Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives
Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. Thesestudies improve our understanding of the mutual interaction between actively flapping...
Saved in:
Published in | Acta mechanica Sinica Vol. 32; no. 6; pp. 980 - 990 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
01.12.2016
Springer Nature B.V The State Key Laboratory of Nonlinear Mechanics LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. Thesestudies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers. |
---|---|
AbstractList | Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. Thesestudies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers. Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the bio-mimetic design of artificial flyers and swimmers. Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers. |
Author | Shizhao Wang;Guowei He;Xing Zhang |
AuthorAffiliation | The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences,Beijing 100190, China |
AuthorAffiliation_xml | – name: The State Key Laboratory of Nonlinear Mechanics LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China |
Author_xml | – sequence: 1 givenname: Shizhao surname: Wang fullname: Wang, Shizhao organization: The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences – sequence: 2 givenname: Guowei surname: He fullname: He, Guowei organization: The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences – sequence: 3 givenname: Xing surname: Zhang fullname: Zhang, Xing email: zhangx@lnm.imech.ac.cn organization: The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences |
BookMark | eNp9kUtr3TAQRkVJoTdpf0B3hi7ajdoZy5Ls7kroCwKFvrZClsa3Co7sSPZt7r-vgkMoWWSlhc6ZmW_mlJ3EKRJjLxHeIoB-lxEa6Dig4iB1y49P2A4VNlwgqhO2A6k01xrbZ-w050sAoVDjjv3-QePA5zTN65jDFKtpqIbRznOI-6qffKBchVgdQnbTmsvXGnx-X30nR3GprD_Y6Apio69mSnkmt4QD5efs6WDHTC_u3jP269PHn-df-MW3z1_PP1xw12i58A6tbWrVtVJ55QUoZ6mXTnhdUy-UtpJ8b733JKTtta-HVjQkGmmx6XAYxBl7vdX9a-Ng495cTmuKpaMZb256Q3VZCCiAupBvNrJkvV4pL-aqZKJxtJFKMoNtJzpoa9EV9NUD9L4qtm1hurqRhdIb5dKUc6LBuLDYpexwSTaMBsHcXsZslzFlEHN7GXMsJj4w5xSubDo-6tSbkwsb95T-m-kR6S6I-zPF_XXx7jtpACi8bFH8A3MVrvI |
CitedBy_id | crossref_primary_10_1007_s11433_017_9159_0 crossref_primary_10_1016_j_oceaneng_2019_106712 crossref_primary_10_1007_s10409_019_00896_5 crossref_primary_10_1017_jfm_2024_262 crossref_primary_10_1016_j_jfluidstructs_2018_08_009 crossref_primary_10_3390_fluids8010029 crossref_primary_10_1017_jfm_2019_870 crossref_primary_10_1088_1748_3190_ac68ba crossref_primary_10_4236_jamp_2023_1110192 crossref_primary_10_1007_s10409_016_0608_9 crossref_primary_10_1103_PhysRevFluids_6_013102 crossref_primary_10_1063_5_0029340 crossref_primary_10_1063_5_0226743 crossref_primary_10_1103_PhysRevE_99_053107 crossref_primary_10_3390_biomimetics9060324 crossref_primary_10_1016_j_oceaneng_2019_106908 crossref_primary_10_1017_jfm_2020_1015 crossref_primary_10_1063_5_0086736 crossref_primary_10_1103_PhysRevLett_126_124501 crossref_primary_10_1016_j_jfluidstructs_2020_102875 crossref_primary_10_1103_PhysRevE_99_053111 crossref_primary_10_1007_s10409_017_0677_4 crossref_primary_10_1007_s42241_021_0018_8 crossref_primary_10_1063_5_0082283 crossref_primary_10_1115_1_4050258 crossref_primary_10_1063_5_0219371 crossref_primary_10_1007_s10409_017_0732_1 crossref_primary_10_1016_j_taml_2018_02_007 |
Cites_doi | 10.2514/2.2628 10.1103/PhysRevLett.113.238105 10.2514/3.10246 10.1088/1748-3182/9/1/016008 10.1017/jfm.2012.313 10.1242/jeb.205.14.2125 10.1016/j.compfluid.2012.10.029 10.1242/jeb.015644 10.1016/j.jfluidstructs.2013.12.012 10.1063/1.2148989 10.2514/6.2015-3295 10.1242/jeb.025007 10.1063/1.4709477 10.1088/1748-3190/10/4/046013 10.1017/S0022112009007903 10.1098/rspb.2012.0057 10.1103/PhysRevLett.101.194502 10.2514/2.589 10.2514/3.13067 10.1002/fld.1094 10.1016/j.compfluid.2004.10.002 10.2514/2.505 10.1038/ncomms9514 10.1073/pnas.0505064102 10.2514/1.27628 10.1088/1748-3182/9/3/036008 10.2514/3.9982 10.1038/srep05904 10.1016/j.compfluid.2015.10.006 10.1017/S0022112097008392 10.1093/icb/42.5.1018 10.1103/PhysRevE.82.015303 10.1088/1748-3190/10/1/016003 10.1016/S0889-9746(02)00115-9 10.1017/jfm.2013.659 10.1063/1.3177356 10.1242/jeb.000265 10.1038/241290a0 10.1098/rsif.2013.0667 10.1103/PhysRevE.86.016308 10.1371/journal.pone.0114687 10.1017/jfm.2013.295 10.1063/1.3383215 10.1017/S0022112010002387 10.1016/j.compfluid.2014.03.031 10.1017/jfm.2014.310 10.1006/jfls.1993.1012 10.1063/1.4872221 10.1063/1.4876231 10.2514/1.5070 10.2514/1.25431 10.1073/pnas.1017910108 10.2514/1.21203 10.2514/2.1320 10.1017/jfm.2015.702 10.1088/1748-3182/8/1/016005 10.1063/1.2814259 10.1242/jeb.02526 10.1017/jfm.2012.561 10.2514/6.1997-826 10.1017/S0022112010003514 10.1017/jfm.2013.314 10.1038/srep07329 10.1017/S0022112004008468 10.1017/jfm.2015.460 10.1209/0295-5075/105/54003 10.1126/science.1088295 10.1063/1.4832857 10.1115/1.3448871 10.1017/S0022112009992138 10.1017/jfm.2015.661 |
ContentType | Journal Article |
Copyright | The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media 2016 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media 2016 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7TB 8FD FR3 KR7 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s10409-016-0578-y |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1614-3116 |
Edition | English ed. |
EndPage | 990 |
ExternalDocumentID | lxxb_e201606002 10_1007_s10409_016_0578_y 7000104581 |
GrantInformation_xml | – fundername: Acknowledgments The project was supported by the Chinese Acad-emy of Sciences; the National Natural Science Foundation of China funderid: (Grants KJCX-SW-L08, KJCX3-SYW-S01); (Grants 11021262,11023001,11232011,11372331) |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 67Z 6NX 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA CAG CCEZO CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9P PF0 PT4 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCL SCLPG SCV SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGP TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~A9 ~WA -SA -S~ 5XA 5XB AACDK AAEWM AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU BSONS CAJEA H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ 7TB 8FD FR3 KR7 2B. 4A8 PSX |
ID | FETCH-LOGICAL-c475t-91aa4269856d6d306caeb5c3d72eb367a5edbaddde35ab7d2f834e345a1491ff3 |
IEDL.DBID | U2A |
ISSN | 0567-7718 |
IngestDate | Thu May 29 04:10:19 EDT 2025 Fri Jul 11 13:50:31 EDT 2025 Fri Jul 25 11:14:04 EDT 2025 Tue Jul 01 01:58:24 EDT 2025 Thu Apr 24 22:59:29 EDT 2025 Fri Feb 21 02:44:50 EST 2025 Wed Feb 14 10:06:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Flapping motion Flow-mediated interaction Self-propulsion Passive flexibility Symmetry breaking |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-91aa4269856d6d306caeb5c3d72eb367a5edbaddde35ab7d2f834e345a1491ff3 |
Notes | 11-2063/O3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1880829245 |
PQPubID | 2043800 |
PageCount | 11 |
ParticipantIDs | wanfang_journals_lxxb_e201606002 proquest_miscellaneous_1893908239 proquest_journals_1880829245 crossref_citationtrail_10_1007_s10409_016_0578_y crossref_primary_10_1007_s10409_016_0578_y springer_journals_10_1007_s10409_016_0578_y chongqing_primary_7000104581 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Acta mechanica Sinica |
PublicationTitleAbbrev | Acta Mech. Sin |
PublicationTitleAlternate | Acta Mechanica Sinica |
PublicationYear | 2016 |
Publisher | The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences Springer Nature B.V The State Key Laboratory of Nonlinear Mechanics LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China |
Publisher_xml | – name: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences – name: Springer Nature B.V – name: The State Key Laboratory of Nonlinear Mechanics LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China |
References | DengJShaoXMYuZSHydrodynamic studies on two traveling wavy foils in tandem arrangementPhys. Fluids20071911310410.1063/1.28142591182.76198 TuncerIHPlatzerMFComputational study of flapping airfoil aerodynamicsAIAA J. Aircr.20003751452010.2514/2.2628 YoungJLaiJCSOscillation frequency and amplitude effects on the wake of plunging airfoilAIAA J.2004422042205210.2514/1.5070 HeathcoteSGursulIFlexible flapping airfoil propulsion at low reynolds numberAIAA J.2007451066107810.2514/1.25431 HuJXiaoQThree-dimensional effects on the translational locomotion of a passive heaving wingJ. Fluids Struct.201446778810.1016/j.jfluidstructs.2013.12.012 TriantafyllouGSOptimal thrust development in oscillating foils with application to fish propulsionJ. Fluids Struct.1993720522410.1006/jfls.1993.1012 UddinEHuangWXSungHJActively flapping tandem flexible flags in a viscous flowJ. Fluid Mech.2015780120142344215510.1017/jfm.2015.460 Arora, N., Gupta, A., Hikaru, A., et al.: Propulsion of a plunging flexible airfoil using a torsion spring model. In: AIAA Aviation, 33rd AIAA Applied Aerodynamics Conference, Dallas (2015) MooredKWDeweyPASmitsAJHydrodynamic wake resonance as an underlying principle of efficient unsteady propulsionJ. Fluid Mech.2012708329348297544610.1017/jfm.2012.3131275.76235 BorazjaniISotiropoulosFNumerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimesJ. Exp. Biol.20082111541155810.1242/jeb.015644 KoochesfahaniMMVortical patterns in the wake of an oscillating airfoilAIAA J.1989271200120510.2514/3.10246 RamananarivoSGodoy-DianaRThiriaBPropagating waves in bounded elastic media: transition from standing waves to anguilliform kinematicsEurophys. Lett.20141055400310.1209/0295-5075/105/54003 AlbenSWake-mediated synchronization and drafting in coupled flagsJ Fluid Mech.2009641489496254046310.1017/S00221120099921381183.76653 LiaoJCBealDNLauderGVFish exploiting vortices decrease muscle activityScience20033021566156910.1126/science.1088295 TuncerIHPlatzerMFThrust generation due to airfoil flappingAIAA J.19963432433110.2514/3.130670900.76200 TianFBWangWQWuJSwimming performance and vorticity structures of a mother-calf pair of fishComput. Fluids2016124111343008210.1016/j.compfluid.2015.10.006 Garrick, I.E.: Propulsion of a Flapping and Oscillating Airfoil. NACA 567 (1937) AlbenSShelleyMJCoherent locomotion as an attracting state for a free flapping bodyProc. Natl. Acad. Sci. USA2005102111631116610.1073/pnas.0505064102 SpagnolieSEMoretLShelleyMJSurprising behaviors in flapping locomotion with passive pitchingPhys. Fluids20092204190310.1063/1.33832151190.76116 MaertensAPTriantafyllouMSYueDKEfficiency of fish propulsionBioinspir. Biomim.20151004601310.1088/1748-3190/10/4/046013 EloyCOn the best design for undulatory swimmingJ. Fluid Mech.20137174889301859910.1017/jfm.2012.5611284.76429 HuaRNZhuLDLuXYLocomotion of a flapping flexible platePhys. Fluids20132512190110.1063/1.4832857 DengJCaulfieldCPDependence on aspect ratio of symmetry breaking for oscillating foils: implications for flapping flightJ. Fluid Mech.20157871649348202010.1017/jfm.2015.661 BottomRGIIBorazjaniIBlevinsELHydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortexJ. Fluid Mech.2016788407443348206010.1017/jfm.2015.702 RistrophLZhangJAnomalous hydrodynamic drafting of interacting flapping flagsPhys. Rev. Letts.20081016797680010.1103/PhysRevLett.101.194502 WebbPWKinematics of plaice, Pleuronectes platessa, and cod, Gadus morhua, swimming near the bottomJ. Exp. Biol.200220521252134 SarkarSVenkatramanKNumerical simulation of thrust generating flow past a pitching airfoilComput. Fluids200635164210.1016/j.compfluid.2004.10.0021134.76417 KimSHuangWXSungHJConstructive and destructive interaction modes between two tandem flexible flags in viscous flowJ. Fluid Mech.201066151152110.1017/S00221120100035141205.76076 LauderGVAndersonEJTangorraJFish biorobotics: kinematics and hydrodynamics of self-propulsionJ. Exp. Biol.20072102767278010.1242/jeb.000265 JonesKDDohringCMPlatzerMFExperimental and computational investigation of the Knoller–Betz EffectAIAA J.1998361240124610.2514/2.505 De RosisAFluid forces enhance the performance of an aspirant leader in self-organized living groupsPLoS One20149e11468710.1371/journal.pone.0114687 QuinnDBMooredKWDeweyPAUnsteady propulsion near a solid boundaryJ. Fluid Mech.201474215217010.1017/jfm.2013.659 WeihsDHydromechanics of fish schoolingNautre197324129029110.1038/241290a0 ZhuLLGuanHWuCJA study of a three-dimensional self-propelled flying bird with flapping wingsSci. China Ser. G2015581163507558 IsogaiKShinmotoYWatanabeYEffects of dynamic stall on propulsive efficiency and thrust of flapping airfoilAIAA J.1999371145115110.2514/2.589 MichelinSSmithSGLResonance and propulsion performance of a heaving flexible wingPhys. Fluids20092107190210.1063/1.31773561183.76353 ZhuXJHeGWZhangXUnderlying principle of efficient propulsion in flexible plunging foilsActa Mech. Sin.201530839845330476810.1007/s10409-014-0114-x1342.76148 UddinEHuangWXSungHJInteraction modes of multiple flexible flags in a uniform flowJ. Fluid Mech.2013729563583313798610.1017/jfm.2013.3141291.76380 SchultzWWWebbPWPower requirements of swimming: do new methods resolve old questions?Integr. Comp. Biol.2002421018102510.1093/icb/42.5.1018 BlevinsELLauderGVSwimming near the substrate: a simple robotic model of stingray locomotionBioinspir. Biomim.2013801600510.1088/1748-3182/8/1/016005 ZhangXNiSZWangSZEffects of geometric shape on the hydrodynamics of a self-propelled flapping foilPhys. Fluids2009215935981183.76602 KernSKoumoutsakosPSimulations of optimized anguilliform swimmingJ. Exp. Biol.20062094841485710.1242/jeb.02526 AlbenSCharlesWBakerTVDynamics of freely swimming flexible foilsPhys. Fluids20122405190110.1063/1.47094771309.76237 MooredKWDeweyPABoschitschBMLinear instability mechanisms leading to optimally efficient locomotion with flexible propulsorsPhys. Fluids20142604190510.1063/1.4872221 Jones, K.D., Platzer, M.F.: Numerical computation of flapping-wing propulsion and power extraction. In: 35th Aerospace Sciences Meeting & Exhibit, Reno, NV (1997) ZhuLDInteraction of two tandem deformable bodies in a viscous incompressible flowJ. Fluid Mech.2009635455475254047910.1017/S00221120090079031183.76709 RamananarivoSGodoy-DianaRThiriaBPassive elastic mechanism to mimic fish-muscle action in anguilliform swimmingJ. R. Soc. Interface2013102013066710.1098/rsif.2013.0667 BorazjaniISotiropoulosFNumerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimesJ. Exp. Biol.200921257659210.1242/jeb.025007 LiuGYuYLTongBGOptimal energy-utilization ratio for long-distance cruising of a model fishPhys. Rev. E20128601630810.1103/PhysRevE.86.016308 YehPDAlexeevAEffect of aspect ratio in free-swimming plunging flexible platesComput. Fluids2015124220225343010110.1016/j.compfluid.2015.07.009 AndersonJMStreitlienKBarrettDSOscillating foils of high propulsive efficiencyJ. Fluid Mech.19983604172162153510.1017/S00221120970083920922.76023 ZhuXJHeGWZhangXFlow-mediated interactions between two self-propelled flapping filaments in tandem configurationPhys. Rev. Letts.201411323810510.1103/PhysRevLett.113.238105 RaspaVGodoy-DianaRThiriaBTopology-induced effect in biomimetic propulsive wakesJ. Fluid Mech.201372937738710.1017/jfm.2013.2951291.76379 Knoller, R.: Die Gesetze des Luftwiderstandes. Flugund Motortchnik(Wien) 3, 1–7 (1909) (in German) YoungJLaiJCSMechanisms influencing the efficiency of oscillating airfoil propulsionAIAA J.2007451695170210.2514/1.27628 ZhuXJHeGWZhangXNumerical study on hydrodynamic effect of flexibility in a self-propelled plunging foilComput. Fluids201497120320565210.1016/j.compfluid.2014.03.031 SarkarSVenkatramanKNumerical simulation of incompressible viscous flow past a heaving airfoilInt. J. Numer. Meth. Fluids200651129221837710.1002/fld.10941141.76033 VandenbergheNZhangJChildressSSymmetry breaking leads to forward flapping flightJ. Fluid Mech.200450614715510.1017/S00221120040084681073.76506 von KármánTBurgersJMAerodynamic Theory1934BerlinSpringer TokicGYueDKOptimal shape and motion of undulatory swimming organismsProc. R. Soc. B20122793065307410.1098/rspb.2012.0057 RamamurtiRSandbergWSimulation of flow about flapping airfoils using finite element incompressible flow solverAIAA J.20013925326010.2514/2.1320 XiaoQHuJLiuHEffect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wingsBioinspir. Biomim.2014901600810.1088/1748-3182/9/1/016008 Fernandez-PratsRRaspaVThiriaBLarge-amplitude undulatory swimming near a wallBioinspir. Biomim.20151001600310.1088/1748-3190/10/1/016003 Webb, P.W.: The effect of solid and porous channel walls on steady swimming of steelhead trout Oncorhynchus mykiss. J. Exp. Biol. 178, 97–108 (1993) YehPDAlexeevAFree swimming of an elastic plate plunging at low Reynolds numberPhys. Fluids20142605360410.1063/1.4876231 WangZRussellDEffect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flightPhys. Rev. Letts.2007991224312254 PederzaniJHaj-HaririHNumerical analysis of heaving flexible airfoils in a viscous flowAIAA J.2006442773277910.2514/1.212031178.76261 LuXYLiaoQDynamic responses of a two-dimensional flapping foil motionPhys. Fluids20061841734180 ZhuXJHeGWZhangXHow flexibility affects the wake symmetry properties of a self-propelled plunging foilJ. Fluid Mech.2014751164183322794710.1017/jfm.2014.310 BaleRShirgaonkarAANevelnIDSeparability of drag and thrust in undulatory animals and machinesSci. Rep.20144732910.1038/srep07329 ThiriaBGodoy-DianaRHow wing compliance drives the efficiency of self-propelled flapping flyersPhys. Rev. E20108201530310.1103/PhysRevE.82.015303 Betz, A.: Ein Beitrag zur Erklarung des Segelfluges. Z. fur Flugtech. und Motorluftschiffahrt 3, 269–272 (1912) (in German) ZdravkovichMMReview of flow interference between two circular cylinders in various arrangementsJ. Fluids Eng.19779961863310.1115/1.344 S Alben (578_CR26) 2005; 102 GV Lauder (578_CR23) 2007; 210 I Borazjani (578_CR51) 2008; 211 S Alben (578_CR64) 2009; 641 J Zhang (578_CR32) 2010; 659 J Pederzani (578_CR9) 2006; 44 C Eloy (578_CR59) 2013; 717 L Ristroph (578_CR63) 2008; 101 S Ramananarivo (578_CR36) 2011; 108 R Bale (578_CR53) 2014; 4 J Young (578_CR16) 2007; 45 KW Moored (578_CR46) 2012; 708 G Tokic (578_CR60) 2012; 279 S Michelin (578_CR44) 2009; 21 XY Lu (578_CR27) 2006; 18 JM Anderson (578_CR17) 1998; 360 FB Tian (578_CR71) 2016; 124 S Heathcote (578_CR19) 2007; 45 J Deng (578_CR69) 2007; 19 S Sarkar (578_CR11) 2006; 51 IH Tuncer (578_CR13) 2000; 37 XJ Zhu (578_CR40) 2014; 97 I Borazjani (578_CR52) 2009; 212 578_CR33 578_CR77 E Uddin (578_CR67) 2013; 729 DB Quinn (578_CR79) 2014; 742 J Deng (578_CR29) 2015; 787 RN Hua (578_CR39) 2013; 25 PW Webb (578_CR78) 2002; 205 GS Triantafyllou (578_CR45) 1993; 7 S Ramananarivo (578_CR50) 2014; 105 S Kern (578_CR57) 2006; 209 V Raspa (578_CR76) 2013; 729 AP Maertens (578_CR54) 2015; 10 IH Tuncer (578_CR14) 1996; 34 K Isogai (578_CR8) 1999; 37 R Ramamurti (578_CR10) 2001; 39 T Kármán von (578_CR4) 1934 D Weihs (578_CR61) 1973; 241 J Hu (578_CR30) 2014; 46 XJ Zhu (578_CR48) 2015; 30 A Rosis De (578_CR75) 2014; 9 N Vandenberghe (578_CR25) 2006; 18 X Zhang (578_CR28) 2009; 21 AD Becker (578_CR74) 2015; 6 S Alben (578_CR37) 2012; 24 Z Wang (578_CR68) 2007; 99 XJ Zhu (578_CR72) 2014; 113 P Freymuth (578_CR18) 1988; 26 DB Quinn (578_CR80) 2014; 9 JC Liao (578_CR73) 2003; 302 S Sarkar (578_CR12) 2006; 35 G Liu (578_CR58) 2012; 86 MM Koochesfahani (578_CR21) 1989; 27 MM Zdravkovich (578_CR62) 1977; 99 S Ramananarivo (578_CR49) 2013; 10 EL Blevins (578_CR82) 2013; 8 J Lee (578_CR38) 2013; 71 KD Jones (578_CR20) 1998; 36 SE Spagnolie (578_CR31) 2009; 22 E Uddin (578_CR70) 2015; 780 RG Bottom II (578_CR83) 2016; 788 PD Yeh (578_CR41) 2014; 26 XJ Zhu (578_CR43) 2014; 751 LD Zhu (578_CR65) 2009; 635 LL Zhu (578_CR84) 2015; 58 KW Moored (578_CR47) 2014; 26 J Young (578_CR15) 2004; 42 PD Yeh (578_CR42) 2015; 124 DA Read (578_CR22) 2003; 17 Q Xiao (578_CR34) 2014; 9 578_CR7 578_CR5 IH Tuncer (578_CR6) 1996; 34 B Thiria (578_CR35) 2010; 82 S Kim (578_CR66) 2010; 661 R Fernandez-Prats (578_CR81) 2015; 10 578_CR2 578_CR3 R Bale (578_CR55) 2014; 4 N Vandenberghe (578_CR24) 2004; 506 WW Schultz (578_CR56) 2002; 42 578_CR1 |
References_xml | – reference: LeeJLeeSFluid-structure interaction for the propulsive velocity of a flapping flexible plate at low reynolds numberComput. Fluids201371348374303500310.1016/j.compfluid.2012.10.029 – reference: TokicGYueDKOptimal shape and motion of undulatory swimming organismsProc. R. Soc. B20122793065307410.1098/rspb.2012.0057 – reference: LuXYLiaoQDynamic responses of a two-dimensional flapping foil motionPhys. Fluids20061841734180 – reference: AndersonJMStreitlienKBarrettDSOscillating foils of high propulsive efficiencyJ. Fluid Mech.19983604172162153510.1017/S00221120970083920922.76023 – reference: Katzmayr, R.: Effect of Periodic Changes of Angle of Attack on Behavior of Airfoils. NACA TM-147 (1922) – reference: KoochesfahaniMMVortical patterns in the wake of an oscillating airfoilAIAA J.1989271200120510.2514/3.10246 – reference: RamananarivoSGodoy-DianaRThiriaBRather than resonance, flapping wing flyers may play on aerodynamics to improve performanceProc. Natl. Acad. Sci. USA20111085964596910.1073/pnas.1017910108 – reference: LauderGVAndersonEJTangorraJFish biorobotics: kinematics and hydrodynamics of self-propulsionJ. Exp. Biol.20072102767278010.1242/jeb.000265 – reference: RamamurtiRSandbergWSimulation of flow about flapping airfoils using finite element incompressible flow solverAIAA J.20013925326010.2514/2.1320 – reference: RamananarivoSGodoy-DianaRThiriaBPassive elastic mechanism to mimic fish-muscle action in anguilliform swimmingJ. R. Soc. Interface2013102013066710.1098/rsif.2013.0667 – reference: WeihsDHydromechanics of fish schoolingNautre197324129029110.1038/241290a0 – reference: IsogaiKShinmotoYWatanabeYEffects of dynamic stall on propulsive efficiency and thrust of flapping airfoilAIAA J.1999371145115110.2514/2.589 – reference: EloyCOn the best design for undulatory swimmingJ. Fluid Mech.20137174889301859910.1017/jfm.2012.5611284.76429 – reference: ZhuLDInteraction of two tandem deformable bodies in a viscous incompressible flowJ. Fluid Mech.2009635455475254047910.1017/S00221120090079031183.76709 – reference: ThiriaBGodoy-DianaRHow wing compliance drives the efficiency of self-propelled flapping flyersPhys. Rev. E20108201530310.1103/PhysRevE.82.015303 – reference: RamananarivoSGodoy-DianaRThiriaBPropagating waves in bounded elastic media: transition from standing waves to anguilliform kinematicsEurophys. Lett.20141055400310.1209/0295-5075/105/54003 – reference: LiaoJCBealDNLauderGVFish exploiting vortices decrease muscle activityScience20033021566156910.1126/science.1088295 – reference: RaspaVGodoy-DianaRThiriaBTopology-induced effect in biomimetic propulsive wakesJ. Fluid Mech.201372937738710.1017/jfm.2013.2951291.76379 – reference: Garrick, I.E.: Propulsion of a Flapping and Oscillating Airfoil. NACA 567 (1937) – reference: ZhuXJHeGWZhangXUnderlying principle of efficient propulsion in flexible plunging foilsActa Mech. Sin.201530839845330476810.1007/s10409-014-0114-x1342.76148 – reference: Arora, N., Gupta, A., Hikaru, A., et al.: Propulsion of a plunging flexible airfoil using a torsion spring model. In: AIAA Aviation, 33rd AIAA Applied Aerodynamics Conference, Dallas (2015) – reference: MooredKWDeweyPASmitsAJHydrodynamic wake resonance as an underlying principle of efficient unsteady propulsionJ. Fluid Mech.2012708329348297544610.1017/jfm.2012.3131275.76235 – reference: ReadDAHoverFSTriantafyllouMSForces on oscillating foils for propulsion and maneuveringJ. Fluids Struct.20031716318310.1016/S0889-9746(02)00115-9 – reference: LiuGYuYLTongBGOptimal energy-utilization ratio for long-distance cruising of a model fishPhys. Rev. E20128601630810.1103/PhysRevE.86.016308 – reference: QuinnDBLauderGVSmitsAJFlexible propulsors in ground effectBioinspir. Biomim.2014903600810.1088/1748-3182/9/3/036008 – reference: YehPDAlexeevAEffect of aspect ratio in free-swimming plunging flexible platesComput. Fluids2015124220225343010110.1016/j.compfluid.2015.07.009 – reference: TriantafyllouGSOptimal thrust development in oscillating foils with application to fish propulsionJ. Fluids Struct.1993720522410.1006/jfls.1993.1012 – reference: MichelinSSmithSGLResonance and propulsion performance of a heaving flexible wingPhys. Fluids20092107190210.1063/1.31773561183.76353 – reference: BaleRShirgaonkarAANevelnIDSeparability of drag and thrust in undulatory animals and machinesSci. Rep.20144732910.1038/srep07329 – reference: HuaRNZhuLDLuXYLocomotion of a flapping flexible platePhys. Fluids20132512190110.1063/1.4832857 – reference: ZhuXJHeGWZhangXHow flexibility affects the wake symmetry properties of a self-propelled plunging foilJ. Fluid Mech.2014751164183322794710.1017/jfm.2014.310 – reference: TuncerIHPlatzerMFThrust generation due to airfoil flappingAIAA J.19963432433110.2514/3.130670900.76200 – reference: AlbenSShelleyMJCoherent locomotion as an attracting state for a free flapping bodyProc. Natl. Acad. Sci. USA2005102111631116610.1073/pnas.0505064102 – reference: DengJShaoXMYuZSHydrodynamic studies on two traveling wavy foils in tandem arrangementPhys. Fluids20071911310410.1063/1.28142591182.76198 – reference: UddinEHuangWXSungHJInteraction modes of multiple flexible flags in a uniform flowJ. Fluid Mech.2013729563583313798610.1017/jfm.2013.3141291.76380 – reference: WangZRussellDEffect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flightPhys. Rev. Letts.2007991224312254 – reference: YehPDAlexeevAFree swimming of an elastic plate plunging at low Reynolds numberPhys. Fluids20142605360410.1063/1.4876231 – reference: ZhuXJHeGWZhangXNumerical study on hydrodynamic effect of flexibility in a self-propelled plunging foilComput. Fluids201497120320565210.1016/j.compfluid.2014.03.031 – reference: JonesKDDohringCMPlatzerMFExperimental and computational investigation of the Knoller–Betz EffectAIAA J.1998361240124610.2514/2.505 – reference: FreymuthPPropulsive vortical signature of plunging and pitching airfoilsAIAA J.19882688188310.2514/3.9982 – reference: RistrophLZhangJAnomalous hydrodynamic drafting of interacting flapping flagsPhys. Rev. Letts.20081016797680010.1103/PhysRevLett.101.194502 – reference: Webb, P.W.: The effect of solid and porous channel walls on steady swimming of steelhead trout Oncorhynchus mykiss. J. Exp. Biol. 178, 97–108 (1993) – reference: Knoller, R.: Die Gesetze des Luftwiderstandes. Flugund Motortchnik(Wien) 3, 1–7 (1909) (in German) – reference: BorazjaniISotiropoulosFNumerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimesJ. Exp. Biol.20082111541155810.1242/jeb.015644 – reference: BaleRHaoMBhallaAPGray’s paradox: a fluid mechanical perspectiveSci. Rep.201445904 – reference: QuinnDBMooredKWDeweyPAUnsteady propulsion near a solid boundaryJ. Fluid Mech.201474215217010.1017/jfm.2013.659 – reference: ZhangJLiuNSLuXYLocomotion of a passively flapping flat plateJ. Fluid Mech.20106594368268443210.1017/S00221120100023871205.76319 – reference: BeckerADMasoudHNewboltJWHydrodynamic schooling of flapping swimmersNat. Commun.20156851410.1038/ncomms9514 – reference: DengJCaulfieldCPDependence on aspect ratio of symmetry breaking for oscillating foils: implications for flapping flightJ. Fluid Mech.20157871649348202010.1017/jfm.2015.661 – reference: von KármánTBurgersJMAerodynamic Theory1934BerlinSpringer – reference: HeathcoteSGursulIFlexible flapping airfoil propulsion at low reynolds numberAIAA J.2007451066107810.2514/1.25431 – reference: BlevinsELLauderGVSwimming near the substrate: a simple robotic model of stingray locomotionBioinspir. Biomim.2013801600510.1088/1748-3182/8/1/016005 – reference: UddinEHuangWXSungHJActively flapping tandem flexible flags in a viscous flowJ. Fluid Mech.2015780120142344215510.1017/jfm.2015.460 – reference: BorazjaniISotiropoulosFNumerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimesJ. Exp. Biol.200921257659210.1242/jeb.025007 – reference: SarkarSVenkatramanKNumerical simulation of thrust generating flow past a pitching airfoilComput. Fluids200635164210.1016/j.compfluid.2004.10.0021134.76417 – reference: ZdravkovichMMReview of flow interference between two circular cylinders in various arrangementsJ. Fluids Eng.19779961863310.1115/1.3448871 – reference: VandenbergheNZhangJChildressSSymmetry breaking leads to forward flapping flightJ. Fluid Mech.200450614715510.1017/S00221120040084681073.76506 – reference: YoungJLaiJCSMechanisms influencing the efficiency of oscillating airfoil propulsionAIAA J.2007451695170210.2514/1.27628 – reference: XiaoQHuJLiuHEffect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wingsBioinspir. Biomim.2014901600810.1088/1748-3182/9/1/016008 – reference: VandenbergheNChildressSZhangJOn unidirectional flight of a free flapping wingPhys. Fluids20061899124220155810.1063/1.21489891185.76933 – reference: Betz, A.: Ein Beitrag zur Erklarung des Segelfluges. Z. fur Flugtech. und Motorluftschiffahrt 3, 269–272 (1912) (in German) – reference: Jones, K.D., Platzer, M.F.: Numerical computation of flapping-wing propulsion and power extraction. In: 35th Aerospace Sciences Meeting & Exhibit, Reno, NV (1997) – reference: De RosisAFluid forces enhance the performance of an aspirant leader in self-organized living groupsPLoS One20149e11468710.1371/journal.pone.0114687 – reference: SchultzWWWebbPWPower requirements of swimming: do new methods resolve old questions?Integr. Comp. Biol.2002421018102510.1093/icb/42.5.1018 – reference: TianFBWangWQWuJSwimming performance and vorticity structures of a mother-calf pair of fishComput. Fluids2016124111343008210.1016/j.compfluid.2015.10.006 – reference: AlbenSWake-mediated synchronization and drafting in coupled flagsJ Fluid Mech.2009641489496254046310.1017/S00221120099921381183.76653 – reference: WebbPWKinematics of plaice, Pleuronectes platessa, and cod, Gadus morhua, swimming near the bottomJ. Exp. Biol.200220521252134 – reference: ZhuLLGuanHWuCJA study of a three-dimensional self-propelled flying bird with flapping wingsSci. China Ser. G2015581163507558 – reference: KimSHuangWXSungHJConstructive and destructive interaction modes between two tandem flexible flags in viscous flowJ. Fluid Mech.201066151152110.1017/S00221120100035141205.76076 – reference: YoungJLaiJCSOscillation frequency and amplitude effects on the wake of plunging airfoilAIAA J.2004422042205210.2514/1.5070 – reference: AlbenSCharlesWBakerTVDynamics of freely swimming flexible foilsPhys. Fluids20122405190110.1063/1.47094771309.76237 – reference: ZhuXJHeGWZhangXFlow-mediated interactions between two self-propelled flapping filaments in tandem configurationPhys. Rev. Letts.201411323810510.1103/PhysRevLett.113.238105 – reference: Fernandez-PratsRRaspaVThiriaBLarge-amplitude undulatory swimming near a wallBioinspir. Biomim.20151001600310.1088/1748-3190/10/1/016003 – reference: PederzaniJHaj-HaririHNumerical analysis of heaving flexible airfoils in a viscous flowAIAA J.2006442773277910.2514/1.212031178.76261 – reference: SarkarSVenkatramanKNumerical simulation of incompressible viscous flow past a heaving airfoilInt. J. Numer. Meth. Fluids200651129221837710.1002/fld.10941141.76033 – reference: BottomRGIIBorazjaniIBlevinsELHydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortexJ. Fluid Mech.2016788407443348206010.1017/jfm.2015.702 – reference: MaertensAPTriantafyllouMSYueDKEfficiency of fish propulsionBioinspir. Biomim.20151004601310.1088/1748-3190/10/4/046013 – reference: SpagnolieSEMoretLShelleyMJSurprising behaviors in flapping locomotion with passive pitchingPhys. Fluids20092204190310.1063/1.33832151190.76116 – reference: HuJXiaoQThree-dimensional effects on the translational locomotion of a passive heaving wingJ. Fluids Struct.201446778810.1016/j.jfluidstructs.2013.12.012 – reference: KernSKoumoutsakosPSimulations of optimized anguilliform swimmingJ. Exp. Biol.20062094841485710.1242/jeb.02526 – reference: TuncerIHPlatzerMFComputational study of flapping airfoil aerodynamicsAIAA J. Aircr.20003751452010.2514/2.2628 – reference: ZhangXNiSZWangSZEffects of geometric shape on the hydrodynamics of a self-propelled flapping foilPhys. Fluids2009215935981183.76602 – reference: MooredKWDeweyPABoschitschBMLinear instability mechanisms leading to optimally efficient locomotion with flexible propulsorsPhys. Fluids20142604190510.1063/1.4872221 – volume: 99 start-page: 12243 year: 2007 ident: 578_CR68 publication-title: Phys. Rev. Letts. – volume: 37 start-page: 514 year: 2000 ident: 578_CR13 publication-title: AIAA J. Aircr. doi: 10.2514/2.2628 – volume: 113 start-page: 238105 year: 2014 ident: 578_CR72 publication-title: Phys. Rev. Letts. doi: 10.1103/PhysRevLett.113.238105 – volume: 27 start-page: 1200 year: 1989 ident: 578_CR21 publication-title: AIAA J. doi: 10.2514/3.10246 – volume: 9 start-page: 016008 year: 2014 ident: 578_CR34 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3182/9/1/016008 – volume: 708 start-page: 329 year: 2012 ident: 578_CR46 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.313 – volume: 205 start-page: 2125 year: 2002 ident: 578_CR78 publication-title: J. Exp. Biol. doi: 10.1242/jeb.205.14.2125 – volume: 71 start-page: 348 year: 2013 ident: 578_CR38 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2012.10.029 – volume: 211 start-page: 1541 year: 2008 ident: 578_CR51 publication-title: J. Exp. Biol. doi: 10.1242/jeb.015644 – ident: 578_CR2 – volume: 46 start-page: 77 year: 2014 ident: 578_CR30 publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2013.12.012 – volume: 18 start-page: 99 year: 2006 ident: 578_CR25 publication-title: Phys. Fluids doi: 10.1063/1.2148989 – ident: 578_CR33 doi: 10.2514/6.2015-3295 – volume: 212 start-page: 576 year: 2009 ident: 578_CR52 publication-title: J. Exp. Biol. doi: 10.1242/jeb.025007 – volume: 24 start-page: 051901 year: 2012 ident: 578_CR37 publication-title: Phys. Fluids doi: 10.1063/1.4709477 – ident: 578_CR77 – volume: 10 start-page: 046013 year: 2015 ident: 578_CR54 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/10/4/046013 – volume: 635 start-page: 455 year: 2009 ident: 578_CR65 publication-title: J. Fluid Mech. doi: 10.1017/S0022112009007903 – volume: 279 start-page: 3065 year: 2012 ident: 578_CR60 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2012.0057 – volume: 101 start-page: 6797 year: 2008 ident: 578_CR63 publication-title: Phys. Rev. Letts. doi: 10.1103/PhysRevLett.101.194502 – volume: 37 start-page: 1145 year: 1999 ident: 578_CR8 publication-title: AIAA J. doi: 10.2514/2.589 – volume: 34 start-page: 324 year: 1996 ident: 578_CR14 publication-title: AIAA J. doi: 10.2514/3.13067 – volume: 51 start-page: 1 year: 2006 ident: 578_CR11 publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.1094 – volume: 35 start-page: 16 year: 2006 ident: 578_CR12 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2004.10.002 – volume: 124 start-page: 220 year: 2015 ident: 578_CR42 publication-title: Comput. Fluids – volume: 36 start-page: 1240 year: 1998 ident: 578_CR20 publication-title: AIAA J. doi: 10.2514/2.505 – volume: 6 start-page: 8514 year: 2015 ident: 578_CR74 publication-title: Nat. Commun. doi: 10.1038/ncomms9514 – volume: 102 start-page: 11163 year: 2005 ident: 578_CR26 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0505064102 – volume: 45 start-page: 1695 year: 2007 ident: 578_CR16 publication-title: AIAA J. doi: 10.2514/1.27628 – volume: 9 start-page: 036008 year: 2014 ident: 578_CR80 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3182/9/3/036008 – volume-title: Aerodynamic Theory year: 1934 ident: 578_CR4 – ident: 578_CR3 – volume: 26 start-page: 881 year: 1988 ident: 578_CR18 publication-title: AIAA J. doi: 10.2514/3.9982 – volume: 4 start-page: 5904 year: 2014 ident: 578_CR55 publication-title: Sci. Rep. doi: 10.1038/srep05904 – volume: 124 start-page: 1 year: 2016 ident: 578_CR71 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.10.006 – volume: 360 start-page: 41 year: 1998 ident: 578_CR17 publication-title: J. Fluid Mech. doi: 10.1017/S0022112097008392 – volume: 42 start-page: 1018 year: 2002 ident: 578_CR56 publication-title: Integr. Comp. Biol. doi: 10.1093/icb/42.5.1018 – volume: 18 start-page: 4173 year: 2006 ident: 578_CR27 publication-title: Phys. Fluids – volume: 82 start-page: 015303 year: 2010 ident: 578_CR35 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.015303 – volume: 10 start-page: 016003 year: 2015 ident: 578_CR81 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/10/1/016003 – volume: 17 start-page: 163 year: 2003 ident: 578_CR22 publication-title: J. Fluids Struct. doi: 10.1016/S0889-9746(02)00115-9 – volume: 34 start-page: 324 year: 1996 ident: 578_CR6 publication-title: AIAA J. doi: 10.2514/3.13067 – volume: 742 start-page: 152 year: 2014 ident: 578_CR79 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.659 – volume: 21 start-page: 071902 year: 2009 ident: 578_CR44 publication-title: Phys. Fluids doi: 10.1063/1.3177356 – volume: 210 start-page: 2767 year: 2007 ident: 578_CR23 publication-title: J. Exp. Biol. doi: 10.1242/jeb.000265 – volume: 241 start-page: 290 year: 1973 ident: 578_CR61 publication-title: Nautre doi: 10.1038/241290a0 – volume: 10 start-page: 20130667 year: 2013 ident: 578_CR49 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2013.0667 – volume: 86 start-page: 016308 year: 2012 ident: 578_CR58 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.016308 – volume: 21 start-page: 593 year: 2009 ident: 578_CR28 publication-title: Phys. Fluids – volume: 9 start-page: e114687 year: 2014 ident: 578_CR75 publication-title: PLoS One doi: 10.1371/journal.pone.0114687 – volume: 729 start-page: 377 year: 2013 ident: 578_CR76 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.295 – volume: 22 start-page: 041903 year: 2009 ident: 578_CR31 publication-title: Phys. Fluids doi: 10.1063/1.3383215 – volume: 659 start-page: 43 year: 2010 ident: 578_CR32 publication-title: J. Fluid Mech. doi: 10.1017/S0022112010002387 – volume: 97 start-page: 1 year: 2014 ident: 578_CR40 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2014.03.031 – volume: 751 start-page: 164 year: 2014 ident: 578_CR43 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.310 – volume: 7 start-page: 205 year: 1993 ident: 578_CR45 publication-title: J. Fluids Struct. doi: 10.1006/jfls.1993.1012 – volume: 26 start-page: 041905 year: 2014 ident: 578_CR47 publication-title: Phys. Fluids doi: 10.1063/1.4872221 – volume: 26 start-page: 053604 year: 2014 ident: 578_CR41 publication-title: Phys. Fluids doi: 10.1063/1.4876231 – volume: 42 start-page: 2042 year: 2004 ident: 578_CR15 publication-title: AIAA J. doi: 10.2514/1.5070 – volume: 45 start-page: 1066 year: 2007 ident: 578_CR19 publication-title: AIAA J. doi: 10.2514/1.25431 – volume: 108 start-page: 5964 year: 2011 ident: 578_CR36 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1017910108 – volume: 44 start-page: 2773 year: 2006 ident: 578_CR9 publication-title: AIAA J. doi: 10.2514/1.21203 – volume: 39 start-page: 253 year: 2001 ident: 578_CR10 publication-title: AIAA J. doi: 10.2514/2.1320 – volume: 788 start-page: 407 year: 2016 ident: 578_CR83 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.702 – volume: 8 start-page: 016005 year: 2013 ident: 578_CR82 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3182/8/1/016005 – ident: 578_CR5 – volume: 19 start-page: 113104 year: 2007 ident: 578_CR69 publication-title: Phys. Fluids doi: 10.1063/1.2814259 – volume: 30 start-page: 839 year: 2015 ident: 578_CR48 publication-title: Acta Mech. Sin. – volume: 209 start-page: 4841 year: 2006 ident: 578_CR57 publication-title: J. Exp. Biol. doi: 10.1242/jeb.02526 – volume: 717 start-page: 48 year: 2013 ident: 578_CR59 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.561 – volume: 58 start-page: 1 year: 2015 ident: 578_CR84 publication-title: Sci. China Ser. G – ident: 578_CR1 – ident: 578_CR7 doi: 10.2514/6.1997-826 – volume: 661 start-page: 511 year: 2010 ident: 578_CR66 publication-title: J. Fluid Mech. doi: 10.1017/S0022112010003514 – volume: 729 start-page: 563 year: 2013 ident: 578_CR67 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.314 – volume: 4 start-page: 7329 year: 2014 ident: 578_CR53 publication-title: Sci. Rep. doi: 10.1038/srep07329 – volume: 506 start-page: 147 year: 2004 ident: 578_CR24 publication-title: J. Fluid Mech. doi: 10.1017/S0022112004008468 – volume: 780 start-page: 120 year: 2015 ident: 578_CR70 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.460 – volume: 105 start-page: 54003 year: 2014 ident: 578_CR50 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/105/54003 – volume: 302 start-page: 1566 year: 2003 ident: 578_CR73 publication-title: Science doi: 10.1126/science.1088295 – volume: 25 start-page: 121901 year: 2013 ident: 578_CR39 publication-title: Phys. Fluids doi: 10.1063/1.4832857 – volume: 99 start-page: 618 year: 1977 ident: 578_CR62 publication-title: J. Fluids Eng. doi: 10.1115/1.3448871 – volume: 641 start-page: 489 year: 2009 ident: 578_CR64 publication-title: J Fluid Mech. doi: 10.1017/S0022112009992138 – volume: 787 start-page: 16 year: 2015 ident: 578_CR29 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.661 |
SSID | ssj0036171 |
Score | 2.2253509 |
SecondaryResourceType | review_article |
Snippet | Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 980 |
SubjectTerms | Biomimetics breaking Classical and Continuum Physics Computational fluid dynamics Computational Intelligence Design engineering Engineering Engineering Fluid Dynamics Flapping flexibility Flow-mediated Fluids interaction Mathematical models Mechanical systems motion Passive Review Paper Self-propulsion Symmetry Theoretical and Applied Mechanics Viscous fluids |
Title | Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives |
URI | http://lib.cqvip.com/qk/86601X/201606/7000104581.html https://link.springer.com/article/10.1007/s10409-016-0578-y https://www.proquest.com/docview/1880829245 https://www.proquest.com/docview/1893908239 https://d.wanfangdata.com.cn/periodical/lxxb-e201606002 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9gIPAwZogTIZiSdQpCyx65i3Cm1Mm7YXKBpPlhPbXaXKKaSduv-eu9RpiwRIPMc-Kz77Pnx3vwN4hyYyd6oWqbdZlnJhVaokPeQL1L6qEs5zqka-uh6ej_nFjbiJddxtn-3ehyQ7Sb1T7Ma73B70gPGYpfcPYV-g6055XON81IvfAlVy1yZPoASQKHn7UOafSBCgwm0TJj9wud8V09ba3ARIu7Ke4E2Y7Gigs6dwEE1HNlrz-hk8cOEQnkQzksVL2h7C4x2Mwefw7Yub-XTeNeqilzHWeOZnhmAZJqxqKImQTQO7m7Z1s2zx03Jq248MzUlURyymCLTMBMvm28LM9gWMz06_fjpPYzOFtOZSLFCoGUNlq6UY2qFFR6E2rhJ1YWWO_vRQGuFshcLOukKYStrclwV3BRcGfagT74uXsBea4I6AZVxyT_lgWal4qayqcpRVqPlVISSaCwkMNruq52vQDC2zDgpIlCcJZP1G6zoCkVM_jJneQigTnzQlnxGf9H0C7zdTeoL_GDzouafjhWw1wc6VOTqbIoG3m894lSg-YoLDHdb0A10HeJXAh57rOyT-viCLB2M7eLZaVdrlhN9Hkc9X_0XwNTyimeusmQHsLX4u3Ru0fRbVMeyPPn-_PD3uzvwv_rb65Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tywE48FhABAoYCS6gSNnErhMkDitg1WUfF7Zob8aJ7VKpcrqbFra_hz_KTOq0RQIkDntOOmk8nvE3mZlvAF4iROa2qETsTJLEXJgiLiR9yBd4-halsI5TN_LxSX8w5J_OxNkW_Ox6Ydpq9y4l2XrqjWY33tb2YASM2yxehErKQ7v4gXFa8-7gAyr1VZrufzx9P4jDKIG44lLM0KS1pqbNXPRN3yBMrrQtRZUZmWI02ZdaWFOiqRubCV1Kk7o84zbjQmMEsetchnKvwXXEHjmZzjDd69x9hhCgHcsn0ONI9PRd6vRPf5kIHL7VfnSOr_f7QbhGt6uEbNtG5J32o40Tb_8u3A5Qle0t99Y92LJ-B-4E2MqCU2h24NYGp-F9-PLZTlw8bQeD0Zc4VjvmJppoIEasrKlokY09-z5uqnre4KX52DRvGcJXPP5YKElomPaGTdeNoM0DGF7Jij-EbV97-whYwiV3VH-W5AXPC1OUKfpGRBpFJiTCkwh6q1VV0yVJh5JJSz0k8t0Ikm6hVRWIz2n-xkStKZtJT4qK3UhPahHB69VPOoH_uLnXaU8FB9AoornLUwxuRQQvVpfRdCkfo73FFVb0Au3E-SKCN53WN0T8_YEsbIz1zZPLy1LZlPgCKdP6-L8EPocbg9PjI3V0cHL4BG6SlGXFTg-2Zxdz-xRx16x81u57Bl-v2tB-AdmAOA0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NISF44McAEShgJHgBRcsSu46ReJgY1cZgQoKivXlObJdKlVNIC-tfxb_IXZq0RQIkHvac9NL4fOfvcnffATxFiMydKkXsbZLEXFgVK0kf8gWevqoQznPqRn5_0j8c8ren4nQLfna9ME21e5eSXPY0EEtTmO1Ord_daHzjTZ0PRsO45eJFW1V57BY_MGarXx0doIKfpengzafXh3E7ViAuuRQzNG9jqIEzF33btwiZS-MKUWZWphhZ9qURzhZo9tZlwhTSpj7PuMu4MBhN7HmfodxLcJlT8zEa0DDd71x_hnCgGdEn0PtI9PpdGvVPf5nIHL5UYfQVX_X3Q3GNdFfJ2aalKHgTRhun3-AmXG9hK9tf7rNbsOXCDtxoISxrHUS9A9c2-A1vw-ePbuLjaTMkjL7KscozPzFECTFiRUUFjGwc2PdxXVbzGi_Nx7Z-yRDKoipYW55QMxMsm66bQus7MLyQFb8L26EK7h6whEvuqRYtyRXPlVVFin4SUYfKhESoEkFvtap6uiTs0DJpaIhEvhdB0i20LlsSdJrFMdFr-mbSk6bCN9KTXkTwfPWTTuA_bu512tOtM6g1Ud7lKQa6IoInq8toxpSbMcHhCmt6gWb6vIrgRaf1DRF_fyBrN8b65sn5eaFdStyBlHW9_18CH8OVDwcD_e7o5PgBXCUhy-KdHmzPvs3dQ4Rgs-JRs-0ZnF20nf0CwVk8QA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-propulsion+of+flapping+bodies+in+viscous+fluids%3A+Recent+advances+and+perspectives&rft.jtitle=%E5%8A%9B%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Shizhao+Wang%3BGuowei+He%3BXing+Zhang&rft.date=2016-12-01&rft.issn=0567-7718&rft.eissn=1614-3116&rft.issue=6&rft.spage=980&rft.epage=990&rft_id=info:doi/10.1007%2Fs10409-016-0578-y&rft.externalDocID=7000104581 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86601X%2F86601X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Flxxb-e%2Flxxb-e.jpg |