Multi-Cavity Nanorefractive Index Sensor Based on MIM Waveguide
Within this manuscript, we provide a novel Fano resonance-driven micro-nanosensor. Its primary structural components are a metal-insulator-metal (MIM) waveguide, a shield with three disks, and a T-shaped cavity (STDTC). The finite element approach was used to study the gadget in theory. It is found...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 14; no. 21; p. 1719 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.10.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2079-4991 2079-4991 |
DOI | 10.3390/nano14211719 |
Cover
Abstract | Within this manuscript, we provide a novel Fano resonance-driven micro-nanosensor. Its primary structural components are a metal-insulator-metal (MIM) waveguide, a shield with three disks, and a T-shaped cavity (STDTC). The finite element approach was used to study the gadget in theory. It is found that the adjustment of the structure and the change of the dimensions are closely related to the sensitivity (S) and the quality factor (FOM). Different model structural parameters affect the Fano resonance, which in turn changes the transmission characteristics of the resonator. Through in-depth experimental analysis and selection of appropriate parameters, the sensor sensitivity finally reaches 3020 nm/RIU and the quality factor reaches 51.89. Furthermore, the installation of this microrefractive index sensor allows for the quick and sensitive measurement of glucose levels. It is a positive contribution to the field of optical devices and micro-nano sensors and meets the demand for efficient detection when applied in medical and environmental scenarios. |
---|---|
AbstractList | Within this manuscript, we provide a novel Fano resonance-driven micro-nanosensor. Its primary structural components are a metal-insulator-metal (MIM) waveguide, a shield with three disks, and a T-shaped cavity (STDTC). The finite element approach was used to study the gadget in theory. It is found that the adjustment of the structure and the change of the dimensions are closely related to the sensitivity (S) and the quality factor (FOM). Different model structural parameters affect the Fano resonance, which in turn changes the transmission characteristics of the resonator. Through in-depth experimental analysis and selection of appropriate parameters, the sensor sensitivity finally reaches 3020 nm/RIU and the quality factor reaches 51.89. Furthermore, the installation of this microrefractive index sensor allows for the quick and sensitive measurement of glucose levels. It is a positive contribution to the field of optical devices and micro-nano sensors and meets the demand for efficient detection when applied in medical and environmental scenarios. Within this manuscript, we provide a novel Fano resonance-driven micro-nanosensor. Its primary structural components are a metal-insulator-metal (MIM) waveguide, a shield with three disks, and a T-shaped cavity (STDTC). The finite element approach was used to study the gadget in theory. It is found that the adjustment of the structure and the change of the dimensions are closely related to the sensitivity (S) and the quality factor (FOM). Different model structural parameters affect the Fano resonance, which in turn changes the transmission characteristics of the resonator. Through in-depth experimental analysis and selection of appropriate parameters, the sensor sensitivity finally