Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1
In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3′-to-5′ exonucleolytic decay. We demonstrate that enzymes involved in all three of...
Saved in:
Published in | Genes & development Vol. 19; no. 3; pp. 351 - 361 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.02.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3′-to-5′ exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5′-to-3′ exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ
trans
-acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay. |
---|---|
AbstractList | In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3'-to-5' exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5'-to-3' exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ trans-acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay.In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3'-to-5' exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5'-to-3' exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ trans-acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay. In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3'-to-5' exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5'-to-3' exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ trans-acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay. In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3′-to-5′ exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5′-to-3′ exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ trans -acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay. |
Author | Lykke-Andersen, Jens Wagner, Eileen |
AuthorAffiliation | Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA |
AuthorAffiliation_xml | – name: Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA |
Author_xml | – sequence: 1 givenname: Jens surname: Lykke-Andersen fullname: Lykke-Andersen, Jens – sequence: 2 givenname: Eileen surname: Wagner fullname: Wagner, Eileen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15687258$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS3Uim4LJ-7IJy4o7ThxYvvAYalaQKoKWi1ny3EmrVFiL7G31ZY_j7ddqoIqcbJG_t7Mm3mHZM8Hj4S8YXDMGLCTK9Mds1KWFdQvyIzVXBU1F2KPzEAqKFTVqANyGOMPAGigaV6SA1Y3UpS1nJFfC7TT2qURfaLGd9TY5G5McsHT0NNxcTmnHVqzoejvNiNG2m5oug10vjgrRuycSdjtiCfSLozG-Uidp-ka6WoKCbf1cvntfsrHxXnBXpH93gwRX-_eI_L9_Gx5-rm4-Prpy-n8orBc1KlQEjtrlOK9UKVtoAUrW1kaqBAk9AaZqNuOtduCt4b3rCwtADIuoAfGqiPy4aHvat1myzavOplBryY3mmmjg3H67x_vrvVVuNE1b2pWZf27nX4KP9cYkx5dtDgMxmNYR92ISkku-H9BJiRUmcvg26eOHq38ySUD7AGwU4hxwl5bl-5Pmw26QTPQ2-x1zl7vss-a9_9oHts-Q_8G-dSwcw |
CitedBy_id | crossref_primary_10_1093_plphys_kiad030 crossref_primary_10_1042_BJ20060328 crossref_primary_10_1051_medsci_20072310850 crossref_primary_10_1101_gad_17355911 crossref_primary_10_1101_gad_1538807 crossref_primary_10_1104_pp_109_145656 crossref_primary_10_3389_fimmu_2023_1118483 crossref_primary_10_1016_j_bbrc_2018_04_212 crossref_primary_10_1038_s41467_022_33552_x crossref_primary_10_1074_jbc_M109_031237 crossref_primary_10_1038_ni1274 crossref_primary_10_1111_jcmm_15116 crossref_primary_10_1371_journal_pgen_1004684 crossref_primary_10_1038_sj_onc_1209909 crossref_primary_10_1371_journal_pone_0041313 crossref_primary_10_1007_s11033_012_2302_8 crossref_primary_10_1128_JVI_03631_14 crossref_primary_10_1074_jbc_M702998200 crossref_primary_10_1261_rna_2439811 crossref_primary_10_1016_j_ydbio_2020_03_017 crossref_primary_10_3390_cells10071711 crossref_primary_10_1091_mbc_E16_06_0379 crossref_primary_10_1080_25785826_2019_1655192 crossref_primary_10_1155_2009_634520 crossref_primary_10_3748_wjg_v26_i35_5223 crossref_primary_10_1074_jbc_M114_589556 crossref_primary_10_1136_jmedgenet_2021_107933 crossref_primary_10_1515_BC_2008_022 crossref_primary_10_26508_lsa_202302222 crossref_primary_10_1074_jbc_M707861200 crossref_primary_10_1016_j_jmb_2010_04_034 crossref_primary_10_1091_mbc_e10_11_0898 crossref_primary_10_1111_j_1365_313X_2010_04419_x crossref_primary_10_1042_BCJ20210139 crossref_primary_10_1093_nar_gkab983 crossref_primary_10_7554_eLife_29630 crossref_primary_10_7554_eLife_83159 crossref_primary_10_1016_j_biocel_2013_12_008 crossref_primary_10_1038_s41388_019_0784_8 crossref_primary_10_2147_JIR_S468612 crossref_primary_10_1093_cvr_cvad014 crossref_primary_10_1002_jcb_21130 crossref_primary_10_1038_emboj_2008_43 crossref_primary_10_1089_jir_2017_0001 crossref_primary_10_1016_j_yjmcc_2019_03_012 crossref_primary_10_1016_j_bcp_2010_06_021 crossref_primary_10_1038_sj_embor_7400572 crossref_primary_10_1371_journal_pone_0100992 crossref_primary_10_4049_jimmunol_1402826 crossref_primary_10_1038_s41422_022_00752_5 crossref_primary_10_1038_sj_leu_2404656 crossref_primary_10_1111_j_1742_4658_2007_05632_x crossref_primary_10_3389_fgene_2014_00143 crossref_primary_10_1021_acsomega_1c03681 crossref_primary_10_1016_j_gde_2017_11_004 crossref_primary_10_1089_jir_2010_0154 crossref_primary_10_1111_imr_12051 crossref_primary_10_1080_15592324_2022_2142725 crossref_primary_10_1189_jlb_1206754 crossref_primary_10_1128_mcb_00055_22 crossref_primary_10_1038_nrg3160 crossref_primary_10_1016_j_molcel_2014_03_017 crossref_primary_10_1016_j_celrep_2015_04_065 crossref_primary_10_1016_j_pharmthera_2019_07_001 crossref_primary_10_1093_nar_gkz1187 crossref_primary_10_1074_jbc_M111_330837 crossref_primary_10_1042_BST0381632 crossref_primary_10_1074_jbc_M609413200 crossref_primary_10_1101_cshperspect_a032813 crossref_primary_10_1073_pnas_1101676108 crossref_primary_10_1152_ajprenal_00229_2022 crossref_primary_10_1016_j_molcel_2006_10_029 crossref_primary_10_1038_s41419_023_06413_8 crossref_primary_10_1074_jbc_M109_094235 crossref_primary_10_1080_15476286_2021_1917185 crossref_primary_10_1038_nature11993 crossref_primary_10_1111_j_1462_5822_2009_01418_x crossref_primary_10_4110_in_2009_9_4_115 crossref_primary_10_1016_j_ymeth_2019_01_003 crossref_primary_10_1016_j_canlet_2023_216318 crossref_primary_10_1038_s41598_018_21160_z crossref_primary_10_3389_fcell_2022_847761 crossref_primary_10_1016_j_molcel_2006_04_010 crossref_primary_10_1371_journal_pgen_1008580 crossref_primary_10_1016_j_molcel_2025_01_001 crossref_primary_10_1016_j_celrep_2016_10_066 crossref_primary_10_1016_j_semcdb_2020_09_007 crossref_primary_10_1093_nar_gkt222 crossref_primary_10_1016_j_celrep_2019_03_006 crossref_primary_10_1261_rna_59606 crossref_primary_10_1371_journal_pone_0092457 crossref_primary_10_1002_wrna_1751 crossref_primary_10_1016_j_gde_2011_03_003 crossref_primary_10_1074_jbc_M110_202275 crossref_primary_10_1016_j_bbagrm_2012_12_006 crossref_primary_10_1074_jbc_M611253200 crossref_primary_10_1016_j_molcel_2006_10_013 crossref_primary_10_1016_j_gde_2011_03_002 crossref_primary_10_1080_15476286_2020_1862567 crossref_primary_10_1371_journal_pbio_1000360 crossref_primary_10_15252_embr_202256512 crossref_primary_10_1016_j_molcel_2023_11_025 crossref_primary_10_1038_nsmb1100 crossref_primary_10_1007_s10059_013_0268_6 crossref_primary_10_1016_j_cmet_2008_04_010 crossref_primary_10_1042_BST20160166 crossref_primary_10_1074_jbc_M702281200 crossref_primary_10_3389_fpls_2014_00201 crossref_primary_10_1186_1471_2199_8_28 crossref_primary_10_1016_j_it_2020_01_001 crossref_primary_10_1083_jcb_200504039 crossref_primary_10_1038_nsmb_2572 crossref_primary_10_3390_cells5010004 crossref_primary_10_1007_s12032_017_1055_6 crossref_primary_10_3390_biomedicines9060606 crossref_primary_10_1016_j_cell_2018_10_007 crossref_primary_10_1002_wrna_1125 crossref_primary_10_1007_s10555_011_9300_5 crossref_primary_10_1016_j_it_2021_03_008 crossref_primary_10_1128_MCB_00845_15 crossref_primary_10_1128_MCB_01517_14 crossref_primary_10_1523_JNEUROSCI_0104_08_2008 crossref_primary_10_1016_j_mce_2007_04_013 crossref_primary_10_1016_j_virol_2012_11_017 crossref_primary_10_1038_nrm2080 crossref_primary_10_1038_nsmb1033 crossref_primary_10_1093_jmcb_mjaa061 crossref_primary_10_4049_jimmunol_1102837 crossref_primary_10_1093_nar_gkaa458 crossref_primary_10_1038_s41467_024_54411_x crossref_primary_10_1038_s41598_022_24132_6 crossref_primary_10_1186_1754_1611_8_7 crossref_primary_10_1128_MCB_06328_11 crossref_primary_10_1093_jb_mvz067 crossref_primary_10_18632_oncotarget_7432 crossref_primary_10_3390_biology10010066 crossref_primary_10_1091_mbc_E17_02_0105 crossref_primary_10_1007_s00018_012_1150_y crossref_primary_10_1016_j_cell_2010_11_043 crossref_primary_10_1242_dev_168146 crossref_primary_10_1042_BST0380242 crossref_primary_10_1002_wrna_1254 crossref_primary_10_1371_journal_pone_0033194 crossref_primary_10_1002_cti2_1063 crossref_primary_10_1002_wrna_1379 crossref_primary_10_1016_j_cmet_2005_06_008 crossref_primary_10_1128_MCB_00303_10 crossref_primary_10_1083_jcb_200712054 crossref_primary_10_1111_tpj_14792 crossref_primary_10_1080_21541248_2015_1093068 crossref_primary_10_1016_j_ceca_2018_08_006 crossref_primary_10_1021_acschembio_5b00639 crossref_primary_10_1016_j_febslet_2013_03_031 crossref_primary_10_1016_j_jbc_2022_102270 crossref_primary_10_1016_j_bbrc_2006_05_093 crossref_primary_10_1261_rna_063719_117 crossref_primary_10_1128_MCB_01493_07 crossref_primary_10_1016_j_tice_2025_102785 crossref_primary_10_1016_j_celrep_2024_114069 crossref_primary_10_1091_mbc_e10_01_0040 crossref_primary_10_1101_sqb_2006_71_049 crossref_primary_10_1016_j_molcel_2005_10_021 crossref_primary_10_1111_cas_15272 crossref_primary_10_1083_jcb_200502088 crossref_primary_10_1016_j_fsi_2023_108948 crossref_primary_10_1146_annurev_biochem_081720_114505 crossref_primary_10_3389_fcell_2023_1153624 crossref_primary_10_1074_jbc_M607347200 crossref_primary_10_1093_nar_gkae919 crossref_primary_10_1093_nar_gkq797 crossref_primary_10_1002_wrna_1837 crossref_primary_10_3109_10409238_2013_771132 crossref_primary_10_3389_fmolb_2021_701975 crossref_primary_10_1016_j_celrep_2025_115340 crossref_primary_10_3390_ijms21186648 crossref_primary_10_1016_j_bbrc_2007_10_119 crossref_primary_10_1091_mbc_E18_09_0606 crossref_primary_10_1038_ncb1783 crossref_primary_10_1016_j_molcel_2005_10_031 crossref_primary_10_1073_pnas_1816023116 crossref_primary_10_3389_fonc_2024_1344852 crossref_primary_10_1371_journal_pone_0073752 crossref_primary_10_1074_jbc_M802492200 crossref_primary_10_1128_MCB_00128_07 crossref_primary_10_1128_MCB_26_10_3695_3706_2006 crossref_primary_10_1111_j_1742_4658_2010_07563_x crossref_primary_10_1016_j_biochi_2020_04_010 crossref_primary_10_1096_fj_201601087RR crossref_primary_10_1128_JVI_00975_10 crossref_primary_10_1002_wrna_1449 crossref_primary_10_1038_emboj_2013_135 crossref_primary_10_1093_nar_gks545 crossref_primary_10_4049_jimmunol_1500756 crossref_primary_10_18632_oncotarget_4075 crossref_primary_10_1042_BST0340035 crossref_primary_10_1002_wrna_1 crossref_primary_10_1016_j_yjmcc_2024_04_012 crossref_primary_10_1242_jcs_047399 crossref_primary_10_1016_j_tips_2011_06_004 crossref_primary_10_1128_MCB_05340_11 crossref_primary_10_1007_s11010_024_05087_w crossref_primary_10_1038_ncomms11538 crossref_primary_10_1038_ncomms12626 crossref_primary_10_1016_j_gene_2012_03_021 crossref_primary_10_1016_j_jcmgh_2020_09_012 crossref_primary_10_1007_s12272_023_01429_2 crossref_primary_10_1093_pcp_pcu074 crossref_primary_10_1016_j_mce_2012_08_015 crossref_primary_10_1128_MCB_00717_10 crossref_primary_10_1016_j_bbrc_2010_07_136 crossref_primary_10_1128_MCB_00029_19 crossref_primary_10_1152_ajpgi_00508_2007 crossref_primary_10_7717_peerj_14776 crossref_primary_10_1016_j_celrep_2023_113627 crossref_primary_10_1016_j_cyto_2015_11_007 crossref_primary_10_1093_nar_gkac797 crossref_primary_10_1155_MI_2006_40691 crossref_primary_10_1038_s41598_024_53769_8 crossref_primary_10_1074_jbc_M804910200 crossref_primary_10_1074_jbc_M901229200 crossref_primary_10_1016_j_immuni_2017_11_016 crossref_primary_10_3389_fimmu_2021_796012 crossref_primary_10_1016_j_canlet_2024_216757 crossref_primary_10_1016_j_ceb_2005_04_002 crossref_primary_10_3390_ijms21165633 crossref_primary_10_3748_wjg_v25_i39_5918 crossref_primary_10_1101_cshperspect_a034728 crossref_primary_10_1002_adbi_202300453 crossref_primary_10_1101_gad_277392_116 crossref_primary_10_7554_eLife_33057 crossref_primary_10_4161_cc_9_22_13887 crossref_primary_10_1261_rna_080333_124 crossref_primary_10_1016_j_plantsci_2016_06_014 crossref_primary_10_1128_MCB_01727_07 crossref_primary_10_1111_cei_12684 crossref_primary_10_1016_j_pharmthera_2022_108198 crossref_primary_10_1002_wrna_15 crossref_primary_10_1016_j_bbamcr_2011_11_001 crossref_primary_10_1016_j_semcancer_2022_03_017 crossref_primary_10_1038_s41594_020_0477_6 crossref_primary_10_3390_cells9071701 crossref_primary_10_1016_j_molimm_2007_05_017 crossref_primary_10_1038_nrg2111 crossref_primary_10_1261_rna_1672509 crossref_primary_10_1111_tpj_12667 crossref_primary_10_1371_journal_pone_0067326 crossref_primary_10_1016_j_ymgme_2021_03_015 crossref_primary_10_1093_jb_mvaa072 crossref_primary_10_1101_sqb_2019_84_039206 crossref_primary_10_1038_onc_2010_341 crossref_primary_10_4049_jimmunol_174_12_7883 crossref_primary_10_3389_fendo_2017_00003 crossref_primary_10_1089_jir_2013_0146 crossref_primary_10_3389_fmolb_2017_00093 crossref_primary_10_1093_nar_gkr1302 crossref_primary_10_1128_MCB_01483_06 crossref_primary_10_1016_j_bbrc_2009_01_166 crossref_primary_10_4251_wjgo_v11_i2_71 crossref_primary_10_3389_fphys_2018_01310 crossref_primary_10_1016_j_jmb_2017_12_018 crossref_primary_10_1016_j_molcel_2014_04_033 crossref_primary_10_1189_jlb_0207109 crossref_primary_10_1042_BST0361088 crossref_primary_10_1007_s00294_018_0880_2 crossref_primary_10_1371_journal_pone_0061697 crossref_primary_10_1038_nri2685 crossref_primary_10_1186_s13059_024_03186_x crossref_primary_10_1261_rna_027656_111 crossref_primary_10_1016_j_bbagrm_2013_03_005 crossref_primary_10_1128_MCB_26_6_2399_2407_2006 crossref_primary_10_1242_dev_201773 crossref_primary_10_1007_s00018_016_2376_x crossref_primary_10_1128_mbio_01784_23 crossref_primary_10_1007_s00018_010_0383_x crossref_primary_10_1111_pce_12084 crossref_primary_10_1053_j_gastro_2009_12_044 crossref_primary_10_1002_wrna_28 crossref_primary_10_1016_j_cellsig_2014_07_020 crossref_primary_10_1261_rna_983708 crossref_primary_10_1128_MCB_00429_10 crossref_primary_10_3389_fpls_2022_802337 crossref_primary_10_1016_j_molcel_2007_06_030 crossref_primary_10_1261_rna_955508 crossref_primary_10_1093_nar_gkr011 crossref_primary_10_3389_fgene_2019_00006 crossref_primary_10_3390_cells10123604 crossref_primary_10_1093_nar_gkp870 crossref_primary_10_1261_rna_054833_115 crossref_primary_10_1371_journal_pgen_1007476 crossref_primary_10_3389_fgene_2023_1184600 crossref_primary_10_1038_ki_2008_149 crossref_primary_10_1080_15476286_2015_1073436 crossref_primary_10_1091_mbc_e06_12_1079 crossref_primary_10_1128_MCB_25_20_8779_8791_2005 crossref_primary_10_3389_fimmu_2021_751313 crossref_primary_10_1074_jbc_M110_136473 crossref_primary_10_1186_s12929_025_01122_0 crossref_primary_10_1074_jbc_M700180200 crossref_primary_10_1016_j_ymeth_2017_06_009 crossref_primary_10_1074_jbc_M806778200 crossref_primary_10_4049_jimmunol_0902308 crossref_primary_10_1002_wrna_44 crossref_primary_10_1042_BST0360491 crossref_primary_10_1128_MCB_26_6_2408_2418_2006 crossref_primary_10_1158_0008_5472_CAN_18_2796 crossref_primary_10_3390_v8120335 crossref_primary_10_1016_j_virusres_2016_09_021 crossref_primary_10_1155_2014_970607 crossref_primary_10_1261_rna_765807 crossref_primary_10_1128_MCB_01913_05 crossref_primary_10_1094_MPMI_06_19_0161_FI crossref_primary_10_1038_ncb1929 crossref_primary_10_1261_rna_1650109 crossref_primary_10_1093_nar_gkz787 crossref_primary_10_1242_dev_02649 crossref_primary_10_1016_j_molcel_2010_10_010 crossref_primary_10_1371_journal_pone_0151574 crossref_primary_10_1038_nrm2370 crossref_primary_10_1101_gad_1494707 crossref_primary_10_1016_j_cellsig_2011_09_015 crossref_primary_10_1091_mbc_e11_02_0149 crossref_primary_10_1038_ncomms12434 crossref_primary_10_1074_jbc_M604802200 crossref_primary_10_1016_j_bbagrm_2013_02_003 crossref_primary_10_1128_MCB_00754_10 crossref_primary_10_1093_nar_gkac209 crossref_primary_10_1002_wrna_55 crossref_primary_10_1128_JVI_01665_21 crossref_primary_10_1074_jbc_M111_312652 crossref_primary_10_1038_s41580_021_00417_y crossref_primary_10_1007_s10549_016_3742_y crossref_primary_10_1016_j_supmat_2023_100060 crossref_primary_10_7554_eLife_40670 crossref_primary_10_1007_s41061_021_00352_8 crossref_primary_10_14348_molcells_2015_2259 crossref_primary_10_1128_MCB_01445_06 crossref_primary_10_1016_j_molcel_2012_03_006 crossref_primary_10_3389_fgene_2019_00332 crossref_primary_10_1007_s11010_011_0747_z crossref_primary_10_1371_journal_pgen_1002433 crossref_primary_10_1128_MCB_01102_15 crossref_primary_10_3390_ijms232213673 crossref_primary_10_1016_j_molcel_2007_11_024 crossref_primary_10_1038_nsmb0106_7 crossref_primary_10_1016_j_semcdb_2014_05_018 crossref_primary_10_1038_srep24505 crossref_primary_10_1634_stemcells_2006_0106 crossref_primary_10_1038_nrm2104 crossref_primary_10_1016_j_tibs_2016_12_003 crossref_primary_10_1242_jcs_03429 crossref_primary_10_18632_oncotarget_16706 crossref_primary_10_1016_j_bbamcr_2013_01_024 crossref_primary_10_1038_emboj_2011_320 crossref_primary_10_1016_j_bbagrm_2020_194595 crossref_primary_10_4161_psb_6_5_15105 crossref_primary_10_1016_j_bbrc_2006_06_177 crossref_primary_10_1371_journal_ppat_1004597 crossref_primary_10_1080_15476286_2019_1572437 crossref_primary_10_1074_jbc_M112_356188 crossref_primary_10_1038_s41598_019_50957_9 crossref_primary_10_1242_bio_031575 |
Cites_doi | 10.1016/S0092-8674(00)00214-2 10.1042/BST0300945 10.1074/jbc.271.21.12179 10.1101/gad.1219104 10.1128/MCB.24.10.4522-4533.2004 10.1101/gad.9.4.437 10.1074/jbc.M110395200 10.1101/gad.13.2.188 10.1074/jbc.272.16.10448 10.1038/nsmb724 10.1093/nar/29.1.246 10.1016/S1097-2765(01)00395-1 10.1128/MCB.15.10.5777 10.1016/S1097-2765(03)00349-6 10.1016/S1074-7613(00)80411-2 10.1074/jbc.M310486200 10.1016/S0092-8674(00)80432-8 10.1074/jbc.M110465200 10.1016/S0092-8674(01)00592-X 10.1002/art.10235 10.1093/emboj/17.12.3461 10.1128/MCB.23.11.3798-3812.2003 10.1126/science.1082320 10.1073/pnas.192445599 10.1093/emboj/21.1.165 10.1242/dev.01336 10.1093/emboj/21.6.1414 10.1074/jbc.M001696200 10.1038/sj.emboj.7600163 10.1083/jcb.136.4.761 10.1093/emboj/17.12.3448 10.1128/MCB.21.20.6960-6971.2001 10.1093/nar/gkh282 10.1128/MCB.24.14.6445-6455.2004 10.1074/jbc.M100680200 10.1016/0092-8674(84)90073-4 10.1128/MCB.22.23.8114-8121.2002 10.1093/emboj/cdf444 10.1038/nsmb738 10.1093/emboj/cdf678 10.1038/370578a0 10.1093/emboj/20.5.1134 10.1016/j.molcel.2004.05.002 10.1016/S1016-8478(23)15111-9 10.1038/35067025 10.1016/S0092-8674(01)00578-5 10.1016/S1097-2765(03)00481-7 10.1016/S0968-0004(00)89102-1 10.1083/jcb.200309008 |
ContentType | Journal Article |
Copyright | Copyright © 2005, Cold Spring Harbor Laboratory Press 2005 |
Copyright_xml | – notice: Copyright © 2005, Cold Spring Harbor Laboratory Press 2005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1101/gad.1282305 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1549-5477 |
EndPage | 361 |
ExternalDocumentID | PMC546513 15687258 10_1101_gad_1282305 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM066811 – fundername: NIGMS NIH HHS grantid: GM066811 |
GroupedDBID | --- -DZ -~X .-4 .55 .GJ 0VX 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S AAYXX ABCQX ABDIX ACGFO ACLKE ACNCT ADBBV ADIYS ADXHL AECCQ AENEX AETEA AFFNX AFOSN AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 MVM N9A OK1 P2P R.V RCX RHI RPM SJN TAE TN5 TR2 UHB VH1 W8F WH7 WOQ X7M XJT XSW YBU YHG YKV YSK YYP ZGI ZXP ZY4 ABTAH CGR CUY CVF ECM EIF NPM RHF VQA 7TM 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c475t-98edca994f792c60b0c8b82a03e080fae175bd1b080f4ba4f122c00e1470f0113 |
ISSN | 0890-9369 |
IngestDate | Thu Aug 21 17:27:26 EDT 2025 Fri Jul 11 02:40:25 EDT 2025 Fri Jul 11 04:39:40 EDT 2025 Wed Feb 19 01:43:28 EST 2025 Tue Jul 01 04:23:13 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c475t-98edca994f792c60b0c8b82a03e080fae175bd1b080f4ba4f122c00e1470f0113 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Corresponding author. E-MAIL Jens.Lykke-Andersen@colorado.edu; FAX (303) 492-7744. Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/gad.1282305. |
OpenAccessLink | http://genesdev.cshlp.org/content/19/3/351.full.pdf |
PMID | 15687258 |
PQID | 17803743 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_546513 proquest_miscellaneous_67398474 proquest_miscellaneous_17803743 pubmed_primary_15687258 crossref_citationtrail_10_1101_gad_1282305 crossref_primary_10_1101_gad_1282305 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-02-01 2005-Feb-01 20050201 |
PublicationDateYYYYMMDD | 2005-02-01 |
PublicationDate_xml | – month: 02 year: 2005 text: 2005-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2005 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111607233902000_19.3.351.10 2021111607233902000_19.3.351.11 2021111607233902000_19.3.351.50 2021111607233902000_19.3.351.49 2021111607233902000_19.3.351.45 2021111607233902000_19.3.351.47 2021111607233902000_19.3.351.48 (2021111607233902000_19.3.351.46) 1998; 18 2021111607233902000_19.3.351.41 2021111607233902000_19.3.351.42 2021111607233902000_19.3.351.43 2021111607233902000_19.3.351.44 2021111607233902000_19.3.351.40 2021111607233902000_19.3.351.39 2021111607233902000_19.3.351.34 2021111607233902000_19.3.351.35 2021111607233902000_19.3.351.36 2021111607233902000_19.3.351.37 (2021111607233902000_19.3.351.7) 1995; 15 2021111607233902000_19.3.351.30 (2021111607233902000_19.3.351.38) 2002; 14 2021111607233902000_19.3.351.31 2021111607233902000_19.3.351.32 2021111607233902000_19.3.351.33 2021111607233902000_19.3.351.27 2021111607233902000_19.3.351.28 2021111607233902000_19.3.351.29 2021111607233902000_19.3.351.23 2021111607233902000_19.3.351.24 2021111607233902000_19.3.351.25 2021111607233902000_19.3.351.26 2021111607233902000_19.3.351.3 2021111607233902000_19.3.351.4 2021111607233902000_19.3.351.5 2021111607233902000_19.3.351.6 2021111607233902000_19.3.351.1 2021111607233902000_19.3.351.2 2021111607233902000_19.3.351.20 2021111607233902000_19.3.351.21 2021111607233902000_19.3.351.22 2021111607233902000_19.3.351.8 2021111607233902000_19.3.351.9 2021111607233902000_19.3.351.16 2021111607233902000_19.3.351.17 2021111607233902000_19.3.351.18 2021111607233902000_19.3.351.19 2021111607233902000_19.3.351.12 2021111607233902000_19.3.351.13 2021111607233902000_19.3.351.14 2021111607233902000_19.3.351.15 11741542 - Mol Cell. 2001 Nov;8(5):1075-83 14731398 - Mol Cell. 2004 Jan 16;13(1):101-11 12218187 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12663-8 11719186 - Cell. 2001 Nov 16;107(4):451-64 12748283 - Mol Cell Biol. 2003 Jun;23(11):3798-812 9628881 - EMBO J. 1998 Jun 15;17(12):3461-70 9390555 - Cell. 1997 Nov 14;91(4):457-66 12486012 - EMBO J. 2002 Dec 16;21(24):6915-24 11163187 - Cell. 2000 Dec 22;103(7):1121-31 10751406 - J Biol Chem. 2000 Jun 9;275(23):17827-37 11889047 - EMBO J. 2002 Mar 15;21(6):1414-26 11886850 - J Biol Chem. 2002 May 17;277(20):18029-36 15226444 - Mol Cell Biol. 2004 Jul;24(14):6445-55 12730603 - Science. 2003 May 2;300(5620):805-8 9628880 - EMBO J. 1998 Jun 15;17(12):3448-60 14688255 - J Biol Chem. 2004 Mar 12;279(11):10176-84 11279239 - J Biol Chem. 2001 Jun 22;276(25):23144-54 11564879 - Mol Cell Biol. 2001 Oct;21(20):6960-71 12521293 - Mol Cells. 2002 Dec 31;14(3):323-31 15175153 - Mol Cell. 2004 Jun 4;14(5):571-83 9925643 - Genes Dev. 1999 Jan 15;13(2):188-201 11230136 - EMBO J. 2001 Mar 1;20(5):1134-43 9099687 - J Biol Chem. 1997 Apr 18;272(16):10448-56 14976220 - Nucleic Acids Res. 2004;32(4):1279-88 14749774 - Nat Struct Mol Biol. 2004 Feb;11(2):121-7 15342461 - Development. 2004 Oct;131(19):4883-93 14981510 - Nat Struct Mol Biol. 2004 Mar;11(3):257-64 7565731 - Mol Cell Biol. 1995 Oct;15(10):5777-88 11283721 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):237-46 7883168 - Genes Dev. 1995 Feb 15;9(4):437-54 8630730 - Immunity. 1996 May;4(5):445-54 15314026 - Genes Dev. 2004 Aug 15;18(16):2010-23 9049243 - J Cell Biol. 1997 Feb 24;136(4):761-73 8647811 - J Biol Chem. 1996 May 24;271(21):12179-84 12440952 - Biochem Soc Trans. 2002 Nov;30(Pt 6):945-52 9819439 - Mol Cell Biol. 1998 Dec;18(12):7537-45 12198173 - EMBO J. 2002 Sep 2;21(17):4709-18 15014438 - EMBO J. 2004 Mar 24;23(6):1313-24 11782436 - EMBO J. 2002 Jan 15;21(1-2):165-74 11125104 - Nucleic Acids Res. 2001 Jan 1;29(1):246-54 15121869 - Mol Cell Biol. 2004 May;24(10):4522-33 11747811 - Cell. 2001 Dec 14;107(6):751-62 6607118 - Cell. 1984 Jan;36(1):51-60 8578590 - Trends Biochem Sci. 1995 Nov;20(11):465-70 8052314 - Nature. 1994 Aug 18;370(6490):578-81 14527413 - Mol Cell. 2003 Sep;12(3):675-87 15067023 - J Cell Biol. 2004 Apr12;165(1):31-40 12417715 - Mol Cell Biol. 2002 Dec;22(23):8114-21 12115244 - Arthritis Rheum. 2002 May;46(5):1362-70 11782475 - J Biol Chem. 2002 Mar 15;277(11):9606-13 |
References_xml | – ident: 2021111607233902000_19.3.351.28 doi: 10.1016/S0092-8674(00)00214-2 – ident: 2021111607233902000_19.3.351.3 doi: 10.1042/BST0300945 – ident: 2021111607233902000_19.3.351.13 doi: 10.1074/jbc.271.21.12179 – ident: 2021111607233902000_19.3.351.5 doi: 10.1101/gad.1219104 – ident: 2021111607233902000_19.3.351.11 doi: 10.1128/MCB.24.10.4522-4533.2004 – ident: 2021111607233902000_19.3.351.18 doi: 10.1101/gad.9.4.437 – ident: 2021111607233902000_19.3.351.24 doi: 10.1074/jbc.M110395200 – ident: 2021111607233902000_19.3.351.15 doi: 10.1101/gad.13.2.188 – ident: 2021111607233902000_19.3.351.21 doi: 10.1074/jbc.272.16.10448 – ident: 2021111607233902000_19.3.351.33 doi: 10.1038/nsmb724 – ident: 2021111607233902000_19.3.351.1 doi: 10.1093/nar/29.1.246 – ident: 2021111607233902000_19.3.351.43 doi: 10.1016/S1097-2765(01)00395-1 – volume: 15 start-page: 5777 year: 1995 ident: 2021111607233902000_19.3.351.7 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.10.5777 – ident: 2021111607233902000_19.3.351.26 doi: 10.1016/S1097-2765(03)00349-6 – volume: 18 start-page: 7537 year: 1998 ident: 2021111607233902000_19.3.351.46 publication-title: Xenopus – ident: 2021111607233902000_19.3.351.42 doi: 10.1016/S1074-7613(00)80411-2 – ident: 2021111607233902000_19.3.351.10 doi: 10.1074/jbc.M310486200 – ident: 2021111607233902000_19.3.351.30 doi: 10.1016/S0092-8674(00)80432-8 – ident: 2021111607233902000_19.3.351.20 doi: 10.1074/jbc.M110465200 – ident: 2021111607233902000_19.3.351.47 doi: 10.1016/S0092-8674(01)00592-X – ident: 2021111607233902000_19.3.351.4 doi: 10.1002/art.10235 – ident: 2021111607233902000_19.3.351.34 doi: 10.1093/emboj/17.12.3461 – ident: 2021111607233902000_19.3.351.25 doi: 10.1128/MCB.23.11.3798-3812.2003 – ident: 2021111607233902000_19.3.351.37 doi: 10.1126/science.1082320 – ident: 2021111607233902000_19.3.351.48 doi: 10.1073/pnas.192445599 – ident: 2021111607233902000_19.3.351.32 doi: 10.1093/emboj/21.1.165 – ident: 2021111607233902000_19.3.351.36 doi: 10.1242/dev.01336 – ident: 2021111607233902000_19.3.351.9 doi: 10.1093/emboj/21.6.1414 – ident: 2021111607233902000_19.3.351.23 doi: 10.1074/jbc.M001696200 – ident: 2021111607233902000_19.3.351.40 doi: 10.1038/sj.emboj.7600163 – ident: 2021111607233902000_19.3.351.2 doi: 10.1083/jcb.136.4.761 – ident: 2021111607233902000_19.3.351.14 doi: 10.1093/emboj/17.12.3448 – ident: 2021111607233902000_19.3.351.50 doi: 10.1128/MCB.21.20.6960-6971.2001 – ident: 2021111607233902000_19.3.351.35 doi: 10.1093/nar/gkh282 – ident: 2021111607233902000_19.3.351.41 doi: 10.1128/MCB.24.14.6445-6455.2004 – ident: 2021111607233902000_19.3.351.22 doi: 10.1074/jbc.M100680200 – ident: 2021111607233902000_19.3.351.29 doi: 10.1016/0092-8674(84)90073-4 – ident: 2021111607233902000_19.3.351.27 doi: 10.1128/MCB.22.23.8114-8121.2002 – ident: 2021111607233902000_19.3.351.39 doi: 10.1093/emboj/cdf444 – ident: 2021111607233902000_19.3.351.19 doi: 10.1038/nsmb738 – ident: 2021111607233902000_19.3.351.45 doi: 10.1093/emboj/cdf678 – ident: 2021111607233902000_19.3.351.31 doi: 10.1038/370578a0 – ident: 2021111607233902000_19.3.351.16 doi: 10.1093/emboj/20.5.1134 – ident: 2021111607233902000_19.3.351.17 doi: 10.1016/j.molcel.2004.05.002 – volume: 14 start-page: 323 year: 2002 ident: 2021111607233902000_19.3.351.38 publication-title: Mol. Cell doi: 10.1016/S1016-8478(23)15111-9 – ident: 2021111607233902000_19.3.351.49 doi: 10.1038/35067025 – ident: 2021111607233902000_19.3.351.8 doi: 10.1016/S0092-8674(01)00578-5 – ident: 2021111607233902000_19.3.351.44 doi: 10.1016/S1097-2765(03)00481-7 – ident: 2021111607233902000_19.3.351.6 doi: 10.1016/S0968-0004(00)89102-1 – ident: 2021111607233902000_19.3.351.12 doi: 10.1083/jcb.200309008 – reference: 11279239 - J Biol Chem. 2001 Jun 22;276(25):23144-54 – reference: 15175153 - Mol Cell. 2004 Jun 4;14(5):571-83 – reference: 12486012 - EMBO J. 2002 Dec 16;21(24):6915-24 – reference: 11747811 - Cell. 2001 Dec 14;107(6):751-62 – reference: 9628880 - EMBO J. 1998 Jun 15;17(12):3448-60 – reference: 9925643 - Genes Dev. 1999 Jan 15;13(2):188-201 – reference: 11230136 - EMBO J. 2001 Mar 1;20(5):1134-43 – reference: 15342461 - Development. 2004 Oct;131(19):4883-93 – reference: 8647811 - J Biol Chem. 1996 May 24;271(21):12179-84 – reference: 7565731 - Mol Cell Biol. 1995 Oct;15(10):5777-88 – reference: 7883168 - Genes Dev. 1995 Feb 15;9(4):437-54 – reference: 8052314 - Nature. 1994 Aug 18;370(6490):578-81 – reference: 14976220 - Nucleic Acids Res. 2004;32(4):1279-88 – reference: 11719186 - Cell. 2001 Nov 16;107(4):451-64 – reference: 15314026 - Genes Dev. 2004 Aug 15;18(16):2010-23 – reference: 11782436 - EMBO J. 2002 Jan 15;21(1-2):165-74 – reference: 9819439 - Mol Cell Biol. 1998 Dec;18(12):7537-45 – reference: 9099687 - J Biol Chem. 1997 Apr 18;272(16):10448-56 – reference: 11886850 - J Biol Chem. 2002 May 17;277(20):18029-36 – reference: 15067023 - J Cell Biol. 2004 Apr12;165(1):31-40 – reference: 12521293 - Mol Cells. 2002 Dec 31;14(3):323-31 – reference: 9390555 - Cell. 1997 Nov 14;91(4):457-66 – reference: 9628881 - EMBO J. 1998 Jun 15;17(12):3461-70 – reference: 11782475 - J Biol Chem. 2002 Mar 15;277(11):9606-13 – reference: 11741542 - Mol Cell. 2001 Nov;8(5):1075-83 – reference: 15121869 - Mol Cell Biol. 2004 May;24(10):4522-33 – reference: 11564879 - Mol Cell Biol. 2001 Oct;21(20):6960-71 – reference: 11889047 - EMBO J. 2002 Mar 15;21(6):1414-26 – reference: 10751406 - J Biol Chem. 2000 Jun 9;275(23):17827-37 – reference: 11283721 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):237-46 – reference: 8578590 - Trends Biochem Sci. 1995 Nov;20(11):465-70 – reference: 12748283 - Mol Cell Biol. 2003 Jun;23(11):3798-812 – reference: 14981510 - Nat Struct Mol Biol. 2004 Mar;11(3):257-64 – reference: 8630730 - Immunity. 1996 May;4(5):445-54 – reference: 14731398 - Mol Cell. 2004 Jan 16;13(1):101-11 – reference: 11163187 - Cell. 2000 Dec 22;103(7):1121-31 – reference: 15226444 - Mol Cell Biol. 2004 Jul;24(14):6445-55 – reference: 12417715 - Mol Cell Biol. 2002 Dec;22(23):8114-21 – reference: 12730603 - Science. 2003 May 2;300(5620):805-8 – reference: 12115244 - Arthritis Rheum. 2002 May;46(5):1362-70 – reference: 14688255 - J Biol Chem. 2004 Mar 12;279(11):10176-84 – reference: 9049243 - J Cell Biol. 1997 Feb 24;136(4):761-73 – reference: 14527413 - Mol Cell. 2003 Sep;12(3):675-87 – reference: 15014438 - EMBO J. 2004 Mar 24;23(6):1313-24 – reference: 11125104 - Nucleic Acids Res. 2001 Jan 1;29(1):246-54 – reference: 6607118 - Cell. 1984 Jan;36(1):51-60 – reference: 12440952 - Biochem Soc Trans. 2002 Nov;30(Pt 6):945-52 – reference: 14749774 - Nat Struct Mol Biol. 2004 Feb;11(2):121-7 – reference: 12198173 - EMBO J. 2002 Sep 2;21(17):4709-18 – reference: 12218187 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12663-8 |
SSID | ssj0006066 |
Score | 2.362151 |
Snippet | In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 351 |
SubjectTerms | Butyrate Response Factor 1 DNA-Binding Proteins - metabolism Endoribonucleases - metabolism Humans Immediate-Early Proteins - metabolism Protein Structure, Tertiary Research Papers Ribonucleases - metabolism RNA, Messenger - metabolism TATA-Binding Protein Associated Factors - metabolism Tristetraprolin |
Title | Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15687258 https://www.proquest.com/docview/17803743 https://www.proquest.com/docview/67398474 https://pubmed.ncbi.nlm.nih.gov/PMC546513 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZgEBIXxD5l9WFOVB6yOsmxoFYDDAVVqegtshNniIZJEG1BGf487znOUmYQyyVq0xe76vfF_l7zFkIOolAFjuIRCwVXDPStZNLOBAo5R8gAFS7mO7-b86Ol92blr9pu9ia7ZCMP0_NL80r-B1U4B7hiluw_INsNCifgNeALR0AYjn-FMWq-bdHHiWOSwrdOA54t5pNxplJRj1V5XmNVJtSa36vxZDFlOmUE5WZjMbg0q85E0cSXN3lUFXbEXI_j-IOe5eVixuyhqMXS1WvNoawPQeoiferTU8UmOofGJIKoshPyH8VJm3FTYFDHzp8Qfhu33K9VkcWwN-DOwhoNCOQOVkm3qTF7cfXWXQNORHYIuyb4Rn6_SbUP5ufvk9ny-DiJp6v4KrnmIKdQCr9-2-2_6JJp38F8JZOVCYO_GAy9q0MuOBe_xsgOREd8i9w03gKdNNDfJldUeYdcb_qH1nfJjwEBKEBDexRplVMkANXwUkMAKmsKBKBDAhiLwaWGALQoKRCAtgSgQAA9iybAPbKcTeNXR8x002CpF_gbBndllooo8vIgclJuSSsNZegIy1XgNeRCgZCUmS3xjSeFl9uOk1qWsr3AymEXcO-TvbIq1T6hfugGLs9taacKNgAuhModP1Mg_iNhKT4iz9vfNklNqXnsePI50S6nZScARGKAGJGDzvhLU2HlcrNnLUgJrID4WEuUqtquEzsIsYiS-3sLHrgRqDBvRB40oPYT-TwMHD8cEb4Dd2eA1dd3PymLT7oKu-9x33Yf_nHSR-RGf8c8Jnubr1v1BITsRj7VvP0JQoSifg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recruitment+and+activation+of+mRNA+decay+enzymes+by+two+ARE-mediated+decay+activation+domains+in+the+proteins+TTP+and+BRF-1&rft.jtitle=Genes+%26+development&rft.au=Lykke-Andersen%2C+Jens&rft.au=Wagner%2C+Eileen&rft.date=2005-02-01&rft.issn=0890-9369&rft.volume=19&rft.issue=3&rft.spage=351&rft_id=info:doi/10.1101%2Fgad.1282305&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |