Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives

Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. Thesestudies improve our understanding of the mutual interaction between actively flapping...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica Sinica Vol. 32; no. 6; pp. 980 - 990
Main Authors Wang, Shizhao, He, Guowei, Zhang, Xing
Format Journal Article
LanguageEnglish
Published Beijing The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences 01.12.2016
Springer Nature B.V
The State Key Laboratory of Nonlinear Mechanics LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
EditionEnglish ed.
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. Thesestudies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers.
AbstractList Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. Thesestudies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers.
Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the bio-mimetic design of artificial flyers and swimmers.
Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers.
Author Shizhao Wang;Guowei He;Xing Zhang
AuthorAffiliation The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences,Beijing 100190, China
AuthorAffiliation_xml – name: The State Key Laboratory of Nonlinear Mechanics LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Author_xml – sequence: 1
  givenname: Shizhao
  surname: Wang
  fullname: Wang, Shizhao
  organization: The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences
– sequence: 2
  givenname: Guowei
  surname: He
  fullname: He, Guowei
  organization: The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences
– sequence: 3
  givenname: Xing
  surname: Zhang
  fullname: Zhang, Xing
  email: zhangx@lnm.imech.ac.cn
  organization: The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences
BookMark eNp9kUtr3TAQRkVJoTdpf0B3hi7ajdoZy5Ls7kroCwKFvrZClsa3Co7sSPZt7r-vgkMoWWSlhc6ZmW_mlJ3EKRJjLxHeIoB-lxEa6Dig4iB1y49P2A4VNlwgqhO2A6k01xrbZ-w050sAoVDjjv3-QePA5zTN65jDFKtpqIbRznOI-6qffKBchVgdQnbTmsvXGnx-X30nR3GprD_Y6Apio69mSnkmt4QD5efs6WDHTC_u3jP269PHn-df-MW3z1_PP1xw12i58A6tbWrVtVJ55QUoZ6mXTnhdUy-UtpJ8b733JKTtta-HVjQkGmmx6XAYxBl7vdX9a-Ng495cTmuKpaMZb256Q3VZCCiAupBvNrJkvV4pL-aqZKJxtJFKMoNtJzpoa9EV9NUD9L4qtm1hurqRhdIb5dKUc6LBuLDYpexwSTaMBsHcXsZslzFlEHN7GXMsJj4w5xSubDo-6tSbkwsb95T-m-kR6S6I-zPF_XXx7jtpACi8bFH8A3MVrvI
CitedBy_id crossref_primary_10_1007_s11433_017_9159_0
crossref_primary_10_1016_j_oceaneng_2019_106712
crossref_primary_10_1007_s10409_019_00896_5
crossref_primary_10_1017_jfm_2024_262
crossref_primary_10_1016_j_jfluidstructs_2018_08_009
crossref_primary_10_3390_fluids8010029
crossref_primary_10_1017_jfm_2019_870
crossref_primary_10_1088_1748_3190_ac68ba
crossref_primary_10_4236_jamp_2023_1110192
crossref_primary_10_1007_s10409_016_0608_9
crossref_primary_10_1103_PhysRevFluids_6_013102
crossref_primary_10_1063_5_0029340
crossref_primary_10_1063_5_0226743
crossref_primary_10_1103_PhysRevE_99_053107
crossref_primary_10_3390_biomimetics9060324
crossref_primary_10_1016_j_oceaneng_2019_106908
crossref_primary_10_1017_jfm_2020_1015
crossref_primary_10_1063_5_0086736
crossref_primary_10_1103_PhysRevLett_126_124501
crossref_primary_10_1016_j_jfluidstructs_2020_102875
crossref_primary_10_1103_PhysRevE_99_053111
crossref_primary_10_1007_s10409_017_0677_4
crossref_primary_10_1007_s42241_021_0018_8
crossref_primary_10_1063_5_0082283
crossref_primary_10_1115_1_4050258
crossref_primary_10_1063_5_0219371
crossref_primary_10_1007_s10409_017_0732_1
crossref_primary_10_1016_j_taml_2018_02_007
Cites_doi 10.2514/2.2628
10.1103/PhysRevLett.113.238105
10.2514/3.10246
10.1088/1748-3182/9/1/016008
10.1017/jfm.2012.313
10.1242/jeb.205.14.2125
10.1016/j.compfluid.2012.10.029
10.1242/jeb.015644
10.1016/j.jfluidstructs.2013.12.012
10.1063/1.2148989
10.2514/6.2015-3295
10.1242/jeb.025007
10.1063/1.4709477
10.1088/1748-3190/10/4/046013
10.1017/S0022112009007903
10.1098/rspb.2012.0057
10.1103/PhysRevLett.101.194502
10.2514/2.589
10.2514/3.13067
10.1002/fld.1094
10.1016/j.compfluid.2004.10.002
10.2514/2.505
10.1038/ncomms9514
10.1073/pnas.0505064102
10.2514/1.27628
10.1088/1748-3182/9/3/036008
10.2514/3.9982
10.1038/srep05904
10.1016/j.compfluid.2015.10.006
10.1017/S0022112097008392
10.1093/icb/42.5.1018
10.1103/PhysRevE.82.015303
10.1088/1748-3190/10/1/016003
10.1016/S0889-9746(02)00115-9
10.1017/jfm.2013.659
10.1063/1.3177356
10.1242/jeb.000265
10.1038/241290a0
10.1098/rsif.2013.0667
10.1103/PhysRevE.86.016308
10.1371/journal.pone.0114687
10.1017/jfm.2013.295
10.1063/1.3383215
10.1017/S0022112010002387
10.1016/j.compfluid.2014.03.031
10.1017/jfm.2014.310
10.1006/jfls.1993.1012
10.1063/1.4872221
10.1063/1.4876231
10.2514/1.5070
10.2514/1.25431
10.1073/pnas.1017910108
10.2514/1.21203
10.2514/2.1320
10.1017/jfm.2015.702
10.1088/1748-3182/8/1/016005
10.1063/1.2814259
10.1242/jeb.02526
10.1017/jfm.2012.561
10.2514/6.1997-826
10.1017/S0022112010003514
10.1017/jfm.2013.314
10.1038/srep07329
10.1017/S0022112004008468
10.1017/jfm.2015.460
10.1209/0295-5075/105/54003
10.1126/science.1088295
10.1063/1.4832857
10.1115/1.3448871
10.1017/S0022112009992138
10.1017/jfm.2015.661
ContentType Journal Article
Copyright The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2016
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2016
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TB
8FD
FR3
KR7
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s10409-016-0578-y
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList

Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1614-3116
Edition English ed.
EndPage 990
ExternalDocumentID lxxb_e201606002
10_1007_s10409_016_0578_y
7000104581
GrantInformation_xml – fundername: Acknowledgments The project was supported by the Chinese Acad-emy of Sciences; the National Natural Science Foundation of China
  funderid: (Grants KJCX-SW-L08, KJCX3-SYW-S01); (Grants 11021262,11023001,11232011,11372331)
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
67Z
6NX
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
CCEZO
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9P
PF0
PT4
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SCLPG
SCV
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGP
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~WA
-SA
-S~
5XA
5XB
AACDK
AAEWM
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
7TB
8FD
FR3
KR7
2B.
4A8
PSX
ID FETCH-LOGICAL-c475t-91aa4269856d6d306caeb5c3d72eb367a5edbaddde35ab7d2f834e345a1491ff3
IEDL.DBID U2A
ISSN 0567-7718
IngestDate Thu May 29 04:10:19 EDT 2025
Fri Jul 11 13:50:31 EDT 2025
Fri Jul 25 11:14:04 EDT 2025
Tue Jul 01 01:58:24 EDT 2025
Thu Apr 24 22:59:29 EDT 2025
Fri Feb 21 02:44:50 EST 2025
Wed Feb 14 10:06:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Flapping motion
Flow-mediated interaction
Self-propulsion
Passive flexibility
Symmetry breaking
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-91aa4269856d6d306caeb5c3d72eb367a5edbaddde35ab7d2f834e345a1491ff3
Notes 11-2063/O3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1880829245
PQPubID 2043800
PageCount 11
ParticipantIDs wanfang_journals_lxxb_e201606002
proquest_miscellaneous_1893908239
proquest_journals_1880829245
crossref_citationtrail_10_1007_s10409_016_0578_y
crossref_primary_10_1007_s10409_016_0578_y
springer_journals_10_1007_s10409_016_0578_y
chongqing_primary_7000104581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Acta mechanica Sinica
PublicationTitleAbbrev Acta Mech. Sin
PublicationTitleAlternate Acta Mechanica Sinica
PublicationYear 2016
Publisher The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Springer Nature B.V
The State Key Laboratory of Nonlinear Mechanics LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Publisher_xml – name: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
– name: Springer Nature B.V
– name: The State Key Laboratory of Nonlinear Mechanics LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
References DengJShaoXMYuZSHydrodynamic studies on two traveling wavy foils in tandem arrangementPhys. Fluids20071911310410.1063/1.28142591182.76198
TuncerIHPlatzerMFComputational study of flapping airfoil aerodynamicsAIAA J. Aircr.20003751452010.2514/2.2628
YoungJLaiJCSOscillation frequency and amplitude effects on the wake of plunging airfoilAIAA J.2004422042205210.2514/1.5070
HeathcoteSGursulIFlexible flapping airfoil propulsion at low reynolds numberAIAA J.2007451066107810.2514/1.25431
HuJXiaoQThree-dimensional effects on the translational locomotion of a passive heaving wingJ. Fluids Struct.201446778810.1016/j.jfluidstructs.2013.12.012
TriantafyllouGSOptimal thrust development in oscillating foils with application to fish propulsionJ. Fluids Struct.1993720522410.1006/jfls.1993.1012
UddinEHuangWXSungHJActively flapping tandem flexible flags in a viscous flowJ. Fluid Mech.2015780120142344215510.1017/jfm.2015.460
Arora, N., Gupta, A., Hikaru, A., et al.: Propulsion of a plunging flexible airfoil using a torsion spring model. In: AIAA Aviation, 33rd AIAA Applied Aerodynamics Conference, Dallas (2015)
MooredKWDeweyPASmitsAJHydrodynamic wake resonance as an underlying principle of efficient unsteady propulsionJ. Fluid Mech.2012708329348297544610.1017/jfm.2012.3131275.76235
BorazjaniISotiropoulosFNumerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimesJ. Exp. Biol.20082111541155810.1242/jeb.015644
KoochesfahaniMMVortical patterns in the wake of an oscillating airfoilAIAA J.1989271200120510.2514/3.10246
RamananarivoSGodoy-DianaRThiriaBPropagating waves in bounded elastic media: transition from standing waves to anguilliform kinematicsEurophys. Lett.20141055400310.1209/0295-5075/105/54003
AlbenSWake-mediated synchronization and drafting in coupled flagsJ Fluid Mech.2009641489496254046310.1017/S00221120099921381183.76653
LiaoJCBealDNLauderGVFish exploiting vortices decrease muscle activityScience20033021566156910.1126/science.1088295
TuncerIHPlatzerMFThrust generation due to airfoil flappingAIAA J.19963432433110.2514/3.130670900.76200
TianFBWangWQWuJSwimming performance and vorticity structures of a mother-calf pair of fishComput. Fluids2016124111343008210.1016/j.compfluid.2015.10.006
Garrick, I.E.: Propulsion of a Flapping and Oscillating Airfoil. NACA 567 (1937)
AlbenSShelleyMJCoherent locomotion as an attracting state for a free flapping bodyProc. Natl. Acad. Sci. USA2005102111631116610.1073/pnas.0505064102
SpagnolieSEMoretLShelleyMJSurprising behaviors in flapping locomotion with passive pitchingPhys. Fluids20092204190310.1063/1.33832151190.76116
MaertensAPTriantafyllouMSYueDKEfficiency of fish propulsionBioinspir. Biomim.20151004601310.1088/1748-3190/10/4/046013
EloyCOn the best design for undulatory swimmingJ. Fluid Mech.20137174889301859910.1017/jfm.2012.5611284.76429
HuaRNZhuLDLuXYLocomotion of a flapping flexible platePhys. Fluids20132512190110.1063/1.4832857
DengJCaulfieldCPDependence on aspect ratio of symmetry breaking for oscillating foils: implications for flapping flightJ. Fluid Mech.20157871649348202010.1017/jfm.2015.661
BottomRGIIBorazjaniIBlevinsELHydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortexJ. Fluid Mech.2016788407443348206010.1017/jfm.2015.702
RistrophLZhangJAnomalous hydrodynamic drafting of interacting flapping flagsPhys. Rev. Letts.20081016797680010.1103/PhysRevLett.101.194502
WebbPWKinematics of plaice, Pleuronectes platessa, and cod, Gadus morhua, swimming near the bottomJ. Exp. Biol.200220521252134
SarkarSVenkatramanKNumerical simulation of thrust generating flow past a pitching airfoilComput. Fluids200635164210.1016/j.compfluid.2004.10.0021134.76417
KimSHuangWXSungHJConstructive and destructive interaction modes between two tandem flexible flags in viscous flowJ. Fluid Mech.201066151152110.1017/S00221120100035141205.76076
LauderGVAndersonEJTangorraJFish biorobotics: kinematics and hydrodynamics of self-propulsionJ. Exp. Biol.20072102767278010.1242/jeb.000265
JonesKDDohringCMPlatzerMFExperimental and computational investigation of the Knoller–Betz EffectAIAA J.1998361240124610.2514/2.505
De RosisAFluid forces enhance the performance of an aspirant leader in self-organized living groupsPLoS One20149e11468710.1371/journal.pone.0114687
QuinnDBMooredKWDeweyPAUnsteady propulsion near a solid boundaryJ. Fluid Mech.201474215217010.1017/jfm.2013.659
WeihsDHydromechanics of fish schoolingNautre197324129029110.1038/241290a0
ZhuLLGuanHWuCJA study of a three-dimensional self-propelled flying bird with flapping wingsSci. China Ser. G2015581163507558
IsogaiKShinmotoYWatanabeYEffects of dynamic stall on propulsive efficiency and thrust of flapping airfoilAIAA J.1999371145115110.2514/2.589
MichelinSSmithSGLResonance and propulsion performance of a heaving flexible wingPhys. Fluids20092107190210.1063/1.31773561183.76353
ZhuXJHeGWZhangXUnderlying principle of efficient propulsion in flexible plunging foilsActa Mech. Sin.201530839845330476810.1007/s10409-014-0114-x1342.76148
UddinEHuangWXSungHJInteraction modes of multiple flexible flags in a uniform flowJ. Fluid Mech.2013729563583313798610.1017/jfm.2013.3141291.76380
SchultzWWWebbPWPower requirements of swimming: do new methods resolve old questions?Integr. Comp. Biol.2002421018102510.1093/icb/42.5.1018
BlevinsELLauderGVSwimming near the substrate: a simple robotic model of stingray locomotionBioinspir. Biomim.2013801600510.1088/1748-3182/8/1/016005
ZhangXNiSZWangSZEffects of geometric shape on the hydrodynamics of a self-propelled flapping foilPhys. Fluids2009215935981183.76602
KernSKoumoutsakosPSimulations of optimized anguilliform swimmingJ. Exp. Biol.20062094841485710.1242/jeb.02526
AlbenSCharlesWBakerTVDynamics of freely swimming flexible foilsPhys. Fluids20122405190110.1063/1.47094771309.76237
MooredKWDeweyPABoschitschBMLinear instability mechanisms leading to optimally efficient locomotion with flexible propulsorsPhys. Fluids20142604190510.1063/1.4872221
Jones, K.D., Platzer, M.F.: Numerical computation of flapping-wing propulsion and power extraction. In: 35th Aerospace Sciences Meeting & Exhibit, Reno, NV (1997)
ZhuLDInteraction of two tandem deformable bodies in a viscous incompressible flowJ. Fluid Mech.2009635455475254047910.1017/S00221120090079031183.76709
RamananarivoSGodoy-DianaRThiriaBPassive elastic mechanism to mimic fish-muscle action in anguilliform swimmingJ. R. Soc. Interface2013102013066710.1098/rsif.2013.0667
BorazjaniISotiropoulosFNumerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimesJ. Exp. Biol.200921257659210.1242/jeb.025007
LiuGYuYLTongBGOptimal energy-utilization ratio for long-distance cruising of a model fishPhys. Rev. E20128601630810.1103/PhysRevE.86.016308
YehPDAlexeevAEffect of aspect ratio in free-swimming plunging flexible platesComput. Fluids2015124220225343010110.1016/j.compfluid.2015.07.009
AndersonJMStreitlienKBarrettDSOscillating foils of high propulsive efficiencyJ. Fluid Mech.19983604172162153510.1017/S00221120970083920922.76023
ZhuXJHeGWZhangXFlow-mediated interactions between two self-propelled flapping filaments in tandem configurationPhys. Rev. Letts.201411323810510.1103/PhysRevLett.113.238105
RaspaVGodoy-DianaRThiriaBTopology-induced effect in biomimetic propulsive wakesJ. Fluid Mech.201372937738710.1017/jfm.2013.2951291.76379
Knoller, R.: Die Gesetze des Luftwiderstandes. Flugund Motortchnik(Wien) 3, 1–7 (1909) (in German)
YoungJLaiJCSMechanisms influencing the efficiency of oscillating airfoil propulsionAIAA J.2007451695170210.2514/1.27628
ZhuXJHeGWZhangXNumerical study on hydrodynamic effect of flexibility in a self-propelled plunging foilComput. Fluids201497120320565210.1016/j.compfluid.2014.03.031
SarkarSVenkatramanKNumerical simulation of incompressible viscous flow past a heaving airfoilInt. J. Numer. Meth. Fluids200651129221837710.1002/fld.10941141.76033
VandenbergheNZhangJChildressSSymmetry breaking leads to forward flapping flightJ. Fluid Mech.200450614715510.1017/S00221120040084681073.76506
von KármánTBurgersJMAerodynamic Theory1934BerlinSpringer
TokicGYueDKOptimal shape and motion of undulatory swimming organismsProc. R. Soc. B20122793065307410.1098/rspb.2012.0057
RamamurtiRSandbergWSimulation of flow about flapping airfoils using finite element incompressible flow solverAIAA J.20013925326010.2514/2.1320
XiaoQHuJLiuHEffect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wingsBioinspir. Biomim.2014901600810.1088/1748-3182/9/1/016008
Fernandez-PratsRRaspaVThiriaBLarge-amplitude undulatory swimming near a wallBioinspir. Biomim.20151001600310.1088/1748-3190/10/1/016003
Webb, P.W.: The effect of solid and porous channel walls on steady swimming of steelhead trout Oncorhynchus mykiss. J. Exp. Biol. 178, 97–108 (1993)
YehPDAlexeevAFree swimming of an elastic plate plunging at low Reynolds numberPhys. Fluids20142605360410.1063/1.4876231
WangZRussellDEffect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flightPhys. Rev. Letts.2007991224312254
PederzaniJHaj-HaririHNumerical analysis of heaving flexible airfoils in a viscous flowAIAA J.2006442773277910.2514/1.212031178.76261
LuXYLiaoQDynamic responses of a two-dimensional flapping foil motionPhys. Fluids20061841734180
ZhuXJHeGWZhangXHow flexibility affects the wake symmetry properties of a self-propelled plunging foilJ. Fluid Mech.2014751164183322794710.1017/jfm.2014.310
BaleRShirgaonkarAANevelnIDSeparability of drag and thrust in undulatory animals and machinesSci. Rep.20144732910.1038/srep07329
ThiriaBGodoy-DianaRHow wing compliance drives the efficiency of self-propelled flapping flyersPhys. Rev. E20108201530310.1103/PhysRevE.82.015303
Betz, A.: Ein Beitrag zur Erklarung des Segelfluges. Z. fur Flugtech. und Motorluftschiffahrt 3, 269–272 (1912) (in German)
ZdravkovichMMReview of flow interference between two circular cylinders in various arrangementsJ. Fluids Eng.19779961863310.1115/1.344
S Alben (578_CR26) 2005; 102
GV Lauder (578_CR23) 2007; 210
I Borazjani (578_CR51) 2008; 211
S Alben (578_CR64) 2009; 641
J Zhang (578_CR32) 2010; 659
J Pederzani (578_CR9) 2006; 44
C Eloy (578_CR59) 2013; 717
L Ristroph (578_CR63) 2008; 101
S Ramananarivo (578_CR36) 2011; 108
R Bale (578_CR53) 2014; 4
J Young (578_CR16) 2007; 45
KW Moored (578_CR46) 2012; 708
G Tokic (578_CR60) 2012; 279
S Michelin (578_CR44) 2009; 21
XY Lu (578_CR27) 2006; 18
JM Anderson (578_CR17) 1998; 360
FB Tian (578_CR71) 2016; 124
S Heathcote (578_CR19) 2007; 45
J Deng (578_CR69) 2007; 19
S Sarkar (578_CR11) 2006; 51
IH Tuncer (578_CR13) 2000; 37
XJ Zhu (578_CR40) 2014; 97
I Borazjani (578_CR52) 2009; 212
578_CR33
578_CR77
E Uddin (578_CR67) 2013; 729
DB Quinn (578_CR79) 2014; 742
J Deng (578_CR29) 2015; 787
RN Hua (578_CR39) 2013; 25
PW Webb (578_CR78) 2002; 205
GS Triantafyllou (578_CR45) 1993; 7
S Ramananarivo (578_CR50) 2014; 105
S Kern (578_CR57) 2006; 209
V Raspa (578_CR76) 2013; 729
AP Maertens (578_CR54) 2015; 10
IH Tuncer (578_CR14) 1996; 34
K Isogai (578_CR8) 1999; 37
R Ramamurti (578_CR10) 2001; 39
T Kármán von (578_CR4) 1934
D Weihs (578_CR61) 1973; 241
J Hu (578_CR30) 2014; 46
XJ Zhu (578_CR48) 2015; 30
A Rosis De (578_CR75) 2014; 9
N Vandenberghe (578_CR25) 2006; 18
X Zhang (578_CR28) 2009; 21
AD Becker (578_CR74) 2015; 6
S Alben (578_CR37) 2012; 24
Z Wang (578_CR68) 2007; 99
XJ Zhu (578_CR72) 2014; 113
P Freymuth (578_CR18) 1988; 26
DB Quinn (578_CR80) 2014; 9
JC Liao (578_CR73) 2003; 302
S Sarkar (578_CR12) 2006; 35
G Liu (578_CR58) 2012; 86
MM Koochesfahani (578_CR21) 1989; 27
MM Zdravkovich (578_CR62) 1977; 99
S Ramananarivo (578_CR49) 2013; 10
EL Blevins (578_CR82) 2013; 8
J Lee (578_CR38) 2013; 71
KD Jones (578_CR20) 1998; 36
SE Spagnolie (578_CR31) 2009; 22
E Uddin (578_CR70) 2015; 780
RG Bottom II (578_CR83) 2016; 788
PD Yeh (578_CR41) 2014; 26
XJ Zhu (578_CR43) 2014; 751
LD Zhu (578_CR65) 2009; 635
LL Zhu (578_CR84) 2015; 58
KW Moored (578_CR47) 2014; 26
J Young (578_CR15) 2004; 42
PD Yeh (578_CR42) 2015; 124
DA Read (578_CR22) 2003; 17
Q Xiao (578_CR34) 2014; 9
578_CR7
578_CR5
IH Tuncer (578_CR6) 1996; 34
B Thiria (578_CR35) 2010; 82
S Kim (578_CR66) 2010; 661
R Fernandez-Prats (578_CR81) 2015; 10
578_CR2
578_CR3
R Bale (578_CR55) 2014; 4
N Vandenberghe (578_CR24) 2004; 506
WW Schultz (578_CR56) 2002; 42
578_CR1
References_xml – reference: LeeJLeeSFluid-structure interaction for the propulsive velocity of a flapping flexible plate at low reynolds numberComput. Fluids201371348374303500310.1016/j.compfluid.2012.10.029
– reference: TokicGYueDKOptimal shape and motion of undulatory swimming organismsProc. R. Soc. B20122793065307410.1098/rspb.2012.0057
– reference: LuXYLiaoQDynamic responses of a two-dimensional flapping foil motionPhys. Fluids20061841734180
– reference: AndersonJMStreitlienKBarrettDSOscillating foils of high propulsive efficiencyJ. Fluid Mech.19983604172162153510.1017/S00221120970083920922.76023
– reference: Katzmayr, R.: Effect of Periodic Changes of Angle of Attack on Behavior of Airfoils. NACA TM-147 (1922)
– reference: KoochesfahaniMMVortical patterns in the wake of an oscillating airfoilAIAA J.1989271200120510.2514/3.10246
– reference: RamananarivoSGodoy-DianaRThiriaBRather than resonance, flapping wing flyers may play on aerodynamics to improve performanceProc. Natl. Acad. Sci. USA20111085964596910.1073/pnas.1017910108
– reference: LauderGVAndersonEJTangorraJFish biorobotics: kinematics and hydrodynamics of self-propulsionJ. Exp. Biol.20072102767278010.1242/jeb.000265
– reference: RamamurtiRSandbergWSimulation of flow about flapping airfoils using finite element incompressible flow solverAIAA J.20013925326010.2514/2.1320
– reference: RamananarivoSGodoy-DianaRThiriaBPassive elastic mechanism to mimic fish-muscle action in anguilliform swimmingJ. R. Soc. Interface2013102013066710.1098/rsif.2013.0667
– reference: WeihsDHydromechanics of fish schoolingNautre197324129029110.1038/241290a0
– reference: IsogaiKShinmotoYWatanabeYEffects of dynamic stall on propulsive efficiency and thrust of flapping airfoilAIAA J.1999371145115110.2514/2.589
– reference: EloyCOn the best design for undulatory swimmingJ. Fluid Mech.20137174889301859910.1017/jfm.2012.5611284.76429
– reference: ZhuLDInteraction of two tandem deformable bodies in a viscous incompressible flowJ. Fluid Mech.2009635455475254047910.1017/S00221120090079031183.76709
– reference: ThiriaBGodoy-DianaRHow wing compliance drives the efficiency of self-propelled flapping flyersPhys. Rev. E20108201530310.1103/PhysRevE.82.015303
– reference: RamananarivoSGodoy-DianaRThiriaBPropagating waves in bounded elastic media: transition from standing waves to anguilliform kinematicsEurophys. Lett.20141055400310.1209/0295-5075/105/54003
– reference: LiaoJCBealDNLauderGVFish exploiting vortices decrease muscle activityScience20033021566156910.1126/science.1088295
– reference: RaspaVGodoy-DianaRThiriaBTopology-induced effect in biomimetic propulsive wakesJ. Fluid Mech.201372937738710.1017/jfm.2013.2951291.76379
– reference: Garrick, I.E.: Propulsion of a Flapping and Oscillating Airfoil. NACA 567 (1937)
– reference: ZhuXJHeGWZhangXUnderlying principle of efficient propulsion in flexible plunging foilsActa Mech. Sin.201530839845330476810.1007/s10409-014-0114-x1342.76148
– reference: Arora, N., Gupta, A., Hikaru, A., et al.: Propulsion of a plunging flexible airfoil using a torsion spring model. In: AIAA Aviation, 33rd AIAA Applied Aerodynamics Conference, Dallas (2015)
– reference: MooredKWDeweyPASmitsAJHydrodynamic wake resonance as an underlying principle of efficient unsteady propulsionJ. Fluid Mech.2012708329348297544610.1017/jfm.2012.3131275.76235
– reference: ReadDAHoverFSTriantafyllouMSForces on oscillating foils for propulsion and maneuveringJ. Fluids Struct.20031716318310.1016/S0889-9746(02)00115-9
– reference: LiuGYuYLTongBGOptimal energy-utilization ratio for long-distance cruising of a model fishPhys. Rev. E20128601630810.1103/PhysRevE.86.016308
– reference: QuinnDBLauderGVSmitsAJFlexible propulsors in ground effectBioinspir. Biomim.2014903600810.1088/1748-3182/9/3/036008
– reference: YehPDAlexeevAEffect of aspect ratio in free-swimming plunging flexible platesComput. Fluids2015124220225343010110.1016/j.compfluid.2015.07.009
– reference: TriantafyllouGSOptimal thrust development in oscillating foils with application to fish propulsionJ. Fluids Struct.1993720522410.1006/jfls.1993.1012
– reference: MichelinSSmithSGLResonance and propulsion performance of a heaving flexible wingPhys. Fluids20092107190210.1063/1.31773561183.76353
– reference: BaleRShirgaonkarAANevelnIDSeparability of drag and thrust in undulatory animals and machinesSci. Rep.20144732910.1038/srep07329
– reference: HuaRNZhuLDLuXYLocomotion of a flapping flexible platePhys. Fluids20132512190110.1063/1.4832857
– reference: ZhuXJHeGWZhangXHow flexibility affects the wake symmetry properties of a self-propelled plunging foilJ. Fluid Mech.2014751164183322794710.1017/jfm.2014.310
– reference: TuncerIHPlatzerMFThrust generation due to airfoil flappingAIAA J.19963432433110.2514/3.130670900.76200
– reference: AlbenSShelleyMJCoherent locomotion as an attracting state for a free flapping bodyProc. Natl. Acad. Sci. USA2005102111631116610.1073/pnas.0505064102
– reference: DengJShaoXMYuZSHydrodynamic studies on two traveling wavy foils in tandem arrangementPhys. Fluids20071911310410.1063/1.28142591182.76198
– reference: UddinEHuangWXSungHJInteraction modes of multiple flexible flags in a uniform flowJ. Fluid Mech.2013729563583313798610.1017/jfm.2013.3141291.76380
– reference: WangZRussellDEffect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flightPhys. Rev. Letts.2007991224312254
– reference: YehPDAlexeevAFree swimming of an elastic plate plunging at low Reynolds numberPhys. Fluids20142605360410.1063/1.4876231
– reference: ZhuXJHeGWZhangXNumerical study on hydrodynamic effect of flexibility in a self-propelled plunging foilComput. Fluids201497120320565210.1016/j.compfluid.2014.03.031
– reference: JonesKDDohringCMPlatzerMFExperimental and computational investigation of the Knoller–Betz EffectAIAA J.1998361240124610.2514/2.505
– reference: FreymuthPPropulsive vortical signature of plunging and pitching airfoilsAIAA J.19882688188310.2514/3.9982
– reference: RistrophLZhangJAnomalous hydrodynamic drafting of interacting flapping flagsPhys. Rev. Letts.20081016797680010.1103/PhysRevLett.101.194502
– reference: Webb, P.W.: The effect of solid and porous channel walls on steady swimming of steelhead trout Oncorhynchus mykiss. J. Exp. Biol. 178, 97–108 (1993)
– reference: Knoller, R.: Die Gesetze des Luftwiderstandes. Flugund Motortchnik(Wien) 3, 1–7 (1909) (in German)
– reference: BorazjaniISotiropoulosFNumerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimesJ. Exp. Biol.20082111541155810.1242/jeb.015644
– reference: BaleRHaoMBhallaAPGray’s paradox: a fluid mechanical perspectiveSci. Rep.201445904
– reference: QuinnDBMooredKWDeweyPAUnsteady propulsion near a solid boundaryJ. Fluid Mech.201474215217010.1017/jfm.2013.659
– reference: ZhangJLiuNSLuXYLocomotion of a passively flapping flat plateJ. Fluid Mech.20106594368268443210.1017/S00221120100023871205.76319
– reference: BeckerADMasoudHNewboltJWHydrodynamic schooling of flapping swimmersNat. Commun.20156851410.1038/ncomms9514
– reference: DengJCaulfieldCPDependence on aspect ratio of symmetry breaking for oscillating foils: implications for flapping flightJ. Fluid Mech.20157871649348202010.1017/jfm.2015.661
– reference: von KármánTBurgersJMAerodynamic Theory1934BerlinSpringer
– reference: HeathcoteSGursulIFlexible flapping airfoil propulsion at low reynolds numberAIAA J.2007451066107810.2514/1.25431
– reference: BlevinsELLauderGVSwimming near the substrate: a simple robotic model of stingray locomotionBioinspir. Biomim.2013801600510.1088/1748-3182/8/1/016005
– reference: UddinEHuangWXSungHJActively flapping tandem flexible flags in a viscous flowJ. Fluid Mech.2015780120142344215510.1017/jfm.2015.460
– reference: BorazjaniISotiropoulosFNumerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimesJ. Exp. Biol.200921257659210.1242/jeb.025007
– reference: SarkarSVenkatramanKNumerical simulation of thrust generating flow past a pitching airfoilComput. Fluids200635164210.1016/j.compfluid.2004.10.0021134.76417
– reference: ZdravkovichMMReview of flow interference between two circular cylinders in various arrangementsJ. Fluids Eng.19779961863310.1115/1.3448871
– reference: VandenbergheNZhangJChildressSSymmetry breaking leads to forward flapping flightJ. Fluid Mech.200450614715510.1017/S00221120040084681073.76506
– reference: YoungJLaiJCSMechanisms influencing the efficiency of oscillating airfoil propulsionAIAA J.2007451695170210.2514/1.27628
– reference: XiaoQHuJLiuHEffect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wingsBioinspir. Biomim.2014901600810.1088/1748-3182/9/1/016008
– reference: VandenbergheNChildressSZhangJOn unidirectional flight of a free flapping wingPhys. Fluids20061899124220155810.1063/1.21489891185.76933
– reference: Betz, A.: Ein Beitrag zur Erklarung des Segelfluges. Z. fur Flugtech. und Motorluftschiffahrt 3, 269–272 (1912) (in German)
– reference: Jones, K.D., Platzer, M.F.: Numerical computation of flapping-wing propulsion and power extraction. In: 35th Aerospace Sciences Meeting & Exhibit, Reno, NV (1997)
– reference: De RosisAFluid forces enhance the performance of an aspirant leader in self-organized living groupsPLoS One20149e11468710.1371/journal.pone.0114687
– reference: SchultzWWWebbPWPower requirements of swimming: do new methods resolve old questions?Integr. Comp. Biol.2002421018102510.1093/icb/42.5.1018
– reference: TianFBWangWQWuJSwimming performance and vorticity structures of a mother-calf pair of fishComput. Fluids2016124111343008210.1016/j.compfluid.2015.10.006
– reference: AlbenSWake-mediated synchronization and drafting in coupled flagsJ Fluid Mech.2009641489496254046310.1017/S00221120099921381183.76653
– reference: WebbPWKinematics of plaice, Pleuronectes platessa, and cod, Gadus morhua, swimming near the bottomJ. Exp. Biol.200220521252134
– reference: ZhuLLGuanHWuCJA study of a three-dimensional self-propelled flying bird with flapping wingsSci. China Ser. G2015581163507558
– reference: KimSHuangWXSungHJConstructive and destructive interaction modes between two tandem flexible flags in viscous flowJ. Fluid Mech.201066151152110.1017/S00221120100035141205.76076
– reference: YoungJLaiJCSOscillation frequency and amplitude effects on the wake of plunging airfoilAIAA J.2004422042205210.2514/1.5070
– reference: AlbenSCharlesWBakerTVDynamics of freely swimming flexible foilsPhys. Fluids20122405190110.1063/1.47094771309.76237
– reference: ZhuXJHeGWZhangXFlow-mediated interactions between two self-propelled flapping filaments in tandem configurationPhys. Rev. Letts.201411323810510.1103/PhysRevLett.113.238105
– reference: Fernandez-PratsRRaspaVThiriaBLarge-amplitude undulatory swimming near a wallBioinspir. Biomim.20151001600310.1088/1748-3190/10/1/016003
– reference: PederzaniJHaj-HaririHNumerical analysis of heaving flexible airfoils in a viscous flowAIAA J.2006442773277910.2514/1.212031178.76261
– reference: SarkarSVenkatramanKNumerical simulation of incompressible viscous flow past a heaving airfoilInt. J. Numer. Meth. Fluids200651129221837710.1002/fld.10941141.76033
– reference: BottomRGIIBorazjaniIBlevinsELHydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortexJ. Fluid Mech.2016788407443348206010.1017/jfm.2015.702
– reference: MaertensAPTriantafyllouMSYueDKEfficiency of fish propulsionBioinspir. Biomim.20151004601310.1088/1748-3190/10/4/046013
– reference: SpagnolieSEMoretLShelleyMJSurprising behaviors in flapping locomotion with passive pitchingPhys. Fluids20092204190310.1063/1.33832151190.76116
– reference: HuJXiaoQThree-dimensional effects on the translational locomotion of a passive heaving wingJ. Fluids Struct.201446778810.1016/j.jfluidstructs.2013.12.012
– reference: KernSKoumoutsakosPSimulations of optimized anguilliform swimmingJ. Exp. Biol.20062094841485710.1242/jeb.02526
– reference: TuncerIHPlatzerMFComputational study of flapping airfoil aerodynamicsAIAA J. Aircr.20003751452010.2514/2.2628
– reference: ZhangXNiSZWangSZEffects of geometric shape on the hydrodynamics of a self-propelled flapping foilPhys. Fluids2009215935981183.76602
– reference: MooredKWDeweyPABoschitschBMLinear instability mechanisms leading to optimally efficient locomotion with flexible propulsorsPhys. Fluids20142604190510.1063/1.4872221
– volume: 99
  start-page: 12243
  year: 2007
  ident: 578_CR68
  publication-title: Phys. Rev. Letts.
– volume: 37
  start-page: 514
  year: 2000
  ident: 578_CR13
  publication-title: AIAA J. Aircr.
  doi: 10.2514/2.2628
– volume: 113
  start-page: 238105
  year: 2014
  ident: 578_CR72
  publication-title: Phys. Rev. Letts.
  doi: 10.1103/PhysRevLett.113.238105
– volume: 27
  start-page: 1200
  year: 1989
  ident: 578_CR21
  publication-title: AIAA J.
  doi: 10.2514/3.10246
– volume: 9
  start-page: 016008
  year: 2014
  ident: 578_CR34
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3182/9/1/016008
– volume: 708
  start-page: 329
  year: 2012
  ident: 578_CR46
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.313
– volume: 205
  start-page: 2125
  year: 2002
  ident: 578_CR78
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.205.14.2125
– volume: 71
  start-page: 348
  year: 2013
  ident: 578_CR38
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2012.10.029
– volume: 211
  start-page: 1541
  year: 2008
  ident: 578_CR51
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.015644
– ident: 578_CR2
– volume: 46
  start-page: 77
  year: 2014
  ident: 578_CR30
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2013.12.012
– volume: 18
  start-page: 99
  year: 2006
  ident: 578_CR25
  publication-title: Phys. Fluids
  doi: 10.1063/1.2148989
– ident: 578_CR33
  doi: 10.2514/6.2015-3295
– volume: 212
  start-page: 576
  year: 2009
  ident: 578_CR52
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.025007
– volume: 24
  start-page: 051901
  year: 2012
  ident: 578_CR37
  publication-title: Phys. Fluids
  doi: 10.1063/1.4709477
– ident: 578_CR77
– volume: 10
  start-page: 046013
  year: 2015
  ident: 578_CR54
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/10/4/046013
– volume: 635
  start-page: 455
  year: 2009
  ident: 578_CR65
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009007903
– volume: 279
  start-page: 3065
  year: 2012
  ident: 578_CR60
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2012.0057
– volume: 101
  start-page: 6797
  year: 2008
  ident: 578_CR63
  publication-title: Phys. Rev. Letts.
  doi: 10.1103/PhysRevLett.101.194502
– volume: 37
  start-page: 1145
  year: 1999
  ident: 578_CR8
  publication-title: AIAA J.
  doi: 10.2514/2.589
– volume: 34
  start-page: 324
  year: 1996
  ident: 578_CR14
  publication-title: AIAA J.
  doi: 10.2514/3.13067
– volume: 51
  start-page: 1
  year: 2006
  ident: 578_CR11
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.1094
– volume: 35
  start-page: 16
  year: 2006
  ident: 578_CR12
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2004.10.002
– volume: 124
  start-page: 220
  year: 2015
  ident: 578_CR42
  publication-title: Comput. Fluids
– volume: 36
  start-page: 1240
  year: 1998
  ident: 578_CR20
  publication-title: AIAA J.
  doi: 10.2514/2.505
– volume: 6
  start-page: 8514
  year: 2015
  ident: 578_CR74
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9514
– volume: 102
  start-page: 11163
  year: 2005
  ident: 578_CR26
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0505064102
– volume: 45
  start-page: 1695
  year: 2007
  ident: 578_CR16
  publication-title: AIAA J.
  doi: 10.2514/1.27628
– volume: 9
  start-page: 036008
  year: 2014
  ident: 578_CR80
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3182/9/3/036008
– volume-title: Aerodynamic Theory
  year: 1934
  ident: 578_CR4
– ident: 578_CR3
– volume: 26
  start-page: 881
  year: 1988
  ident: 578_CR18
  publication-title: AIAA J.
  doi: 10.2514/3.9982
– volume: 4
  start-page: 5904
  year: 2014
  ident: 578_CR55
  publication-title: Sci. Rep.
  doi: 10.1038/srep05904
– volume: 124
  start-page: 1
  year: 2016
  ident: 578_CR71
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.10.006
– volume: 360
  start-page: 41
  year: 1998
  ident: 578_CR17
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112097008392
– volume: 42
  start-page: 1018
  year: 2002
  ident: 578_CR56
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/42.5.1018
– volume: 18
  start-page: 4173
  year: 2006
  ident: 578_CR27
  publication-title: Phys. Fluids
– volume: 82
  start-page: 015303
  year: 2010
  ident: 578_CR35
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.015303
– volume: 10
  start-page: 016003
  year: 2015
  ident: 578_CR81
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/10/1/016003
– volume: 17
  start-page: 163
  year: 2003
  ident: 578_CR22
  publication-title: J. Fluids Struct.
  doi: 10.1016/S0889-9746(02)00115-9
– volume: 34
  start-page: 324
  year: 1996
  ident: 578_CR6
  publication-title: AIAA J.
  doi: 10.2514/3.13067
– volume: 742
  start-page: 152
  year: 2014
  ident: 578_CR79
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.659
– volume: 21
  start-page: 071902
  year: 2009
  ident: 578_CR44
  publication-title: Phys. Fluids
  doi: 10.1063/1.3177356
– volume: 210
  start-page: 2767
  year: 2007
  ident: 578_CR23
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.000265
– volume: 241
  start-page: 290
  year: 1973
  ident: 578_CR61
  publication-title: Nautre
  doi: 10.1038/241290a0
– volume: 10
  start-page: 20130667
  year: 2013
  ident: 578_CR49
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2013.0667
– volume: 86
  start-page: 016308
  year: 2012
  ident: 578_CR58
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.016308
– volume: 21
  start-page: 593
  year: 2009
  ident: 578_CR28
  publication-title: Phys. Fluids
– volume: 9
  start-page: e114687
  year: 2014
  ident: 578_CR75
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0114687
– volume: 729
  start-page: 377
  year: 2013
  ident: 578_CR76
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.295
– volume: 22
  start-page: 041903
  year: 2009
  ident: 578_CR31
  publication-title: Phys. Fluids
  doi: 10.1063/1.3383215
– volume: 659
  start-page: 43
  year: 2010
  ident: 578_CR32
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010002387
– volume: 97
  start-page: 1
  year: 2014
  ident: 578_CR40
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2014.03.031
– volume: 751
  start-page: 164
  year: 2014
  ident: 578_CR43
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.310
– volume: 7
  start-page: 205
  year: 1993
  ident: 578_CR45
  publication-title: J. Fluids Struct.
  doi: 10.1006/jfls.1993.1012
– volume: 26
  start-page: 041905
  year: 2014
  ident: 578_CR47
  publication-title: Phys. Fluids
  doi: 10.1063/1.4872221
– volume: 26
  start-page: 053604
  year: 2014
  ident: 578_CR41
  publication-title: Phys. Fluids
  doi: 10.1063/1.4876231
– volume: 42
  start-page: 2042
  year: 2004
  ident: 578_CR15
  publication-title: AIAA J.
  doi: 10.2514/1.5070
– volume: 45
  start-page: 1066
  year: 2007
  ident: 578_CR19
  publication-title: AIAA J.
  doi: 10.2514/1.25431
– volume: 108
  start-page: 5964
  year: 2011
  ident: 578_CR36
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1017910108
– volume: 44
  start-page: 2773
  year: 2006
  ident: 578_CR9
  publication-title: AIAA J.
  doi: 10.2514/1.21203
– volume: 39
  start-page: 253
  year: 2001
  ident: 578_CR10
  publication-title: AIAA J.
  doi: 10.2514/2.1320
– volume: 788
  start-page: 407
  year: 2016
  ident: 578_CR83
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.702
– volume: 8
  start-page: 016005
  year: 2013
  ident: 578_CR82
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3182/8/1/016005
– ident: 578_CR5
– volume: 19
  start-page: 113104
  year: 2007
  ident: 578_CR69
  publication-title: Phys. Fluids
  doi: 10.1063/1.2814259
– volume: 30
  start-page: 839
  year: 2015
  ident: 578_CR48
  publication-title: Acta Mech. Sin.
– volume: 209
  start-page: 4841
  year: 2006
  ident: 578_CR57
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.02526
– volume: 717
  start-page: 48
  year: 2013
  ident: 578_CR59
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.561
– volume: 58
  start-page: 1
  year: 2015
  ident: 578_CR84
  publication-title: Sci. China Ser. G
– ident: 578_CR1
– ident: 578_CR7
  doi: 10.2514/6.1997-826
– volume: 661
  start-page: 511
  year: 2010
  ident: 578_CR66
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010003514
– volume: 729
  start-page: 563
  year: 2013
  ident: 578_CR67
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.314
– volume: 4
  start-page: 7329
  year: 2014
  ident: 578_CR53
  publication-title: Sci. Rep.
  doi: 10.1038/srep07329
– volume: 506
  start-page: 147
  year: 2004
  ident: 578_CR24
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004008468
– volume: 780
  start-page: 120
  year: 2015
  ident: 578_CR70
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.460
– volume: 105
  start-page: 54003
  year: 2014
  ident: 578_CR50
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/105/54003
– volume: 302
  start-page: 1566
  year: 2003
  ident: 578_CR73
  publication-title: Science
  doi: 10.1126/science.1088295
– volume: 25
  start-page: 121901
  year: 2013
  ident: 578_CR39
  publication-title: Phys. Fluids
  doi: 10.1063/1.4832857
– volume: 99
  start-page: 618
  year: 1977
  ident: 578_CR62
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.3448871
– volume: 641
  start-page: 489
  year: 2009
  ident: 578_CR64
  publication-title: J Fluid Mech.
  doi: 10.1017/S0022112009992138
– volume: 787
  start-page: 16
  year: 2015
  ident: 578_CR29
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.661
SSID ssj0036171
Score 2.2253509
SecondaryResourceType review_article
Snippet Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 980
SubjectTerms Biomimetics
breaking
Classical and Continuum Physics
Computational fluid dynamics
Computational Intelligence
Design engineering
Engineering
Engineering Fluid Dynamics
Flapping
flexibility
Flow-mediated
Fluids
interaction
Mathematical models
Mechanical systems
motion
Passive
Review Paper
Self-propulsion
Symmetry
Theoretical and Applied Mechanics
Viscous fluids
Title Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives
URI http://lib.cqvip.com/qk/86601X/201606/7000104581.html
https://link.springer.com/article/10.1007/s10409-016-0578-y
https://www.proquest.com/docview/1880829245
https://www.proquest.com/docview/1893908239
https://d.wanfangdata.com.cn/periodical/lxxb-e201606002
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9gIPAwZogTIZiSdQpCyx65i3Cm1Mm7YXKBpPlhPbXaXKKaSduv-eu9RpiwRIPMc-Kz77Pnx3vwN4hyYyd6oWqbdZlnJhVaokPeQL1L6qEs5zqka-uh6ej_nFjbiJddxtn-3ehyQ7Sb1T7Ma73B70gPGYpfcPYV-g6055XON81IvfAlVy1yZPoASQKHn7UOafSBCgwm0TJj9wud8V09ba3ARIu7Ke4E2Y7Gigs6dwEE1HNlrz-hk8cOEQnkQzksVL2h7C4x2Mwefw7Yub-XTeNeqilzHWeOZnhmAZJqxqKImQTQO7m7Z1s2zx03Jq248MzUlURyymCLTMBMvm28LM9gWMz06_fjpPYzOFtOZSLFCoGUNlq6UY2qFFR6E2rhJ1YWWO_vRQGuFshcLOukKYStrclwV3BRcGfagT74uXsBea4I6AZVxyT_lgWal4qayqcpRVqPlVISSaCwkMNruq52vQDC2zDgpIlCcJZP1G6zoCkVM_jJneQigTnzQlnxGf9H0C7zdTeoL_GDzouafjhWw1wc6VOTqbIoG3m894lSg-YoLDHdb0A10HeJXAh57rOyT-viCLB2M7eLZaVdrlhN9Hkc9X_0XwNTyimeusmQHsLX4u3Ru0fRbVMeyPPn-_PD3uzvwv_rb65Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tywE48FhABAoYCS6gSNnErhMkDitg1WUfF7Zob8aJ7VKpcrqbFra_hz_KTOq0RQIkDntOOmk8nvE3mZlvAF4iROa2qETsTJLEXJgiLiR9yBd4-halsI5TN_LxSX8w5J_OxNkW_Ox6Ydpq9y4l2XrqjWY33tb2YASM2yxehErKQ7v4gXFa8-7gAyr1VZrufzx9P4jDKIG44lLM0KS1pqbNXPRN3yBMrrQtRZUZmWI02ZdaWFOiqRubCV1Kk7o84zbjQmMEsetchnKvwXXEHjmZzjDd69x9hhCgHcsn0ONI9PRd6vRPf5kIHL7VfnSOr_f7QbhGt6uEbNtG5J32o40Tb_8u3A5Qle0t99Y92LJ-B-4E2MqCU2h24NYGp-F9-PLZTlw8bQeD0Zc4VjvmJppoIEasrKlokY09-z5uqnre4KX52DRvGcJXPP5YKElomPaGTdeNoM0DGF7Jij-EbV97-whYwiV3VH-W5AXPC1OUKfpGRBpFJiTCkwh6q1VV0yVJh5JJSz0k8t0Ikm6hVRWIz2n-xkStKZtJT4qK3UhPahHB69VPOoH_uLnXaU8FB9AoornLUwxuRQQvVpfRdCkfo73FFVb0Au3E-SKCN53WN0T8_YEsbIz1zZPLy1LZlPgCKdP6-L8EPocbg9PjI3V0cHL4BG6SlGXFTg-2Zxdz-xRx16x81u57Bl-v2tB-AdmAOA0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NISF44McAEShgJHgBRcsSu46ReJgY1cZgQoKivXlObJdKlVNIC-tfxb_IXZq0RQIkHvac9NL4fOfvcnffATxFiMydKkXsbZLEXFgVK0kf8gWevqoQznPqRn5_0j8c8ren4nQLfna9ME21e5eSXPY0EEtTmO1Ord_daHzjTZ0PRsO45eJFW1V57BY_MGarXx0doIKfpengzafXh3E7ViAuuRQzNG9jqIEzF33btwiZS-MKUWZWphhZ9qURzhZo9tZlwhTSpj7PuMu4MBhN7HmfodxLcJlT8zEa0DDd71x_hnCgGdEn0PtI9PpdGvVPf5nIHL5UYfQVX_X3Q3GNdFfJ2aalKHgTRhun3-AmXG9hK9tf7rNbsOXCDtxoISxrHUS9A9c2-A1vw-ePbuLjaTMkjL7KscozPzFECTFiRUUFjGwc2PdxXVbzGi_Nx7Z-yRDKoipYW55QMxMsm66bQus7MLyQFb8L26EK7h6whEvuqRYtyRXPlVVFin4SUYfKhESoEkFvtap6uiTs0DJpaIhEvhdB0i20LlsSdJrFMdFr-mbSk6bCN9KTXkTwfPWTTuA_bu512tOtM6g1Ud7lKQa6IoInq8toxpSbMcHhCmt6gWb6vIrgRaf1DRF_fyBrN8b65sn5eaFdStyBlHW9_18CH8OVDwcD_e7o5PgBXCUhy-KdHmzPvs3dQ4Rgs-JRs-0ZnF20nf0CwVk8QA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-propulsion+of+flapping+bodies+in+viscous+fluids%3A+Recent+advances+and+perspectives&rft.jtitle=%E5%8A%9B%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Shizhao+Wang%3BGuowei+He%3BXing+Zhang&rft.date=2016-12-01&rft.issn=0567-7718&rft.eissn=1614-3116&rft.issue=6&rft.spage=980&rft.epage=990&rft_id=info:doi/10.1007%2Fs10409-016-0578-y&rft.externalDocID=7000104581
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86601X%2F86601X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Flxxb-e%2Flxxb-e.jpg