reaches 3020 nm/RIU and the quality factor reaches 51.89. Furthermore, the installation of this microrefractive index sensor allows for the quick and sensitive measurement of glucose levels. It is a positive contribution to the field of optical devices and micro-nano sensors and meets the demand for efficient detection when applied in medical and environmental scenarios.Within this manuscript, we provide a novel Fano resonance-driven micro-nanosensor. Its primary structural components are a metal-insulator-metal (MIM) waveguide, a shield with three disks, and a T-shaped cavity (STDTC). The finite element approach was used to study the gadget in theory. It is found that the adjustment of the structure and the change of the dimensions are closely related to the sensitivity (S) and the quality factor (FOM). Different model structural parameters affect the Fano resonance, which in turn changes the transmission characteristics of the resonator. Through in-depth experimental analysis and selection of appropriate parameters, the sensor sensitivity finally reaches 3020 nm/RIU and the quality factor reaches 51.89. Furthermore, the installation of this microrefractive index sensor allows for the quick and sensitive measurement of glucose levels. It is a positive contribution to the field of optical devices and micro-nano sensors and meets the demand for efficient detection when applied in medical and environmental scenarios. |
Audience | Academic |
Author | Chen, Changxin Yang, Weijie Wang, Chong Wang, Jin Yan, Shubin Xu, Ziheng Yan, Xiaoran Chang, Shuwen Wu, Taiquan |
AuthorAffiliation | 4 School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; 1240320114@zust.edu.cn 2 School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; yanxr@zjweu.edu.cn (X.Y.); wangchong@zjweu.edu.cn (C.W.); wutq@zjweu.edu.cn (T.W.) 3 Zhejiang-Belarus Joint Laboratory of Intelligent Equipment and System for Water Conservancy and Hydropower Safety Monitoring, Hangzhou 310018, China 1 School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China; sz202315077@st.nuc.edu.cn (W.Y.); chenchangxin@nuc.edu.cn (C.C.); sz202215044@st.nuc.edu.cn (J.W.); sz202215006@st.nuc.edu.cn (S.C.) |
AuthorAffiliation_xml | – name: 4 School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; 1240320114@zust.edu.cn – name: 2 School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; yanxr@zjweu.edu.cn (X.Y.); wangchong@zjweu.edu.cn (C.W.); wutq@zjweu.edu.cn (T.W.) – name: 1 School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China; sz202315077@st.nuc.edu.cn (W.Y.); chenchangxin@nuc.edu.cn (C.C.); sz202215044@st.nuc.edu.cn (J.W.); sz202215006@st.nuc.edu.cn (S.C.) – name: 3 Zhejiang-Belarus Joint Laboratory of Intelligent Equipment and System for Water Conservancy and Hydropower Safety Monitoring, Hangzhou 310018, China |
Author_xml | – sequence: 1 givenname: Weijie surname: Yang fullname: Yang, Weijie – sequence: 2 givenname: Shubin orcidid: 0000-0002-7588-3616 surname: Yan fullname: Yan, Shubin – sequence: 3 givenname: Ziheng surname: Xu fullname: Xu, Ziheng – sequence: 4 givenname: Changxin surname: Chen fullname: Chen, Changxin – sequence: 5 givenname: Jin surname: Wang fullname: Wang, Jin – sequence: 6 givenname: Xiaoran surname: Yan fullname: Yan, Xiaoran – sequence: 7 givenname: Shuwen surname: Chang fullname: Chang, Shuwen – sequence: 8 givenname: Chong surname: Wang fullname: Wang, Chong – sequence: 9 givenname: Taiquan surname: Wu fullname: Wu, Taiquan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39513799$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkstv1DAQhy1UREvpjTOKxIUDKX7EcXyqyorHSl04AOJoTezJ4lXWbu1kRf97XLZUWzwHW-OfP8_rOTkKMSAhLxk9F0LTdwFCZA1nTDH9hJxwqnTdaM2ODs7H5CznDS1LM9FJ8YwcCy2ZUFqfkIvVPE6-XsDOT7fVl4JLOCSwk99htQwOf1ffMOSYqveQ0VUxVKvlqvoJO1zP3uEL8nSAMePZ_X5Kfnz88H3xub76-mm5uLyqbaPkVHcgpaVtO0iKveyl1rrjkg-t1YPruSoGmraiF7yVDHvOpNWy4wBKIaMgTslyz3URNuY6-S2kWxPBm7-OmNYG0uTtiMaC7BuFHFrXNGAFgHbDYAtJ9kw4WVgXe9b13G_RWQxTgvER9PFN8L_MOu4MY7JRQrFCeHNPSPFmxjyZrc8WxxECxjkbwXgnOG-6pkhf_yfdxDmFUqs7VUtpWypRVOd71RpKBj4MsXxsizncelt6Pvjiv-xKAJy2nSoPXh3m8BD8v84Wwdu9wKaYc2nqg4RRczc75nB2xB9oQ7RU |
Cites_doi | 10.1364/JOSAB.461472 10.1109/LPT.2015.2437850 10.3390/s16101730 10.1364/OL.29.001069 10.1364/OL.29.001992 10.1038/nphoton.2017.142 10.1007/s13204-020-01622-5 10.1016/j.jqsrt.2015.03.005 10.1016/j.ijleo.2022.168824 10.1364/OL.37.003780 10.3390/photonics10070724 10.1088/1361-6463/aaa874 10.1109/JSEN.2021.3082756 10.1021/acs.nanolett.9b04334 10.1364/OE.453240 10.1021/acs.jpcc.1c04549 10.1007/s11468-023-01883-0 10.1016/j.optcom.2016.02.024 10.1021/acssensors.0c02629 10.1103/PhysRevB.73.035407 10.1038/nmat2810 10.1016/j.chemosphere.2021.130065 10.1103/RevModPhys.82.2257 10.1088/0957-4484/27/23/234002 10.1038/s41598-021-90773-8 10.1080/01468030.2021.1902590 10.1088/1555-6611/ab9090 10.1038/nature04594 10.1016/j.optcom.2022.128437 10.1007/s10825-023-02022-y 10.1016/j.ijleo.2021.166697 10.1016/j.optcom.2020.126563 10.1016/j.ijleo.2022.169302 10.1007/s11468-023-01893-y 10.1038/nphoton.2009.282 10.1016/j.physe.2019.113798 10.1364/JOSAB.443140 10.1364/JOSAB.446803 10.1016/j.micrna.2022.207364 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano14211719 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_ca5b47e2a6d44ac3aa9dffca775b13d5 PMC11547371 A815420687 39513799 10_3390_nano14211719 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Key Research and Development Project of Zhejiang Province grantid: 2021C03019 – fundername: National Natural Science Foundation of China grantid: 62374148 – fundername: Funds for Special Projects of the Central Government in Guidance of Local Science and Technology Development grantid: YDZJSX20231A031 – fundername: Zhejiang Provincial Natural Science Foundation grantid: LD21F050001 – fundername: Key Research Project by Department of Water Resources of Zhejiang Province grantid: RA2101 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LD21F050001 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB PMFND 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c475t-8a55c066f50eb5b59998252f6c9fdb27272a9063b32651eb215c9582aa77e10a3 |
IEDL.DBID | 8FG |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:25:03 EDT 2025 Thu Aug 21 18:30:31 EDT 2025 Fri Sep 05 02:45:05 EDT 2025 Fri Jul 25 12:01:01 EDT 2025 Tue Jun 10 21:03:09 EDT 2025 Mon Jul 21 06:07:19 EDT 2025 Tue Jul 01 00:51:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | MIM waveguide Fano resonance sensitivity surface plasmon polaritons |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-8a55c066f50eb5b59998252f6c9fdb27272a9063b32651eb215c9582aa77e10a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7588-3616 |
OpenAccessLink | https://www.proquest.com/docview/3126006982?pq-origsite=%requestingapplication% |
PMID | 39513799 |
PQID | 3126006982 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ca5b47e2a6d44ac3aa9dffca775b13d5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11547371 proquest_miscellaneous_3128322484 proquest_journals_3126006982 gale_infotracacademiconefile_A815420687 pubmed_primary_39513799 crossref_primary_10_3390_nano14211719 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241028 |
PublicationDateYYYYMMDD | 2024-10-28 |
PublicationDate_xml | – month: 10 year: 2024 text: 20241028 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Li (ref_39) 2023; 18 Chen (ref_12) 2015; 27 Faghani (ref_31) 2021; 237 Blau (ref_7) 2022; 30 Abdolalipour (ref_3) 2022; 39 Noual (ref_24) 2021; 125 ref_33 Hassan (ref_40) 2021; 21 Zheludev (ref_13) 2010; 9 Pile (ref_8) 2004; 29 Dionne (ref_10) 2006; 73 Miroshnichenko (ref_19) 2010; 82 Ganie (ref_34) 2021; 275 Barreda (ref_38) 2015; 162 Limonov (ref_14) 2017; 11 Lu (ref_26) 2012; 37 ref_16 Meng (ref_2) 2018; 51 Faghani (ref_28) 2022; 257 Gramotnev (ref_5) 2010; 4 Chen (ref_11) 2015; 7 Liu (ref_30) 2022; 169 Wang (ref_29) 2023; 22 Badri (ref_22) 2022; 39 Bozhevolnyi (ref_1) 2006; 440 Chen (ref_15) 2016; 369 Butt (ref_21) 2020; 30 Chen (ref_25) 2021; 482 ref_20 Sagor (ref_32) 2021; 11 Celiksoy (ref_36) 2021; 6 Kazanskiy (ref_17) 2020; 117 Wang (ref_9) 2004; 29 Sun (ref_27) 2023; 18 Butt (ref_23) 2021; 40 Zhang (ref_6) 2022; 520 Svedendahl (ref_35) 2020; 20 Chen (ref_4) 2022; 39 Barreda (ref_37) 2016; 27 Liu (ref_18) 2022; 262 |
References_xml | – volume: 39 start-page: 1716 year: 2022 ident: ref_4 article-title: Pressure sensor based on multiple Fano resonance in metal-insulator-metal waveguide coupled resonator structure publication-title: J. Opt. Soc. Am. B-Opt. Phys. doi: 10.1364/JOSAB.461472 – volume: 27 start-page: 1695 year: 2015 ident: ref_12 article-title: A Refractive Index Nanosensor Based on Fano Resonance in the Plasmonic Waveguide System publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2015.2437850 – ident: ref_33 doi: 10.3390/s16101730 – volume: 29 start-page: 1069 year: 2004 ident: ref_8 article-title: Channel plasmon-polariton in a triangular groove on a metal surface publication-title: Opt. Lett. doi: 10.1364/OL.29.001069 – volume: 29 start-page: 1992 year: 2004 ident: ref_9 article-title: Surface plasmon polariton propagation in nanoscale metal gap waveguides publication-title: Opt. Lett. doi: 10.1364/OL.29.001992 – volume: 11 start-page: 543 year: 2017 ident: ref_14 article-title: Fano resonances in photonics publication-title: Nat. Photonics doi: 10.1038/nphoton.2017.142 – volume: 11 start-page: 521 year: 2021 ident: ref_32 article-title: Highly sensitive refractive index sensor optimized for blood group sensing utilizing the Fano resonance publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01622-5 – volume: 162 start-page: 190 year: 2015 ident: ref_38 article-title: Using linear polarization to monitor nanoparticle purity publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2015.03.005 – volume: 257 start-page: 168824 year: 2022 ident: ref_28 article-title: Tunable band-pass plasmonic filter and wavelength triple-channel demultiplexer based on square nanodisk resonator in MIM waveguide publication-title: Optik doi: 10.1016/j.ijleo.2022.168824 – volume: 37 start-page: 3780 year: 2012 ident: ref_26 article-title: Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators publication-title: Opt. Lett. doi: 10.1364/OL.37.003780 – ident: ref_16 doi: 10.3390/photonics10070724 – volume: 51 start-page: 095106 year: 2018 ident: ref_2 article-title: Control of Fano resonances in photonic crystal nanobeams side-coupled with nanobeam cavities and their applications to refractive index sensing publication-title: J. Phys. D-Appl. Phys. doi: 10.1088/1361-6463/aaa874 – volume: 21 start-page: 17749 year: 2021 ident: ref_40 article-title: Point of Care Detection of Blood Electrolytes and Glucose Utilizing Nano-Dot Enhanced Plasmonic Biosensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3082756 – volume: 20 start-page: 585 year: 2020 ident: ref_35 article-title: Enhanced Chiral Sensing with Dielectric Nanoresonators publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04334 – volume: 30 start-page: 13757 year: 2022 ident: ref_7 article-title: High efficiency coupling to metal-insulator-metal plasmonic waveguides publication-title: Opt. Express doi: 10.1364/OE.453240 – volume: 125 start-page: 14854 year: 2021 ident: ref_24 article-title: Optomechanic Coupling in Ag Polymer Nanocomposite Films publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c04549 – volume: 18 start-page: 1715 year: 2023 ident: ref_27 article-title: Multiple Independently Controllable Fano Resonances Based on the MIM Waveguide and Their Application in Sensing publication-title: Plasmonics doi: 10.1007/s11468-023-01883-0 – volume: 369 start-page: 72 year: 2016 ident: ref_15 article-title: Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide publication-title: Opt. Commun. doi: 10.1016/j.optcom.2016.02.024 – volume: 6 start-page: 716 year: 2021 ident: ref_36 article-title: Single Out-of-Resonance Dielectric Nanoparticles as Molecular Sensors publication-title: ACS Sens. doi: 10.1021/acssensors.0c02629 – volume: 73 start-page: 035407 year: 2006 ident: ref_10 article-title: Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.035407 – volume: 9 start-page: 707 year: 2010 ident: ref_13 article-title: The Fano resonance in plasmonic nanostructures and metamaterials publication-title: Nat. Mater. doi: 10.1038/nmat2810 – volume: 275 start-page: 130065 year: 2021 ident: ref_34 article-title: Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130065 – volume: 82 start-page: 2257 year: 2010 ident: ref_19 article-title: Fano resonances in nanoscale structures publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2257 – volume: 27 start-page: 234002 year: 2016 ident: ref_37 article-title: Polarimetric response of magnetodielectric core-shell nanoparticles: An analysis of scattering directionality and sensing publication-title: Nanotechnology doi: 10.1088/0957-4484/27/23/234002 – ident: ref_20 doi: 10.1038/s41598-021-90773-8 – volume: 40 start-page: 14 year: 2021 ident: ref_23 article-title: Plasmonics: A Necessity in the Field of Sensing-A Review (Invited) publication-title: Fiber Integr. Opt. doi: 10.1080/01468030.2021.1902590 – volume: 30 start-page: 076204 year: 2020 ident: ref_21 article-title: Nanodots decorated asymmetric metal-insulator-metal waveguide resonator structure based on Fano resonances for refractive index sensing application publication-title: Laser Phys. doi: 10.1088/1555-6611/ab9090 – volume: 440 start-page: 508 year: 2006 ident: ref_1 article-title: Channel plasmon subwavelength waveguide components including interferometers and ring resonators publication-title: Nature doi: 10.1038/nature04594 – volume: 520 start-page: 128437 year: 2022 ident: ref_6 article-title: Theoretical design and analysis of multichannel plasmonic switch based on triangle resonator combined with silver bar publication-title: Opt. Commun. doi: 10.1016/j.optcom.2022.128437 – volume: 22 start-page: 839 year: 2023 ident: ref_29 article-title: Ultrahigh FOM and multiple Fano resonances in MIM waveguide systems with half-ring and rectangular cavities publication-title: J. Comput. Electron. doi: 10.1007/s10825-023-02022-y – volume: 237 start-page: 166697 year: 2021 ident: ref_31 article-title: Triple-channel glasses-shape nanoplasmonic demultiplexer based on multi nanodisk resonators in MIM waveguide publication-title: Optik doi: 10.1016/j.ijleo.2021.166697 – volume: 482 start-page: 126563 year: 2021 ident: ref_25 article-title: Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics publication-title: Opt. Commun. doi: 10.1016/j.optcom.2020.126563 – volume: 262 start-page: 169302 year: 2022 ident: ref_18 article-title: A compact four-peak MIM filter based on asymmetric distribution of resonators publication-title: Optik doi: 10.1016/j.ijleo.2022.169302 – volume: 18 start-page: 1825 year: 2023 ident: ref_39 article-title: Quintuple Plasmonic Fano Resonances for the Sensing Application of Glucose Concentration and Water-soluble Vitamins publication-title: Plasmonics doi: 10.1007/s11468-023-01893-y – volume: 4 start-page: 83 year: 2010 ident: ref_5 article-title: Plasmonics beyond the diffraction limit publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.282 – volume: 117 start-page: 113798 year: 2020 ident: ref_17 article-title: Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review publication-title: Phys. E-Low-Dimens. Syst. Nanostructures doi: 10.1016/j.physe.2019.113798 – volume: 39 start-page: 364 year: 2022 ident: ref_3 article-title: High Q-factor plasmonic filter based on MIM structures and its application in the design of a dual band demultiplexer for optical communication wavelengths publication-title: J. Opt. Soc. Am. B-Opt. Phys. doi: 10.1364/JOSAB.443140 – volume: 39 start-page: 563 year: 2022 ident: ref_22 article-title: High-Q Fano resonance in all-dielectric metasurfaces for molecular fingerprint detection publication-title: J. Opt. Soc. Am. B-Opt. Phys. doi: 10.1364/JOSAB.446803 – volume: 169 start-page: 207364 year: 2022 ident: ref_30 article-title: Bifunctional MIM device with narrowband filtering and high-performance sensing publication-title: Micro Nanostructures doi: 10.1016/j.micrna.2022.207364 – volume: 7 start-page: 1 year: 2015 ident: ref_11 article-title: Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems publication-title: IEEE Photonics J. |
SSID | ssj0000913853 |
Score | 2.2932465 |
Snippet | Within this manuscript, we provide a novel Fano resonance-driven micro-nanosensor. Its primary structural components are a metal-insulator-metal (MIM)... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1719 |
SubjectTerms | Accuracy Analysis Cavity resonators Design Electric fields Fano resonance Insulators Interfaces Lasers Light MIM waveguide Nanosensors Parameter sensitivity Q factors Resonance sensitivity Sensitivity analysis Sensors Silver Software surface plasmon polaritons Waveguides |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQp3Ko2tKPUFq5UqueIpL4Kz4hQCCotFwoKjdr7NgtlwTBLr-fGSessuqhl17jHOw38cyb2POGsa9Q-eg1nRlC_nXTWPSDoEtlVTLGByMk1TsvLvX5tfxxo25mrb7oTtgoDzwCdxBAeWliA7qTEoIAsF1KAYxRvhZdVi-tbDVLprIPtrXAQDTedBeY1x_00A-1xHTHkKjOLAZlqf6_HfIsIm3elpyFn7NX7OXEG_nRON_XbCv2b9jOTE1wlx3mYtryBKgdBEe3ST1EchHUY-QXpIrIrzBpHe75MYaujg89X1ws-C94jL9Xt118y67PTn-enJdTf4QySKOWZQtKBaQMSVXRK6-Q62G-1yQdbOp8Q0esYJGCeKRoqsYUulbBqrYBBC_WFYh3bLsf-viBcduFVNnkAdmVFFXyHjO_oKVWkNBndgX79oyYuxtlMBymD4SsmyNbsGOCc_0OiVfnB2hSN5nU_cukBftOxnC0xRDxAFOlAE6VxKrcUYu8r6l0awq2_2wvN-29BydqEt3XiEXBvqyHcdfQUQj0cVjld8iVyVYW7P1o3vWcBZJOYSyupd0w_MaiNkf62z9ZmZu0jYww9d7_gOEje9Egg6JA2bT7bHt5v4qfkAEt_ef8sT8BZxAFJg priority: 102 providerName: Directory of Open Access Journals |
Title | Multi-Cavity Nanorefractive Index Sensor Based on MIM Waveguide |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39513799 https://www.proquest.com/docview/3126006982 https://www.proquest.com/docview/3128322484 https://pubmed.ncbi.nlm.nih.gov/PMC11547371 https://doaj.org/article/ca5b47e2a6d44ac3aa9dffca775b13d5 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauLSHqvSZAqtUatVTRBK_4hNiEVuotKhqi8otGjs2cEnossvvZ8ab3WaFxDXOYTxjz3wztr9h7Avk1ltFZ4YQSzelQT8IKpNGBq2t01zQe-fpuTq9ED8u5WVfcLvrr1WufGJ01E3nqEZ-wAuiUlemKg9v_2XUNYpOV_sWGs_ZNg4rWufV5Pu6xkKclxiOlvfdOWb3By20XSEw6dFErTOIRJGw_7FbHsSlzTuTgyA0ec1e9egxPVqae4c98-0b9nLAKfiWHcYntdkxUFOIFJ0ndRKJT6HufXpG3Ijpb0xdu1k6xgDWpF2bTs-m6V-491eLm8a_YxeTkz_Hp1nfJSFzQst5VoGUDoFDkLm30kpEfJj1lUE5Expb0kErGAQiFoGaLDCRLqQzsioBtPZFDvw922q71n9kqWlcyE2wgBhL8DxYi_mfU0JJCOg5m4R9XWmsvl2SYdSYRJBm66FmEzYmda7_IQrr-KGbXdX9jqgdSCu0L0E1QoDjAKYJwaFU0ha8kQn7RsaoaaOhxh307wVQVKKsqo8qRH9lriqdsL2Vvep-B97V_9dLwj6vh3Hv0IEItL5bxH_IoYlKJOzD0rxrmTlCT64NzqXaMPzGpDZH2pvryM9NDEea6-LT03LtshclIiQKhGW1x7bms4XfR4Qzt6O4jEdse3xy_vPXKNYJHgBuMf00 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IN4ECgSJilPUxI84PqCqW1rt0u4KQSt6C7bjlF6Sst0t4k_xG5nJY9kVErde4yhyZjzzzdiebwDemth6m9KZoWm2bphGP2jSSGpZKmWd4oLqnSfTdHQqPp7Jsw343dfC0LXK3ic2jrqoHe2R7_CEqNRTnbHdyx8RdY2i09W-hUa7LI78r5-Ysl29H39A_W4zdnhwsj-Kuq4CkRNKzqPMSOkQaEsZeyutxAgJsyRWpk6XhWV0MGk0ArfFwEYmmHgm0mmZMWOU8klsOH73FmwKqmgdwObwYPrp83JXh1g2EQDbG_ac63inMlWdCEyzFJH5rGBf0yLgXyBYQcL1W5orsHd4H-518Wq41y6wB7Dhq4dwd4XF8BHsNkW80b6hNhQhumvqXdIUX137cExsjOEXTJbrWThEyCzCugon40n41Vz788VF4R_D6Y1I8AkMqrryzyDUhStjXVqDUZ3gcWktZpwuFak0JfrqIoDtXmL5ZUu_kWPaQpLNVyUbwJDEuXyHSLObB_XsPO9sMHdGWqE8M2khhHHcGF2UpcNZSZvwQgbwjpSRk2mjxJ3pKhRwqkSSle9lGG-yOM1UAFu9vvLO5q_yvys0gDfLYbRWOoIxla8XzTvkQkUmAnjaqnc5Z47BLlca_yVbU_zaT62PVBffG0Zw4lRSXCXP_z-v13B7dDI5zo_H06MXcIdhfEYwzLItGMxnC_8S46u5fdUt6hC-3bQd_QF6jTdh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN6kFAgSFadoE8eO4wOq-mDpUrZCgoreUtuxSy9Ju90t4q_x65jJY8kKiVuvm2jlzOubsT3fALzVsXEmozND3WzdMIVxUGeRUMJLaaxMOfU7T4-yg2P-6UScrMHvvheGrlX2MbEJ1GVtaY98lCZEpZ6pnI18dy3iy_54--IyoglSdNLaj9NoTeTQ_fqJ5dvV-8k-6nqLsfGHb3sHUTdhILJcinmUayEsgq4XsTPCCMyWsGJiPrPKl4bRIaVWCOIGkxyRYBGaCKtEzrSW0iWxTvF_b8FtmUpFhV8-_rjc3yG-TYTC9q59mqp4VOmqTjgWXJJofQYo2AwL-BcSBpi4el9zAIDjB3C_y1zDndbUHsKaqx7BvQGf4WPYbtp5oz1NAylCDNw0xaRpw7p24YR4GcOvWDbXs3AXwbMM6yqcTqbhd33tzhbnpXsCxzciv6ewXtWVew6hKq2PlTca8zuext4YrD1txjOhPUbtMoCtXmLFRUvEUWABQ5IthpINYJfEuXyH6LObH-rZWdF5Y2G1MFw6prOSc21TrVXpvcVVCZOkpQjgHSmjICdHiVvd9SrgUokuq9jJMfNkcZbLADZ7fRWd918Vf201gDfLx-i3dBijK1cvmncomPKcB_CsVe9yzSmmvWhS-C35iuJXPmr1SXX-o-EGJ3YlNMdk4__reg130HuKz5Ojwxdwl2GiRnjM8k1Yn88W7iUmWnPzqrHoEE5v2oX-AJUJOjE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Cavity+Nanorefractive+Index+Sensor+Based+on+MIM+Waveguide&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Weijie&rft.au=Shubin%2C+Yan&rft.au=Xu%2C+Ziheng&rft.au=Chen%2C+Changxin&rft.date=2024-10-28&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=14&rft.issue=21&rft.spage=1719&rft_id=info:doi/10.3390%2Fnano14211719&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |