IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission
Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mi...
Saved in:
Published in | eLife Vol. 7 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Sciences Publications Ltd
13.04.2018
eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2050-084X 2050-084X |
DOI | 10.7554/eLife.33354 |
Cover
Loading…
Abstract | Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1−/−) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1−/− mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts.
Influenza (‘the flu’) and other respiratory viruses make millions of people ill every year, placing a large burden on the healthcare system and the economy. Unfortunately, few options for preventing or treating these infections currently exist.
The flu virus spreads from infected individuals, enters a new host through the nose and establishes an infection in the upper airways. If the infection stays restricted to this region of the respiratory tract – which consists of the nasal cavity, sinuses, throat and larynx – it causes a rather mild disease. However, if it spreads to the lungs it can cause potentially life-threatening viral pneumonia.
Epithelial cells line the upper respiratory tract, forming a physical border between the outside world and the human body. These cells are therefore the first to face the incoming virus. In response, the epithelial cells release messenger molecules termed interferons that warn nearby cells to increase their antiviral defenses.
There are several subtypes of interferons, such as IFN-α, IFN-β and IFN-λ, but it was not known how each subtype helps to combat respiratory viruses. To investigate, Klinkhammer, Schnepf et al. exposed mice to flu viruses in a way that mimicked how an infection would naturally start in the upper airways in humans. Some of the mice were genetically engineered so that they could not respond to either IFN-α/β or IFN-λ.
The virus spread most effectively from the nasal cavity to the lungs in mice whose IFN-λ system was defective. Infections in mice that lacked IFN-λ were also more likely to spread to other individuals. Furthermore, treating mice with IFN-λ, but not IFN-α, gave their upper respiratory tract long-lasting protection against flu infections and prevented the spread of the virus.
IFN-λ therefore has a specific and significant role in protecting the upper airways against viruses, and could potentially be used as a drug to block the spread of infections between humans. Currently, IFN-λ is in clinical trials as a potential treatment for hepatitis D. To repurpose it for upper respiratory tract infections, its effectiveness against specific respiratory viruses will first have to be evaluated. |
---|---|
AbstractList | Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (
) no longer restricted virus dissemination from the upper airways to the lungs.
mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts. Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1−/−) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1−/− mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts. Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors ( Ifnlr1 −/− ) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1 −/− mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts. Influenza (‘the flu’) and other respiratory viruses make millions of people ill every year, placing a large burden on the healthcare system and the economy. Unfortunately, few options for preventing or treating these infections currently exist. The flu virus spreads from infected individuals, enters a new host through the nose and establishes an infection in the upper airways. If the infection stays restricted to this region of the respiratory tract – which consists of the nasal cavity, sinuses, throat and larynx – it causes a rather mild disease. However, if it spreads to the lungs it can cause potentially life-threatening viral pneumonia. Epithelial cells line the upper respiratory tract, forming a physical border between the outside world and the human body. These cells are therefore the first to face the incoming virus. In response, the epithelial cells release messenger molecules termed interferons that warn nearby cells to increase their antiviral defenses. There are several subtypes of interferons, such as IFN-α, IFN-β and IFN-λ, but it was not known how each subtype helps to combat respiratory viruses. To investigate, Klinkhammer, Schnepf et al. exposed mice to flu viruses in a way that mimicked how an infection would naturally start in the upper airways in humans. Some of the mice were genetically engineered so that they could not respond to either IFN-α/β or IFN-λ. The virus spread most effectively from the nasal cavity to the lungs in mice whose IFN-λ system was defective. Infections in mice that lacked IFN-λ were also more likely to spread to other individuals. Furthermore, treating mice with IFN-λ, but not IFN-α, gave their upper respiratory tract long-lasting protection against flu infections and prevented the spread of the virus. IFN-λ therefore has a specific and significant role in protecting the upper airways against viruses, and could potentially be used as a drug to block the spread of infections between humans. Currently, IFN-λ is in clinical trials as a potential treatment for hepatitis D. To repurpose it for upper respiratory tract infections, its effectiveness against specific respiratory viruses will first have to be evaluated. Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1-/-) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1-/- mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts.Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1-/-) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1-/- mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts. Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1−/−) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1−/− mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts. Influenza (‘the flu’) and other respiratory viruses make millions of people ill every year, placing a large burden on the healthcare system and the economy. Unfortunately, few options for preventing or treating these infections currently exist. The flu virus spreads from infected individuals, enters a new host through the nose and establishes an infection in the upper airways. If the infection stays restricted to this region of the respiratory tract – which consists of the nasal cavity, sinuses, throat and larynx – it causes a rather mild disease. However, if it spreads to the lungs it can cause potentially life-threatening viral pneumonia. Epithelial cells line the upper respiratory tract, forming a physical border between the outside world and the human body. These cells are therefore the first to face the incoming virus. In response, the epithelial cells release messenger molecules termed interferons that warn nearby cells to increase their antiviral defenses. There are several subtypes of interferons, such as IFN-α, IFN-β and IFN-λ, but it was not known how each subtype helps to combat respiratory viruses. To investigate, Klinkhammer, Schnepf et al. exposed mice to flu viruses in a way that mimicked how an infection would naturally start in the upper airways in humans. Some of the mice were genetically engineered so that they could not respond to either IFN-α/β or IFN-λ. The virus spread most effectively from the nasal cavity to the lungs in mice whose IFN-λ system was defective. Infections in mice that lacked IFN-λ were also more likely to spread to other individuals. Furthermore, treating mice with IFN-λ, but not IFN-α, gave their upper respiratory tract long-lasting protection against flu infections and prevented the spread of the virus. IFN-λ therefore has a specific and significant role in protecting the upper airways against viruses, and could potentially be used as a drug to block the spread of infections between humans. Currently, IFN-λ is in clinical trials as a potential treatment for hepatitis D. To repurpose it for upper respiratory tract infections, its effectiveness against specific respiratory viruses will first have to be evaluated. |
Author | Klinkhammer, Jonas Ye, Liang Schwaderlapp, Marilena Garcin, Dominique Staeheli, Peter Gad, Hans Henrik Hartmann, Rune Mahlakõiv, Tanel Schnepf, Daniel |
Author_xml | – sequence: 1 givenname: Jonas surname: Klinkhammer fullname: Klinkhammer, Jonas organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany, MOTI-VATE Graduate School, Medical Center, University of Freiburg, Freiburg, Germany – sequence: 2 givenname: Daniel surname: Schnepf fullname: Schnepf, Daniel organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany, Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany – sequence: 3 givenname: Liang surname: Ye fullname: Ye, Liang organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany – sequence: 4 givenname: Marilena surname: Schwaderlapp fullname: Schwaderlapp, Marilena organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany – sequence: 5 givenname: Hans Henrik orcidid: 0000-0001-8449-1115 surname: Gad fullname: Gad, Hans Henrik organization: Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark – sequence: 6 givenname: Rune surname: Hartmann fullname: Hartmann, Rune organization: Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark – sequence: 7 givenname: Dominique orcidid: 0000-0003-1556-897X surname: Garcin fullname: Garcin, Dominique organization: Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland – sequence: 8 givenname: Tanel surname: Mahlakõiv fullname: Mahlakõiv, Tanel organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany – sequence: 9 givenname: Peter orcidid: 0000-0001-7057-6177 surname: Staeheli fullname: Staeheli, Peter organization: Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany, Faculty of Medicine, University of Freiburg, Freiburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29651984$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt1qFDEUx4NUbK298l4C3giyNZlJMsmNIMXqwqI3Ct6F03zsZplJxmRmpb6a7-AzGXdraYu5OeGc3_lzvp6io5iiQ-g5Jecd5-yNWwXvztu25ewROmkIJwsi2bejO_9jdFbKltTXMSmpeoKOGyU4VZKdoM3y8tPi9y88ZrdzcSo4RN_PLv4EvAt5LrjUCFjscxrwtHF4HkeXMYT8A64LntLe2c9xXTBEi_swhKpyyJ0yxDKEUkKKz9BjD31xZzf2FH29fP_l4uNi9fnD8uLdamFYx6eF4kwQLh03XoEiglkKUopGgmJeWMusE742ToFV1DtBPW-l9RQMrbBrT9HyoGsTbPWYwwD5WicIeu9Iea0hT8H0TnPZGNV01hBDmKdWUQGdFx0TVwwMs1Xr7UFrnK8GZ00dUIb-nuj9SAwbvU47zRWvC2mqwKsbgZy-z65Muk7DuL6H6NJcdEMa3lIqO1LRlw_QbZpzrKOqFOtqs4zwSr24W9FtKf8WWoHXB8DkVEp2_hahRP-9GL2_GL2_mErTB7QJE0x1XbWd0P835w971cYw |
CitedBy_id | crossref_primary_10_1002_vms3_933 crossref_primary_10_1016_j_chom_2020_05_008 crossref_primary_10_3389_fimmu_2023_1250541 crossref_primary_10_1128_aac_00009_22 crossref_primary_10_1128_JVI_00559_19 crossref_primary_10_34019_1982_8047_2020_v46_32241 crossref_primary_10_3389_fimmu_2020_00003 crossref_primary_10_1038_s41579_021_00542_7 crossref_primary_10_1038_s41590_019_0345_x crossref_primary_10_1186_s12931_019_1225_5 crossref_primary_10_1016_j_immuni_2024_06_005 crossref_primary_10_1128_CMR_00103_20 crossref_primary_10_1016_j_dsx_2020_07_030 crossref_primary_10_1016_j_bjid_2020_07_011 crossref_primary_10_1128_jvi_01341_22 crossref_primary_10_1186_s13567_020_00793_x crossref_primary_10_1016_j_tig_2020_08_017 crossref_primary_10_3390_ijms22094726 crossref_primary_10_14260_jemds_2020_418 crossref_primary_10_1007_s00439_019_02092_8 crossref_primary_10_1038_s41577_019_0182_z crossref_primary_10_1016_j_jbc_2022_102698 crossref_primary_10_1128_jvi_01604_23 crossref_primary_10_1093_cid_ciac447 crossref_primary_10_1126_sciimmunol_abd5318 crossref_primary_10_3390_microorganisms11092179 crossref_primary_10_1038_s42003_021_01745_7 crossref_primary_10_1128_mBio_01928_20 crossref_primary_10_1371_journal_ppat_1009229 crossref_primary_10_1016_j_immuni_2021_03_010 crossref_primary_10_1111_imcb_12284 crossref_primary_10_3390_biology9090280 crossref_primary_10_1038_s41420_020_00375_y crossref_primary_10_1038_s41598_022_09544_8 crossref_primary_10_1016_j_immuni_2019_03_025 crossref_primary_10_1073_pnas_2402540121 crossref_primary_10_1038_s41435_021_00127_7 crossref_primary_10_1089_jir_2020_0187 crossref_primary_10_1134_S1990747823060077 crossref_primary_10_3390_cells11244041 crossref_primary_10_1016_j_gene_2023_147252 crossref_primary_10_1016_j_imbio_2022_152192 crossref_primary_10_3390_cells11192986 crossref_primary_10_1016_j_coi_2024_102430 crossref_primary_10_1016_j_coi_2018_10_007 crossref_primary_10_1016_j_virusres_2023_199284 crossref_primary_10_1016_j_ejps_2024_106974 crossref_primary_10_1016_j_biopha_2020_111008 crossref_primary_10_1016_j_celrep_2019_05_105 crossref_primary_10_1089_jir_2019_0265 crossref_primary_10_3389_fimmu_2021_697162 crossref_primary_10_1002_jmv_29605 crossref_primary_10_36233_0507_4088_271 crossref_primary_10_1073_pnas_2319566121 crossref_primary_10_1016_j_jaci_2023_07_018 crossref_primary_10_1038_s41584_021_00606_1 crossref_primary_10_1016_j_immuni_2022_04_013 crossref_primary_10_1073_pnas_2105170118 crossref_primary_10_3389_fimmu_2023_1161160 crossref_primary_10_3389_fmicb_2018_02685 crossref_primary_10_3390_v14010164 crossref_primary_10_1007_s10238_023_01083_4 crossref_primary_10_3390_ijms23052873 crossref_primary_10_1038_s41564_019_0421_x crossref_primary_10_1016_j_jconrel_2023_05_029 crossref_primary_10_3389_fimmu_2020_624415 crossref_primary_10_1016_j_antiviral_2018_08_017 crossref_primary_10_3389_fimmu_2021_718380 crossref_primary_10_1038_s41541_024_00973_2 crossref_primary_10_3389_fphar_2023_1111329 crossref_primary_10_1016_j_cell_2020_06_011 crossref_primary_10_1038_s41385_020_00355_6 crossref_primary_10_1084_jem_20212427 crossref_primary_10_1128_JVI_01262_19 crossref_primary_10_1073_pnas_2218083120 crossref_primary_10_1089_jir_2018_0046 crossref_primary_10_1183_16000617_0266_2023 crossref_primary_10_1186_s13054_019_2566_7 crossref_primary_10_4049_immunohorizons_2200010 crossref_primary_10_1128_AAC_00301_20 crossref_primary_10_2478_inmed_2020_0109 crossref_primary_10_1016_j_smim_2019_101303 crossref_primary_10_1128_mbio_00550_24 crossref_primary_10_1371_journal_ppat_1012727 crossref_primary_10_1016_j_pulmoe_2021_03_008 crossref_primary_10_1111_jgh_16178 crossref_primary_10_31857_S0233475523060087 crossref_primary_10_1002_mco2_154 crossref_primary_10_2478_inmed_2020_0133 crossref_primary_10_1016_j_ijantimicag_2025_107491 crossref_primary_10_1128_mBio_02540_20 crossref_primary_10_1159_000508379 crossref_primary_10_1089_jir_2019_0048 crossref_primary_10_1016_j_antiviral_2025_106138 crossref_primary_10_1089_jir_2019_0040 crossref_primary_10_3389_fimmu_2018_01946 crossref_primary_10_1089_vim_2020_0076 crossref_primary_10_1128_JVI_01073_19 crossref_primary_10_1183_13993003_01826_2019 crossref_primary_10_1128_jvi_01705_21 crossref_primary_10_1016_j_coi_2023_102400 crossref_primary_10_3389_fimmu_2022_1016982 crossref_primary_10_1016_j_virs_2025_03_001 crossref_primary_10_3389_fcimb_2023_1222805 crossref_primary_10_1084_jem_20220621 crossref_primary_10_1128_mbio_02850_22 crossref_primary_10_1089_jir_2019_0036 crossref_primary_10_1371_journal_ppat_1008974 crossref_primary_10_3389_fimmu_2020_608645 crossref_primary_10_3390_v13102090 crossref_primary_10_1128_JVI_01091_20 crossref_primary_10_1146_annurev_immunol_101921_050835 crossref_primary_10_3390_ijms251910530 crossref_primary_10_1128_mBio_02359_18 crossref_primary_10_1007_s00109_021_02072_4 crossref_primary_10_1038_s41423_023_01119_5 crossref_primary_10_3390_v11080757 crossref_primary_10_1084_jem_20190295 crossref_primary_10_3390_pathogens9120989 crossref_primary_10_1128_JVI_01720_19 crossref_primary_10_1002_iub_2380 crossref_primary_10_1016_j_gene_2019_144289 crossref_primary_10_15252_emmm_202114122 crossref_primary_10_3389_fimmu_2018_02060 crossref_primary_10_1080_08820139_2019_1642914 crossref_primary_10_1084_jem_20181621 crossref_primary_10_1186_s13099_023_00578_5 crossref_primary_10_1128_jvi_01413_24 crossref_primary_10_3390_ph16010130 crossref_primary_10_1371_journal_ppat_1007360 crossref_primary_10_1093_cid_ciaa453 crossref_primary_10_1101_cshperspect_a038398 crossref_primary_10_3390_v13030522 crossref_primary_10_1016_j_immuni_2020_07_024 crossref_primary_10_1089_jir_2023_0039 crossref_primary_10_3389_fimmu_2020_570993 crossref_primary_10_3389_fimmu_2022_872958 crossref_primary_10_1016_j_biopha_2021_111642 crossref_primary_10_1128_jvi_01680_23 crossref_primary_10_1128_mBio_03341_19 crossref_primary_10_1007_s10753_022_01736_8 crossref_primary_10_1016_j_celrep_2019_11_021 crossref_primary_10_3389_fimmu_2021_731807 crossref_primary_10_1126_scisignal_adf5494 crossref_primary_10_3390_vaccines11020480 crossref_primary_10_1038_s42003_022_04013_4 crossref_primary_10_3389_fimmu_2021_749325 crossref_primary_10_1080_21505594_2020_1768329 crossref_primary_10_7861_clinmed_2020_0239 crossref_primary_10_1084_jem_20200653 crossref_primary_10_3389_fgene_2021_709388 crossref_primary_10_1016_j_antiviral_2024_106063 crossref_primary_10_1128_mbio_02203_23 crossref_primary_10_1016_j_virusres_2021_198342 crossref_primary_10_1007_s00592_020_01522_8 crossref_primary_10_1371_journal_ppat_1012498 crossref_primary_10_1080_14728214_2022_2149734 crossref_primary_10_1080_14712598_2023_2211709 crossref_primary_10_1371_journal_ppat_1008155 crossref_primary_10_1101_cshperspect_a038422 crossref_primary_10_3389_fimmu_2021_735576 crossref_primary_10_3390_jcm13133987 crossref_primary_10_1016_j_bj_2018_08_004 crossref_primary_10_1038_s41577_024_01029_1 crossref_primary_10_3389_fimmu_2020_574027 crossref_primary_10_3390_v14061247 crossref_primary_10_1016_j_micpath_2019_103919 crossref_primary_10_1042_CS20181009 crossref_primary_10_1038_s41590_019_0408_z crossref_primary_10_1128_jvi_00493_23 crossref_primary_10_1016_j_mehy_2020_110351 crossref_primary_10_1007_s00253_019_10090_z crossref_primary_10_1128_JVI_00985_20 crossref_primary_10_1038_s41385_022_00576_x crossref_primary_10_1016_j_jtbi_2019_110026 crossref_primary_10_1165_rcmb_2018_0247TR crossref_primary_10_7554_eLife_37552 crossref_primary_10_1128_JVI_00999_19 crossref_primary_10_3389_fimmu_2021_750279 crossref_primary_10_1038_s41577_023_00972_9 |
Cites_doi | 10.1016/j.tim.2014.12.003 10.1084/jem.20140995 10.1080/20786204.2008.10873685 10.1038/ni875 10.1128/JVI.62.7.2386-2393.1988 10.15252/emmm.201606413 10.1002/hep.24189 10.1371/journal.ppat.1000017 10.1089/jir.2010.0061 10.1128/JVI.02079-16 10.1128/JVI.00624-17 10.1089/jir.2012.0117 10.1146/annurev-med-050715-104506 10.1016/j.vaccine.2015.08.049 10.1016/j.jhep.2014.07.022 10.1016/j.immuni.2015.07.001 10.1126/sciimmunol.aan5357 10.1371/journal.pone.0022200 10.1128/JVI.00272-10 10.1038/gene.2008.87 10.1126/science.1258025 10.1128/JVI.69.11.6825-6832.1995 10.1128/JVI.01300-07 10.1016/j.coviro.2015.06.002 10.1371/journal.ppat.1004782 10.1038/ni.3212 10.1371/journal.ppat.1005600 10.1038/ncomms4864 10.1371/journal.ppat.1000151 10.1099/0022-1317-68-3-945 10.1126/science.1258100 10.1089/jir.2014.0227 10.1128/JVI.00859-12 10.1016/j.it.2015.02.002 10.1038/ni.3821 10.1084/jem.20101664 10.1371/journal.ppat.1003773 10.1073/pnas.1100552108 10.1016/j.immuni.2017.04.025 10.1016/j.coviro.2016.11.006 10.1038/ni873 |
ContentType | Journal Article |
Copyright | 2018, Klinkhammer et al. 2018, Klinkhammer et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018, Klinkhammer et al 2018 Klinkhammer et al |
Copyright_xml | – notice: 2018, Klinkhammer et al. – notice: 2018, Klinkhammer et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018, Klinkhammer et al 2018 Klinkhammer et al |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.33354 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Medicine |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_582c927dc0c04f1d916a7f6746b4ac4d PMC5953542 29651984 10_7554_eLife_33354 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Denmark United States--US Freiburg Germany Aarhus Denmark Germany |
GeographicLocations_xml | – name: Aarhus Denmark – name: Denmark – name: Germany – name: Freiburg Germany – name: United States--US |
GrantInformation_xml | – fundername: ; grantid: STA 338/15–1 – fundername: ; grantid: 11‐107588 – fundername: ; grantid: UniVacFlu – fundername: ; grantid: NNF15OC0017902 – fundername: ; grantid: 31003A_163129 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c475t-9546058e5cf9a9064d1a88628a94f6dd4de6f5541a4954fe61f538df1ac164de3 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Thu Aug 21 18:34:15 EDT 2025 Thu Jul 10 18:46:10 EDT 2025 Fri Jul 25 09:42:14 EDT 2025 Mon Jul 21 06:06:30 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Tue Jul 01 02:24:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | mouse interferons transmission Influenza virus infectious disease inflammation respiratory tract microbiology immunology virus |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 2018, Klinkhammer et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-9546058e5cf9a9064d1a88628a94f6dd4de6f5541a4954fe61f538df1ac164de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States. |
ORCID | 0000-0003-1556-897X 0000-0001-8449-1115 0000-0001-7057-6177 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.33354 |
PMID | 29651984 |
PQID | 2047954405 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_582c927dc0c04f1d916a7f6746b4ac4d pubmedcentral_primary_oai_pubmedcentral_nih_gov_5953542 proquest_miscellaneous_2025311870 proquest_journals_2047954405 pubmed_primary_29651984 crossref_primary_10_7554_eLife_33354 crossref_citationtrail_10_7554_eLife_33354 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-13 |
PublicationDateYYYYMMDD | 2018-04-13 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2018 |
Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Davidson (bib9) 2015; 35 Strähle (bib39) 2007; 81 Pott (bib35) 2011; 108 Wack (bib41) 2015; 16 Sommereyns (bib38) 2008; 4 Espinosa (bib13) 2017; 2 Shiroki (bib37) 1995; 69 Makowska (bib26) 2011; 53 Meier (bib27) 1988; 62 Trinchieri (bib40) 2010; 207 Lin (bib24) 2016; 12 Muir (bib31) 2014; 61 Davidson (bib10) 2016; 8 Dellgren (bib11) 2009; 10 Sheppard (bib36) 2003; 4 Cotton (bib6) 2008; 50 Lazear (bib22) 2015; 43 Osterhaus (bib33) 2015; 33 Broggi (bib5) 2017; 18 Bouvier (bib4) 2015; 13 Galani (bib16) 2017; 46 Kotenko (bib21) 2003; 4 Crotta (bib7) 2013; 9 Mordstein (bib29) 2010; 30 Horisberger (bib19) 1987; 68 (Pt 3) Baldridge (bib2) 2017; 91 Edenborough (bib12) 2012; 86 Lee-Kirsch (bib23) 2017; 68 Haller (bib17) 2015; 23 Mordstein (bib28) 2008; 4 Baldridge (bib1) 2015; 347 Nice (bib32) 2015; 347 Mahlakõiv (bib25) 2015; 11 Blazek (bib3) 2015; 212 Davidson (bib8) 2014; 5 François-Newton (bib14) 2011; 6 Fuchs (bib15) 2013; 33 Porritt (bib34) 2015; 36 Mordstein (bib30) 2010; 84 Ivinson (bib20) 2017; 91 Herfst (bib18) 2017; 22 29792400 - Elife. 2018 May 24;7 |
References_xml | – volume: 23 start-page: 154 year: 2015 ident: bib17 article-title: Mx GTPases: dynamin-like antiviral machines of innate immunity publication-title: Trends in Microbiology doi: 10.1016/j.tim.2014.12.003 – volume: 212 start-page: 845 year: 2015 ident: bib3 article-title: IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production publication-title: The Journal of Experimental Medicine doi: 10.1084/jem.20140995 – volume: 50 start-page: 6 year: 2008 ident: bib6 article-title: Management of upper respiratory tract infections in children publication-title: South African Family Practice doi: 10.1080/20786204.2008.10873685 – volume: 4 start-page: 69 year: 2003 ident: bib21 article-title: IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex publication-title: Nature Immunology doi: 10.1038/ni875 – volume: 62 start-page: 2386 year: 1988 ident: bib27 article-title: A family of interferon-induced Mx-related mRNAs encodes cytoplasmic and nuclear proteins in rat cells publication-title: Journal of Virology doi: 10.1128/JVI.62.7.2386-2393.1988 – volume: 8 start-page: 1099 year: 2016 ident: bib10 article-title: IFNλ is a potent anti-influenza therapeutic without the inflammatory side effects of IFNα treatment publication-title: EMBO Molecular Medicine doi: 10.15252/emmm.201606413 – volume: 53 start-page: 1171 year: 2011 ident: bib26 article-title: Interferon-β and interferon-λ signaling is not affected by interferon-induced refractoriness to interferon-α in vivo publication-title: Hepatology doi: 10.1002/hep.24189 – volume: 4 start-page: e1000017 year: 2008 ident: bib38 article-title: IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1000017 – volume: 30 start-page: 579 year: 2010 ident: bib29 article-title: What have we learned from the IL28 receptor knockout mouse? publication-title: Journal of Interferon & Cytokine Research doi: 10.1089/jir.2010.0061 – volume: 91 start-page: e02079-16 year: 2017 ident: bib2 article-title: Expression of Ifnlr1 on Intestinal epithelial cells is critical to the antiviral effects of interferon lambda against norovirus and reovirus publication-title: Journal of Virology doi: 10.1128/JVI.02079-16 – volume: 91 start-page: e00624-17 year: 2017 ident: bib20 article-title: Salivary blockade protects the lower respiratory tract of mice from lethal influenza virus infection publication-title: Journal of Virology doi: 10.1128/JVI.00624-17 – volume: 33 start-page: 211 year: 2013 ident: bib15 article-title: Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy publication-title: Journal of Interferon & Cytokine Research doi: 10.1089/jir.2012.0117 – volume: 68 start-page: 297 year: 2017 ident: bib23 article-title: The Type I Interferonopathies publication-title: Annual Review of Medicine doi: 10.1146/annurev-med-050715-104506 – volume: 33 start-page: 7022 year: 2015 ident: bib33 article-title: Why should influenza be a public health priority? publication-title: Vaccine doi: 10.1016/j.vaccine.2015.08.049 – volume: 61 start-page: 1238 year: 2014 ident: bib31 article-title: A randomized phase 2b study of peginterferon lambda-1a for the treatment of chronic HCV infection publication-title: Journal of Hepatology doi: 10.1016/j.jhep.2014.07.022 – volume: 43 start-page: 15 year: 2015 ident: bib22 article-title: Interferon-λ: Immune Functions at Barrier Surfaces and Beyond publication-title: Immunity doi: 10.1016/j.immuni.2015.07.001 – volume: 2 start-page: eaan5357 year: 2017 ident: bib13 article-title: Type III interferon is a critical regulator of innate antifungal immunity publication-title: Science Immunology doi: 10.1126/sciimmunol.aan5357 – volume: 6 start-page: e22200 year: 2011 ident: bib14 article-title: USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon α response publication-title: PLoS One doi: 10.1371/journal.pone.0022200 – volume: 84 start-page: 5670 year: 2010 ident: bib30 article-title: Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections publication-title: Journal of Virology doi: 10.1128/JVI.00272-10 – volume: 10 start-page: 125 year: 2009 ident: bib11 article-title: Human interferon-lambda3 is a potent member of the type III interferon family publication-title: Genes & Immunity doi: 10.1038/gene.2008.87 – volume: 347 start-page: 266 year: 2015 ident: bib1 article-title: Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection publication-title: Science doi: 10.1126/science.1258025 – volume: 69 start-page: 6825 year: 1995 ident: bib37 article-title: A new cis-acting element for RNA replication within the 5' noncoding region of poliovirus type 1 RNA publication-title: Journal of Virology doi: 10.1128/JVI.69.11.6825-6832.1995 – volume: 81 start-page: 12227 year: 2007 ident: bib39 article-title: Activation of the beta interferon promoter by unnatural Sendai virus infection requires RIG-I and is inhibited by viral C proteins publication-title: Journal of Virology doi: 10.1128/JVI.01300-07 – volume: 13 start-page: 101 year: 2015 ident: bib4 article-title: Animal models for influenza virus transmission studies: a historical perspective publication-title: Current Opinion in Virology doi: 10.1016/j.coviro.2015.06.002 – volume: 11 start-page: e1004782 year: 2015 ident: bib25 article-title: Leukocyte-derived IFN-α/β and epithelial IFN-λ constitute a compartmentalized mucosal defense system that restricts enteric virus infections publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1004782 – volume: 16 start-page: 802 year: 2015 ident: bib41 article-title: Guarding the frontiers: the biology of type III interferons publication-title: Nature Immunology doi: 10.1038/ni.3212 – volume: 12 start-page: e1005600 year: 2016 ident: bib24 article-title: Distinct roles of Type I and Type III interferons in intestinal immunity to homologous and heterologous rotavirus infections publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1005600 – volume: 5 start-page: 3864 year: 2014 ident: bib8 article-title: Pathogenic potential of interferon αβ in acute influenza infection publication-title: Nature Communications doi: 10.1038/ncomms4864 – volume: 4 start-page: e1000151 year: 2008 ident: bib28 article-title: Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1000151 – volume: 68 (Pt 3) start-page: 945 year: 1987 ident: bib19 article-title: A recombinant human interferon-alpha B/D hybrid with a broad host-range publication-title: Journal of General Virology doi: 10.1099/0022-1317-68-3-945 – volume: 347 start-page: 269 year: 2015 ident: bib32 article-title: Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity publication-title: Science doi: 10.1126/science.1258100 – volume: 35 start-page: 252 year: 2015 ident: bib9 article-title: Disease-promoting effects of type I interferons in viral, bacterial, and coinfections publication-title: Journal of Interferon & Cytokine Research doi: 10.1089/jir.2014.0227 – volume: 86 start-page: 12544 year: 2012 ident: bib12 article-title: A mouse model for the study of contact-dependent transmission of influenza A virus and the factors that govern transmissibility publication-title: Journal of Virology doi: 10.1128/JVI.00859-12 – volume: 36 start-page: 150 year: 2015 ident: bib34 article-title: Dynamic control of type I IFN signalling by an integrated network of negative regulators publication-title: Trends in Immunology doi: 10.1016/j.it.2015.02.002 – volume: 18 start-page: 1084 year: 2017 ident: bib5 article-title: IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function publication-title: Nature Immunology doi: 10.1038/ni.3821 – volume: 207 start-page: 2053 year: 2010 ident: bib40 article-title: Type I interferon: friend or foe? publication-title: The Journal of Experimental Medicine doi: 10.1084/jem.20101664 – volume: 9 start-page: e1003773 year: 2013 ident: bib7 article-title: Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1003773 – volume: 108 start-page: 7944 year: 2011 ident: bib35 article-title: IFN-lambda determines the intestinal epithelial antiviral host defense publication-title: PNAS doi: 10.1073/pnas.1100552108 – volume: 46 start-page: 875 year: 2017 ident: bib16 article-title: Interferon-λ Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection without Compromising Host Fitness publication-title: Immunity doi: 10.1016/j.immuni.2017.04.025 – volume: 22 start-page: 22 year: 2017 ident: bib18 article-title: Drivers of airborne human-to-human pathogen transmission publication-title: Current Opinion in Virology doi: 10.1016/j.coviro.2016.11.006 – volume: 4 start-page: 63 year: 2003 ident: bib36 article-title: IL-28, IL-29 and their class II cytokine receptor IL-28R publication-title: Nature Immunology doi: 10.1038/ni873 – reference: 29792400 - Elife. 2018 May 24;7: |
SSID | ssj0000748819 |
Score | 2.5687068 |
Snippet | Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN)... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Antiviral drugs Disease transmission Gene expression Immunology and Inflammation Infections Influenza Influenza virus interferons Medicine Microbiology and Infectious Disease Mimicry Respiratory tract transmission Variance analysis Viral infections Viruses α-Interferon |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlUOiltOmX06SokFPBTWxLsnRMSpe0tDk1kJuR9UEMi3dZe1vSv9b_0N_UJ8lZdkugl14tCaTRaOaNpXlDyLF0rOYho6eC78qZVW0uGWIeydrKcOahBSFR-OuluLhin6_59Vapr_AmLNEDJ8GdcFkaVdbWnJpTDLWAM7r2omaiZdowG6wvfN5WMBVtcA3FLFRKyKvhMk_cl86791VVcbbjgiJT_33w8u9XkltuZ_aEPJ7wIj1L83xKHrh-nzxMFSRvn5GbT7PL_PcvukxMTAPtUtGRn5p-71brgQ5o0ZaGLBIKrEfXy6VbUd2tfujbgY6L-HGOEz9Q3Vs6D_lOwzR2DH4MehB-qD0nV7OP3z5c5FPxhNxA-mOueLzxdNx4pRWAhy20RPgitWJeWMusEx6CKTRCJOadKDxsn_WFNoigrKtekL1-0btXhHKhHNeIbIxFfKNkIK1rRVVgX1oJhJORd3fybMzELB4KXMwbRBhB-E0UfhOFn5HjTedlItS4v9t52JhNl8CCHT9AN5pJN5p_6UZGDu-2tZmO5tCUgVSfMwDVjLzdNEOY4aZE926xDn1K2KYCtiwjL5MWbGZSKgHUKzHDekc_dqa629J3N5G4myuOpZUH_2Ntr8kjYDcZLraK6pDsjau1OwI-Gts38Sj8ARzzEGk priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Pb9UwDI9gCMRlGgNGYaAg7YRUWNukSU6IIZ4GYjsx6d2qNH9Ypae2tH2g8dX4DvtM2G1e4aGJa5JKbuzYP8exTciRdExwzOjJwHbFzKoylgx8HsnKzHDmQQowUfjsPD-9YJ-WfBku3PrwrHKjE0dFbRuDd-TgpDOhOAN88bb9FmPXKIyuhhYat8kdLF2GT7rEUsx3LGAeJVi8KS1PgOF84z5X3r3OsoyzLUM01uu_CWT--1byL-Oz2CO7ATXSdxObH5Bbrt4nd6c-klf75N5ZiJA_JJcfF-fx9S_aTqWZelpNXUh-avq96tY97WFGW4ppJRTAH123reuorrof-qqnQzMOrkAF9FTXlq4wAaoP3w5o2EAw8IbtEblYfPjy_jQO3RRiA-wYYtg8DIE6brzSCpCITbQEf0ZqxXxuLbMu97BHiQafiXmXJx6UofWJNuBSWZc9Jjt1U7snhPJcOa7B1TEWHB4lsYpdmWeJUWkpAfJE5NVmawsTSo1jx4tVAS4H8qEY-VCMfIjI0by4nSps3LzsBHk0L8Gy2ONA030twikruEyBBmHNsTkGObOAfbXwuWB5ybRhNiKHGw4X4az2xR_JisjLeRo2E0MnunbNGtekoKwSUG4ROZgEYqYkVTnAYAkUii1R2SJ1e6auLsdK3lxx-LX06f_JekbuA0yTGMNKskOyM3Rr9xyg0FC-GOX9N7R-CwU priority: 102 providerName: ProQuest |
Title | IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29651984 https://www.proquest.com/docview/2047954405 https://www.proquest.com/docview/2025311870 https://pubmed.ncbi.nlm.nih.gov/PMC5953542 https://doaj.org/article/582c927dc0c04f1d916a7f6746b4ac4d |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwEB7tj5C4IP4JLJWR9oSU0iR2bJ8Qi7ZaEFshRKXeIsd2diNVaUnSXcqr8Q48E2MnreiqB66xrTjj8cw3duYbgFNhKWcuoydB3xVSI_NQUIx5BM0TzWiBWuAShS8n6cWUfp6x2QFsinH2Amz2hnauntS0ng9__li_xw2P-HXI0Ru-s1_Kwg6TJGH0EI7RJXG3Qy97nO9NMkc99UU-4hHzXKazLlfv7vgd7-RJ_Pchz7s_UP7jkcYP4UEPJcmHbu0fwYGtHsO9rrjk-glcfxpPwj-_ybIjaWpI2dUj-aXITVmvGtJgizLEJZgQhIFktVzamqiyvlXrhrQL_3COxqAhqjJk7lKhmn5s61wcqog7a3sK0_H5948XYV9XIdS4MG0omb8MtUwXUknEJCZSAiMboSQtUmOosWmBgokURk-0sGlUoFk0RaQ0BlfGJs_gqFpU9gUQlkrLFAY92mDoI4Xjs8vTJNIyzgWCnwDebuSZ6Z503NW-mGcYfDjhZ174mRd-AKfbzsuOa2N_tzO3MNsujiDbP1jUV1m_3zImYpwDN3qkR6hxBlGw4kXKaZpTpakJ4GSzrNlG6bLY8e0zihg2gDfbZhSmu0RRlV2sXJ8YzVaEZi6A550WbGcSyxQBscAZ8h392JnqbktVXntObyYZflr88j_e-wruI2oT7korSk7gqK1X9jUiozYfwCGf8QEcn51Pvn4b-POFgd8JfwENYRGu |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6Vrfi5ICh_gQJGKhekQJPYiXNAiEJXu3R3hVAr9RYc26GRVklIslTLQ_ECvAPPxDh_sKji1mvsWBPPZOYbj2cGYI9rGjCT0eOh7bKpCmObU_R5OI09yWiCUmAShecLf3JCP5yy0y340efCmGuVvU5sFLXKpTkjRyedBiGjiC_eFF9t0zXKRFf7FhqtWBzp9Tm6bNXr6Xvk73PXHR8ev5vYXVcBWyJZtY2LmFCgZjIJRYgWWTmCI67nIqSJrxRV2k_QyDoCfQeaaN9JUCmoxBESXQulPVz3CmxTD12ZEWwfHC4-fhpOddAgc7SxbSJggKu80rM00S89z2N0w_Q1HQIugrX_3s78y9yNb8HNDqeSt61g3YYtne3A1bZz5XoHrs27mPwdOJuOF_avn6Roi0FVJG37nnwX5FtaripS4YhQxCSyEISbZFUUuiQiLc_FuiJ13jxcotKpiMgUWZqUq6p7tzamFEXRnOndhZNL2el7MMryTD8AwvxQM4HOlVToYoXc1M2Lfc-RoRtzBFkWvOi3NpJdcXPTY2MZoZNj-BA1fIgaPliwN0wu2poeF087MDwapphC3M2DvPwSdf91xLiLNARK7st9lGyFaFsEiR9QP6ZCUmXBbs_hqNMOVfRHli14NgzjZppgjch0vjJzXFSPDqpTC-63AjFQ4oY-Am-OFAYborJB6uZIlp41tcNZyPDT3If_J-spXJ8cz2fRbLo4egQ3ECRyE0FzvF0Y1eVKP0YgVsdPOukn8Pmyf7jfu-dI9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiouCAqUQAEjlQtSaJPYiX1ACCirLm1XHKi0t-DYDo20SkKSpVoeDd6BZ2KcP1hUces19lqznvHMNx7PDMAeNzRiNqMnQNvlUi0Sl1P0eThNAsVoilJgE4VPZ-HRGf0wZ_MN-DHkwthnlYNObBW1LpS9I0cnnUaCUcQX-2n_LOLj4eR1-dW1HaRspHVop9GJyLFZXaD7Vr-aHiKvn_v-5P2nd0du32HAVUhi4-KCNixomEqFFGidtSc5YnwuBU1Drak2YYoG15PoR9DUhF6KCkKnnlToZmgT4LrX4HoUMM-esWgejfc7aJo5WtsuJTDCNfbNSZaal0EQMLpmBNteAZcB3H_faf5l-Ca34VaPWMmbTsTuwIbJt-FG18NytQ1bp310_i6cTycz99dPUnZloWqSdR1QvkvyLauWNalxRGpiU1oIAk-yLEtTEZlVF3JVk6ZoPy5Q_dRE5posbPJV3f-2sUYVhdLe7t2DsyvZ5_uwmRe5eQCEhcIwiW6W0uhsCW4r6CVh4CnhJxzhlgMvhq2NVV_m3HbbWMTo7lg-xC0f4pYPDuyNk8uuusfl095aHo1TbEnu9kNRfYn7Ex4z7iMNkVYH6gBlXCPullEaRjRMqFRUO7A7cDju9UQd_5FqB56Nw7iZNmwjc1Ms7RwfFaWHitWBnU4gRkp8ESIE50hhtCYqa6Suj-TZeVtFnAmGf81_-H-ynsIWHrP4ZDo7fgQ3ES1yG0rzgl3YbKqleYyIrEmetKJP4PNVn7XfOUNLxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IFN-%CE%BB+prevents+influenza+virus+spread+from+the+upper+airways+to+the+lungs+and+limits+virus+transmission&rft.jtitle=eLife&rft.au=Klinkhammer%2C+Jonas&rft.au=Schnepf%2C+Daniel&rft.au=Ye%2C+Liang&rft.au=Schwaderlapp%2C+Marilena&rft.date=2018-04-13&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=7&rft_id=info:doi/10.7554%2FeLife.33354&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |