CAR T cells equipped with a fully human scFv targeting Trop2 can be used to treat pancreatic cancer

Purpose Chimeric antigen receptor (CAR) T cell therapy has demonstrated clinical success in treating haematologic malignancies but has not been effective against solid tumours thus far. Trop2 is a tumour-related antigen broadly overexpressed on a variety of tumours and has been reported as a promisi...

Full description

Saved in:
Bibliographic Details
Published inJournal of cancer research and clinical oncology Vol. 148; no. 9; pp. 2261 - 2274
Main Authors Zhu, Hongjia, Fang, Xiaoyan, Tuhin, Israth Jahan, Tan, Jingwen, Ye, Jing, Jia, Yujie, Xu, Nan, Kang, Liqing, Li, Minghao, Lou, XiaoYan, Zhou, Jing-e, Wang, Yiting, Yan, Zhiqiang, Yu, Lei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose Chimeric antigen receptor (CAR) T cell therapy has demonstrated clinical success in treating haematologic malignancies but has not been effective against solid tumours thus far. Trop2 is a tumour-related antigen broadly overexpressed on a variety of tumours and has been reported as a promising target for pancreatic cancers. Our study aimed to determine whether CAR T cells designed with a fully human Trop2-specific single-chain fragment variable (scFv) can be used in the treatment of Trop2-positive pancreatic tumours. Methods We designed Trop2-targeted chimeric antigen receptor engineered T cells with a novel human anti-Trop2 scFv (2F11) and then investigated the cytotoxicity, degranulation, and cytokine secretion profiles of the anti-Trop2 CAR T cells when they were exposed to Trop2 + cancer cells in vitro. We also studied the antitumour efficacy and toxicity of Trop2-specific CAR T cells in vivo using a BxPC-3 pancreatic xenograft model. Results Trop2-targeted CAR T cells designed with 2F11 effectively killed Trop2-positive pancreatic cancer cells and produced high levels of cytotoxic cytokines in vitro. In addition, Trop2-targeted CAR T cells, which persistently circulate in vivo and efficiently infiltrate into tumour tissues, significantly blocked and even eliminated BxPC-3 pancreatic xenograft tumour growth without obvious deleterious effects observed after intravenous injection into NSG mice. Moreover, disease-free survival was efficiently prolonged. Conclusion These results show that Trop2-targeted CAR T cells equipped with a fully human anti-Trop2 scFv could be a potential treatment strategy for pancreatic cancer and could be useful for clinical evaluation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0171-5216
1432-1335
1432-1335
DOI:10.1007/s00432-022-04017-x