Autonomous chemical research with large language models

Transformer-based large language models are making significant strides in various fields, such as natural language processing 1 – 5 , biology 6 , 7 , chemistry 8 – 10 and computer programming 11 , 12 . Here, we show the development and capabilities of Coscientist, an artificial intelligence system d...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 624; no. 7992; pp. 570 - 578
Main Authors Boiko, Daniil A., MacKnight, Robert, Kline, Ben, Gomes, Gabe
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.12.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transformer-based large language models are making significant strides in various fields, such as natural language processing 1 – 5 , biology 6 , 7 , chemistry 8 – 10 and computer programming 11 , 12 . Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research. Coscientist is an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation.
AbstractList Transformer-based large language models are making significant strides in various fields, such as natural language processing1-5, biology6,7, chemistry8-10 and computer programming11,12. Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research.Transformer-based large language models are making significant strides in various fields, such as natural language processing1-5, biology6,7, chemistry8-10 and computer programming11,12. Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research.
Transformer-based large language models are making significant strides in various fields, such as natural language processing 1–5 , biology 6,7 , chemistry 8–10 and computer programming 11,12 . Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research.
Transformer-based large language models are making significant strides in various fields, such as natural language processing 1 – 5 , biology 6 , 7 , chemistry 8 – 10 and computer programming 11 , 12 . Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research. Coscientist is an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation.
Transformer-based large language models are making significant strides in various fields, such as natural language processing , biology , chemistry and computer programming . Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research.
Transformer-based large language models are making significant strides in various fields, such as natural language processing1-5, biology6,7, chemistry8-10 and computer programming11,12. Here, we show the development and capabilities of Coscientist, an artificial intelligence system driven by GPT-4 that autonomously designs, plans and performs complex experiments by incorporating large language models empowered by tools such as internet and documentation search, code execution and experimental automation. Coscientist showcases its potential for accelerating research across six diverse tasks, including the successful reaction optimization of palladium-catalysed cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous experimental design and execution. Our findings demonstrate the versatility, efficacy and explainability of artificial intelligence systems like Coscientist in advancing research.
Author Kline, Ben
Gomes, Gabe
MacKnight, Robert
Boiko, Daniil A.
Author_xml – sequence: 1
  givenname: Daniil A.
  orcidid: 0000-0003-4140-4645
  surname: Boiko
  fullname: Boiko, Daniil A.
  organization: Department of Chemical Engineering, Carnegie Mellon University
– sequence: 2
  givenname: Robert
  surname: MacKnight
  fullname: MacKnight, Robert
  organization: Department of Chemical Engineering, Carnegie Mellon University
– sequence: 3
  givenname: Ben
  surname: Kline
  fullname: Kline, Ben
  organization: Emerald Cloud Lab
– sequence: 4
  givenname: Gabe
  orcidid: 0000-0002-8235-5969
  surname: Gomes
  fullname: Gomes, Gabe
  email: gabegomes@cmu.edu
  organization: Department of Chemical Engineering, Carnegie Mellon University, Department of Chemistry, Carnegie Mellon University, Wilton E. Scott Institute for Energy Innovation, Carnegie Mellon University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38123806$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1P3DAUtCqqsiz8AQ5oJS5c0j5_O6cKIfohIfVSzpbjvOwaJTG1ExD_Hi8LtOXAxbbkmXkzbw7I3hhHJOSYwmcK3HzJgkqjKmC8AqVrVsEHsqBCq0ooo_fIAoCZCgxX--Qg5xsAkFSLT2SfG8q4AbUg-nye4hiHOOeV3-AQvOtXCTO65Der-zBtVr1LayznuJ5deQyxxT4fko-d6zMePd9Lcv3t8vfFj-rq1_efF-dXlRdaTpWjXErOGKspA4kMQTRKInRdXbet5l4hcN10rKHcoXdt4zpX6w6lB1mj4kvydad7OzcDth7HKbne3qYwuPRgowv2_58xbOw63lkKmnPKtwpnzwop_pkxT3YI2WNfAmFJbVkNQmphCnhJTt9Ab-KcxpJvi1JCSla2uSQn_1p69fKy1AJgO4BPMeeE3SuEgt02Z3fN2dKcfWrOQiGZNyQfJjeFuI0V-vepfEfNZc64xvTX9jusR5SErPw
CitedBy_id crossref_primary_10_1007_s10698_024_09521_1
crossref_primary_10_1016_j_aichem_2024_100075
crossref_primary_10_1016_j_rcim_2024_102883
crossref_primary_10_2196_58158
crossref_primary_10_1021_acs_nanolett_4c03208
crossref_primary_10_1002_anie_202423950
crossref_primary_10_1016_j_aichem_2024_100070
crossref_primary_10_1021_acsinfecdis_4c00585
crossref_primary_10_1016_j_coelec_2024_101526
crossref_primary_10_1007_s12195_024_00820_3
crossref_primary_10_1002_smtd_202401757
crossref_primary_10_1002_jsde_12766
crossref_primary_10_1126_science_adq1977
crossref_primary_10_1021_jacs_4c11674
crossref_primary_10_1016_j_slast_2024_100214
crossref_primary_10_1557_s43577_024_00846_y
crossref_primary_10_1016_j_mejo_2025_106607
crossref_primary_10_1063_5_0169961
crossref_primary_10_1016_j_neunet_2024_107106
crossref_primary_10_1038_s41524_025_01554_0
crossref_primary_10_1038_d41586_023_03790_0
crossref_primary_10_1088_1674_1056_ad3c30
crossref_primary_10_1038_d41586_024_03815_2
crossref_primary_10_1039_D4MD00159A
crossref_primary_10_1371_journal_pone_0310724
crossref_primary_10_1016_j_compbiomed_2024_108796
crossref_primary_10_1016_j_matdes_2024_113506
crossref_primary_10_1016_j_slast_2024_100180
crossref_primary_10_1016_j_bbadis_2025_167680
crossref_primary_10_1038_s41591_024_03434_4
crossref_primary_10_1039_D4DD00398E
crossref_primary_10_1186_s13321_025_00984_8
crossref_primary_10_1136_bjo_2024_326254
crossref_primary_10_1007_s44212_024_00060_w
crossref_primary_10_1021_jacs_4c10294
crossref_primary_10_1007_s11426_024_2072_4
crossref_primary_10_1093_nsr_nwae076
crossref_primary_10_1021_acs_nanolett_3c05137
crossref_primary_10_1038_s41428_024_00930_9
crossref_primary_10_1016_j_enbuild_2024_114691
crossref_primary_10_1002_admt_202400084
crossref_primary_10_1039_D4DD00143E
crossref_primary_10_1093_burnst_tkae053
crossref_primary_10_1038_s42256_024_00832_8
crossref_primary_10_5114_bta_200803
crossref_primary_10_1039_D4DD00252K
crossref_primary_10_1080_27660400_2024_2395242
crossref_primary_10_1016_j_matt_2024_10_015
crossref_primary_10_1021_acs_jchemed_4c00058
crossref_primary_10_1039_D4GC01745E
crossref_primary_10_1021_acs_chemrev_4c00055
crossref_primary_10_1021_jacs_4c05840
crossref_primary_10_1021_acs_jcim_4c01653
crossref_primary_10_1038_s41598_024_69021_2
crossref_primary_10_1039_D4DD00046C
crossref_primary_10_1039_D4SC03921A
crossref_primary_10_1039_D4DD00074A
crossref_primary_10_1002_asia_202400010
crossref_primary_10_1038_s41586_024_08173_7
crossref_primary_10_1039_D4CY00693C
crossref_primary_10_1038_s41467_024_53457_1
crossref_primary_10_1002_ange_202407116
crossref_primary_10_1007_s42452_024_06206_4
crossref_primary_10_1002_anie_202418074
crossref_primary_10_1021_acs_jchemed_4c01033
crossref_primary_10_1039_D4BM00169A
crossref_primary_10_1002_wcms_1723
crossref_primary_10_1021_acs_jcim_4c01529
crossref_primary_10_1021_acs_analchem_5c00099
crossref_primary_10_1038_s41598_024_61124_0
crossref_primary_10_1016_j_isci_2024_109451
crossref_primary_10_1038_s41568_024_00694_7
crossref_primary_10_1063_5_0201522
crossref_primary_10_1007_s10956_024_10173_1
crossref_primary_10_3762_bjoc_20_196
crossref_primary_10_1038_s42256_024_00930_7
crossref_primary_10_1039_D4DD00178H
crossref_primary_10_1039_D4DD00130C
crossref_primary_10_1093_bib_bbae495
crossref_primary_10_1021_acs_iecr_4c04636
crossref_primary_10_1016_j_jare_2025_02_011
crossref_primary_10_1021_acs_langmuir_4c04262
crossref_primary_10_1038_s41578_025_00772_8
crossref_primary_10_1038_s42004_024_01393_y
crossref_primary_10_1039_D3SC07012C
crossref_primary_10_2139_ssrn_4621210
crossref_primary_10_1002_ange_202423950
crossref_primary_10_1021_acs_jchemed_4c00226
crossref_primary_10_1021_jacsau_4c00624
crossref_primary_10_1016_j_autcon_2025_105995
crossref_primary_10_1016_j_matt_2024_06_003
crossref_primary_10_1021_acs_jchemed_4c00193
crossref_primary_10_1016_j_apenergy_2024_124378
crossref_primary_10_1039_D4CS00077C
crossref_primary_10_1021_acsphyschemau_4c00004
crossref_primary_10_5059_yukigoseikyokaishi_82_915
crossref_primary_10_1002_anie_202407116
crossref_primary_10_1039_D4DD00248B
crossref_primary_10_1007_s44243_024_00046_x
crossref_primary_10_1016_j_ces_2024_120916
crossref_primary_10_1039_D4DD90010C
crossref_primary_10_6087_kcse_343
crossref_primary_10_3390_s24196424
crossref_primary_10_1039_D4SC04757E
crossref_primary_10_1038_s44160_024_00649_8
crossref_primary_10_1016_j_actamat_2024_120663
crossref_primary_10_1016_j_cjche_2024_10_014
crossref_primary_10_1021_acssynbio_4c00091
crossref_primary_10_1038_s41586_024_07930_y
crossref_primary_10_1039_D4FD00153B
crossref_primary_10_1088_0256_307X_42_2_027403
crossref_primary_10_1016_j_earscirev_2024_104765
crossref_primary_10_1038_s41597_024_03821_z
crossref_primary_10_1039_D4MD00522H
crossref_primary_10_1039_D4MH00797B
crossref_primary_10_1021_jacs_4c17738
crossref_primary_10_1039_D4NR01445F
crossref_primary_10_1097_CM9_0000000000003387
crossref_primary_10_1116_6_0004277
crossref_primary_10_1039_D4ME00174E
crossref_primary_10_1080_10739149_2024_2390907
crossref_primary_10_3390_knowledge4040031
crossref_primary_10_1016_j_cell_2024_09_022
crossref_primary_10_1016_j_neucom_2024_129272
crossref_primary_10_1038_s41589_024_01679_1
crossref_primary_10_1039_D3DD00239J
crossref_primary_10_1039_D4DD00330F
crossref_primary_10_1016_j_knosys_2024_112889
crossref_primary_10_1016_j_scitotenv_2024_175971
crossref_primary_10_1038_s41467_024_54457_x
crossref_primary_10_1039_D4CC00010B
crossref_primary_10_1021_acs_jchemed_4c01498
crossref_primary_10_1039_D4EE03063J
crossref_primary_10_1039_D4DD00366G
crossref_primary_10_1021_acs_est_4c07842
crossref_primary_10_1016_j_coelec_2025_101679
crossref_primary_10_1039_D4SC08677E
crossref_primary_10_1002_adsc_202301205
crossref_primary_10_1002_ange_202418074
crossref_primary_10_1109_TSMC_2024_3501318
crossref_primary_10_1002_adma_202402369
crossref_primary_10_1007_s00146_024_02165_x
crossref_primary_10_1016_j_ress_2025_110834
crossref_primary_10_1039_D4MH00051J
crossref_primary_10_1002_adma_202405163
crossref_primary_10_1002_marc_202500065
crossref_primary_10_1039_D5SC00541H
crossref_primary_10_1039_D4DD00199K
crossref_primary_10_1038_s42256_024_00812_y
crossref_primary_10_1039_D4CS00913D
crossref_primary_10_1073_pnas_2404328121
crossref_primary_10_1021_acsanm_4c00255
crossref_primary_10_1016_j_ces_2025_121567
crossref_primary_10_1016_j_jag_2024_104312
crossref_primary_10_1016_j_dibe_2024_100488
crossref_primary_10_1016_j_tibtech_2025_02_008
crossref_primary_10_1039_D4DD00313F
crossref_primary_10_1007_s12274_024_6621_6
crossref_primary_10_1038_d41586_023_04073_4
crossref_primary_10_1186_s13321_024_00886_1
crossref_primary_10_1021_acs_analchem_4c01734
crossref_primary_10_2478_jdis_2024_0011
crossref_primary_10_1016_j_rser_2025_115481
crossref_primary_10_1063_5_0213542
crossref_primary_10_1038_s41467_024_54639_7
crossref_primary_10_1021_acsnano_4c02094
crossref_primary_10_1007_s10916_024_02093_9
crossref_primary_10_1360_TB_2024_0404
crossref_primary_10_3390_electronics14061175
crossref_primary_10_1039_D4DD00013G
crossref_primary_10_1007_s11096_024_01839_2
crossref_primary_10_1016_j_matt_2024_11_012
crossref_primary_10_1002_mgea_77
crossref_primary_10_3390_molecules30030650
crossref_primary_10_1016_j_joule_2024_07_002
crossref_primary_10_1021_acssuschemeng_4c10430
crossref_primary_10_4196_kjpp_2024_28_5_393
crossref_primary_10_3390_en17122997
crossref_primary_10_1080_24694452_2024_2435920
crossref_primary_10_1056_AIoa2400555
crossref_primary_10_1016_j_compchemeng_2024_108723
crossref_primary_10_59717_j_xinn_med_2024_100091
crossref_primary_10_1016_j_matt_2024_11_007
crossref_primary_10_1038_s44286_024_00170_x
crossref_primary_10_1016_j_cossms_2024_101188
crossref_primary_10_1073_pnas_2401238121
Cites_doi 10.1561/1500000019
10.1126/science.aax1566
10.1038/s41586-020-2442-2
10.1021/acscentsci.1c00435
10.1039/D2DD00071G
10.1145/3560815
10.1145/3571730
10.1109/TBDATA.2019.2921572
10.1088/2632-2153/ac3ffb
10.1093/bib/bbac409
10.1145/3520312.3534862
10.1126/science.adc8743
10.26434/chemrxiv-2023-fw8n4-v3
10.1126/science.aaf1337
10.1021/acs.jcim.1c01289
10.1126/science.aap9112
10.1145/3409256.3409818
10.1145/3404835.3463238
10.26434/chemrxiv-2023-8nrxx
10.1177/0165551506065787
10.1126/science.aar5169
10.1038/s41586-018-0307-8
10.1126/science.ade2574
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
Copyright Nature Publishing Group Dec 21-Dec 28, 2023
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: Copyright Nature Publishing Group Dec 21-Dec 28, 2023
DBID C6C
AAYXX
CITATION
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/s41586-023-06792-0
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


PubMed
Agricultural Science Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Chemistry
EISSN 1476-4687
EndPage 578
ExternalDocumentID PMC10733136
38123806
10_1038_s41586_023_06792_0
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LGEZI
LK5
LK8
LOTEE
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NADUK
NAPCQ
NEPJS
NXXTH
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
I-F
ITC
J5H
L-9
MVM
N4W
NEJ
NPM
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
AFKWF
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c475t-a1355322291205e2e04b65e0ff99dd73c6e037bf2b13aecadbafa97fe5c059e63
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:37:28 EDT 2025
Fri Jul 11 15:28:29 EDT 2025
Sat Aug 23 14:26:03 EDT 2025
Mon Jul 21 06:06:44 EDT 2025
Tue Jul 01 02:58:49 EDT 2025
Thu Apr 24 23:11:33 EDT 2025
Fri Feb 21 02:37:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7992
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-a1355322291205e2e04b65e0ff99dd73c6e037bf2b13aecadbafa97fe5c059e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8235-5969
0000-0003-4140-4645
OpenAccessLink https://www.nature.com/articles/s41586-023-06792-0
PMID 38123806
PQID 2906455208
PQPubID 40569
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10733136
proquest_miscellaneous_2904574831
proquest_journals_2906455208
pubmed_primary_38123806
crossref_primary_10_1038_s41586_023_06792_0
crossref_citationtrail_10_1038_s41586_023_06792_0
springer_journals_10_1038_s41586_023_06792_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-21
PublicationDateYYYYMMDD 2023-12-21
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References KimHNaJLeeWBGenerative chemical transformer: neural machine learning of molecular geometric structures from chemical language via attentionJ. Chem. Inf. Model.202161580458141:CAS:528:DC%2BB3MXis1aqtLnO10.1021/acs.jcim.1c0128934855384
Data Mining. Mining of Massive Datasets (Cambridge Univ., 2011).
Ramos, M. C., Michtavy, S. S., Porosoff, M. D. & White, A. D. Bayesian optimization of catalysts with in-context learning. Preprint at https://arxiv.org/abs/2304.05341 (2023).
Qadrud-Din, J. et al. Transformer based language models for similar text retrieval and ranking. Preprint at https://arxiv.org/abs/2005.04588 (2020).
BurgerBA mobile robotic chemistNature20205832372412020Natur.583..237B1:CAS:528:DC%2BB3cXhtlCqur%2FN10.1038/s41586-020-2442-232641813
Jablonka, K. M., Schwaller, P., Ortega-Guerrero, A. & Smit, B. Leveraging large language models for predictive chemistry. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/652e50b98bab5d2055852dde (2023).
Chase, H. LangChain. GitHubhttps://github.com/langchain-ai/langchain (2023).
Yao, S. et al. ReAct: synergizing reasoning and acting in language models. In Proc.11th International Conference on Learning Representations (ICLR, 2022).
BabyAGI. GitHubhttps://github.com/yoheinakajima/babyagi (2023).
Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural Information Processing Systems 24824–24837 (NeurIPS, 2022).
Bran, A. M., Cox, S., White, A. D. & Schwaller, P. ChemCrow: augmenting large-language models with chemistry tools. Preprint at https://arxiv.org/abs/2304.05376 (2023).
Long, J. Large language model guided tree-of-thought. Preprint at https://arxiv.org/abs/2305.08291 (2023).
Open LLM Leaderboard. Hugging Facehttps://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard (2023).
Ouyang, L. et al. Training language models to follow instructions with human feedback. In Advances in Neural Information Processing Systems 27730–27744 (NeurIPS, 2022).
AhnemanDTEstradaJGLinSDreherSDDoyleAGPredicting reaction performance in C–N cross-coupling using machine learningScience20183601861902018Sci...360..186A1:CAS:528:DC%2BC1cXnt1Ghtbo%3D10.1126/science.aar516929449509
Brown, T. et al. in Advances in Neural Information Processing Systems Vol. 33 (eds Larochelle, H. et al.) 1877–1901 (Curran Associates, 2020).
SciFinderhttps://scifinder.cas.org (2023).
Paper QA. GitHubhttps://github.com/whitead/paper-qa (2023).
RobertsonSZaragozaHThe probabilistic relevance framework: BM25 and beyondFound. Trends Inf. Retrieval2009333338910.1561/1500000019
Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. Preprint at https://arxiv.org/abs/2303.12712 (2023).
AngelloNHClosed-loop optimization of general reaction conditions for heteroaryl Suzuki–Miyaura couplingScience20223783994052022Sci...378..399A45188711:CAS:528:DC%2BB38Xisl2ntrnM10.1126/science.adc874336302014
AdamoAOn-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable systemScience201635261672016Sci...352...61A1:CAS:528:DC%2BC28XlsFSlsrY%3D10.1126/science.aaf133727034366
Opentrons Python Protocol API. Opentronshttps://docs.opentrons.com/v2/ (2023).
LuoRBioGPT: generative pre-trained transformer for biomedical text generation and miningBrief Bioinform.202223bbac40910.1093/bib/bbac40936156661
Liu, P. et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv.55, 195 (2021).
Xu, F. F., Alon, U., Neubig, G. & Hellendoorn, V. J. A systematic evaluation of large language models of code. In Proc. 6th ACM SIGPLAN International Symposium on Machine Programming 1–10 (ACM, 2022).
CaramelliDDiscovering new chemistry with an autonomous robotic platform driven by a reactivity-seeking neural networkACS Cent. Sci.20217182118301:CAS:528:DC%2BB3MXisVGisLfK10.1021/acscentsci.1c00435348494018620554
LinZEvolutionary-scale prediction of atomic-level protein structure with a language modelScience2023379112311302023Sci...379.1123L45676811:CAS:528:DC%2BB3sXls1ertrk%3D10.1126/science.ade257436927031
Hoffmann, J. et al. Training compute-optimal large language models. In Advances in Neural Information Processing Systems 30016–30030 (NeurIPS, 2022).
Running experiments. Emerald Cloud Labhttps://www.emeraldcloudlab.com/guides/runningexperiments (2023).
OpenAI. GPT-4 Technical Report (OpenAI, 2023).
Tu, Z. et al. Approximate nearest neighbor search and lightweight dense vector reranking in multi-stage retrieval architectures. In Proc. 2020 ACM SIGIR on International Conference on Theory of Information Retrieval 97–100 (ACM, 2020).
Hickman, R. et al. Atlas: a brain for self-driving laboratories. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/64f6560579853bbd781bcef6 (2023).
Touvron, H. et al. LLaMA: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023).
Bai, Y. et al. Constitutional AI: harmlessness from AI feedback. Preprint at https://arxiv.org/abs/2212.08073 (2022).
Reaxyshttps://www.reaxys.com (2023).
JohnsonJDouzeMJegouHBillion-scale similarity search with GPUsIEEE Trans. Big Data2021753554710.1109/TBDATA.2019.2921572
GrandaJMDoninaLDragoneVLongD-LCroninLControlling an organic synthesis robot with machine learning to search for new reactivityNature20185593773812018Natur.559..377G1:CAS:528:DC%2BC1cXhtlClsb%2FJ10.1038/s41586-018-0307-8300221336223543
JiZSurvey of hallucination in natural language generationACM Comput. Surv.20235524810.1145/3571730
Thoppilan, R. et al. LaMDA: language models for dialog applications. Preprint at https://arxiv.org/abs/2201.08239 (2022).
PereraDA platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flowScience20183594294342018Sci...359..429P1:CAS:528:DC%2BC1cXhsVGhsrc%3D10.1126/science.aap911229371464
Nijkamp, E. et al. CodeGen: an open large language model for code with multi-turn program synthesis. In Proc. 11th International Conference on Learning Representations (ICLR, 2022).
Ziegler, D. M. et al. Fine-tuning language models from human preferences. Preprint at https://arxiv.org/abs/1909.08593 (2019).
ColeyCWA robotic platform for flow synthesis of organic compounds informed by AI planningScience2019365eaax15661:CAS:528:DC%2BC1MXhsFCisb3O10.1126/science.aax156631395756
Lin, J. et al. Pyserini: a python toolkit for reproducible information retrieval research with sparse and dense representations. In Proc. 44th International ACM SIGIR Conference on Research and Development in Information Retrieval 2356–2362 (ACM, 2021).
Chowdhery, A. et al. PaLM: scaling language modeling with pathways. J. Mach. Learn. Res.24, 1–113 (2022).
IrwinRDimitriadisSHeJBjerrumEJChemformer: a pre-trained transformer for computational chemistryMach. Learn. Sci. Technol.202230150222022MLS&T...3a5022I10.1088/2632-2153/ac3ffb
Falcon LLM. TIIhttps://falconllm.tii.ae (2023).
VechtomovaOWangYA study of the effect of term proximity on query expansionJ. Inf. Sci.20063232433310.1177/0165551506065787
Kaplan, J. et al. Scaling laws for neural language models. Preprint at https://arxiv.org/abs/2001.08361 (2020).
Auto-GPT: the heart of the open-source agent ecosystem. GitHubhttps://github.com/Significant-Gravitas/AutoGPT (2023).
Sanchez-GarciaRCoPriNet: graph neural networks provide accurate and rapid compound price prediction for molecule prioritisationDigital Discov.2023210311110.1039/D2DD00071G
6792_CR49
6792_CR48
6792_CR46
B Burger (6792_CR22) 2020; 583
6792_CR43
6792_CR41
6792_CR40
CW Coley (6792_CR21) 2019; 365
S Robertson (6792_CR42) 2009; 3
NH Angello (6792_CR19) 2022; 378
6792_CR39
6792_CR5
6792_CR38
6792_CR4
6792_CR37
6792_CR36
6792_CR35
Z Ji (6792_CR31) 2023; 55
6792_CR34
D Caramelli (6792_CR18) 2021; 7
6792_CR33
6792_CR32
6792_CR30
R Luo (6792_CR7) 2022; 23
D Perera (6792_CR50) 2018; 359
A Adamo (6792_CR20) 2016; 352
6792_CR29
6792_CR28
6792_CR27
H Kim (6792_CR9) 2021; 61
6792_CR26
6792_CR25
6792_CR24
DT Ahneman (6792_CR51) 2018; 360
6792_CR23
O Vechtomova (6792_CR45) 2006; 32
J Johnson (6792_CR44) 2021; 7
Z Lin (6792_CR6) 2023; 379
6792_CR3
6792_CR2
R Irwin (6792_CR8) 2022; 3
6792_CR1
JM Granda (6792_CR17) 2018; 559
6792_CR16
6792_CR15
6792_CR14
6792_CR13
6792_CR12
6792_CR11
6792_CR10
6792_CR52
R Sanchez-Garcia (6792_CR47) 2023; 2
References_xml – reference: Falcon LLM. TIIhttps://falconllm.tii.ae (2023).
– reference: Tu, Z. et al. Approximate nearest neighbor search and lightweight dense vector reranking in multi-stage retrieval architectures. In Proc. 2020 ACM SIGIR on International Conference on Theory of Information Retrieval 97–100 (ACM, 2020).
– reference: Reaxyshttps://www.reaxys.com (2023).
– reference: VechtomovaOWangYA study of the effect of term proximity on query expansionJ. Inf. Sci.20063232433310.1177/0165551506065787
– reference: Lin, J. et al. Pyserini: a python toolkit for reproducible information retrieval research with sparse and dense representations. In Proc. 44th International ACM SIGIR Conference on Research and Development in Information Retrieval 2356–2362 (ACM, 2021).
– reference: Xu, F. F., Alon, U., Neubig, G. & Hellendoorn, V. J. A systematic evaluation of large language models of code. In Proc. 6th ACM SIGPLAN International Symposium on Machine Programming 1–10 (ACM, 2022).
– reference: Thoppilan, R. et al. LaMDA: language models for dialog applications. Preprint at https://arxiv.org/abs/2201.08239 (2022).
– reference: Opentrons Python Protocol API. Opentronshttps://docs.opentrons.com/v2/ (2023).
– reference: Brown, T. et al. in Advances in Neural Information Processing Systems Vol. 33 (eds Larochelle, H. et al.) 1877–1901 (Curran Associates, 2020).
– reference: Nijkamp, E. et al. CodeGen: an open large language model for code with multi-turn program synthesis. In Proc. 11th International Conference on Learning Representations (ICLR, 2022).
– reference: LuoRBioGPT: generative pre-trained transformer for biomedical text generation and miningBrief Bioinform.202223bbac40910.1093/bib/bbac40936156661
– reference: BabyAGI. GitHubhttps://github.com/yoheinakajima/babyagi (2023).
– reference: Hoffmann, J. et al. Training compute-optimal large language models. In Advances in Neural Information Processing Systems 30016–30030 (NeurIPS, 2022).
– reference: Jablonka, K. M., Schwaller, P., Ortega-Guerrero, A. & Smit, B. Leveraging large language models for predictive chemistry. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/652e50b98bab5d2055852dde (2023).
– reference: JiZSurvey of hallucination in natural language generationACM Comput. Surv.20235524810.1145/3571730
– reference: RobertsonSZaragozaHThe probabilistic relevance framework: BM25 and beyondFound. Trends Inf. Retrieval2009333338910.1561/1500000019
– reference: SciFinderhttps://scifinder.cas.org (2023).
– reference: KimHNaJLeeWBGenerative chemical transformer: neural machine learning of molecular geometric structures from chemical language via attentionJ. Chem. Inf. Model.202161580458141:CAS:528:DC%2BB3MXis1aqtLnO10.1021/acs.jcim.1c0128934855384
– reference: BurgerBA mobile robotic chemistNature20205832372412020Natur.583..237B1:CAS:528:DC%2BB3cXhtlCqur%2FN10.1038/s41586-020-2442-232641813
– reference: Open LLM Leaderboard. Hugging Facehttps://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard (2023).
– reference: AdamoAOn-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable systemScience201635261672016Sci...352...61A1:CAS:528:DC%2BC28XlsFSlsrY%3D10.1126/science.aaf133727034366
– reference: Liu, P. et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv.55, 195 (2021).
– reference: Sanchez-GarciaRCoPriNet: graph neural networks provide accurate and rapid compound price prediction for molecule prioritisationDigital Discov.2023210311110.1039/D2DD00071G
– reference: OpenAI. GPT-4 Technical Report (OpenAI, 2023).
– reference: Qadrud-Din, J. et al. Transformer based language models for similar text retrieval and ranking. Preprint at https://arxiv.org/abs/2005.04588 (2020).
– reference: AngelloNHClosed-loop optimization of general reaction conditions for heteroaryl Suzuki–Miyaura couplingScience20223783994052022Sci...378..399A45188711:CAS:528:DC%2BB38Xisl2ntrnM10.1126/science.adc874336302014
– reference: Chase, H. LangChain. GitHubhttps://github.com/langchain-ai/langchain (2023).
– reference: Bai, Y. et al. Constitutional AI: harmlessness from AI feedback. Preprint at https://arxiv.org/abs/2212.08073 (2022).
– reference: Kaplan, J. et al. Scaling laws for neural language models. Preprint at https://arxiv.org/abs/2001.08361 (2020).
– reference: GrandaJMDoninaLDragoneVLongD-LCroninLControlling an organic synthesis robot with machine learning to search for new reactivityNature20185593773812018Natur.559..377G1:CAS:528:DC%2BC1cXhtlClsb%2FJ10.1038/s41586-018-0307-8300221336223543
– reference: Yao, S. et al. ReAct: synergizing reasoning and acting in language models. In Proc.11th International Conference on Learning Representations (ICLR, 2022).
– reference: IrwinRDimitriadisSHeJBjerrumEJChemformer: a pre-trained transformer for computational chemistryMach. Learn. Sci. Technol.202230150222022MLS&T...3a5022I10.1088/2632-2153/ac3ffb
– reference: Data Mining. Mining of Massive Datasets (Cambridge Univ., 2011).
– reference: Ouyang, L. et al. Training language models to follow instructions with human feedback. In Advances in Neural Information Processing Systems 27730–27744 (NeurIPS, 2022).
– reference: PereraDA platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flowScience20183594294342018Sci...359..429P1:CAS:528:DC%2BC1cXhsVGhsrc%3D10.1126/science.aap911229371464
– reference: Auto-GPT: the heart of the open-source agent ecosystem. GitHubhttps://github.com/Significant-Gravitas/AutoGPT (2023).
– reference: Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural Information Processing Systems 24824–24837 (NeurIPS, 2022).
– reference: Ziegler, D. M. et al. Fine-tuning language models from human preferences. Preprint at https://arxiv.org/abs/1909.08593 (2019).
– reference: Bran, A. M., Cox, S., White, A. D. & Schwaller, P. ChemCrow: augmenting large-language models with chemistry tools. Preprint at https://arxiv.org/abs/2304.05376 (2023).
– reference: AhnemanDTEstradaJGLinSDreherSDDoyleAGPredicting reaction performance in C–N cross-coupling using machine learningScience20183601861902018Sci...360..186A1:CAS:528:DC%2BC1cXnt1Ghtbo%3D10.1126/science.aar516929449509
– reference: Touvron, H. et al. LLaMA: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023).
– reference: ColeyCWA robotic platform for flow synthesis of organic compounds informed by AI planningScience2019365eaax15661:CAS:528:DC%2BC1MXhsFCisb3O10.1126/science.aax156631395756
– reference: LinZEvolutionary-scale prediction of atomic-level protein structure with a language modelScience2023379112311302023Sci...379.1123L45676811:CAS:528:DC%2BB3sXls1ertrk%3D10.1126/science.ade257436927031
– reference: Long, J. Large language model guided tree-of-thought. Preprint at https://arxiv.org/abs/2305.08291 (2023).
– reference: Paper QA. GitHubhttps://github.com/whitead/paper-qa (2023).
– reference: Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. Preprint at https://arxiv.org/abs/2303.12712 (2023).
– reference: Hickman, R. et al. Atlas: a brain for self-driving laboratories. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/64f6560579853bbd781bcef6 (2023).
– reference: JohnsonJDouzeMJegouHBillion-scale similarity search with GPUsIEEE Trans. Big Data2021753554710.1109/TBDATA.2019.2921572
– reference: Running experiments. Emerald Cloud Labhttps://www.emeraldcloudlab.com/guides/runningexperiments (2023).
– reference: Ramos, M. C., Michtavy, S. S., Porosoff, M. D. & White, A. D. Bayesian optimization of catalysts with in-context learning. Preprint at https://arxiv.org/abs/2304.05341 (2023).
– reference: CaramelliDDiscovering new chemistry with an autonomous robotic platform driven by a reactivity-seeking neural networkACS Cent. Sci.20217182118301:CAS:528:DC%2BB3MXisVGisLfK10.1021/acscentsci.1c00435348494018620554
– reference: Chowdhery, A. et al. PaLM: scaling language modeling with pathways. J. Mach. Learn. Res.24, 1–113 (2022).
– ident: 6792_CR36
– volume: 3
  start-page: 333
  year: 2009
  ident: 6792_CR42
  publication-title: Found. Trends Inf. Retrieval
  doi: 10.1561/1500000019
– ident: 6792_CR2
– volume: 365
  start-page: eaax1566
  year: 2019
  ident: 6792_CR21
  publication-title: Science
  doi: 10.1126/science.aax1566
– volume: 583
  start-page: 237
  year: 2020
  ident: 6792_CR22
  publication-title: Nature
  doi: 10.1038/s41586-020-2442-2
– ident: 6792_CR26
– ident: 6792_CR23
– volume: 7
  start-page: 1821
  year: 2021
  ident: 6792_CR18
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.1c00435
– ident: 6792_CR49
– ident: 6792_CR33
– volume: 2
  start-page: 103
  year: 2023
  ident: 6792_CR47
  publication-title: Digital Discov.
  doi: 10.1039/D2DD00071G
– ident: 6792_CR27
  doi: 10.1145/3560815
– ident: 6792_CR16
– volume: 55
  start-page: 248
  year: 2023
  ident: 6792_CR31
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3571730
– ident: 6792_CR37
– ident: 6792_CR3
– ident: 6792_CR41
– ident: 6792_CR48
– volume: 7
  start-page: 535
  year: 2021
  ident: 6792_CR44
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2019.2921572
– volume: 3
  start-page: 015022
  year: 2022
  ident: 6792_CR8
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/ac3ffb
– volume: 23
  start-page: bbac409
  year: 2022
  ident: 6792_CR7
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/bbac409
– ident: 6792_CR11
  doi: 10.1145/3520312.3534862
– volume: 378
  start-page: 399
  year: 2022
  ident: 6792_CR19
  publication-title: Science
  doi: 10.1126/science.adc8743
– ident: 6792_CR10
  doi: 10.26434/chemrxiv-2023-fw8n4-v3
– volume: 352
  start-page: 61
  year: 2016
  ident: 6792_CR20
  publication-title: Science
  doi: 10.1126/science.aaf1337
– ident: 6792_CR34
– ident: 6792_CR13
– ident: 6792_CR30
– volume: 61
  start-page: 5804
  year: 2021
  ident: 6792_CR9
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c01289
– volume: 359
  start-page: 429
  year: 2018
  ident: 6792_CR50
  publication-title: Science
  doi: 10.1126/science.aap9112
– ident: 6792_CR4
– ident: 6792_CR28
– ident: 6792_CR38
  doi: 10.1145/3409256.3409818
– ident: 6792_CR40
– ident: 6792_CR24
– ident: 6792_CR39
  doi: 10.1145/3404835.3463238
– ident: 6792_CR52
  doi: 10.26434/chemrxiv-2023-8nrxx
– ident: 6792_CR14
– ident: 6792_CR12
– ident: 6792_CR35
– volume: 32
  start-page: 324
  year: 2006
  ident: 6792_CR45
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551506065787
– volume: 360
  start-page: 186
  year: 2018
  ident: 6792_CR51
  publication-title: Science
  doi: 10.1126/science.aar5169
– ident: 6792_CR43
– ident: 6792_CR5
– ident: 6792_CR29
– volume: 559
  start-page: 377
  year: 2018
  ident: 6792_CR17
  publication-title: Nature
  doi: 10.1038/s41586-018-0307-8
– ident: 6792_CR25
– ident: 6792_CR46
– ident: 6792_CR1
– volume: 379
  start-page: 1123
  year: 2023
  ident: 6792_CR6
  publication-title: Science
  doi: 10.1126/science.ade2574
– ident: 6792_CR15
– ident: 6792_CR32
SSID ssj0005174
Score 2.751477
Snippet Transformer-based large language models are making significant strides in various fields, such as natural language processing 1 – 5 , biology 6 , 7 , chemistry...
Transformer-based large language models are making significant strides in various fields, such as natural language processing 1–5 , biology 6,7 , chemistry...
Transformer-based large language models are making significant strides in various fields, such as natural language processing , biology , chemistry and...
Transformer-based large language models are making significant strides in various fields, such as natural language processing1-5, biology6,7, chemistry8-10 and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 570
SubjectTerms 639/638
639/705/117
Artificial intelligence
Automation
Chemical research
Chemistry
Couplings
Design
Design of experiments
Documentation
Experimental design
Experiments
Humanities and Social Sciences
Information retrieval
Internet
Laboratories
Language
Large language models
multidisciplinary
Natural language (computers)
Nonsteroidal anti-inflammatory drugs
Optimization
Palladium
Planning
Science
Science (multidisciplinary)
Software
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwGP3wguiLuHmrNyL4oGhZ06RN-iQyHEPQJ4W9lTZNUBj10vn_zZelG5voc1LafLmd5js5B-DCWBBu7L4QWmwtQm60DFFkPaxQ6kPLQmbu1vvjUzp84Q-jZOQP3BpPq2zXRLdQV-8Kz8h7KEvOkySO5O3HZ4iuUZhd9RYaq7CO0mVI6RIjMad4LKkw-0szEZO9xm5cEum36G0gkIG5uDH9Qpu_SZNLmVO3IQ12YNsjSXI37foOrOi6C5v91sCtCxuO3amaLnT8DG7IpZeZvtoFcfc9wRsN9tefKC8bQLz2zyvB81kyRpo4aY80iXPNafbgZXD_3B-G3kYhVFwkk7CgFlNgQiWjcZToWEe8TBMdGZNlVSWYSnXERGnikrJCq6IqC1NkwuhEWeylU7YPa_V7rQ-BlCmrTGmoibni9scH0SY3qZ3HmvLKsABoG8NceY1xtLoY5y7XzWQ-jXtu4567uOdRANezZz6mChv_1j5puyb3s63J52MjgPNZsY02Jj-KWttAYh2eCC4ZDeBg2pOz11nUYpFLlAYgF_p4VgE1uBdL6rdXp8VNnekls4_etMNh_l1_N-Po_2Ycwxba2iNtJqYnsDb5-tanFvxMyjM3wn8AiQX9cQ
  priority: 102
  providerName: ProQuest
Title Autonomous chemical research with large language models
URI https://link.springer.com/article/10.1038/s41586-023-06792-0
https://www.ncbi.nlm.nih.gov/pubmed/38123806
https://www.proquest.com/docview/2906455208
https://www.proquest.com/docview/2904574831
https://pubmed.ncbi.nlm.nih.gov/PMC10733136
Volume 624
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD7oDAv7IuperJchC_vgslu2adImfdRhRhFWRBTmrfSSoDBUsTP_33My6Qyjq-BLXnJpe5I0X5LvfAfgp0UQbnFdCBFbq1Bao0MSWQ9rkvowutCZ83r_d5me38qLSTLZgLjzhXGkfSdp6X7THTvsb4sLjSa6LMUiUMSY3IQ-tUqjepgOV7SOF8rL3lEmEvo_bawvRq8Q5mui5IvbUrcIjbdhy6NHdrJ43x3YMM0ufHIszqrdhR0_U1t27OWkf30BdTKfkecCbvFZ5eUBmNf4uWN0DsumRAdn3dElc9Fx2q9wOx7dDM9DHy4hrKRKZmHBETvQxUnG4ygxsYlkmSYmsjbL6lqJKjWRUKWNSy4KUxV1WdgiU9YkFWIsk4pv0GseGrMHrExFbUvLbSwriRscQpXSpjhfDZe1FQHwzm555bXEKaTFNHd32kLnC1vnaOvc2TqPAvi9rPO4UNJ4t_Rh1x25n1VtTtL0MkniSAfwY5mN84EuOYrGoCGpjEyU1IIH8H3Re8vHITpBhBKlAei1fl0WIK3t9Zzm_s5pbnMX3FJg1T_dEFi919ufsf-x4gfwmcLZE10m5ofQmz3NzRGCnlk5gE01UZjqIad0fDaA_uno8up64Mb_MzEu-50
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuiC6vQAEjgQSiVuNH4uSAUFWotvRxaqW9mTxsFanKFrIrxJ_iNzLjJLvaVvTWc-wknhl7PnvG3wC89QjCPfoFjtjacO1dxolknddE9eGyIsvDrffjk3R8pr9Nkska_B3uwlBa5bAmhoW6nlZ0Rr5DtOQ6SWScfb78yalqFEVXhxIanVkcuj-_ccvWfjr4gvp9J-X-19O9Me-rCvBKm2TGC4EuluILuZBx4qSLdZkmLvY-z-vaqCp1sTKll6VQhauKuix8kRvvkgqhiEsVvvcO3EXHG9OMMhOzTCm5wvrcX9KJVbbToqPMKN2XaikYyvhcdYTX0O31JM0rkdrgAPcfwoMeubLdztQ2Yc01I9jYGwrGjeBeyCat2hFs9itGy973tNYfHoHZnc_oBsV03rKqpylgPdfQOaPzYHZBaelsOEJloUpP-xjObkXAT2C9mTbuGbAyVbUvvfBSVxo3WoRutU9x3XBC115FIAYZ2qrnNKfSGhc2xNZVZju5W5S7DXK3cQQfF30uO0aPG1tvDaqx_exu7dIWI3izeIzSpmBL0TgUJLXRidGZEhE87TS5-ByiJERKcRpBtqLjRQPi_F590vw4D9zfIhTZVNh1ezCH5X_9fxjPbx7Ga9gYnx4f2aODk8MXcF-SmQrJpdiC9dmvuXuJwGtWvgrWzuD7bU-vf2MMOys
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XRJdXoICRQAJBtPEjcXJAqGpZtRQqDlTam8nDVpGqbCG7Qvw1fh0zjrOrbUVvPcdO4pmx57Nn_A3AS4cg3KFfiBFb61g5m8dEsh43RPVh8zIv_K33L0fZ_rH6NE2nG_B3uAtDaZXDmugX6mZW0xn5mGjJVZqKJB-7kBbxdW_y4exnTBWkKNI6lNPoTeTQ_vmN27fu_cEe6vqVEJOP33b341BhIK6VTudxydHdUqyh4CJJrbCJqrLUJs4VRdNoWWc2kbpyouKytHXZVKUrC-1sWiMssZnE916D61qmnOaYnupVesk5BuhwYSeR-bhDp5lT6i_VVdCU_bnuFC8g3YsJm-eitt4ZTu7CnYBi2U5vdluwYdsR3NodiseN4IbPLK27EWyF1aNjrwPF9Zt7oHcWc7pNMVt0rA6UBSzwDp0wOhtmp5SizobjVOYr9nT34fhKBPwANttZax8BqzLZuMpxJ1StcNNFSFe5DNcQy1XjZAR8kKGpA785ldk4NT7OLnPTy92g3I2Xu0kieLvsc9aze1zaentQjQkzvTMru4zgxfIxSpsCL2VrUZDURqVa5ZJH8LDX5PJziJgQNSVZBPmajpcNiP97_Un748TzgHNfcFNi13eDOaz-6__DeHz5MJ7DTZxY5vPB0eETuC3ISrmIBd-GzfmvhX2KGGxePfPGzuD7Vc-ufzYUP2E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+chemical+research+with+large+language+models&rft.jtitle=Nature+%28London%29&rft.au=Boiko%2C+Daniil+A.&rft.au=MacKnight%2C+Robert&rft.au=Kline%2C+Ben&rft.au=Gomes%2C+Gabe&rft.date=2023-12-21&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=624&rft.issue=7992&rft.spage=570&rft.epage=578&rft_id=info:doi/10.1038%2Fs41586-023-06792-0&rft.externalDocID=10_1038_s41586_023_06792_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon