Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1

In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3′-to-5′ exonucleolytic decay. We demonstrate that enzymes involved in all three of...

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 19; no. 3; pp. 351 - 361
Main Authors Lykke-Andersen, Jens, Wagner, Eileen
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.02.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3′-to-5′ exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5′-to-3′ exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ trans -acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay.
AbstractList In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3'-to-5' exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5'-to-3' exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ trans-acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay.In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3'-to-5' exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5'-to-3' exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ trans-acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay.
In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3'-to-5' exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5'-to-3' exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ trans-acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay.
In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3′-to-5′ exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5′-to-3′ exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ trans -acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay.
Author Lykke-Andersen, Jens
Wagner, Eileen
AuthorAffiliation Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
AuthorAffiliation_xml – name: Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
Author_xml – sequence: 1
  givenname: Jens
  surname: Lykke-Andersen
  fullname: Lykke-Andersen, Jens
– sequence: 2
  givenname: Eileen
  surname: Wagner
  fullname: Wagner, Eileen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15687258$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS3Uim4LJ-7IJy4o7ThxYvvAYalaQKoKWi1ny3EmrVFiL7G31ZY_j7ddqoIqcbJG_t7Mm3mHZM8Hj4S8YXDMGLCTK9Mds1KWFdQvyIzVXBU1F2KPzEAqKFTVqANyGOMPAGigaV6SA1Y3UpS1nJFfC7TT2qURfaLGd9TY5G5McsHT0NNxcTmnHVqzoejvNiNG2m5oug10vjgrRuycSdjtiCfSLozG-Uidp-ka6WoKCbf1cvntfsrHxXnBXpH93gwRX-_eI_L9_Gx5-rm4-Prpy-n8orBc1KlQEjtrlOK9UKVtoAUrW1kaqBAk9AaZqNuOtduCt4b3rCwtADIuoAfGqiPy4aHvat1myzavOplBryY3mmmjg3H67x_vrvVVuNE1b2pWZf27nX4KP9cYkx5dtDgMxmNYR92ISkku-H9BJiRUmcvg26eOHq38ySUD7AGwU4hxwl5bl-5Pmw26QTPQ2-x1zl7vss-a9_9oHts-Q_8G-dSwcw
CitedBy_id crossref_primary_10_1093_plphys_kiad030
crossref_primary_10_1042_BJ20060328
crossref_primary_10_1051_medsci_20072310850
crossref_primary_10_1101_gad_17355911
crossref_primary_10_1101_gad_1538807
crossref_primary_10_1104_pp_109_145656
crossref_primary_10_3389_fimmu_2023_1118483
crossref_primary_10_1016_j_bbrc_2018_04_212
crossref_primary_10_1038_s41467_022_33552_x
crossref_primary_10_1074_jbc_M109_031237
crossref_primary_10_1038_ni1274
crossref_primary_10_1111_jcmm_15116
crossref_primary_10_1371_journal_pgen_1004684
crossref_primary_10_1038_sj_onc_1209909
crossref_primary_10_1371_journal_pone_0041313
crossref_primary_10_1007_s11033_012_2302_8
crossref_primary_10_1128_JVI_03631_14
crossref_primary_10_1074_jbc_M702998200
crossref_primary_10_1261_rna_2439811
crossref_primary_10_1016_j_ydbio_2020_03_017
crossref_primary_10_3390_cells10071711
crossref_primary_10_1091_mbc_E16_06_0379
crossref_primary_10_1080_25785826_2019_1655192
crossref_primary_10_1155_2009_634520
crossref_primary_10_3748_wjg_v26_i35_5223
crossref_primary_10_1074_jbc_M114_589556
crossref_primary_10_1136_jmedgenet_2021_107933
crossref_primary_10_1515_BC_2008_022
crossref_primary_10_26508_lsa_202302222
crossref_primary_10_1074_jbc_M707861200
crossref_primary_10_1016_j_jmb_2010_04_034
crossref_primary_10_1091_mbc_e10_11_0898
crossref_primary_10_1111_j_1365_313X_2010_04419_x
crossref_primary_10_1042_BCJ20210139
crossref_primary_10_1093_nar_gkab983
crossref_primary_10_7554_eLife_29630
crossref_primary_10_7554_eLife_83159
crossref_primary_10_1016_j_biocel_2013_12_008
crossref_primary_10_1038_s41388_019_0784_8
crossref_primary_10_2147_JIR_S468612
crossref_primary_10_1093_cvr_cvad014
crossref_primary_10_1002_jcb_21130
crossref_primary_10_1038_emboj_2008_43
crossref_primary_10_1089_jir_2017_0001
crossref_primary_10_1016_j_yjmcc_2019_03_012
crossref_primary_10_1016_j_bcp_2010_06_021
crossref_primary_10_1038_sj_embor_7400572
crossref_primary_10_1371_journal_pone_0100992
crossref_primary_10_4049_jimmunol_1402826
crossref_primary_10_1038_s41422_022_00752_5
crossref_primary_10_1038_sj_leu_2404656
crossref_primary_10_1111_j_1742_4658_2007_05632_x
crossref_primary_10_3389_fgene_2014_00143
crossref_primary_10_1021_acsomega_1c03681
crossref_primary_10_1016_j_gde_2017_11_004
crossref_primary_10_1089_jir_2010_0154
crossref_primary_10_1111_imr_12051
crossref_primary_10_1080_15592324_2022_2142725
crossref_primary_10_1189_jlb_1206754
crossref_primary_10_1128_mcb_00055_22
crossref_primary_10_1038_nrg3160
crossref_primary_10_1016_j_molcel_2014_03_017
crossref_primary_10_1016_j_celrep_2015_04_065
crossref_primary_10_1016_j_pharmthera_2019_07_001
crossref_primary_10_1093_nar_gkz1187
crossref_primary_10_1074_jbc_M111_330837
crossref_primary_10_1042_BST0381632
crossref_primary_10_1074_jbc_M609413200
crossref_primary_10_1101_cshperspect_a032813
crossref_primary_10_1073_pnas_1101676108
crossref_primary_10_1152_ajprenal_00229_2022
crossref_primary_10_1016_j_molcel_2006_10_029
crossref_primary_10_1038_s41419_023_06413_8
crossref_primary_10_1074_jbc_M109_094235
crossref_primary_10_1080_15476286_2021_1917185
crossref_primary_10_1038_nature11993
crossref_primary_10_1111_j_1462_5822_2009_01418_x
crossref_primary_10_4110_in_2009_9_4_115
crossref_primary_10_1016_j_ymeth_2019_01_003
crossref_primary_10_1016_j_canlet_2023_216318
crossref_primary_10_1038_s41598_018_21160_z
crossref_primary_10_3389_fcell_2022_847761
crossref_primary_10_1016_j_molcel_2006_04_010
crossref_primary_10_1371_journal_pgen_1008580
crossref_primary_10_1016_j_molcel_2025_01_001
crossref_primary_10_1016_j_celrep_2016_10_066
crossref_primary_10_1016_j_semcdb_2020_09_007
crossref_primary_10_1093_nar_gkt222
crossref_primary_10_1016_j_celrep_2019_03_006
crossref_primary_10_1261_rna_59606
crossref_primary_10_1371_journal_pone_0092457
crossref_primary_10_1002_wrna_1751
crossref_primary_10_1016_j_gde_2011_03_003
crossref_primary_10_1074_jbc_M110_202275
crossref_primary_10_1016_j_bbagrm_2012_12_006
crossref_primary_10_1074_jbc_M611253200
crossref_primary_10_1016_j_molcel_2006_10_013
crossref_primary_10_1016_j_gde_2011_03_002
crossref_primary_10_1080_15476286_2020_1862567
crossref_primary_10_1371_journal_pbio_1000360
crossref_primary_10_15252_embr_202256512
crossref_primary_10_1016_j_molcel_2023_11_025
crossref_primary_10_1038_nsmb1100
crossref_primary_10_1007_s10059_013_0268_6
crossref_primary_10_1016_j_cmet_2008_04_010
crossref_primary_10_1042_BST20160166
crossref_primary_10_1074_jbc_M702281200
crossref_primary_10_3389_fpls_2014_00201
crossref_primary_10_1186_1471_2199_8_28
crossref_primary_10_1016_j_it_2020_01_001
crossref_primary_10_1083_jcb_200504039
crossref_primary_10_1038_nsmb_2572
crossref_primary_10_3390_cells5010004
crossref_primary_10_1007_s12032_017_1055_6
crossref_primary_10_3390_biomedicines9060606
crossref_primary_10_1016_j_cell_2018_10_007
crossref_primary_10_1002_wrna_1125
crossref_primary_10_1007_s10555_011_9300_5
crossref_primary_10_1016_j_it_2021_03_008
crossref_primary_10_1128_MCB_00845_15
crossref_primary_10_1128_MCB_01517_14
crossref_primary_10_1523_JNEUROSCI_0104_08_2008
crossref_primary_10_1016_j_mce_2007_04_013
crossref_primary_10_1016_j_virol_2012_11_017
crossref_primary_10_1038_nrm2080
crossref_primary_10_1038_nsmb1033
crossref_primary_10_1093_jmcb_mjaa061
crossref_primary_10_4049_jimmunol_1102837
crossref_primary_10_1093_nar_gkaa458
crossref_primary_10_1038_s41467_024_54411_x
crossref_primary_10_1038_s41598_022_24132_6
crossref_primary_10_1186_1754_1611_8_7
crossref_primary_10_1128_MCB_06328_11
crossref_primary_10_1093_jb_mvz067
crossref_primary_10_18632_oncotarget_7432
crossref_primary_10_3390_biology10010066
crossref_primary_10_1091_mbc_E17_02_0105
crossref_primary_10_1007_s00018_012_1150_y
crossref_primary_10_1016_j_cell_2010_11_043
crossref_primary_10_1242_dev_168146
crossref_primary_10_1042_BST0380242
crossref_primary_10_1002_wrna_1254
crossref_primary_10_1371_journal_pone_0033194
crossref_primary_10_1002_cti2_1063
crossref_primary_10_1002_wrna_1379
crossref_primary_10_1016_j_cmet_2005_06_008
crossref_primary_10_1128_MCB_00303_10
crossref_primary_10_1083_jcb_200712054
crossref_primary_10_1111_tpj_14792
crossref_primary_10_1080_21541248_2015_1093068
crossref_primary_10_1016_j_ceca_2018_08_006
crossref_primary_10_1021_acschembio_5b00639
crossref_primary_10_1016_j_febslet_2013_03_031
crossref_primary_10_1016_j_jbc_2022_102270
crossref_primary_10_1016_j_bbrc_2006_05_093
crossref_primary_10_1261_rna_063719_117
crossref_primary_10_1128_MCB_01493_07
crossref_primary_10_1016_j_tice_2025_102785
crossref_primary_10_1016_j_celrep_2024_114069
crossref_primary_10_1091_mbc_e10_01_0040
crossref_primary_10_1101_sqb_2006_71_049
crossref_primary_10_1016_j_molcel_2005_10_021
crossref_primary_10_1111_cas_15272
crossref_primary_10_1083_jcb_200502088
crossref_primary_10_1016_j_fsi_2023_108948
crossref_primary_10_1146_annurev_biochem_081720_114505
crossref_primary_10_3389_fcell_2023_1153624
crossref_primary_10_1074_jbc_M607347200
crossref_primary_10_1093_nar_gkae919
crossref_primary_10_1093_nar_gkq797
crossref_primary_10_1002_wrna_1837
crossref_primary_10_3109_10409238_2013_771132
crossref_primary_10_3389_fmolb_2021_701975
crossref_primary_10_1016_j_celrep_2025_115340
crossref_primary_10_3390_ijms21186648
crossref_primary_10_1016_j_bbrc_2007_10_119
crossref_primary_10_1091_mbc_E18_09_0606
crossref_primary_10_1038_ncb1783
crossref_primary_10_1016_j_molcel_2005_10_031
crossref_primary_10_1073_pnas_1816023116
crossref_primary_10_3389_fonc_2024_1344852
crossref_primary_10_1371_journal_pone_0073752
crossref_primary_10_1074_jbc_M802492200
crossref_primary_10_1128_MCB_00128_07
crossref_primary_10_1128_MCB_26_10_3695_3706_2006
crossref_primary_10_1111_j_1742_4658_2010_07563_x
crossref_primary_10_1016_j_biochi_2020_04_010
crossref_primary_10_1096_fj_201601087RR
crossref_primary_10_1128_JVI_00975_10
crossref_primary_10_1002_wrna_1449
crossref_primary_10_1038_emboj_2013_135
crossref_primary_10_1093_nar_gks545
crossref_primary_10_4049_jimmunol_1500756
crossref_primary_10_18632_oncotarget_4075
crossref_primary_10_1042_BST0340035
crossref_primary_10_1002_wrna_1
crossref_primary_10_1016_j_yjmcc_2024_04_012
crossref_primary_10_1242_jcs_047399
crossref_primary_10_1016_j_tips_2011_06_004
crossref_primary_10_1128_MCB_05340_11
crossref_primary_10_1007_s11010_024_05087_w
crossref_primary_10_1038_ncomms11538
crossref_primary_10_1038_ncomms12626
crossref_primary_10_1016_j_gene_2012_03_021
crossref_primary_10_1016_j_jcmgh_2020_09_012
crossref_primary_10_1007_s12272_023_01429_2
crossref_primary_10_1093_pcp_pcu074
crossref_primary_10_1016_j_mce_2012_08_015
crossref_primary_10_1128_MCB_00717_10
crossref_primary_10_1016_j_bbrc_2010_07_136
crossref_primary_10_1128_MCB_00029_19
crossref_primary_10_1152_ajpgi_00508_2007
crossref_primary_10_7717_peerj_14776
crossref_primary_10_1016_j_celrep_2023_113627
crossref_primary_10_1016_j_cyto_2015_11_007
crossref_primary_10_1093_nar_gkac797
crossref_primary_10_1155_MI_2006_40691
crossref_primary_10_1038_s41598_024_53769_8
crossref_primary_10_1074_jbc_M804910200
crossref_primary_10_1074_jbc_M901229200
crossref_primary_10_1016_j_immuni_2017_11_016
crossref_primary_10_3389_fimmu_2021_796012
crossref_primary_10_1016_j_canlet_2024_216757
crossref_primary_10_1016_j_ceb_2005_04_002
crossref_primary_10_3390_ijms21165633
crossref_primary_10_3748_wjg_v25_i39_5918
crossref_primary_10_1101_cshperspect_a034728
crossref_primary_10_1002_adbi_202300453
crossref_primary_10_1101_gad_277392_116
crossref_primary_10_7554_eLife_33057
crossref_primary_10_4161_cc_9_22_13887
crossref_primary_10_1261_rna_080333_124
crossref_primary_10_1016_j_plantsci_2016_06_014
crossref_primary_10_1128_MCB_01727_07
crossref_primary_10_1111_cei_12684
crossref_primary_10_1016_j_pharmthera_2022_108198
crossref_primary_10_1002_wrna_15
crossref_primary_10_1016_j_bbamcr_2011_11_001
crossref_primary_10_1016_j_semcancer_2022_03_017
crossref_primary_10_1038_s41594_020_0477_6
crossref_primary_10_3390_cells9071701
crossref_primary_10_1016_j_molimm_2007_05_017
crossref_primary_10_1038_nrg2111
crossref_primary_10_1261_rna_1672509
crossref_primary_10_1111_tpj_12667
crossref_primary_10_1371_journal_pone_0067326
crossref_primary_10_1016_j_ymgme_2021_03_015
crossref_primary_10_1093_jb_mvaa072
crossref_primary_10_1101_sqb_2019_84_039206
crossref_primary_10_1038_onc_2010_341
crossref_primary_10_4049_jimmunol_174_12_7883
crossref_primary_10_3389_fendo_2017_00003
crossref_primary_10_1089_jir_2013_0146
crossref_primary_10_3389_fmolb_2017_00093
crossref_primary_10_1093_nar_gkr1302
crossref_primary_10_1128_MCB_01483_06
crossref_primary_10_1016_j_bbrc_2009_01_166
crossref_primary_10_4251_wjgo_v11_i2_71
crossref_primary_10_3389_fphys_2018_01310
crossref_primary_10_1016_j_jmb_2017_12_018
crossref_primary_10_1016_j_molcel_2014_04_033
crossref_primary_10_1189_jlb_0207109
crossref_primary_10_1042_BST0361088
crossref_primary_10_1007_s00294_018_0880_2
crossref_primary_10_1371_journal_pone_0061697
crossref_primary_10_1038_nri2685
crossref_primary_10_1186_s13059_024_03186_x
crossref_primary_10_1261_rna_027656_111
crossref_primary_10_1016_j_bbagrm_2013_03_005
crossref_primary_10_1128_MCB_26_6_2399_2407_2006
crossref_primary_10_1242_dev_201773
crossref_primary_10_1007_s00018_016_2376_x
crossref_primary_10_1128_mbio_01784_23
crossref_primary_10_1007_s00018_010_0383_x
crossref_primary_10_1111_pce_12084
crossref_primary_10_1053_j_gastro_2009_12_044
crossref_primary_10_1002_wrna_28
crossref_primary_10_1016_j_cellsig_2014_07_020
crossref_primary_10_1261_rna_983708
crossref_primary_10_1128_MCB_00429_10
crossref_primary_10_3389_fpls_2022_802337
crossref_primary_10_1016_j_molcel_2007_06_030
crossref_primary_10_1261_rna_955508
crossref_primary_10_1093_nar_gkr011
crossref_primary_10_3389_fgene_2019_00006
crossref_primary_10_3390_cells10123604
crossref_primary_10_1093_nar_gkp870
crossref_primary_10_1261_rna_054833_115
crossref_primary_10_1371_journal_pgen_1007476
crossref_primary_10_3389_fgene_2023_1184600
crossref_primary_10_1038_ki_2008_149
crossref_primary_10_1080_15476286_2015_1073436
crossref_primary_10_1091_mbc_e06_12_1079
crossref_primary_10_1128_MCB_25_20_8779_8791_2005
crossref_primary_10_3389_fimmu_2021_751313
crossref_primary_10_1074_jbc_M110_136473
crossref_primary_10_1186_s12929_025_01122_0
crossref_primary_10_1074_jbc_M700180200
crossref_primary_10_1016_j_ymeth_2017_06_009
crossref_primary_10_1074_jbc_M806778200
crossref_primary_10_4049_jimmunol_0902308
crossref_primary_10_1002_wrna_44
crossref_primary_10_1042_BST0360491
crossref_primary_10_1128_MCB_26_6_2408_2418_2006
crossref_primary_10_1158_0008_5472_CAN_18_2796
crossref_primary_10_3390_v8120335
crossref_primary_10_1016_j_virusres_2016_09_021
crossref_primary_10_1155_2014_970607
crossref_primary_10_1261_rna_765807
crossref_primary_10_1128_MCB_01913_05
crossref_primary_10_1094_MPMI_06_19_0161_FI
crossref_primary_10_1038_ncb1929
crossref_primary_10_1261_rna_1650109
crossref_primary_10_1093_nar_gkz787
crossref_primary_10_1242_dev_02649
crossref_primary_10_1016_j_molcel_2010_10_010
crossref_primary_10_1371_journal_pone_0151574
crossref_primary_10_1038_nrm2370
crossref_primary_10_1101_gad_1494707
crossref_primary_10_1016_j_cellsig_2011_09_015
crossref_primary_10_1091_mbc_e11_02_0149
crossref_primary_10_1038_ncomms12434
crossref_primary_10_1074_jbc_M604802200
crossref_primary_10_1016_j_bbagrm_2013_02_003
crossref_primary_10_1128_MCB_00754_10
crossref_primary_10_1093_nar_gkac209
crossref_primary_10_1002_wrna_55
crossref_primary_10_1128_JVI_01665_21
crossref_primary_10_1074_jbc_M111_312652
crossref_primary_10_1038_s41580_021_00417_y
crossref_primary_10_1007_s10549_016_3742_y
crossref_primary_10_1016_j_supmat_2023_100060
crossref_primary_10_7554_eLife_40670
crossref_primary_10_1007_s41061_021_00352_8
crossref_primary_10_14348_molcells_2015_2259
crossref_primary_10_1128_MCB_01445_06
crossref_primary_10_1016_j_molcel_2012_03_006
crossref_primary_10_3389_fgene_2019_00332
crossref_primary_10_1007_s11010_011_0747_z
crossref_primary_10_1371_journal_pgen_1002433
crossref_primary_10_1128_MCB_01102_15
crossref_primary_10_3390_ijms232213673
crossref_primary_10_1016_j_molcel_2007_11_024
crossref_primary_10_1038_nsmb0106_7
crossref_primary_10_1016_j_semcdb_2014_05_018
crossref_primary_10_1038_srep24505
crossref_primary_10_1634_stemcells_2006_0106
crossref_primary_10_1038_nrm2104
crossref_primary_10_1016_j_tibs_2016_12_003
crossref_primary_10_1242_jcs_03429
crossref_primary_10_18632_oncotarget_16706
crossref_primary_10_1016_j_bbamcr_2013_01_024
crossref_primary_10_1038_emboj_2011_320
crossref_primary_10_1016_j_bbagrm_2020_194595
crossref_primary_10_4161_psb_6_5_15105
crossref_primary_10_1016_j_bbrc_2006_06_177
crossref_primary_10_1371_journal_ppat_1004597
crossref_primary_10_1080_15476286_2019_1572437
crossref_primary_10_1074_jbc_M112_356188
crossref_primary_10_1038_s41598_019_50957_9
crossref_primary_10_1242_bio_031575
Cites_doi 10.1016/S0092-8674(00)00214-2
10.1042/BST0300945
10.1074/jbc.271.21.12179
10.1101/gad.1219104
10.1128/MCB.24.10.4522-4533.2004
10.1101/gad.9.4.437
10.1074/jbc.M110395200
10.1101/gad.13.2.188
10.1074/jbc.272.16.10448
10.1038/nsmb724
10.1093/nar/29.1.246
10.1016/S1097-2765(01)00395-1
10.1128/MCB.15.10.5777
10.1016/S1097-2765(03)00349-6
10.1016/S1074-7613(00)80411-2
10.1074/jbc.M310486200
10.1016/S0092-8674(00)80432-8
10.1074/jbc.M110465200
10.1016/S0092-8674(01)00592-X
10.1002/art.10235
10.1093/emboj/17.12.3461
10.1128/MCB.23.11.3798-3812.2003
10.1126/science.1082320
10.1073/pnas.192445599
10.1093/emboj/21.1.165
10.1242/dev.01336
10.1093/emboj/21.6.1414
10.1074/jbc.M001696200
10.1038/sj.emboj.7600163
10.1083/jcb.136.4.761
10.1093/emboj/17.12.3448
10.1128/MCB.21.20.6960-6971.2001
10.1093/nar/gkh282
10.1128/MCB.24.14.6445-6455.2004
10.1074/jbc.M100680200
10.1016/0092-8674(84)90073-4
10.1128/MCB.22.23.8114-8121.2002
10.1093/emboj/cdf444
10.1038/nsmb738
10.1093/emboj/cdf678
10.1038/370578a0
10.1093/emboj/20.5.1134
10.1016/j.molcel.2004.05.002
10.1016/S1016-8478(23)15111-9
10.1038/35067025
10.1016/S0092-8674(01)00578-5
10.1016/S1097-2765(03)00481-7
10.1016/S0968-0004(00)89102-1
10.1083/jcb.200309008
ContentType Journal Article
Copyright Copyright © 2005, Cold Spring Harbor Laboratory Press 2005
Copyright_xml – notice: Copyright © 2005, Cold Spring Harbor Laboratory Press 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1101/gad.1282305
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1549-5477
EndPage 361
ExternalDocumentID PMC546513
15687258
10_1101_gad_1282305
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM066811
– fundername: NIGMS NIH HHS
  grantid: GM066811
GroupedDBID ---
-DZ
-~X
.-4
.55
.GJ
0VX
18M
29H
2WC
39C
4.4
53G
5RE
5VS
85S
AAYXX
ABCQX
ABDIX
ACGFO
ACLKE
ACNCT
ADBBV
ADIYS
ADXHL
AECCQ
AENEX
AETEA
AFFNX
AFOSN
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
H~9
IH2
KQ8
L7B
MV1
MVM
N9A
OK1
P2P
R.V
RCX
RHI
RPM
SJN
TAE
TN5
TR2
UHB
VH1
W8F
WH7
WOQ
X7M
XJT
XSW
YBU
YHG
YKV
YSK
YYP
ZGI
ZXP
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
7TM
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c475t-98edca994f792c60b0c8b82a03e080fae175bd1b080f4ba4f122c00e1470f0113
ISSN 0890-9369
IngestDate Thu Aug 21 17:27:26 EDT 2025
Fri Jul 11 02:40:25 EDT 2025
Fri Jul 11 04:39:40 EDT 2025
Wed Feb 19 01:43:28 EST 2025
Tue Jul 01 04:23:13 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c475t-98edca994f792c60b0c8b82a03e080fae175bd1b080f4ba4f122c00e1470f0113
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Corresponding author.…E-MAIL Jens.Lykke-Andersen@colorado.edu; FAX (303) 492-7744.
Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/gad.1282305.
OpenAccessLink http://genesdev.cshlp.org/content/19/3/351.full.pdf
PMID 15687258
PQID 17803743
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_546513
proquest_miscellaneous_67398474
proquest_miscellaneous_17803743
pubmed_primary_15687258
crossref_citationtrail_10_1101_gad_1282305
crossref_primary_10_1101_gad_1282305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-02-01
2005-Feb-01
20050201
PublicationDateYYYYMMDD 2005-02-01
PublicationDate_xml – month: 02
  year: 2005
  text: 2005-02-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genes & development
PublicationTitleAlternate Genes Dev
PublicationYear 2005
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111607233902000_19.3.351.10
2021111607233902000_19.3.351.11
2021111607233902000_19.3.351.50
2021111607233902000_19.3.351.49
2021111607233902000_19.3.351.45
2021111607233902000_19.3.351.47
2021111607233902000_19.3.351.48
(2021111607233902000_19.3.351.46) 1998; 18
2021111607233902000_19.3.351.41
2021111607233902000_19.3.351.42
2021111607233902000_19.3.351.43
2021111607233902000_19.3.351.44
2021111607233902000_19.3.351.40
2021111607233902000_19.3.351.39
2021111607233902000_19.3.351.34
2021111607233902000_19.3.351.35
2021111607233902000_19.3.351.36
2021111607233902000_19.3.351.37
(2021111607233902000_19.3.351.7) 1995; 15
2021111607233902000_19.3.351.30
(2021111607233902000_19.3.351.38) 2002; 14
2021111607233902000_19.3.351.31
2021111607233902000_19.3.351.32
2021111607233902000_19.3.351.33
2021111607233902000_19.3.351.27
2021111607233902000_19.3.351.28
2021111607233902000_19.3.351.29
2021111607233902000_19.3.351.23
2021111607233902000_19.3.351.24
2021111607233902000_19.3.351.25
2021111607233902000_19.3.351.26
2021111607233902000_19.3.351.3
2021111607233902000_19.3.351.4
2021111607233902000_19.3.351.5
2021111607233902000_19.3.351.6
2021111607233902000_19.3.351.1
2021111607233902000_19.3.351.2
2021111607233902000_19.3.351.20
2021111607233902000_19.3.351.21
2021111607233902000_19.3.351.22
2021111607233902000_19.3.351.8
2021111607233902000_19.3.351.9
2021111607233902000_19.3.351.16
2021111607233902000_19.3.351.17
2021111607233902000_19.3.351.18
2021111607233902000_19.3.351.19
2021111607233902000_19.3.351.12
2021111607233902000_19.3.351.13
2021111607233902000_19.3.351.14
2021111607233902000_19.3.351.15
11741542 - Mol Cell. 2001 Nov;8(5):1075-83
14731398 - Mol Cell. 2004 Jan 16;13(1):101-11
12218187 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12663-8
11719186 - Cell. 2001 Nov 16;107(4):451-64
12748283 - Mol Cell Biol. 2003 Jun;23(11):3798-812
9628881 - EMBO J. 1998 Jun 15;17(12):3461-70
9390555 - Cell. 1997 Nov 14;91(4):457-66
12486012 - EMBO J. 2002 Dec 16;21(24):6915-24
11163187 - Cell. 2000 Dec 22;103(7):1121-31
10751406 - J Biol Chem. 2000 Jun 9;275(23):17827-37
11889047 - EMBO J. 2002 Mar 15;21(6):1414-26
11886850 - J Biol Chem. 2002 May 17;277(20):18029-36
15226444 - Mol Cell Biol. 2004 Jul;24(14):6445-55
12730603 - Science. 2003 May 2;300(5620):805-8
9628880 - EMBO J. 1998 Jun 15;17(12):3448-60
14688255 - J Biol Chem. 2004 Mar 12;279(11):10176-84
11279239 - J Biol Chem. 2001 Jun 22;276(25):23144-54
11564879 - Mol Cell Biol. 2001 Oct;21(20):6960-71
12521293 - Mol Cells. 2002 Dec 31;14(3):323-31
15175153 - Mol Cell. 2004 Jun 4;14(5):571-83
9925643 - Genes Dev. 1999 Jan 15;13(2):188-201
11230136 - EMBO J. 2001 Mar 1;20(5):1134-43
9099687 - J Biol Chem. 1997 Apr 18;272(16):10448-56
14976220 - Nucleic Acids Res. 2004;32(4):1279-88
14749774 - Nat Struct Mol Biol. 2004 Feb;11(2):121-7
15342461 - Development. 2004 Oct;131(19):4883-93
14981510 - Nat Struct Mol Biol. 2004 Mar;11(3):257-64
7565731 - Mol Cell Biol. 1995 Oct;15(10):5777-88
11283721 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):237-46
7883168 - Genes Dev. 1995 Feb 15;9(4):437-54
8630730 - Immunity. 1996 May;4(5):445-54
15314026 - Genes Dev. 2004 Aug 15;18(16):2010-23
9049243 - J Cell Biol. 1997 Feb 24;136(4):761-73
8647811 - J Biol Chem. 1996 May 24;271(21):12179-84
12440952 - Biochem Soc Trans. 2002 Nov;30(Pt 6):945-52
9819439 - Mol Cell Biol. 1998 Dec;18(12):7537-45
12198173 - EMBO J. 2002 Sep 2;21(17):4709-18
15014438 - EMBO J. 2004 Mar 24;23(6):1313-24
11782436 - EMBO J. 2002 Jan 15;21(1-2):165-74
11125104 - Nucleic Acids Res. 2001 Jan 1;29(1):246-54
15121869 - Mol Cell Biol. 2004 May;24(10):4522-33
11747811 - Cell. 2001 Dec 14;107(6):751-62
6607118 - Cell. 1984 Jan;36(1):51-60
8578590 - Trends Biochem Sci. 1995 Nov;20(11):465-70
8052314 - Nature. 1994 Aug 18;370(6490):578-81
14527413 - Mol Cell. 2003 Sep;12(3):675-87
15067023 - J Cell Biol. 2004 Apr12;165(1):31-40
12417715 - Mol Cell Biol. 2002 Dec;22(23):8114-21
12115244 - Arthritis Rheum. 2002 May;46(5):1362-70
11782475 - J Biol Chem. 2002 Mar 15;277(11):9606-13
References_xml – ident: 2021111607233902000_19.3.351.28
  doi: 10.1016/S0092-8674(00)00214-2
– ident: 2021111607233902000_19.3.351.3
  doi: 10.1042/BST0300945
– ident: 2021111607233902000_19.3.351.13
  doi: 10.1074/jbc.271.21.12179
– ident: 2021111607233902000_19.3.351.5
  doi: 10.1101/gad.1219104
– ident: 2021111607233902000_19.3.351.11
  doi: 10.1128/MCB.24.10.4522-4533.2004
– ident: 2021111607233902000_19.3.351.18
  doi: 10.1101/gad.9.4.437
– ident: 2021111607233902000_19.3.351.24
  doi: 10.1074/jbc.M110395200
– ident: 2021111607233902000_19.3.351.15
  doi: 10.1101/gad.13.2.188
– ident: 2021111607233902000_19.3.351.21
  doi: 10.1074/jbc.272.16.10448
– ident: 2021111607233902000_19.3.351.33
  doi: 10.1038/nsmb724
– ident: 2021111607233902000_19.3.351.1
  doi: 10.1093/nar/29.1.246
– ident: 2021111607233902000_19.3.351.43
  doi: 10.1016/S1097-2765(01)00395-1
– volume: 15
  start-page: 5777
  year: 1995
  ident: 2021111607233902000_19.3.351.7
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.10.5777
– ident: 2021111607233902000_19.3.351.26
  doi: 10.1016/S1097-2765(03)00349-6
– volume: 18
  start-page: 7537
  year: 1998
  ident: 2021111607233902000_19.3.351.46
  publication-title: Xenopus
– ident: 2021111607233902000_19.3.351.42
  doi: 10.1016/S1074-7613(00)80411-2
– ident: 2021111607233902000_19.3.351.10
  doi: 10.1074/jbc.M310486200
– ident: 2021111607233902000_19.3.351.30
  doi: 10.1016/S0092-8674(00)80432-8
– ident: 2021111607233902000_19.3.351.20
  doi: 10.1074/jbc.M110465200
– ident: 2021111607233902000_19.3.351.47
  doi: 10.1016/S0092-8674(01)00592-X
– ident: 2021111607233902000_19.3.351.4
  doi: 10.1002/art.10235
– ident: 2021111607233902000_19.3.351.34
  doi: 10.1093/emboj/17.12.3461
– ident: 2021111607233902000_19.3.351.25
  doi: 10.1128/MCB.23.11.3798-3812.2003
– ident: 2021111607233902000_19.3.351.37
  doi: 10.1126/science.1082320
– ident: 2021111607233902000_19.3.351.48
  doi: 10.1073/pnas.192445599
– ident: 2021111607233902000_19.3.351.32
  doi: 10.1093/emboj/21.1.165
– ident: 2021111607233902000_19.3.351.36
  doi: 10.1242/dev.01336
– ident: 2021111607233902000_19.3.351.9
  doi: 10.1093/emboj/21.6.1414
– ident: 2021111607233902000_19.3.351.23
  doi: 10.1074/jbc.M001696200
– ident: 2021111607233902000_19.3.351.40
  doi: 10.1038/sj.emboj.7600163
– ident: 2021111607233902000_19.3.351.2
  doi: 10.1083/jcb.136.4.761
– ident: 2021111607233902000_19.3.351.14
  doi: 10.1093/emboj/17.12.3448
– ident: 2021111607233902000_19.3.351.50
  doi: 10.1128/MCB.21.20.6960-6971.2001
– ident: 2021111607233902000_19.3.351.35
  doi: 10.1093/nar/gkh282
– ident: 2021111607233902000_19.3.351.41
  doi: 10.1128/MCB.24.14.6445-6455.2004
– ident: 2021111607233902000_19.3.351.22
  doi: 10.1074/jbc.M100680200
– ident: 2021111607233902000_19.3.351.29
  doi: 10.1016/0092-8674(84)90073-4
– ident: 2021111607233902000_19.3.351.27
  doi: 10.1128/MCB.22.23.8114-8121.2002
– ident: 2021111607233902000_19.3.351.39
  doi: 10.1093/emboj/cdf444
– ident: 2021111607233902000_19.3.351.19
  doi: 10.1038/nsmb738
– ident: 2021111607233902000_19.3.351.45
  doi: 10.1093/emboj/cdf678
– ident: 2021111607233902000_19.3.351.31
  doi: 10.1038/370578a0
– ident: 2021111607233902000_19.3.351.16
  doi: 10.1093/emboj/20.5.1134
– ident: 2021111607233902000_19.3.351.17
  doi: 10.1016/j.molcel.2004.05.002
– volume: 14
  start-page: 323
  year: 2002
  ident: 2021111607233902000_19.3.351.38
  publication-title: Mol. Cell
  doi: 10.1016/S1016-8478(23)15111-9
– ident: 2021111607233902000_19.3.351.49
  doi: 10.1038/35067025
– ident: 2021111607233902000_19.3.351.8
  doi: 10.1016/S0092-8674(01)00578-5
– ident: 2021111607233902000_19.3.351.44
  doi: 10.1016/S1097-2765(03)00481-7
– ident: 2021111607233902000_19.3.351.6
  doi: 10.1016/S0968-0004(00)89102-1
– ident: 2021111607233902000_19.3.351.12
  doi: 10.1083/jcb.200309008
– reference: 11279239 - J Biol Chem. 2001 Jun 22;276(25):23144-54
– reference: 15175153 - Mol Cell. 2004 Jun 4;14(5):571-83
– reference: 12486012 - EMBO J. 2002 Dec 16;21(24):6915-24
– reference: 11747811 - Cell. 2001 Dec 14;107(6):751-62
– reference: 9628880 - EMBO J. 1998 Jun 15;17(12):3448-60
– reference: 9925643 - Genes Dev. 1999 Jan 15;13(2):188-201
– reference: 11230136 - EMBO J. 2001 Mar 1;20(5):1134-43
– reference: 15342461 - Development. 2004 Oct;131(19):4883-93
– reference: 8647811 - J Biol Chem. 1996 May 24;271(21):12179-84
– reference: 7565731 - Mol Cell Biol. 1995 Oct;15(10):5777-88
– reference: 7883168 - Genes Dev. 1995 Feb 15;9(4):437-54
– reference: 8052314 - Nature. 1994 Aug 18;370(6490):578-81
– reference: 14976220 - Nucleic Acids Res. 2004;32(4):1279-88
– reference: 11719186 - Cell. 2001 Nov 16;107(4):451-64
– reference: 15314026 - Genes Dev. 2004 Aug 15;18(16):2010-23
– reference: 11782436 - EMBO J. 2002 Jan 15;21(1-2):165-74
– reference: 9819439 - Mol Cell Biol. 1998 Dec;18(12):7537-45
– reference: 9099687 - J Biol Chem. 1997 Apr 18;272(16):10448-56
– reference: 11886850 - J Biol Chem. 2002 May 17;277(20):18029-36
– reference: 15067023 - J Cell Biol. 2004 Apr12;165(1):31-40
– reference: 12521293 - Mol Cells. 2002 Dec 31;14(3):323-31
– reference: 9390555 - Cell. 1997 Nov 14;91(4):457-66
– reference: 9628881 - EMBO J. 1998 Jun 15;17(12):3461-70
– reference: 11782475 - J Biol Chem. 2002 Mar 15;277(11):9606-13
– reference: 11741542 - Mol Cell. 2001 Nov;8(5):1075-83
– reference: 15121869 - Mol Cell Biol. 2004 May;24(10):4522-33
– reference: 11564879 - Mol Cell Biol. 2001 Oct;21(20):6960-71
– reference: 11889047 - EMBO J. 2002 Mar 15;21(6):1414-26
– reference: 10751406 - J Biol Chem. 2000 Jun 9;275(23):17827-37
– reference: 11283721 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):237-46
– reference: 8578590 - Trends Biochem Sci. 1995 Nov;20(11):465-70
– reference: 12748283 - Mol Cell Biol. 2003 Jun;23(11):3798-812
– reference: 14981510 - Nat Struct Mol Biol. 2004 Mar;11(3):257-64
– reference: 8630730 - Immunity. 1996 May;4(5):445-54
– reference: 14731398 - Mol Cell. 2004 Jan 16;13(1):101-11
– reference: 11163187 - Cell. 2000 Dec 22;103(7):1121-31
– reference: 15226444 - Mol Cell Biol. 2004 Jul;24(14):6445-55
– reference: 12417715 - Mol Cell Biol. 2002 Dec;22(23):8114-21
– reference: 12730603 - Science. 2003 May 2;300(5620):805-8
– reference: 12115244 - Arthritis Rheum. 2002 May;46(5):1362-70
– reference: 14688255 - J Biol Chem. 2004 Mar 12;279(11):10176-84
– reference: 9049243 - J Cell Biol. 1997 Feb 24;136(4):761-73
– reference: 14527413 - Mol Cell. 2003 Sep;12(3):675-87
– reference: 15014438 - EMBO J. 2004 Mar 24;23(6):1313-24
– reference: 11125104 - Nucleic Acids Res. 2001 Jan 1;29(1):246-54
– reference: 6607118 - Cell. 1984 Jan;36(1):51-60
– reference: 12440952 - Biochem Soc Trans. 2002 Nov;30(Pt 6):945-52
– reference: 14749774 - Nat Struct Mol Biol. 2004 Feb;11(2):121-7
– reference: 12198173 - EMBO J. 2002 Sep 2;21(17):4709-18
– reference: 12218187 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12663-8
SSID ssj0006066
Score 2.362151
Snippet In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 351
SubjectTerms Butyrate Response Factor 1
DNA-Binding Proteins - metabolism
Endoribonucleases - metabolism
Humans
Immediate-Early Proteins - metabolism
Protein Structure, Tertiary
Research Papers
Ribonucleases - metabolism
RNA, Messenger - metabolism
TATA-Binding Protein Associated Factors - metabolism
Tristetraprolin
Title Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1
URI https://www.ncbi.nlm.nih.gov/pubmed/15687258
https://www.proquest.com/docview/17803743
https://www.proquest.com/docview/67398474
https://pubmed.ncbi.nlm.nih.gov/PMC546513
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZgEBIXxD5l9WFOVB6yOsmxoFYDDAVVqegtshNniIZJEG1BGf487znOUmYQyyVq0xe76vfF_l7zFkIOolAFjuIRCwVXDPStZNLOBAo5R8gAFS7mO7-b86Ol92blr9pu9ia7ZCMP0_NL80r-B1U4B7hiluw_INsNCifgNeALR0AYjn-FMWq-bdHHiWOSwrdOA54t5pNxplJRj1V5XmNVJtSa36vxZDFlOmUE5WZjMbg0q85E0cSXN3lUFXbEXI_j-IOe5eVixuyhqMXS1WvNoawPQeoiferTU8UmOofGJIKoshPyH8VJm3FTYFDHzp8Qfhu33K9VkcWwN-DOwhoNCOQOVkm3qTF7cfXWXQNORHYIuyb4Rn6_SbUP5ufvk9ny-DiJp6v4KrnmIKdQCr9-2-2_6JJp38F8JZOVCYO_GAy9q0MuOBe_xsgOREd8i9w03gKdNNDfJldUeYdcb_qH1nfJjwEBKEBDexRplVMkANXwUkMAKmsKBKBDAhiLwaWGALQoKRCAtgSgQAA9iybAPbKcTeNXR8x002CpF_gbBndllooo8vIgclJuSSsNZegIy1XgNeRCgZCUmS3xjSeFl9uOk1qWsr3AymEXcO-TvbIq1T6hfugGLs9taacKNgAuhModP1Mg_iNhKT4iz9vfNklNqXnsePI50S6nZScARGKAGJGDzvhLU2HlcrNnLUgJrID4WEuUqtquEzsIsYiS-3sLHrgRqDBvRB40oPYT-TwMHD8cEb4Dd2eA1dd3PymLT7oKu-9x33Yf_nHSR-RGf8c8Jnubr1v1BITsRj7VvP0JQoSifg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recruitment+and+activation+of+mRNA+decay+enzymes+by+two+ARE-mediated+decay+activation+domains+in+the+proteins+TTP+and+BRF-1&rft.jtitle=Genes+%26+development&rft.au=Lykke-Andersen%2C+Jens&rft.au=Wagner%2C+Eileen&rft.date=2005-02-01&rft.issn=0890-9369&rft.volume=19&rft.issue=3&rft.spage=351&rft_id=info:doi/10.1101%2Fgad.1282305&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon