IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission

Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mi...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 7
Main Authors Klinkhammer, Jonas, Schnepf, Daniel, Ye, Liang, Schwaderlapp, Marilena, Gad, Hans Henrik, Hartmann, Rune, Garcin, Dominique, Mahlakõiv, Tanel, Staeheli, Peter
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 13.04.2018
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text
ISSN2050-084X
2050-084X
DOI10.7554/eLife.33354

Cover

Loading…
Abstract Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1−/−) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1−/− mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts. Influenza (‘the flu’) and other respiratory viruses make millions of people ill every year, placing a large burden on the healthcare system and the economy. Unfortunately, few options for preventing or treating these infections currently exist. The flu virus spreads from infected individuals, enters a new host through the nose and establishes an infection in the upper airways. If the infection stays restricted to this region of the respiratory tract – which consists of the nasal cavity, sinuses, throat and larynx – it causes a rather mild disease. However, if it spreads to the lungs it can cause potentially life-threatening viral pneumonia. Epithelial cells line the upper respiratory tract, forming a physical border between the outside world and the human body. These cells are therefore the first to face the incoming virus. In response, the epithelial cells release messenger molecules termed interferons that warn nearby cells to increase their antiviral defenses. There are several subtypes of interferons, such as IFN-α, IFN-β and IFN-λ, but it was not known how each subtype helps to combat respiratory viruses. To investigate, Klinkhammer, Schnepf et al. exposed mice to flu viruses in a way that mimicked how an infection would naturally start in the upper airways in humans. Some of the mice were genetically engineered so that they could not respond to either IFN-α/β or IFN-λ. The virus spread most effectively from the nasal cavity to the lungs in mice whose IFN-λ system was defective. Infections in mice that lacked IFN-λ were also more likely to spread to other individuals. Furthermore, treating mice with IFN-λ, but not IFN-α, gave their upper respiratory tract long-lasting protection against flu infections and prevented the spread of the virus. IFN-λ therefore has a specific and significant role in protecting the upper airways against viruses, and could potentially be used as a drug to block the spread of infections between humans. Currently, IFN-λ is in clinical trials as a potential treatment for hepatitis D. To repurpose it for upper respiratory tract infections, its effectiveness against specific respiratory viruses will first have to be evaluated.
AbstractList Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors ( ) no longer restricted virus dissemination from the upper airways to the lungs. mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts.
Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1−/−) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1−/− mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts.
Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors ( Ifnlr1 −/− ) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1 −/− mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts. Influenza (‘the flu’) and other respiratory viruses make millions of people ill every year, placing a large burden on the healthcare system and the economy. Unfortunately, few options for preventing or treating these infections currently exist. The flu virus spreads from infected individuals, enters a new host through the nose and establishes an infection in the upper airways. If the infection stays restricted to this region of the respiratory tract – which consists of the nasal cavity, sinuses, throat and larynx – it causes a rather mild disease. However, if it spreads to the lungs it can cause potentially life-threatening viral pneumonia. Epithelial cells line the upper respiratory tract, forming a physical border between the outside world and the human body. These cells are therefore the first to face the incoming virus. In response, the epithelial cells release messenger molecules termed interferons that warn nearby cells to increase their antiviral defenses. There are several subtypes of interferons, such as IFN-α, IFN-β and IFN-λ, but it was not known how each subtype helps to combat respiratory viruses. To investigate, Klinkhammer, Schnepf et al. exposed mice to flu viruses in a way that mimicked how an infection would naturally start in the upper airways in humans. Some of the mice were genetically engineered so that they could not respond to either IFN-α/β or IFN-λ. The virus spread most effectively from the nasal cavity to the lungs in mice whose IFN-λ system was defective. Infections in mice that lacked IFN-λ were also more likely to spread to other individuals. Furthermore, treating mice with IFN-λ, but not IFN-α, gave their upper respiratory tract long-lasting protection against flu infections and prevented the spread of the virus. IFN-λ therefore has a specific and significant role in protecting the upper airways against viruses, and could potentially be used as a drug to block the spread of infections between humans. Currently, IFN-λ is in clinical trials as a potential treatment for hepatitis D. To repurpose it for upper respiratory tract infections, its effectiveness against specific respiratory viruses will first have to be evaluated.
Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1-/-) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1-/- mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts.Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1-/-) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1-/- mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts.
Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1−/−) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1−/− mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts. Influenza (‘the flu’) and other respiratory viruses make millions of people ill every year, placing a large burden on the healthcare system and the economy. Unfortunately, few options for preventing or treating these infections currently exist. The flu virus spreads from infected individuals, enters a new host through the nose and establishes an infection in the upper airways. If the infection stays restricted to this region of the respiratory tract – which consists of the nasal cavity, sinuses, throat and larynx – it causes a rather mild disease. However, if it spreads to the lungs it can cause potentially life-threatening viral pneumonia. Epithelial cells line the upper respiratory tract, forming a physical border between the outside world and the human body. These cells are therefore the first to face the incoming virus. In response, the epithelial cells release messenger molecules termed interferons that warn nearby cells to increase their antiviral defenses. There are several subtypes of interferons, such as IFN-α, IFN-β and IFN-λ, but it was not known how each subtype helps to combat respiratory viruses. To investigate, Klinkhammer, Schnepf et al. exposed mice to flu viruses in a way that mimicked how an infection would naturally start in the upper airways in humans. Some of the mice were genetically engineered so that they could not respond to either IFN-α/β or IFN-λ. The virus spread most effectively from the nasal cavity to the lungs in mice whose IFN-λ system was defective. Infections in mice that lacked IFN-λ were also more likely to spread to other individuals. Furthermore, treating mice with IFN-λ, but not IFN-α, gave their upper respiratory tract long-lasting protection against flu infections and prevented the spread of the virus. IFN-λ therefore has a specific and significant role in protecting the upper airways against viruses, and could potentially be used as a drug to block the spread of infections between humans. Currently, IFN-λ is in clinical trials as a potential treatment for hepatitis D. To repurpose it for upper respiratory tract infections, its effectiveness against specific respiratory viruses will first have to be evaluated.
Author Klinkhammer, Jonas
Ye, Liang
Schwaderlapp, Marilena
Garcin, Dominique
Staeheli, Peter
Gad, Hans Henrik
Hartmann, Rune
Mahlakõiv, Tanel
Schnepf, Daniel
Author_xml – sequence: 1
  givenname: Jonas
  surname: Klinkhammer
  fullname: Klinkhammer, Jonas
  organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany, MOTI-VATE Graduate School, Medical Center, University of Freiburg, Freiburg, Germany
– sequence: 2
  givenname: Daniel
  surname: Schnepf
  fullname: Schnepf, Daniel
  organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany, Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany
– sequence: 3
  givenname: Liang
  surname: Ye
  fullname: Ye, Liang
  organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
– sequence: 4
  givenname: Marilena
  surname: Schwaderlapp
  fullname: Schwaderlapp, Marilena
  organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
– sequence: 5
  givenname: Hans Henrik
  orcidid: 0000-0001-8449-1115
  surname: Gad
  fullname: Gad, Hans Henrik
  organization: Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
– sequence: 6
  givenname: Rune
  surname: Hartmann
  fullname: Hartmann, Rune
  organization: Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
– sequence: 7
  givenname: Dominique
  orcidid: 0000-0003-1556-897X
  surname: Garcin
  fullname: Garcin, Dominique
  organization: Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
– sequence: 8
  givenname: Tanel
  surname: Mahlakõiv
  fullname: Mahlakõiv, Tanel
  organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
– sequence: 9
  givenname: Peter
  orcidid: 0000-0001-7057-6177
  surname: Staeheli
  fullname: Staeheli, Peter
  organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany, Faculty of Medicine, University of Freiburg, Freiburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29651984$$D View this record in MEDLINE/PubMed
BookMark eNptkt1qFDEUx4NUbK298l4C3giyNZlJMsmNIMXqwqI3Ct6F03zsZplJxmRmpb6a7-AzGXdraYu5OeGc3_lzvp6io5iiQ-g5Jecd5-yNWwXvztu25ewROmkIJwsi2bejO_9jdFbKltTXMSmpeoKOGyU4VZKdoM3y8tPi9y88ZrdzcSo4RN_PLv4EvAt5LrjUCFjscxrwtHF4HkeXMYT8A64LntLe2c9xXTBEi_swhKpyyJ0yxDKEUkKKz9BjD31xZzf2FH29fP_l4uNi9fnD8uLdamFYx6eF4kwQLh03XoEiglkKUopGgmJeWMusE742ToFV1DtBPW-l9RQMrbBrT9HyoGsTbPWYwwD5WicIeu9Iea0hT8H0TnPZGNV01hBDmKdWUQGdFx0TVwwMs1Xr7UFrnK8GZ00dUIb-nuj9SAwbvU47zRWvC2mqwKsbgZy-z65Muk7DuL6H6NJcdEMa3lIqO1LRlw_QbZpzrKOqFOtqs4zwSr24W9FtKf8WWoHXB8DkVEp2_hahRP-9GL2_GL2_mErTB7QJE0x1XbWd0P835w971cYw
CitedBy_id crossref_primary_10_1002_vms3_933
crossref_primary_10_1016_j_chom_2020_05_008
crossref_primary_10_3389_fimmu_2023_1250541
crossref_primary_10_1128_aac_00009_22
crossref_primary_10_1128_JVI_00559_19
crossref_primary_10_34019_1982_8047_2020_v46_32241
crossref_primary_10_3389_fimmu_2020_00003
crossref_primary_10_1038_s41579_021_00542_7
crossref_primary_10_1038_s41590_019_0345_x
crossref_primary_10_1186_s12931_019_1225_5
crossref_primary_10_1016_j_immuni_2024_06_005
crossref_primary_10_1128_CMR_00103_20
crossref_primary_10_1016_j_dsx_2020_07_030
crossref_primary_10_1016_j_bjid_2020_07_011
crossref_primary_10_1128_jvi_01341_22
crossref_primary_10_1186_s13567_020_00793_x
crossref_primary_10_1016_j_tig_2020_08_017
crossref_primary_10_3390_ijms22094726
crossref_primary_10_14260_jemds_2020_418
crossref_primary_10_1007_s00439_019_02092_8
crossref_primary_10_1038_s41577_019_0182_z
crossref_primary_10_1016_j_jbc_2022_102698
crossref_primary_10_1128_jvi_01604_23
crossref_primary_10_1093_cid_ciac447
crossref_primary_10_1126_sciimmunol_abd5318
crossref_primary_10_3390_microorganisms11092179
crossref_primary_10_1038_s42003_021_01745_7
crossref_primary_10_1128_mBio_01928_20
crossref_primary_10_1371_journal_ppat_1009229
crossref_primary_10_1016_j_immuni_2021_03_010
crossref_primary_10_1111_imcb_12284
crossref_primary_10_3390_biology9090280
crossref_primary_10_1038_s41420_020_00375_y
crossref_primary_10_1038_s41598_022_09544_8
crossref_primary_10_1016_j_immuni_2019_03_025
crossref_primary_10_1073_pnas_2402540121
crossref_primary_10_1038_s41435_021_00127_7
crossref_primary_10_1089_jir_2020_0187
crossref_primary_10_1134_S1990747823060077
crossref_primary_10_3390_cells11244041
crossref_primary_10_1016_j_gene_2023_147252
crossref_primary_10_1016_j_imbio_2022_152192
crossref_primary_10_3390_cells11192986
crossref_primary_10_1016_j_coi_2024_102430
crossref_primary_10_1016_j_coi_2018_10_007
crossref_primary_10_1016_j_virusres_2023_199284
crossref_primary_10_1016_j_ejps_2024_106974
crossref_primary_10_1016_j_biopha_2020_111008
crossref_primary_10_1016_j_celrep_2019_05_105
crossref_primary_10_1089_jir_2019_0265
crossref_primary_10_3389_fimmu_2021_697162
crossref_primary_10_1002_jmv_29605
crossref_primary_10_36233_0507_4088_271
crossref_primary_10_1073_pnas_2319566121
crossref_primary_10_1016_j_jaci_2023_07_018
crossref_primary_10_1038_s41584_021_00606_1
crossref_primary_10_1016_j_immuni_2022_04_013
crossref_primary_10_1073_pnas_2105170118
crossref_primary_10_3389_fimmu_2023_1161160
crossref_primary_10_3389_fmicb_2018_02685
crossref_primary_10_3390_v14010164
crossref_primary_10_1007_s10238_023_01083_4
crossref_primary_10_3390_ijms23052873
crossref_primary_10_1038_s41564_019_0421_x
crossref_primary_10_1016_j_jconrel_2023_05_029
crossref_primary_10_3389_fimmu_2020_624415
crossref_primary_10_1016_j_antiviral_2018_08_017
crossref_primary_10_3389_fimmu_2021_718380
crossref_primary_10_1038_s41541_024_00973_2
crossref_primary_10_3389_fphar_2023_1111329
crossref_primary_10_1016_j_cell_2020_06_011
crossref_primary_10_1038_s41385_020_00355_6
crossref_primary_10_1084_jem_20212427
crossref_primary_10_1128_JVI_01262_19
crossref_primary_10_1073_pnas_2218083120
crossref_primary_10_1089_jir_2018_0046
crossref_primary_10_1183_16000617_0266_2023
crossref_primary_10_1186_s13054_019_2566_7
crossref_primary_10_4049_immunohorizons_2200010
crossref_primary_10_1128_AAC_00301_20
crossref_primary_10_2478_inmed_2020_0109
crossref_primary_10_1016_j_smim_2019_101303
crossref_primary_10_1128_mbio_00550_24
crossref_primary_10_1371_journal_ppat_1012727
crossref_primary_10_1016_j_pulmoe_2021_03_008
crossref_primary_10_1111_jgh_16178
crossref_primary_10_31857_S0233475523060087
crossref_primary_10_1002_mco2_154
crossref_primary_10_2478_inmed_2020_0133
crossref_primary_10_1016_j_ijantimicag_2025_107491
crossref_primary_10_1128_mBio_02540_20
crossref_primary_10_1159_000508379
crossref_primary_10_1089_jir_2019_0048
crossref_primary_10_1016_j_antiviral_2025_106138
crossref_primary_10_1089_jir_2019_0040
crossref_primary_10_3389_fimmu_2018_01946
crossref_primary_10_1089_vim_2020_0076
crossref_primary_10_1128_JVI_01073_19
crossref_primary_10_1183_13993003_01826_2019
crossref_primary_10_1128_jvi_01705_21
crossref_primary_10_1016_j_coi_2023_102400
crossref_primary_10_3389_fimmu_2022_1016982
crossref_primary_10_1016_j_virs_2025_03_001
crossref_primary_10_3389_fcimb_2023_1222805
crossref_primary_10_1084_jem_20220621
crossref_primary_10_1128_mbio_02850_22
crossref_primary_10_1089_jir_2019_0036
crossref_primary_10_1371_journal_ppat_1008974
crossref_primary_10_3389_fimmu_2020_608645
crossref_primary_10_3390_v13102090
crossref_primary_10_1128_JVI_01091_20
crossref_primary_10_1146_annurev_immunol_101921_050835
crossref_primary_10_3390_ijms251910530
crossref_primary_10_1128_mBio_02359_18
crossref_primary_10_1007_s00109_021_02072_4
crossref_primary_10_1038_s41423_023_01119_5
crossref_primary_10_3390_v11080757
crossref_primary_10_1084_jem_20190295
crossref_primary_10_3390_pathogens9120989
crossref_primary_10_1128_JVI_01720_19
crossref_primary_10_1002_iub_2380
crossref_primary_10_1016_j_gene_2019_144289
crossref_primary_10_15252_emmm_202114122
crossref_primary_10_3389_fimmu_2018_02060
crossref_primary_10_1080_08820139_2019_1642914
crossref_primary_10_1084_jem_20181621
crossref_primary_10_1186_s13099_023_00578_5
crossref_primary_10_1128_jvi_01413_24
crossref_primary_10_3390_ph16010130
crossref_primary_10_1371_journal_ppat_1007360
crossref_primary_10_1093_cid_ciaa453
crossref_primary_10_1101_cshperspect_a038398
crossref_primary_10_3390_v13030522
crossref_primary_10_1016_j_immuni_2020_07_024
crossref_primary_10_1089_jir_2023_0039
crossref_primary_10_3389_fimmu_2020_570993
crossref_primary_10_3389_fimmu_2022_872958
crossref_primary_10_1016_j_biopha_2021_111642
crossref_primary_10_1128_jvi_01680_23
crossref_primary_10_1128_mBio_03341_19
crossref_primary_10_1007_s10753_022_01736_8
crossref_primary_10_1016_j_celrep_2019_11_021
crossref_primary_10_3389_fimmu_2021_731807
crossref_primary_10_1126_scisignal_adf5494
crossref_primary_10_3390_vaccines11020480
crossref_primary_10_1038_s42003_022_04013_4
crossref_primary_10_3389_fimmu_2021_749325
crossref_primary_10_1080_21505594_2020_1768329
crossref_primary_10_7861_clinmed_2020_0239
crossref_primary_10_1084_jem_20200653
crossref_primary_10_3389_fgene_2021_709388
crossref_primary_10_1016_j_antiviral_2024_106063
crossref_primary_10_1128_mbio_02203_23
crossref_primary_10_1016_j_virusres_2021_198342
crossref_primary_10_1007_s00592_020_01522_8
crossref_primary_10_1371_journal_ppat_1012498
crossref_primary_10_1080_14728214_2022_2149734
crossref_primary_10_1080_14712598_2023_2211709
crossref_primary_10_1371_journal_ppat_1008155
crossref_primary_10_1101_cshperspect_a038422
crossref_primary_10_3389_fimmu_2021_735576
crossref_primary_10_3390_jcm13133987
crossref_primary_10_1016_j_bj_2018_08_004
crossref_primary_10_1038_s41577_024_01029_1
crossref_primary_10_3389_fimmu_2020_574027
crossref_primary_10_3390_v14061247
crossref_primary_10_1016_j_micpath_2019_103919
crossref_primary_10_1042_CS20181009
crossref_primary_10_1038_s41590_019_0408_z
crossref_primary_10_1128_jvi_00493_23
crossref_primary_10_1016_j_mehy_2020_110351
crossref_primary_10_1007_s00253_019_10090_z
crossref_primary_10_1128_JVI_00985_20
crossref_primary_10_1038_s41385_022_00576_x
crossref_primary_10_1016_j_jtbi_2019_110026
crossref_primary_10_1165_rcmb_2018_0247TR
crossref_primary_10_7554_eLife_37552
crossref_primary_10_1128_JVI_00999_19
crossref_primary_10_3389_fimmu_2021_750279
crossref_primary_10_1038_s41577_023_00972_9
Cites_doi 10.1016/j.tim.2014.12.003
10.1084/jem.20140995
10.1080/20786204.2008.10873685
10.1038/ni875
10.1128/JVI.62.7.2386-2393.1988
10.15252/emmm.201606413
10.1002/hep.24189
10.1371/journal.ppat.1000017
10.1089/jir.2010.0061
10.1128/JVI.02079-16
10.1128/JVI.00624-17
10.1089/jir.2012.0117
10.1146/annurev-med-050715-104506
10.1016/j.vaccine.2015.08.049
10.1016/j.jhep.2014.07.022
10.1016/j.immuni.2015.07.001
10.1126/sciimmunol.aan5357
10.1371/journal.pone.0022200
10.1128/JVI.00272-10
10.1038/gene.2008.87
10.1126/science.1258025
10.1128/JVI.69.11.6825-6832.1995
10.1128/JVI.01300-07
10.1016/j.coviro.2015.06.002
10.1371/journal.ppat.1004782
10.1038/ni.3212
10.1371/journal.ppat.1005600
10.1038/ncomms4864
10.1371/journal.ppat.1000151
10.1099/0022-1317-68-3-945
10.1126/science.1258100
10.1089/jir.2014.0227
10.1128/JVI.00859-12
10.1016/j.it.2015.02.002
10.1038/ni.3821
10.1084/jem.20101664
10.1371/journal.ppat.1003773
10.1073/pnas.1100552108
10.1016/j.immuni.2017.04.025
10.1016/j.coviro.2016.11.006
10.1038/ni873
ContentType Journal Article
Copyright 2018, Klinkhammer et al.
2018, Klinkhammer et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018, Klinkhammer et al 2018 Klinkhammer et al
Copyright_xml – notice: 2018, Klinkhammer et al.
– notice: 2018, Klinkhammer et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018, Klinkhammer et al 2018 Klinkhammer et al
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.33354
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_582c927dc0c04f1d916a7f6746b4ac4d
PMC5953542
29651984
10_7554_eLife_33354
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Denmark
United States--US
Freiburg Germany
Aarhus Denmark
Germany
GeographicLocations_xml – name: Aarhus Denmark
– name: Denmark
– name: Germany
– name: Freiburg Germany
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: STA 338/15–1
– fundername: ;
  grantid: 11‐107588
– fundername: ;
  grantid: UniVacFlu
– fundername: ;
  grantid: NNF15OC0017902
– fundername: ;
  grantid: 31003A_163129
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c475t-9546058e5cf9a9064d1a88628a94f6dd4de6f5541a4954fe61f538df1ac164de3
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:31:27 EDT 2025
Thu Aug 21 18:34:15 EDT 2025
Thu Jul 10 18:46:10 EDT 2025
Fri Jul 25 09:42:14 EDT 2025
Mon Jul 21 06:06:30 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Tue Jul 01 02:24:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mouse
interferons
transmission
Influenza virus
infectious disease
inflammation
respiratory tract
microbiology
immunology
virus
Language English
License http://creativecommons.org/licenses/by/4.0
2018, Klinkhammer et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-9546058e5cf9a9064d1a88628a94f6dd4de6f5541a4954fe61f538df1ac164de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States.
ORCID 0000-0003-1556-897X
0000-0001-8449-1115
0000-0001-7057-6177
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.33354
PMID 29651984
PQID 2047954405
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_582c927dc0c04f1d916a7f6746b4ac4d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5953542
proquest_miscellaneous_2025311870
proquest_journals_2047954405
pubmed_primary_29651984
crossref_primary_10_7554_eLife_33354
crossref_citationtrail_10_7554_eLife_33354
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-13
PublicationDateYYYYMMDD 2018-04-13
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-13
  day: 13
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2018
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Davidson (bib9) 2015; 35
Strähle (bib39) 2007; 81
Pott (bib35) 2011; 108
Wack (bib41) 2015; 16
Sommereyns (bib38) 2008; 4
Espinosa (bib13) 2017; 2
Shiroki (bib37) 1995; 69
Makowska (bib26) 2011; 53
Meier (bib27) 1988; 62
Trinchieri (bib40) 2010; 207
Lin (bib24) 2016; 12
Muir (bib31) 2014; 61
Davidson (bib10) 2016; 8
Dellgren (bib11) 2009; 10
Sheppard (bib36) 2003; 4
Cotton (bib6) 2008; 50
Lazear (bib22) 2015; 43
Osterhaus (bib33) 2015; 33
Broggi (bib5) 2017; 18
Bouvier (bib4) 2015; 13
Galani (bib16) 2017; 46
Kotenko (bib21) 2003; 4
Crotta (bib7) 2013; 9
Mordstein (bib29) 2010; 30
Horisberger (bib19) 1987; 68 (Pt 3)
Baldridge (bib2) 2017; 91
Edenborough (bib12) 2012; 86
Lee-Kirsch (bib23) 2017; 68
Haller (bib17) 2015; 23
Mordstein (bib28) 2008; 4
Baldridge (bib1) 2015; 347
Nice (bib32) 2015; 347
Mahlakõiv (bib25) 2015; 11
Blazek (bib3) 2015; 212
Davidson (bib8) 2014; 5
François-Newton (bib14) 2011; 6
Fuchs (bib15) 2013; 33
Porritt (bib34) 2015; 36
Mordstein (bib30) 2010; 84
Ivinson (bib20) 2017; 91
Herfst (bib18) 2017; 22
29792400 - Elife. 2018 May 24;7
References_xml – volume: 23
  start-page: 154
  year: 2015
  ident: bib17
  article-title: Mx GTPases: dynamin-like antiviral machines of innate immunity
  publication-title: Trends in Microbiology
  doi: 10.1016/j.tim.2014.12.003
– volume: 212
  start-page: 845
  year: 2015
  ident: bib3
  article-title: IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production
  publication-title: The Journal of Experimental Medicine
  doi: 10.1084/jem.20140995
– volume: 50
  start-page: 6
  year: 2008
  ident: bib6
  article-title: Management of upper respiratory tract infections in children
  publication-title: South African Family Practice
  doi: 10.1080/20786204.2008.10873685
– volume: 4
  start-page: 69
  year: 2003
  ident: bib21
  article-title: IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex
  publication-title: Nature Immunology
  doi: 10.1038/ni875
– volume: 62
  start-page: 2386
  year: 1988
  ident: bib27
  article-title: A family of interferon-induced Mx-related mRNAs encodes cytoplasmic and nuclear proteins in rat cells
  publication-title: Journal of Virology
  doi: 10.1128/JVI.62.7.2386-2393.1988
– volume: 8
  start-page: 1099
  year: 2016
  ident: bib10
  article-title: IFNλ is a potent anti-influenza therapeutic without the inflammatory side effects of IFNα treatment
  publication-title: EMBO Molecular Medicine
  doi: 10.15252/emmm.201606413
– volume: 53
  start-page: 1171
  year: 2011
  ident: bib26
  article-title: Interferon-β and interferon-λ signaling is not affected by interferon-induced refractoriness to interferon-α in vivo
  publication-title: Hepatology
  doi: 10.1002/hep.24189
– volume: 4
  start-page: e1000017
  year: 2008
  ident: bib38
  article-title: IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1000017
– volume: 30
  start-page: 579
  year: 2010
  ident: bib29
  article-title: What have we learned from the IL28 receptor knockout mouse?
  publication-title: Journal of Interferon & Cytokine Research
  doi: 10.1089/jir.2010.0061
– volume: 91
  start-page: e02079-16
  year: 2017
  ident: bib2
  article-title: Expression of Ifnlr1 on Intestinal epithelial cells is critical to the antiviral effects of interferon lambda against norovirus and reovirus
  publication-title: Journal of Virology
  doi: 10.1128/JVI.02079-16
– volume: 91
  start-page: e00624-17
  year: 2017
  ident: bib20
  article-title: Salivary blockade protects the lower respiratory tract of mice from lethal influenza virus infection
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00624-17
– volume: 33
  start-page: 211
  year: 2013
  ident: bib15
  article-title: Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy
  publication-title: Journal of Interferon & Cytokine Research
  doi: 10.1089/jir.2012.0117
– volume: 68
  start-page: 297
  year: 2017
  ident: bib23
  article-title: The Type I Interferonopathies
  publication-title: Annual Review of Medicine
  doi: 10.1146/annurev-med-050715-104506
– volume: 33
  start-page: 7022
  year: 2015
  ident: bib33
  article-title: Why should influenza be a public health priority?
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2015.08.049
– volume: 61
  start-page: 1238
  year: 2014
  ident: bib31
  article-title: A randomized phase 2b study of peginterferon lambda-1a for the treatment of chronic HCV infection
  publication-title: Journal of Hepatology
  doi: 10.1016/j.jhep.2014.07.022
– volume: 43
  start-page: 15
  year: 2015
  ident: bib22
  article-title: Interferon-λ: Immune Functions at Barrier Surfaces and Beyond
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.07.001
– volume: 2
  start-page: eaan5357
  year: 2017
  ident: bib13
  article-title: Type III interferon is a critical regulator of innate antifungal immunity
  publication-title: Science Immunology
  doi: 10.1126/sciimmunol.aan5357
– volume: 6
  start-page: e22200
  year: 2011
  ident: bib14
  article-title: USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon α response
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022200
– volume: 84
  start-page: 5670
  year: 2010
  ident: bib30
  article-title: Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00272-10
– volume: 10
  start-page: 125
  year: 2009
  ident: bib11
  article-title: Human interferon-lambda3 is a potent member of the type III interferon family
  publication-title: Genes & Immunity
  doi: 10.1038/gene.2008.87
– volume: 347
  start-page: 266
  year: 2015
  ident: bib1
  article-title: Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection
  publication-title: Science
  doi: 10.1126/science.1258025
– volume: 69
  start-page: 6825
  year: 1995
  ident: bib37
  article-title: A new cis-acting element for RNA replication within the 5' noncoding region of poliovirus type 1 RNA
  publication-title: Journal of Virology
  doi: 10.1128/JVI.69.11.6825-6832.1995
– volume: 81
  start-page: 12227
  year: 2007
  ident: bib39
  article-title: Activation of the beta interferon promoter by unnatural Sendai virus infection requires RIG-I and is inhibited by viral C proteins
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01300-07
– volume: 13
  start-page: 101
  year: 2015
  ident: bib4
  article-title: Animal models for influenza virus transmission studies: a historical perspective
  publication-title: Current Opinion in Virology
  doi: 10.1016/j.coviro.2015.06.002
– volume: 11
  start-page: e1004782
  year: 2015
  ident: bib25
  article-title: Leukocyte-derived IFN-α/β and epithelial IFN-λ constitute a compartmentalized mucosal defense system that restricts enteric virus infections
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1004782
– volume: 16
  start-page: 802
  year: 2015
  ident: bib41
  article-title: Guarding the frontiers: the biology of type III interferons
  publication-title: Nature Immunology
  doi: 10.1038/ni.3212
– volume: 12
  start-page: e1005600
  year: 2016
  ident: bib24
  article-title: Distinct roles of Type I and Type III interferons in intestinal immunity to homologous and heterologous rotavirus infections
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1005600
– volume: 5
  start-page: 3864
  year: 2014
  ident: bib8
  article-title: Pathogenic potential of interferon αβ in acute influenza infection
  publication-title: Nature Communications
  doi: 10.1038/ncomms4864
– volume: 4
  start-page: e1000151
  year: 2008
  ident: bib28
  article-title: Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1000151
– volume: 68 (Pt 3)
  start-page: 945
  year: 1987
  ident: bib19
  article-title: A recombinant human interferon-alpha B/D hybrid with a broad host-range
  publication-title: Journal of General Virology
  doi: 10.1099/0022-1317-68-3-945
– volume: 347
  start-page: 269
  year: 2015
  ident: bib32
  article-title: Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity
  publication-title: Science
  doi: 10.1126/science.1258100
– volume: 35
  start-page: 252
  year: 2015
  ident: bib9
  article-title: Disease-promoting effects of type I interferons in viral, bacterial, and coinfections
  publication-title: Journal of Interferon & Cytokine Research
  doi: 10.1089/jir.2014.0227
– volume: 86
  start-page: 12544
  year: 2012
  ident: bib12
  article-title: A mouse model for the study of contact-dependent transmission of influenza A virus and the factors that govern transmissibility
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00859-12
– volume: 36
  start-page: 150
  year: 2015
  ident: bib34
  article-title: Dynamic control of type I IFN signalling by an integrated network of negative regulators
  publication-title: Trends in Immunology
  doi: 10.1016/j.it.2015.02.002
– volume: 18
  start-page: 1084
  year: 2017
  ident: bib5
  article-title: IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function
  publication-title: Nature Immunology
  doi: 10.1038/ni.3821
– volume: 207
  start-page: 2053
  year: 2010
  ident: bib40
  article-title: Type I interferon: friend or foe?
  publication-title: The Journal of Experimental Medicine
  doi: 10.1084/jem.20101664
– volume: 9
  start-page: e1003773
  year: 2013
  ident: bib7
  article-title: Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1003773
– volume: 108
  start-page: 7944
  year: 2011
  ident: bib35
  article-title: IFN-lambda determines the intestinal epithelial antiviral host defense
  publication-title: PNAS
  doi: 10.1073/pnas.1100552108
– volume: 46
  start-page: 875
  year: 2017
  ident: bib16
  article-title: Interferon-λ Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection without Compromising Host Fitness
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.04.025
– volume: 22
  start-page: 22
  year: 2017
  ident: bib18
  article-title: Drivers of airborne human-to-human pathogen transmission
  publication-title: Current Opinion in Virology
  doi: 10.1016/j.coviro.2016.11.006
– volume: 4
  start-page: 63
  year: 2003
  ident: bib36
  article-title: IL-28, IL-29 and their class II cytokine receptor IL-28R
  publication-title: Nature Immunology
  doi: 10.1038/ni873
– reference: 29792400 - Elife. 2018 May 24;7:
SSID ssj0000748819
Score 2.5687068
Snippet Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Antiviral drugs
Disease transmission
Gene expression
Immunology and Inflammation
Infections
Influenza
Influenza virus
interferons
Medicine
Microbiology and Infectious Disease
Mimicry
Respiratory tract
transmission
Variance analysis
Viral infections
Viruses
α-Interferon
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlUOiltOmX06SokFPBTWxLsnRMSpe0tDk1kJuR9UEMi3dZe1vSv9b_0N_UJ8lZdkugl14tCaTRaOaNpXlDyLF0rOYho6eC78qZVW0uGWIeydrKcOahBSFR-OuluLhin6_59Vapr_AmLNEDJ8GdcFkaVdbWnJpTDLWAM7r2omaiZdowG6wvfN5WMBVtcA3FLFRKyKvhMk_cl86791VVcbbjgiJT_33w8u9XkltuZ_aEPJ7wIj1L83xKHrh-nzxMFSRvn5GbT7PL_PcvukxMTAPtUtGRn5p-71brgQ5o0ZaGLBIKrEfXy6VbUd2tfujbgY6L-HGOEz9Q3Vs6D_lOwzR2DH4MehB-qD0nV7OP3z5c5FPxhNxA-mOueLzxdNx4pRWAhy20RPgitWJeWMusEx6CKTRCJOadKDxsn_WFNoigrKtekL1-0btXhHKhHNeIbIxFfKNkIK1rRVVgX1oJhJORd3fybMzELB4KXMwbRBhB-E0UfhOFn5HjTedlItS4v9t52JhNl8CCHT9AN5pJN5p_6UZGDu-2tZmO5tCUgVSfMwDVjLzdNEOY4aZE926xDn1K2KYCtiwjL5MWbGZSKgHUKzHDekc_dqa629J3N5G4myuOpZUH_2Ntr8kjYDcZLraK6pDsjau1OwI-Gts38Sj8ARzzEGk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Pb9UwDI9gCMRlGgNGYaAg7YRUWNukSU6IIZ4GYjsx6d2qNH9Ypae2tH2g8dX4DvtM2G1e4aGJa5JKbuzYP8exTciRdExwzOjJwHbFzKoylgx8HsnKzHDmQQowUfjsPD-9YJ-WfBku3PrwrHKjE0dFbRuDd-TgpDOhOAN88bb9FmPXKIyuhhYat8kdLF2GT7rEUsx3LGAeJVi8KS1PgOF84z5X3r3OsoyzLUM01uu_CWT--1byL-Oz2CO7ATXSdxObH5Bbrt4nd6c-klf75N5ZiJA_JJcfF-fx9S_aTqWZelpNXUh-avq96tY97WFGW4ppJRTAH123reuorrof-qqnQzMOrkAF9FTXlq4wAaoP3w5o2EAw8IbtEblYfPjy_jQO3RRiA-wYYtg8DIE6brzSCpCITbQEf0ZqxXxuLbMu97BHiQafiXmXJx6UofWJNuBSWZc9Jjt1U7snhPJcOa7B1TEWHB4lsYpdmWeJUWkpAfJE5NVmawsTSo1jx4tVAS4H8qEY-VCMfIjI0by4nSps3LzsBHk0L8Gy2ONA030twikruEyBBmHNsTkGObOAfbXwuWB5ybRhNiKHGw4X4az2xR_JisjLeRo2E0MnunbNGtekoKwSUG4ROZgEYqYkVTnAYAkUii1R2SJ1e6auLsdK3lxx-LX06f_JekbuA0yTGMNKskOyM3Rr9xyg0FC-GOX9N7R-CwU
  priority: 102
  providerName: ProQuest
Title IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission
URI https://www.ncbi.nlm.nih.gov/pubmed/29651984
https://www.proquest.com/docview/2047954405
https://www.proquest.com/docview/2025311870
https://pubmed.ncbi.nlm.nih.gov/PMC5953542
https://doaj.org/article/582c927dc0c04f1d916a7f6746b4ac4d
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwEB7tj5C4IP4JLJWR9oSU0iR2bJ8Qi7ZaEFshRKXeIsd2diNVaUnSXcqr8Q48E2MnreiqB66xrTjj8cw3duYbgFNhKWcuoydB3xVSI_NQUIx5BM0TzWiBWuAShS8n6cWUfp6x2QFsinH2Amz2hnauntS0ng9__li_xw2P-HXI0Ru-s1_Kwg6TJGH0EI7RJXG3Qy97nO9NMkc99UU-4hHzXKazLlfv7vgd7-RJ_Pchz7s_UP7jkcYP4UEPJcmHbu0fwYGtHsO9rrjk-glcfxpPwj-_ybIjaWpI2dUj-aXITVmvGtJgizLEJZgQhIFktVzamqiyvlXrhrQL_3COxqAhqjJk7lKhmn5s61wcqog7a3sK0_H5948XYV9XIdS4MG0omb8MtUwXUknEJCZSAiMboSQtUmOosWmBgokURk-0sGlUoFk0RaQ0BlfGJs_gqFpU9gUQlkrLFAY92mDoI4Xjs8vTJNIyzgWCnwDebuSZ6Z503NW-mGcYfDjhZ174mRd-AKfbzsuOa2N_tzO3MNsujiDbP1jUV1m_3zImYpwDN3qkR6hxBlGw4kXKaZpTpakJ4GSzrNlG6bLY8e0zihg2gDfbZhSmu0RRlV2sXJ8YzVaEZi6A550WbGcSyxQBscAZ8h392JnqbktVXntObyYZflr88j_e-wruI2oT7korSk7gqK1X9jUiozYfwCGf8QEcn51Pvn4b-POFgd8JfwENYRGu
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6Vrfi5ICh_gQJGKhekQJPYiXNAiEJXu3R3hVAr9RYc26GRVklIslTLQ_ECvAPPxDh_sKji1mvsWBPPZOYbj2cGYI9rGjCT0eOh7bKpCmObU_R5OI09yWiCUmAShecLf3JCP5yy0y340efCmGuVvU5sFLXKpTkjRyedBiGjiC_eFF9t0zXKRFf7FhqtWBzp9Tm6bNXr6Xvk73PXHR8ev5vYXVcBWyJZtY2LmFCgZjIJRYgWWTmCI67nIqSJrxRV2k_QyDoCfQeaaN9JUCmoxBESXQulPVz3CmxTD12ZEWwfHC4-fhpOddAgc7SxbSJggKu80rM00S89z2N0w_Q1HQIugrX_3s78y9yNb8HNDqeSt61g3YYtne3A1bZz5XoHrs27mPwdOJuOF_avn6Roi0FVJG37nnwX5FtaripS4YhQxCSyEISbZFUUuiQiLc_FuiJ13jxcotKpiMgUWZqUq6p7tzamFEXRnOndhZNL2el7MMryTD8AwvxQM4HOlVToYoXc1M2Lfc-RoRtzBFkWvOi3NpJdcXPTY2MZoZNj-BA1fIgaPliwN0wu2poeF087MDwapphC3M2DvPwSdf91xLiLNARK7st9lGyFaFsEiR9QP6ZCUmXBbs_hqNMOVfRHli14NgzjZppgjch0vjJzXFSPDqpTC-63AjFQ4oY-Am-OFAYborJB6uZIlp41tcNZyPDT3If_J-spXJ8cz2fRbLo4egQ3ECRyE0FzvF0Y1eVKP0YgVsdPOukn8Pmyf7jfu-dI9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiouCAqUQAEjlQtSaJPYiX1ACCirLm1XHKi0t-DYDo20SkKSpVoeDd6BZ2KcP1hUces19lqznvHMNx7PDMAeNzRiNqMnQNvlUi0Sl1P0eThNAsVoilJgE4VPZ-HRGf0wZ_MN-DHkwthnlYNObBW1LpS9I0cnnUaCUcQX-2n_LOLj4eR1-dW1HaRspHVop9GJyLFZXaD7Vr-aHiKvn_v-5P2nd0du32HAVUhi4-KCNixomEqFFGidtSc5YnwuBU1Drak2YYoG15PoR9DUhF6KCkKnnlToZmgT4LrX4HoUMM-esWgejfc7aJo5WtsuJTDCNfbNSZaal0EQMLpmBNteAZcB3H_faf5l-Ca34VaPWMmbTsTuwIbJt-FG18NytQ1bp310_i6cTycz99dPUnZloWqSdR1QvkvyLauWNalxRGpiU1oIAk-yLEtTEZlVF3JVk6ZoPy5Q_dRE5posbPJV3f-2sUYVhdLe7t2DsyvZ5_uwmRe5eQCEhcIwiW6W0uhsCW4r6CVh4CnhJxzhlgMvhq2NVV_m3HbbWMTo7lg-xC0f4pYPDuyNk8uuusfl095aHo1TbEnu9kNRfYn7Ex4z7iMNkVYH6gBlXCPullEaRjRMqFRUO7A7cDju9UQd_5FqB56Nw7iZNmwjc1Ms7RwfFaWHitWBnU4gRkp8ESIE50hhtCYqa6Suj-TZeVtFnAmGf81_-H-ynsIWHrP4ZDo7fgQ3ES1yG0rzgl3YbKqleYyIrEmetKJP4PNVn7XfOUNLxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IFN-%CE%BB+prevents+influenza+virus+spread+from+the+upper+airways+to+the+lungs+and+limits+virus+transmission&rft.jtitle=eLife&rft.au=Klinkhammer%2C+Jonas&rft.au=Schnepf%2C+Daniel&rft.au=Ye%2C+Liang&rft.au=Schwaderlapp%2C+Marilena&rft.date=2018-04-13&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=7&rft_id=info:doi/10.7554%2FeLife.33354&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon