar5169 10.1038/s41586-018-0307-8 10.1126/science.ade2574 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). Copyright Nature Publishing Group Dec 21-Dec 28, 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: Copyright Nature Publishing Group Dec 21-Dec 28, 2023 |
DBID | C6C AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/s41586-023-06792-0 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Chemistry |
EISSN | 1476-4687 |
EndPage | 578 |
ExternalDocumentID | PMC10733136 38123806 10_1038_s41586_023_06792_0 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LGEZI LK5 LK8 LOTEE LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NADUK NAPCQ NEPJS NXXTH O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 MVM N4W NEJ NPM ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UBY UHB USG VOH X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK AFKWF C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS PUEGO Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c475t-a1355322291205e2e04b65e0ff99dd73c6e037bf2b13aecadbafa97fe5c059e63 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:37:28 EDT 2025 Fri Jul 11 15:28:29 EDT 2025 Sat Aug 23 14:26:03 EDT 2025 Mon Jul 21 06:06:44 EDT 2025 Tue Jul 01 02:58:49 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 Fri Feb 21 02:37:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7992 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-a1355322291205e2e04b65e0ff99dd73c6e037bf2b13aecadbafa97fe5c059e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8235-5969 0000-0003-4140-4645 |
OpenAccessLink | https://www.nature.com/articles/s41586-023-06792-0 |
PMID | 38123806 |
PQID | 2906455208 |
PQPubID | 40569 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10733136 proquest_miscellaneous_2904574831 proquest_journals_2906455208 pubmed_primary_38123806 crossref_primary_10_1038_s41586_023_06792_0 crossref_citationtrail_10_1038_s41586_023_06792_0 springer_journals_10_1038_s41586_023_06792_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-21 |
PublicationDateYYYYMMDD | 2023-12-21 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | KimHNaJLeeWBGenerative chemical transformer: neural machine learning of molecular geometric structures from chemical language via attentionJ. Chem. Inf. Model.202161580458141:CAS:528:DC%2BB3MXis1aqtLnO10.1021/acs.jcim.1c0128934855384 Data Mining. Mining of Massive Datasets (Cambridge Univ., 2011). Ramos, M. C., Michtavy, S. S., Porosoff, M. D. & White, A. D. Bayesian optimization of catalysts with in-context learning. Preprint at https://arxiv.org/abs/2304.05341 (2023). Qadrud-Din, J. et al. Transformer based language models for similar text retrieval and ranking. Preprint at https://arxiv.org/abs/2005.04588 (2020). BurgerBA mobile robotic chemistNature20205832372412020Natur.583..237B1:CAS:528:DC%2BB3cXhtlCqur%2FN10.1038/s41586-020-2442-232641813 Jablonka, K. M., Schwaller, P., Ortega-Guerrero, A. & Smit, B. Leveraging large language models for predictive chemistry. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/652e50b98bab5d2055852dde (2023). Chase, H. LangChain. GitHubhttps://github.com/langchain-ai/langchain (2023). Yao, S. et al. ReAct: synergizing reasoning and acting in language models. In Proc.11th International Conference on Learning Representations (ICLR, 2022). BabyAGI. GitHubhttps://github.com/yoheinakajima/babyagi (2023). Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural Information Processing Systems 24824–24837 (NeurIPS, 2022). Bran, A. M., Cox, S., White, A. D. & Schwaller, P. ChemCrow: augmenting large-language models with chemistry tools. Preprint at https://arxiv.org/abs/2304.05376 (2023). Long, J. Large language model guided tree-of-thought. Preprint at https://arxiv.org/abs/2305.08291 (2023). Open LLM Leaderboard. Hugging Facehttps://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard (2023). Ouyang, L. et al. Training language models to follow instructions with human feedback. In Advances in Neural Information Processing Systems 27730–27744 (NeurIPS, 2022). AhnemanDTEstradaJGLinSDreherSDDoyleAGPredicting reaction performance in C–N cross-coupling using machine learningScience20183601861902018Sci...360..186A1:CAS:528:DC%2BC1cXnt1Ghtbo%3D10.1126/science.aar516929449509 Brown, T. et al. in Advances in Neural Information Processing Systems Vol. 33 (eds Larochelle, H. et al.) 1877–1901 (Curran Associates, 2020). SciFinderhttps://scifinder.cas.org (2023). Paper QA. GitHubhttps://github.com/whitead/paper-qa (2023). RobertsonSZaragozaHThe probabilistic relevance framework: BM25 and beyondFound. Trends Inf. Retrieval2009333338910.1561/1500000019 Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. Preprint at https://arxiv.org/abs/2303.12712 (2023). AngelloNHClosed-loop optimization of general reaction conditions for heteroaryl Suzuki–Miyaura couplingScience20223783994052022Sci...378..399A45188711:CAS:528:DC%2BB38Xisl2ntrnM10.1126/science.adc874336302014 AdamoAOn-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable systemScience201635261672016Sci...352...61A1:CAS:528:DC%2BC28XlsFSlsrY%3D10.1126/science.aaf133727034366 Opentrons Python Protocol API. Opentronshttps://docs.opentrons.com/v2/ (2023). LuoRBioGPT: generative pre-trained transformer for biomedical text generation and miningBrief Bioinform.202223bbac40910.1093/bib/bbac40936156661 Liu, P. et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv.55, 195 (2021). Xu, F. F., Alon, U., Neubig, G. & Hellendoorn, V. J. A systematic evaluation of large language models of code. In Proc. 6th ACM SIGPLAN International Symposium on Machine Programming 1–10 (ACM, 2022). CaramelliDDiscovering new chemistry with an autonomous robotic platform driven by a reactivity-seeking neural networkACS Cent. Sci.20217182118301:CAS:528:DC%2BB3MXisVGisLfK10.1021/acscentsci.1c00435348494018620554 LinZEvolutionary-scale prediction of atomic-level protein structure with a language modelScience2023379112311302023Sci...379.1123L45676811:CAS:528:DC%2BB3sXls1ertrk%3D10.1126/science.ade257436927031 Hoffmann, J. et al. Training compute-optimal large language models. In Advances in Neural Information Processing Systems 30016–30030 (NeurIPS, 2022). Running experiments. Emerald Cloud Labhttps://www.emeraldcloudlab.com/guides/runningexperiments (2023). OpenAI. GPT-4 Technical Report (OpenAI, 2023). Tu, Z. et al. Approximate nearest neighbor search and lightweight dense vector reranking in multi-stage retrieval architectures. In Proc. 2020 ACM SIGIR on International Conference on Theory of Information Retrieval 97–100 (ACM, 2020). Hickman, R. et al. Atlas: a brain for self-driving laboratories. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/64f6560579853bbd781bcef6 (2023). Touvron, H. et al. LLaMA: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023). Bai, Y. et al. Constitutional AI: harmlessness from AI feedback. Preprint at https://arxiv.org/abs/2212.08073 (2022). Reaxyshttps://www.reaxys.com (2023). JohnsonJDouzeMJegouHBillion-scale similarity search with GPUsIEEE Trans. Big Data2021753554710.1109/TBDATA.2019.2921572 GrandaJMDoninaLDragoneVLongD-LCroninLControlling an organic synthesis robot with machine learning to search for new reactivityNature20185593773812018Natur.559..377G1:CAS:528:DC%2BC1cXhtlClsb%2FJ10.1038/s41586-018-0307-8300221336223543 JiZSurvey of hallucination in natural language generationACM Comput. Surv.20235524810.1145/3571730 Thoppilan, R. et al. LaMDA: language models for dialog applications. Preprint at https://arxiv.org/abs/2201.08239 (2022). PereraDA platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flowScience20183594294342018Sci...359..429P1:CAS:528:DC%2BC1cXhsVGhsrc%3D10.1126/science.aap911229371464 Nijkamp, E. et al. CodeGen: an open large language model for code with multi-turn program synthesis. In Proc. 11th International Conference on Learning Representations (ICLR, 2022). Ziegler, D. M. et al. Fine-tuning language models from human preferences. Preprint at https://arxiv.org/abs/1909.08593 (2019). ColeyCWA robotic platform for flow synthesis of organic compounds informed by AI planningScience2019365eaax15661:CAS:528:DC%2BC1MXhsFCisb3O10.1126/science.aax156631395756 Lin, J. et al. Pyserini: a python toolkit for reproducible information retrieval research with sparse and dense representations. In Proc. 44th International ACM SIGIR Conference on Research and Development in Information Retrieval 2356–2362 (ACM, 2021). Chowdhery, A. et al. PaLM: scaling language modeling with pathways. J. Mach. Learn. Res.24, 1–113 (2022). IrwinRDimitriadisSHeJBjerrumEJChemformer: a pre-trained transformer for computational chemistryMach. Learn. Sci. Technol.202230150222022MLS&T...3a5022I10.1088/2632-2153/ac3ffb Falcon LLM. TIIhttps://falconllm.tii.ae (2023). VechtomovaOWangYA study of the effect of term proximity on query expansionJ. Inf. Sci.20063232433310.1177/0165551506065787 Kaplan, J. et al. Scaling laws for neural language models. Preprint at https://arxiv.org/abs/2001.08361 (2020). Auto-GPT: the heart of the open-source agent ecosystem. GitHubhttps://github.com/Significant-Gravitas/AutoGPT (2023). Sanchez-GarciaRCoPriNet: graph neural networks provide accurate and rapid compound price prediction for molecule prioritisationDigital Discov.2023210311110.1039/D2DD00071G 6792_CR49 6792_CR48 6792_CR46 B Burger (6792_CR22) 2020; 583 6792_CR43 6792_CR41 6792_CR40 CW Coley (6792_CR21) 2019; 365 S Robertson (6792_CR42) 2009; 3 NH Angello (6792_CR19) 2022; 378 6792_CR39 6792_CR5 6792_CR38 6792_CR4 6792_CR37 6792_CR36 6792_CR35 Z Ji (6792_CR31) 2023; 55 6792_CR34 D Caramelli (6792_CR18) 2021; 7 6792_CR33 6792_CR32 6792_CR30 R Luo (6792_CR7) 2022; 23 D Perera (6792_CR50) 2018; 359 A Adamo (6792_CR20) 2016; 352 6792_CR29 6792_CR28 6792_CR27 H Kim (6792_CR9) 2021; 61 6792_CR26 6792_CR25 6792_CR24 DT Ahneman (6792_CR51) 2018; 360 6792_CR23 O Vechtomova (6792_CR45) 2006; 32 J Johnson (6792_CR44) 2021; 7 Z Lin (6792_CR6) 2023; 379 6792_CR3 6792_CR2 R Irwin (6792_CR8) 2022; 3 6792_CR1 JM Granda (6792_CR17) 2018; 559 6792_CR16 6792_CR15 6792_CR14 6792_CR13 6792_CR12 6792_CR11 6792_CR10 6792_CR52 R Sanchez-Garcia (6792_CR47) 2023; 2 |
References_xml | – reference: Falcon LLM. TIIhttps://falconllm.tii.ae (2023). – reference: Tu, Z. et al. Approximate nearest neighbor search and lightweight dense vector reranking in multi-stage retrieval architectures. In Proc. 2020 ACM SIGIR on International Conference on Theory of Information Retrieval 97–100 (ACM, 2020). – reference: Reaxyshttps://www.reaxys.com (2023). – reference: VechtomovaOWangYA study of the effect of term proximity on query expansionJ. Inf. Sci.20063232433310.1177/0165551506065787 – reference: Lin, J. et al. Pyserini: a python toolkit for reproducible information retrieval research with sparse and dense representations. In Proc. 44th International ACM SIGIR Conference on Research and Development in Information Retrieval 2356–2362 (ACM, 2021). – reference: Xu, F. F., Alon, U., Neubig, G. & Hellendoorn, V. J. A systematic evaluation of large language models of code. In Proc. 6th ACM SIGPLAN International Symposium on Machine Programming 1–10 (ACM, 2022). – reference: Thoppilan, R. et al. LaMDA: language models for dialog applications. Preprint at https://arxiv.org/abs/2201.08239 (2022). – reference: Opentrons Python Protocol API. Opentronshttps://docs.opentrons.com/v2/ (2023). – reference: Brown, T. et al. in Advances in Neural Information Processing Systems Vol. 33 (eds Larochelle, H. et al.) 1877–1901 (Curran Associates, 2020). – reference: Nijkamp, E. et al. CodeGen: an open large language model for code with multi-turn program synthesis. In Proc. 11th International Conference on Learning Representations (ICLR, 2022). – reference: LuoRBioGPT: generative pre-trained transformer for biomedical text generation and miningBrief Bioinform.202223bbac40910.1093/bib/bbac40936156661 – reference: BabyAGI. GitHubhttps://github.com/yoheinakajima/babyagi (2023). – reference: Hoffmann, J. et al. Training compute-optimal large language models. In Advances in Neural Information Processing Systems 30016–30030 (NeurIPS, 2022). – reference: Jablonka, K. M., Schwaller, P., Ortega-Guerrero, A. & Smit, B. Leveraging large language models for predictive chemistry. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/652e50b98bab5d2055852dde (2023). – reference: JiZSurvey of hallucination in natural language generationACM Comput. Surv.20235524810.1145/3571730 – reference: RobertsonSZaragozaHThe probabilistic relevance framework: BM25 and beyondFound. Trends Inf. Retrieval2009333338910.1561/1500000019 – reference: SciFinderhttps://scifinder.cas.org (2023). – reference: KimHNaJLeeWBGenerative chemical transformer: neural machine learning of molecular geometric structures from chemical language via attentionJ. Chem. Inf. Model.202161580458141:CAS:528:DC%2BB3MXis1aqtLnO10.1021/acs.jcim.1c0128934855384 – reference: BurgerBA mobile robotic chemistNature20205832372412020Natur.583..237B1:CAS:528:DC%2BB3cXhtlCqur%2FN10.1038/s41586-020-2442-232641813 – reference: Open LLM Leaderboard. Hugging Facehttps://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard (2023). – reference: AdamoAOn-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable systemScience201635261672016Sci...352...61A1:CAS:528:DC%2BC28XlsFSlsrY%3D10.1126/science.aaf133727034366 – reference: Liu, P. et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv.55, 195 (2021). – reference: Sanchez-GarciaRCoPriNet: graph neural networks provide accurate and rapid compound price prediction for molecule prioritisationDigital Discov.2023210311110.1039/D2DD00071G – reference: OpenAI. GPT-4 Technical Report (OpenAI, 2023). – reference: Qadrud-Din, J. et al. Transformer based language models for similar text retrieval and ranking. Preprint at https://arxiv.org/abs/2005.04588 (2020). – reference: AngelloNHClosed-loop optimization of general reaction conditions for heteroaryl Suzuki–Miyaura couplingScience20223783994052022Sci...378..399A45188711:CAS:528:DC%2BB38Xisl2ntrnM10.1126/science.adc874336302014 – reference: Chase, H. LangChain. GitHubhttps://github.com/langchain-ai/langchain (2023). – reference: Bai, Y. et al. Constitutional AI: harmlessness from AI feedback. Preprint at https://arxiv.org/abs/2212.08073 (2022). – reference: Kaplan, J. et al. Scaling laws for neural language models. Preprint at https://arxiv.org/abs/2001.08361 (2020). – reference: GrandaJMDoninaLDragoneVLongD-LCroninLControlling an organic synthesis robot with machine learning to search for new reactivityNature20185593773812018Natur.559..377G1:CAS:528:DC%2BC1cXhtlClsb%2FJ10.1038/s41586-018-0307-8300221336223543 – reference: Yao, S. et al. ReAct: synergizing reasoning and acting in language models. In Proc.11th International Conference on Learning Representations (ICLR, 2022). – reference: IrwinRDimitriadisSHeJBjerrumEJChemformer: a pre-trained transformer for computational chemistryMach. Learn. Sci. Technol.202230150222022MLS&T...3a5022I10.1088/2632-2153/ac3ffb – reference: Data Mining. Mining of Massive Datasets (Cambridge Univ., 2011). – reference: Ouyang, L. et al. Training language models to follow instructions with human feedback. In Advances in Neural Information Processing Systems 27730–27744 (NeurIPS, 2022). – reference: PereraDA platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flowScience20183594294342018Sci...359..429P1:CAS:528:DC%2BC1cXhsVGhsrc%3D10.1126/science.aap911229371464 – reference: Auto-GPT: the heart of the open-source agent ecosystem. GitHubhttps://github.com/Significant-Gravitas/AutoGPT (2023). – reference: Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural Information Processing Systems 24824–24837 (NeurIPS, 2022). – reference: Ziegler, D. M. et al. Fine-tuning language models from human preferences. Preprint at https://arxiv.org/abs/1909.08593 (2019). – reference: Bran, A. M., Cox, S., White, A. D. & Schwaller, P. ChemCrow: augmenting large-language models with chemistry tools. Preprint at https://arxiv.org/abs/2304.05376 (2023). – reference: AhnemanDTEstradaJGLinSDreherSDDoyleAGPredicting reaction performance in C–N cross-coupling using machine learningScience20183601861902018Sci...360..186A1:CAS:528:DC%2BC1cXnt1Ghtbo%3D10.1126/science.aar516929449509 – reference: Touvron, H. et al. LLaMA: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023). – reference: ColeyCWA robotic platform for flow synthesis of organic compounds informed by AI planningScience2019365eaax15661:CAS:528:DC%2BC1MXhsFCisb3O10.1126/science.aax156631395756 – reference: LinZEvolutionary-scale prediction of atomic-level protein structure with a language modelScience2023379112311302023Sci...379.1123L45676811:CAS:528:DC%2BB3sXls1ertrk%3D10.1126/science.ade257436927031 – reference: Long, J. Large language model guided tree-of-thought. Preprint at https://arxiv.org/abs/2305.08291 (2023). – reference: Paper QA. GitHubhttps://github.com/whitead/paper-qa (2023). – reference: Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. Preprint at https://arxiv.org/abs/2303.12712 (2023). – reference: Hickman, R. et al. Atlas: a brain for self-driving laboratories. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/64f6560579853bbd781bcef6 (2023). – reference: JohnsonJDouzeMJegouHBillion-scale similarity search with GPUsIEEE Trans. Big Data2021753554710.1109/TBDATA.2019.2921572 – reference: Running experiments. Emerald Cloud Labhttps://www.emeraldcloudlab.com/guides/runningexperiments (2023). – reference: Ramos, M. C., Michtavy, S. S., Porosoff, M. D. & White, A. D. Bayesian optimization of catalysts with in-context learning. Preprint at https://arxiv.org/abs/2304.05341 (2023). – reference: CaramelliDDiscovering new chemistry with an autonomous robotic platform driven by a reactivity-seeking neural networkACS Cent. Sci.20217182118301:CAS:528:DC%2BB3MXisVGisLfK10.1021/acscentsci.1c00435348494018620554 – reference: Chowdhery, A. et al. PaLM: scaling language modeling with pathways. J. Mach. Learn. Res.24, 1–113 (2022). – ident: 6792_CR36 – volume: 3 start-page: 333 year: 2009 ident: 6792_CR42 publication-title: Found. Trends Inf. Retrieval doi: 10.1561/1500000019 – ident: 6792_CR2 – volume: 365 start-page: eaax1566 year: 2019 ident: 6792_CR21 publication-title: Science doi: 10.1126/science.aax1566 – volume: 583 start-page: 237 year: 2020 ident: 6792_CR22 publication-title: Nature doi: 10.1038/s41586-020-2442-2 – ident: 6792_CR26 – ident: 6792_CR23 – volume: 7 start-page: 1821 year: 2021 ident: 6792_CR18 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.1c00435 – ident: 6792_CR49 – ident: 6792_CR33 – volume: 2 start-page: 103 year: 2023 ident: 6792_CR47 publication-title: Digital Discov. doi: 10.1039/D2DD00071G – ident: 6792_CR27 doi: 10.1145/3560815 – ident: 6792_CR16 – volume: 55 start-page: 248 year: 2023 ident: 6792_CR31 publication-title: ACM Comput. Surv. doi: 10.1145/3571730 – ident: 6792_CR37 – ident: 6792_CR3 – ident: 6792_CR41 – ident: 6792_CR48 – volume: 7 start-page: 535 year: 2021 ident: 6792_CR44 publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2019.2921572 – volume: 3 start-page: 015022 year: 2022 ident: 6792_CR8 publication-title: Mach. Learn. Sci. Technol. doi: 10.1088/2632-2153/ac3ffb – volume: 23 start-page: bbac409 year: 2022 ident: 6792_CR7 publication-title: Brief Bioinform. doi: 10.1093/bib/bbac409 – ident: 6792_CR11 doi: 10.1145/3520312.3534862 – volume: 378 start-page: 399 year: 2022 ident: 6792_CR19 publication-title: Science doi: 10.1126/science.adc8743 – ident: 6792_CR10 doi: 10.26434/chemrxiv-2023-fw8n4-v3 – volume: 352 start-page: 61 year: 2016 ident: 6792_CR20 publication-title: Science doi: 10.1126/science.aaf1337 – ident: 6792_CR34 – ident: 6792_CR13 – ident: 6792_CR30 – volume: 61 start-page: 5804 year: 2021 ident: 6792_CR9 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c01289 – volume: 359 start-page: 429 year: 2018 ident: 6792_CR50 publication-title: Science doi: 10.1126/science.aap9112 – ident: 6792_CR4 – ident: 6792_CR28 – ident: 6792_CR38 doi: 10.1145/3409256.3409818 – ident: 6792_CR40 – ident: 6792_CR24 – ident: 6792_CR39 doi: 10.1145/3404835.3463238 – ident: 6792_CR52 doi: 10.26434/chemrxiv-2023-8nrxx – ident: 6792_CR14 – ident: 6792_CR12 – ident: 6792_CR35 – volume: 32 start-page: 324 year: 2006 ident: 6792_CR45 publication-title: J. Inf. Sci. doi: 10.1177/0165551506065787 – volume: 360 start-page: 186 year: 2018 ident: 6792_CR51 publication-title: Science doi: 10.1126/science.aar5169 – ident: 6792_CR43 – ident: 6792_CR5 – ident: 6792_CR29 – volume: 559 start-page: 377 year: 2018 ident: 6792_CR17 publication-title: Nature doi: 10.1038/s41586-018-0307-8 – ident: 6792_CR25 – ident: 6792_CR46 – ident: 6792_CR1 – volume: 379 start-page: 1123 year: 2023 ident: 6792_CR6 publication-title: Science doi: 10.1126/science.ade2574 – ident: 6792_CR15 – ident: 6792_CR32 |
SSID | ssj0005174 |
Score | 2.751477 |
Snippet | Transformer-based large language models are making significant strides in various fields, such as natural language processing
1
–
5
, biology
6
,
7
, chemistry... Transformer-based large language models are making significant strides in various fields, such as natural language processing 1–5 , biology 6,7 , chemistry... Transformer-based large language models are making significant strides in various fields, such as natural language processing , biology , chemistry and... Transformer-based large language models are making significant strides in various fields, such as natural language processing1-5, biology6,7, chemistry8-10 and... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 570 |
SubjectTerms | 639/638 639/705/117 Artificial intelligence Automation Chemical research Chemistry Couplings Design Design of experiments Documentation Experimental design Experiments Humanities and Social Sciences Information retrieval Internet Laboratories Language Large language models multidisciplinary Natural language (computers) Nonsteroidal anti-inflammatory drugs Optimization Palladium Planning Science Science (multidisciplinary) Software |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwGP3wguiLuHmrNyL4oGhZ06RN-iQyHEPQJ4W9lTZNUBj10vn_zZelG5voc1LafLmd5js5B-DCWBBu7L4QWmwtQm60DFFkPaxQ6kPLQmbu1vvjUzp84Q-jZOQP3BpPq2zXRLdQV-8Kz8h7KEvOkySO5O3HZ4iuUZhd9RYaq7CO0mVI6RIjMad4LKkw-0szEZO9xm5cEum36G0gkIG5uDH9Qpu_SZNLmVO3IQ12YNsjSXI37foOrOi6C5v91sCtCxuO3amaLnT8DG7IpZeZvtoFcfc9wRsN9tefKC8bQLz2zyvB81kyRpo4aY80iXPNafbgZXD_3B-G3kYhVFwkk7CgFlNgQiWjcZToWEe8TBMdGZNlVSWYSnXERGnikrJCq6IqC1NkwuhEWeylU7YPa_V7rQ-BlCmrTGmoibni9scH0SY3qZ3HmvLKsABoG8NceY1xtLoY5y7XzWQ-jXtu4567uOdRANezZz6mChv_1j5puyb3s63J52MjgPNZsY02Jj-KWttAYh2eCC4ZDeBg2pOz11nUYpFLlAYgF_p4VgE1uBdL6rdXp8VNnekls4_etMNh_l1_N-Po_2Ycwxba2iNtJqYnsDb5-tanFvxMyjM3wn8AiQX9cQ priority: 102 providerName: ProQuest |
Title | Autonomous chemical research with large language models |
URI | https://link.springer.com/article/10.1038/s41586-023-06792-0 https://www.ncbi.nlm.nih.gov/pubmed/38123806 https://www.proquest.com/docview/2906455208 https://www.proquest.com/docview/2904574831 https://pubmed.ncbi.nlm.nih.gov/PMC10733136 |
Volume | 624 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD7oDAv7IuperJchC_vgslu2adImfdRhRhFWRBTmrfSSoDBUsTP_33My6Qyjq-BLXnJpe5I0X5LvfAfgp0UQbnFdCBFbq1Bao0MSWQ9rkvowutCZ83r_d5me38qLSTLZgLjzhXGkfSdp6X7THTvsb4sLjSa6LMUiUMSY3IQ-tUqjepgOV7SOF8rL3lEmEvo_bawvRq8Q5mui5IvbUrcIjbdhy6NHdrJ43x3YMM0ufHIszqrdhR0_U1t27OWkf30BdTKfkecCbvFZ5eUBmNf4uWN0DsumRAdn3dElc9Fx2q9wOx7dDM9DHy4hrKRKZmHBETvQxUnG4ygxsYlkmSYmsjbL6lqJKjWRUKWNSy4KUxV1WdgiU9YkFWIsk4pv0GseGrMHrExFbUvLbSwriRscQpXSpjhfDZe1FQHwzm555bXEKaTFNHd32kLnC1vnaOvc2TqPAvi9rPO4UNJ4t_Rh1x25n1VtTtL0MkniSAfwY5mN84EuOYrGoCGpjEyU1IIH8H3Re8vHITpBhBKlAei1fl0WIK3t9Zzm_s5pbnMX3FJg1T_dEFi919ufsf-x4gfwmcLZE10m5ofQmz3NzRGCnlk5gE01UZjqIad0fDaA_uno8up64Mb_MzEu-50 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuiC6vQAEjgQSiVuNH4uSAUFWotvRxaqW9mTxsFanKFrIrxJ_iNzLjJLvaVvTWc-wknhl7PnvG3wC89QjCPfoFjtjacO1dxolknddE9eGyIsvDrffjk3R8pr9Nkska_B3uwlBa5bAmhoW6nlZ0Rr5DtOQ6SWScfb78yalqFEVXhxIanVkcuj-_ccvWfjr4gvp9J-X-19O9Me-rCvBKm2TGC4EuluILuZBx4qSLdZkmLvY-z-vaqCp1sTKll6VQhauKuix8kRvvkgqhiEsVvvcO3EXHG9OMMhOzTCm5wvrcX9KJVbbToqPMKN2XaikYyvhcdYTX0O31JM0rkdrgAPcfwoMeubLdztQ2Yc01I9jYGwrGjeBeyCat2hFs9itGy973tNYfHoHZnc_oBsV03rKqpylgPdfQOaPzYHZBaelsOEJloUpP-xjObkXAT2C9mTbuGbAyVbUvvfBSVxo3WoRutU9x3XBC115FIAYZ2qrnNKfSGhc2xNZVZju5W5S7DXK3cQQfF30uO0aPG1tvDaqx_exu7dIWI3izeIzSpmBL0TgUJLXRidGZEhE87TS5-ByiJERKcRpBtqLjRQPi_F590vw4D9zfIhTZVNh1ezCH5X_9fxjPbx7Ga9gYnx4f2aODk8MXcF-SmQrJpdiC9dmvuXuJwGtWvgrWzuD7bU-vf2MMOys |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XRJdXoICRQAJBtPEjcXJAqGpZtRQqDlTam8nDVpGqbCG7Qvw1fh0zjrOrbUVvPcdO4pmx57Nn_A3AS4cg3KFfiBFb61g5m8dEsh43RPVh8zIv_K33L0fZ_rH6NE2nG_B3uAtDaZXDmugX6mZW0xn5mGjJVZqKJB-7kBbxdW_y4exnTBWkKNI6lNPoTeTQ_vmN27fu_cEe6vqVEJOP33b341BhIK6VTudxydHdUqyh4CJJrbCJqrLUJs4VRdNoWWc2kbpyouKytHXZVKUrC-1sWiMssZnE916D61qmnOaYnupVesk5BuhwYSeR-bhDp5lT6i_VVdCU_bnuFC8g3YsJm-eitt4ZTu7CnYBi2U5vdluwYdsR3NodiseN4IbPLK27EWyF1aNjrwPF9Zt7oHcWc7pNMVt0rA6UBSzwDp0wOhtmp5SizobjVOYr9nT34fhKBPwANttZax8BqzLZuMpxJ1StcNNFSFe5DNcQy1XjZAR8kKGpA785ldk4NT7OLnPTy92g3I2Xu0kieLvsc9aze1zaentQjQkzvTMru4zgxfIxSpsCL2VrUZDURqVa5ZJH8LDX5PJziJgQNSVZBPmajpcNiP97_Un748TzgHNfcFNi13eDOaz-6__DeHz5MJ7DTZxY5vPB0eETuC3ISrmIBd-GzfmvhX2KGGxePfPGzuD7Vc-ufzYUP2E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+chemical+research+with+large+language+models&rft.jtitle=Nature+%28London%29&rft.au=Boiko%2C+Daniil+A.&rft.au=MacKnight%2C+Robert&rft.au=Kline%2C+Ben&rft.au=Gomes%2C+Gabe&rft.date=2023-12-21&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=624&rft.issue=7992&rft.spage=570&rft.epage=578&rft_id=info:doi/10.1038%2Fs41586-023-06792-0&rft.externalDocID=10_1038_s41586_023_06792_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |