Marine-derived new peptaibols with antibacterial activities by targeting bacterial membrane phospholipids

Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical di...

Full description

Saved in:
Bibliographic Details
Published inActa pharmaceutica Sinica. B Vol. 15; no. 5; pp. 2764 - 2777
Main Authors Chen, Shang, Liu, Dong, Wang, Liyang, Fan, Aili, Wu, Mengyue, Xu, Ning, Zhu, Kui, Lin, Wenhan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds. SK-Ps, a new subfamily of peptaibol isolated from a deep-sea fungus, effectively killed multidrug-resistant bacteria by targeting bacterial membrane phospholipids, leading to bacterial membrane dysfunction, abnormal division, and ultimately death. [Display omitted]
AbstractList Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant (MRSA) in both and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds.
Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds.
Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds. SK-Ps, a new subfamily of peptaibol isolated from a deep-sea fungus, effectively killed multidrug-resistant bacteria by targeting bacterial membrane phospholipids, leading to bacterial membrane dysfunction, abnormal division, and ultimately death. Image 1
Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds. SK-Ps, a new subfamily of peptaibol isolated from a deep-sea fungus, effectively killed multidrug-resistant bacteria by targeting bacterial membrane phospholipids, leading to bacterial membrane dysfunction, abnormal division, and ultimately death. [Display omitted]
Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds.Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds.
Author Zhu, Kui
Fan, Aili
Chen, Shang
Lin, Wenhan
Xu, Ning
Wang, Liyang
Wu, Mengyue
Liu, Dong
Author_xml – sequence: 1
  givenname: Shang
  orcidid: 0000-0002-4874-2922
  surname: Chen
  fullname: Chen, Shang
  organization: State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
– sequence: 2
  givenname: Dong
  orcidid: 0000-0002-1686-9638
  surname: Liu
  fullname: Liu, Dong
  organization: State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
– sequence: 3
  givenname: Liyang
  orcidid: 0000-0002-3499-4280
  surname: Wang
  fullname: Wang, Liyang
  organization: National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
– sequence: 4
  givenname: Aili
  orcidid: 0000-0003-4738-0517
  surname: Fan
  fullname: Fan, Aili
  organization: State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
– sequence: 5
  givenname: Mengyue
  surname: Wu
  fullname: Wu, Mengyue
  organization: State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
– sequence: 6
  givenname: Ning
  surname: Xu
  fullname: Xu, Ning
  organization: The Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China
– sequence: 7
  givenname: Kui
  orcidid: 0000-0001-8242-3952
  surname: Zhu
  fullname: Zhu, Kui
  email: zhuk@cau.edu.cn
  organization: National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
– sequence: 8
  givenname: Wenhan
  surname: Lin
  fullname: Lin, Wenhan
  email: whlin@bjmu.edu.cn
  organization: State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40487657$$D View this record in MEDLINE/PubMed
BookMark eNp9ksluFDEQhi0URELIC3BAfeTSjZde3BISQhFLpCAucLa8VM_UqMdubM9EeXs8mTCQC5Ysl8pf_WWV_5fkzAcPhLxmtGGU9e82jV6SaTjlXUN5Q0X_jFxwzlgtZCvOTrHozslVShtaVk85H7oX5LylrRz6brgg-E1H9FA7iLgHV3m4qxZYskYT5lTdYV5X2mc02uaC6LkqAe4xI6TK3FdZxxVk9KvqL7GFrYnaQ7WsQyp7xgVdekWeT3pOcPV4XpKfnz_9uP5a337_cnP98ba27dDlWoqxNdBLY2nb0Z5rShnlE-2HseQmymF0tkBuMs5OEzVSOlfu7QSyl8yJS3Jz1HVBb9QScavjvQoa1UMixJXSMaOdQTFZRNnQUit4ywWXRmjRjp2cRnDwoPXhqLXszBacBZ-jnp-IPr3xuFarsFeMs_L6jheFt48KMfzaQcpqi8nCPJf5hF1SgrN-ZFIMsqBv_m126vLnswrAj4CNIaUI0wlhVB1MoTbqYAp1MIWiXBVTlKL3xyIoM98jRJUsgrfgMILNZSj4v_Lf5BzBtw
Cites_doi 10.1073/pnas.2217254120
10.1080/21505594.2015.1135289
10.1002/anie.202115802
10.1007/s00232-001-0077-2
10.1021/acs.orglett.5b00172
10.1021/acsinfecdis.0c00913
10.1016/S0021-9673(01)96420-9
10.1039/D1SC03597E
10.1016/S1473-3099(15)00424-7
10.1111/j.1749-6632.2012.06819.x
10.1139/v96-020
10.1038/s41467-018-02875-z
10.1074/jbc.M112.407817
10.1021/acsinfecdis.2c00262
10.1002/chem.201600430
10.7164/antibiotics.50.722
10.1126/science.aaw6732
10.1016/j.cell.2020.01.021
10.1016/S1473-3099(18)30711-4
10.1093/nar/gkad344
10.1016/S1074-5521(99)80082-9
10.1016/j.apsb.2022.01.006
10.3389/fmicb.2021.725526
10.1038/s41467-020-15257-1
10.1002/bip.21679
10.1038/s41467-017-00419-5
10.1002/advs.202100749
10.1002/rcm.2430
10.1073/pnas.1707565114
10.1016/j.cell.2007.06.049
10.1002/cbdv.201200390
10.1038/s41467-022-28292-x
10.1016/j.cell.2020.02.056
10.1021/acs.langmuir.2c00953
10.1021/acs.orglett.6b02313
10.1042/bst0290565
10.1021/ja00032a035
10.1016/j.mib.2005.02.012
10.1016/j.apsb.2023.08.032
10.1038/s41586-021-04264-x
10.1093/jac/dkac387
10.1016/S0140-6736(21)02724-0
10.1038/s41564-019-0445-2
10.1021/acs.accounts.1c00007
10.3390/antibiotics9060340
10.1016/j.plipres.2024.101307
10.1016/j.cej.2023.146246
10.7164/antibiotics.50.105
10.1038/s41586-020-1990-9
10.1021/ja00411a052
10.1128/mBio.01615-20
10.3390/md17040241
10.1016/j.cell.2023.07.038
10.1039/C8NP00031J
10.1128/spectrum.02515-21
10.1038/nrd3975
10.1039/c39810000585
10.1038/s41564-020-0723-z
10.1016/j.bpc.2018.04.001
10.1016/j.apsb.2021.07.014
ContentType Journal Article
Copyright 2025 The Authors
2025 The Authors.
2025 The Authors 2025
Copyright_xml – notice: 2025 The Authors
– notice: 2025 The Authors.
– notice: 2025 The Authors 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.apsb.2025.02.036
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2211-3843
EndPage 2777
ExternalDocumentID oai_doaj_org_article_187981740c3242328b3a34958f9ede1d
PMC12145052
40487657
10_1016_j_apsb_2025_02_036
S2211383525001315
Genre Journal Article
GroupedDBID ---
--K
-05
-0E
-SE
-S~
0R~
1~5
4.4
457
4G.
53G
5VR
5VS
6I.
7-5
92M
9D9
9DE
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABKZE
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFPUW
AFUIB
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
CAJEE
CCEZO
CIEJG
DIK
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
JUIAU
KQ8
M41
M48
O-L
O9-
OK1
Q--
R-E
RIG
ROL
RPM
RT5
SES
SSZ
T8U
U1F
U1G
U5E
U5O
XH2
~NG
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c475t-8394be68bc045062a00102f06798bcf02e9dc839dfbdcff0b88dd2f0cfe8681d3
IEDL.DBID M48
ISSN 2211-3835
IngestDate Wed Aug 27 01:23:16 EDT 2025
Thu Aug 21 18:25:09 EDT 2025
Fri Jul 11 17:07:40 EDT 2025
Thu Jun 12 01:53:22 EDT 2025
Tue Jul 01 04:46:51 EDT 2025
Sat Jun 14 16:52:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Antibiotic
Peptaibol
NRPS
Natural product
Phospholipid
Phosphatidylglycerol
Marine fungus
Bactericidal activity
Language English
License This is an open access article under the CC BY-NC-ND license.
2025 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-8394be68bc045062a00102f06798bcf02e9dc839dfbdcff0b88dd2f0cfe8681d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors made equal contributions to this work.
ORCID 0000-0002-1686-9638
0000-0003-4738-0517
0000-0002-3499-4280
0000-0001-8242-3952
0000-0002-4874-2922
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.apsb.2025.02.036
PMID 40487657
PQID 3216918378
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_187981740c3242328b3a34958f9ede1d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12145052
proquest_miscellaneous_3216918378
pubmed_primary_40487657
crossref_primary_10_1016_j_apsb_2025_02_036
elsevier_sciencedirect_doi_10_1016_j_apsb_2025_02_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Acta pharmaceutica Sinica. B
PublicationTitleAlternate Acta Pharm Sin B
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wu, Wiese, Wenzel-Storjohann, Malien, Schmaljohann, Imhoff (bib13) 2016; 22
Rinehart, Gaudioso, Moore, Pandey, Cook, Barber (bib30) 1981; 103
Renner, Weibel (bib45) 2012; 287
Wang, Forelli, Hernandez, Ternei, Brady (bib17) 2022; 13
Brückner, Przybylski (bib29) 1984; 296
Murray, Ikuta, Sharara, Swetschinski, Robles Aguilar, Gray (bib1) 2022; 399
Liu, Ding, Shen, Zhu (bib16) 2019; 36
Karpiński (bib12) 2019; 17
Lewis (bib4) 2013; 12
Song, Chen, Lin, Zhu (bib60) 2024; 96
Hernandez-Villa, Manrique-Moreno, Leidy, Jemiola-Rzeminska, Ortiz, Strzalka (bib48) 2018; 238
MacNair, Brown (bib40) 2020; 11
Culp, Waglechner, Wang, Fiebig-Comyn, Hsu, Koteva (bib21) 2020; 578
MacNair, Stokes, Carfrae, Fiebig-Comyn, Coombes, Mulvey (bib41) 2018; 9
Chen, Liu, Zhang, Guo, Ding, Shen (bib59) 2021; 7
Su, Li, Hu, Wang, Zhang, Fu (bib55) 2022; 10
Blin, Shaw, Augustijn, Reitz, Biermann, Alanjary (bib28) 2023; 51
Stokes, Yang, Swanson, Jin, Cubillos-Ruiz, Donghia (bib53) 2020; 180
Rao, Su, Wu, Chai, Li, Yang (bib8) 2024; 14
Liu, Lin, Proksch, Tang, Shao, Lin (bib26) 2015; 17
Wang, Koirala, Hernandez, Zimmerman, Park, Perlin (bib20) 2022; 601
Duclohier, Wróblewski (bib23) 2001; 184
Valdes-Pena, Massaro, Lin, Pierce (bib15) 2021; 54
Song, Liu, Huang, Ding, Wang, Shen (bib46) 2020; 5
Mileykovskaya, Dowhan (bib44) 2005; 8
Willems, De Mol, De Bruycker, De Maeseneire, Soetaert (bib11) 2020; 9
Dieterich, Probst, Ueoka, Sandu, Schäfle, Molin (bib14) 2022; 61
Ritzau, Heinze, Dornberger, Berg, Fleck, Schlegel (bib33) 1997; 50
Ma, Huang, Xie, Liu, Zhao, Zhang (bib10) 2017; 8
Yang, Song, Li, Zhang, Shen, Zhu (bib43) 2022; 78
Stachelhaus, Mootz, Marahiel (bib25) 1999; 6
Su, Leitch, Lipkowski (bib39) 2022; 38
Bayer, Schneider, Sahl (bib18) 2013; 1277
Chikanishi, Hasumi, Harada, Kawasaki, Endo (bib35) 1997; 50
Kredics, Szekeres, Czifra, Vágvölgyi, Leitgeb (bib38) 2013; 10
Chen, Xing, Han, Liu, Xiang, Shen (bib58) 2023; 475
Liu, El-Hossary, Oelschlaeger, Donia, Quinn, Abdelmohsen (bib6) 2019; 19
Xu, Liu, Liu, Ren, Liu, Qi (bib7) 2022; 12
Moreira, Taylor (bib51) 2022; 8
Hilton, Manwani, Boles, White, Ozturk, Garrett (bib47) 2021; 12
Lv, Huang, Lijia, Ma, Bian, Li (bib52) 2023; 120
Tsantrizos, Pischos, Sauriol, Widden (bib34) 1996; 74
Mohamed-Benkada, Montagu, Biard, Mondeguer, Verite, Dalgalarrondo (bib31) 2006; 20
Zan, Li, Tianero, Davis, Hill, Donia (bib9) 2019; 364
Fujita, Takaishi, Okamura, Fujita, Fuji, Hiratsuka (bib36) 1981
Grein, Muller, Scherer, Liu, Ludwig, Klockner (bib50) 2020; 11
Lin, Chi, Yan, Luo, Feng, Zheng (bib24) 2021; 11
Bolosov, Panteleev, Sychev, Sukhanov, Mironov, Myshkin (bib49) 2021; 12
Shukla, Peoples, Ludwig, Maity, Derks, De Benedetti (bib19) 2023; 186
Du, Risinger, Mitchell, You, Stamps, Pan (bib37) 2017; 114
Liu, Wang, Walsh, Yi, Zhang, Spencer (bib2) 2016; 16
Auvin-Guette, Rebuffat, Prigent, Bodo (bib32) 1992; 114
Long, Cheng, Huang, Wu, Li, Cui (bib27) 2016; 18
He, Wang, Liu, Walsh, Zhang, Lv (bib3) 2019; 4
Lewis (bib5) 2020; 181
Chugh, Wallace (bib22) 2001; 29
De Zotti, Biondi, Crisma, Hjørringgaard, Berg, Brückner (bib57) 2012; 98
Kohanski, Dwyer, Hayete, Lawrence, Collins (bib54) 2007; 130
Song, Liu, Li, Liu, Hao, Ding (bib42) 2021; 8
Tsai, Loh, Proft (bib56) 2016; 7
Zan (10.1016/j.apsb.2025.02.036_bib9) 2019; 364
Su (10.1016/j.apsb.2025.02.036_bib39) 2022; 38
Shukla (10.1016/j.apsb.2025.02.036_bib19) 2023; 186
Bolosov (10.1016/j.apsb.2025.02.036_bib49) 2021; 12
Chugh (10.1016/j.apsb.2025.02.036_bib22) 2001; 29
MacNair (10.1016/j.apsb.2025.02.036_bib40) 2020; 11
Mileykovskaya (10.1016/j.apsb.2025.02.036_bib44) 2005; 8
Valdes-Pena (10.1016/j.apsb.2025.02.036_bib15) 2021; 54
Song (10.1016/j.apsb.2025.02.036_bib46) 2020; 5
Liu (10.1016/j.apsb.2025.02.036_bib2) 2016; 16
Fujita (10.1016/j.apsb.2025.02.036_bib36) 1981
Moreira (10.1016/j.apsb.2025.02.036_bib51) 2022; 8
Tsantrizos (10.1016/j.apsb.2025.02.036_bib34) 1996; 74
Culp (10.1016/j.apsb.2025.02.036_bib21) 2020; 578
Blin (10.1016/j.apsb.2025.02.036_bib28) 2023; 51
De Zotti (10.1016/j.apsb.2025.02.036_bib57) 2012; 98
Chikanishi (10.1016/j.apsb.2025.02.036_bib35) 1997; 50
Liu (10.1016/j.apsb.2025.02.036_bib26) 2015; 17
Brückner (10.1016/j.apsb.2025.02.036_bib29) 1984; 296
MacNair (10.1016/j.apsb.2025.02.036_bib41) 2018; 9
Lv (10.1016/j.apsb.2025.02.036_bib52) 2023; 120
Wu (10.1016/j.apsb.2025.02.036_bib13) 2016; 22
Liu (10.1016/j.apsb.2025.02.036_bib6) 2019; 19
Duclohier (10.1016/j.apsb.2025.02.036_bib23) 2001; 184
Rao (10.1016/j.apsb.2025.02.036_bib8) 2024; 14
Yang (10.1016/j.apsb.2025.02.036_bib43) 2022; 78
Kohanski (10.1016/j.apsb.2025.02.036_bib54) 2007; 130
Xu (10.1016/j.apsb.2025.02.036_bib7) 2022; 12
Mohamed-Benkada (10.1016/j.apsb.2025.02.036_bib31) 2006; 20
Renner (10.1016/j.apsb.2025.02.036_bib45) 2012; 287
Hilton (10.1016/j.apsb.2025.02.036_bib47) 2021; 12
Ma (10.1016/j.apsb.2025.02.036_bib10) 2017; 8
Karpiński (10.1016/j.apsb.2025.02.036_bib12) 2019; 17
Lewis (10.1016/j.apsb.2025.02.036_bib5) 2020; 181
Kredics (10.1016/j.apsb.2025.02.036_bib38) 2013; 10
Chen (10.1016/j.apsb.2025.02.036_bib58) 2023; 475
Auvin-Guette (10.1016/j.apsb.2025.02.036_bib32) 1992; 114
Stokes (10.1016/j.apsb.2025.02.036_bib53) 2020; 180
Willems (10.1016/j.apsb.2025.02.036_bib11) 2020; 9
Wang (10.1016/j.apsb.2025.02.036_bib20) 2022; 601
Liu (10.1016/j.apsb.2025.02.036_bib16) 2019; 36
Hernandez-Villa (10.1016/j.apsb.2025.02.036_bib48) 2018; 238
Grein (10.1016/j.apsb.2025.02.036_bib50) 2020; 11
Dieterich (10.1016/j.apsb.2025.02.036_bib14) 2022; 61
Stachelhaus (10.1016/j.apsb.2025.02.036_bib25) 1999; 6
Su (10.1016/j.apsb.2025.02.036_bib55) 2022; 10
Bayer (10.1016/j.apsb.2025.02.036_bib18) 2013; 1277
Song (10.1016/j.apsb.2025.02.036_bib42) 2021; 8
Lewis (10.1016/j.apsb.2025.02.036_bib4) 2013; 12
Tsai (10.1016/j.apsb.2025.02.036_bib56) 2016; 7
Long (10.1016/j.apsb.2025.02.036_bib27) 2016; 18
Lin (10.1016/j.apsb.2025.02.036_bib24) 2021; 11
Ritzau (10.1016/j.apsb.2025.02.036_bib33) 1997; 50
Du (10.1016/j.apsb.2025.02.036_bib37) 2017; 114
He (10.1016/j.apsb.2025.02.036_bib3) 2019; 4
Chen (10.1016/j.apsb.2025.02.036_bib59) 2021; 7
Wang (10.1016/j.apsb.2025.02.036_bib17) 2022; 13
Rinehart (10.1016/j.apsb.2025.02.036_bib30) 1981; 103
Song (10.1016/j.apsb.2025.02.036_bib60) 2024; 96
Murray (10.1016/j.apsb.2025.02.036_bib1) 2022; 399
References_xml – volume: 6
  start-page: 493
  year: 1999
  end-page: 505
  ident: bib25
  article-title: The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases
  publication-title: Chem Biol
– volume: 103
  start-page: 6517
  year: 1981
  end-page: 6520
  ident: bib30
  article-title: Structures of eleven zervamicin and two emerimicin peptide antibiotics studied by fast atom bombardment mass spectrometry
  publication-title: J Am Chem Soc
– volume: 61
  year: 2022
  ident: bib14
  article-title: Aquimarins, peptide antibiotics with amino-modified
  publication-title: Angew Chem Int Edit
– volume: 399
  start-page: 629
  year: 2022
  end-page: 655
  ident: bib1
  article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis
  publication-title: Lancet
– volume: 22
  start-page: 7452
  year: 2016
  end-page: 7462
  ident: bib13
  article-title: Engyodontochones, antibiotic polyketides from the marine fungus
  publication-title: Chem-eur J
– volume: 601
  start-page: 606
  year: 2022
  end-page: 611
  ident: bib20
  article-title: A naturally inspired antibiotic to target multidrug-resistant pathogens
  publication-title: Nature
– volume: 475
  year: 2023
  ident: bib58
  article-title: Multifunctional MMP9-responsive silicasomes-GelMA hydrogels with bacteria-targeting capability and tissue restoration function for chronic wound infection
  publication-title: Chem Eng J
– volume: 8
  start-page: 1674
  year: 2022
  end-page: 1686
  ident: bib51
  article-title: Establishing the structure-activity relationship between phosphatidylglycerol and daptomycin
  publication-title: ACS Infect Dis
– volume: 7
  start-page: 214
  year: 2016
  end-page: 229
  ident: bib56
  article-title: infection models for the study of bacterial diseases and for antimicrobial drug testing
  publication-title: Virulence
– volume: 12
  start-page: 13273
  year: 2021
  end-page: 13282
  ident: bib47
  article-title: The phospholipid membrane compositions of bacterial cells, cancer cell lines and biological samples from cancer patients
  publication-title: Chem Sci
– volume: 54
  start-page: 1866
  year: 2021
  end-page: 1877
  ident: bib15
  article-title: Leveraging marine natural products as a platform to tackle bacterial resistance and persistence
  publication-title: Acc Chem Res
– volume: 51
  start-page: W46
  year: 2023
  end-page: W50
  ident: bib28
  article-title: antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation
  publication-title: Nucleic Acids Res
– volume: 13
  start-page: e842
  year: 2022
  ident: bib17
  article-title: Lapcin, a potent dual topoisomerase I/II inhibitor discovered by soil metagenome guided total chemical synthesis
  publication-title: Nat Commun
– volume: 181
  start-page: 29
  year: 2020
  end-page: 45
  ident: bib5
  article-title: The science of antibiotic discovery
  publication-title: Cell
– volume: 36
  start-page: 573
  year: 2019
  end-page: 592
  ident: bib16
  article-title: Nonribosomal antibacterial peptides that target multidrug-resistant bacteria
  publication-title: Nat Prod Rep
– volume: 8
  start-page: 135
  year: 2005
  end-page: 142
  ident: bib44
  article-title: Role of membrane lipids in bacterial division-site selection
  publication-title: Curr Opin Microbiol
– volume: 29
  start-page: 565
  year: 2001
  end-page: 570
  ident: bib22
  article-title: Peptaibols: models for ion channels
  publication-title: Biochem Soc Trans
– volume: 11
  start-page: 2609
  year: 2021
  end-page: 2644
  ident: bib24
  article-title: Membrane-disruptive peptides/peptidomimetics-based therapeutics: promising systems to combat bacteria and cancer in the drug-resistant era
  publication-title: Acta Pharm Sin B
– volume: 9
  start-page: e458
  year: 2018
  ident: bib41
  article-title: Overcoming
  publication-title: Nat Commun
– volume: 50
  start-page: 105
  year: 1997
  end-page: 110
  ident: bib35
  article-title: Clonostachin, a novel peptaibol that inhibits platelet aggregation
  publication-title: J Antibiot
– volume: 114
  start-page: E8957
  year: 2017
  end-page: E8966
  ident: bib37
  article-title: Unique amalgamation of primary and secondary structural elements transform peptaibols into potent bioactive cell-penetrating peptides
  publication-title: Proc Natl Acad Sci USA
– volume: 296
  start-page: 263
  year: 1984
  end-page: 275
  ident: bib29
  article-title: Isolation and structural characterization of polypeptide antibiotics of the peptaibol class by high-performance liquid chromatography with field desorption and fast atom bombardment mass spectrometry
  publication-title: J Chromatogr A
– volume: 10
  year: 2022
  ident: bib55
  article-title: LcCCL28-25, derived from piscine chemokine, exhibits antimicrobial activity against Gram-negative and Gram-positive bacteria
  publication-title: Microbiol Spect
– volume: 238
  start-page: 8
  year: 2018
  end-page: 15
  ident: bib48
  article-title: Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides
  publication-title: Biophys Chem
– volume: 18
  start-page: 4678
  year: 2016
  end-page: 4681
  ident: bib27
  article-title: Diasteltoxins A–C, asteltoxin-based dimers from a mutant of the sponge-associated
  publication-title: Org Lett
– volume: 4
  start-page: 1450
  year: 2019
  end-page: 1456
  ident: bib3
  article-title: Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans
  publication-title: Nat Microbiol
– volume: 38
  start-page: 8398
  year: 2022
  end-page: 8406
  ident: bib39
  article-title: Effect of lipid composition on the inhibition mechanism of amiloride on alamethicin ion channels in supported phospholipid bilayers
  publication-title: Langmuir
– volume: 186
  start-page: 4059
  year: 2023
  end-page: 4073
  ident: bib19
  article-title: An antibiotic from an uncultured bacterium binds to an immutable target
  publication-title: Cell
– volume: 20
  start-page: 1176
  year: 2006
  end-page: 1180
  ident: bib31
  article-title: New short peptaibols from a marine
  publication-title: Rapid Commun Mass Sp
– volume: 11
  year: 2020
  ident: bib40
  article-title: Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance
  publication-title: mBio
– volume: 78
  start-page: 263
  year: 2022
  end-page: 271
  ident: bib43
  article-title: Synergy of outer membrane disruptor SLAP-S25 with hydrophobic antibiotics against Gram-negative pathogens
  publication-title: J Antimicrob Chemoth
– start-page: 585
  year: 1981
  end-page: 587
  ident: bib36
  article-title: New peptide antibiotics, trichopolyns I and II, from
  publication-title: J Chem Soc , Chem Commun
– volume: 19
  start-page: e237
  year: 2019
  ident: bib6
  article-title: Potential of marine natural products against drug-resistant bacterial infections
  publication-title: Lancet Infect Dis
– volume: 364
  year: 2019
  ident: bib9
  article-title: A microbial factory for defensive kahalalides in a tripartite marine symbiosis
  publication-title: Science
– volume: 578
  start-page: 582
  year: 2020
  end-page: 587
  ident: bib21
  article-title: Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling
  publication-title: Nature
– volume: 96
  start-page: 101307
  year: 2024
  ident: bib60
  article-title: Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery
  publication-title: Prog Lipid Res
– volume: 184
  start-page: 1
  year: 2001
  end-page: 12
  ident: bib23
  article-title: Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues
  publication-title: J Membr Biol
– volume: 74
  start-page: 165
  year: 1996
  end-page: 172
  ident: bib34
  article-title: Peptaibol metabolites of
  publication-title: Can J Chem
– volume: 8
  year: 2021
  ident: bib42
  article-title: Plant natural flavonoids against multidrug resistant pathogens
  publication-title: Adv Sci
– volume: 98
  start-page: 36
  year: 2012
  end-page: 49
  ident: bib57
  article-title: Isovaline in naturally occurring peptides: a nondestructive methodology for configurational assignment
  publication-title: Pept Sci
– volume: 130
  start-page: 797
  year: 2007
  end-page: 810
  ident: bib54
  article-title: A common mechanism of cellular death induced by bactericidal antibiotics
  publication-title: Cell
– volume: 11
  year: 2020
  ident: bib50
  article-title: Ca
  publication-title: Nat Commun
– volume: 180
  start-page: 688
  year: 2020
  end-page: 702
  ident: bib53
  article-title: A deep learning approach to antibiotic discovery
  publication-title: Cell
– volume: 5
  start-page: 1040
  year: 2020
  end-page: 1050
  ident: bib46
  article-title: A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens
  publication-title: Nat Microbiol
– volume: 120
  year: 2023
  ident: bib52
  article-title: Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS
  publication-title: Proc Natl Acad Sci USA
– volume: 17
  start-page: 1220
  year: 2015
  end-page: 1223
  ident: bib26
  article-title: Microbacterins A and B, new peptaibols from the deep sea actinomycete
  publication-title: Org Lett
– volume: 14
  start-page: 304
  year: 2024
  end-page: 318
  ident: bib8
  article-title: Identification of a natural PLA2 inhibitor from the marine fungus
  publication-title: Acta Pharm Sin B
– volume: 12
  start-page: 2358
  year: 2022
  end-page: 2373
  ident: bib7
  article-title: Equisetin is an anti-obesity candidate through targeting 11
  publication-title: Acta Pharm Sin B
– volume: 17
  start-page: e241
  year: 2019
  ident: bib12
  article-title: Marine macrolides with antibacterial and/or antifungal activity
  publication-title: Mar Drugs
– volume: 287
  start-page: 38835
  year: 2012
  end-page: 38844
  ident: bib45
  article-title: MinD and MinE interact with anionic phospholipids and regulate division plane formation in
  publication-title: J Biol Chem
– volume: 16
  start-page: 161
  year: 2016
  end-page: 168
  ident: bib2
  article-title: Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study
  publication-title: Lancet Infect Dis
– volume: 50
  start-page: 722
  year: 1997
  end-page: 728
  ident: bib33
  article-title: Ampullosporin, a new peptaibol-type antibiotic from
  publication-title: J Antibiot
– volume: 7
  start-page: 884
  year: 2021
  end-page: 893
  ident: bib59
  article-title: A marine antibiotic kills multidrug-resistant bacteria without detectable high-level resistance
  publication-title: ACS Infect Dis
– volume: 12
  start-page: 371
  year: 2013
  end-page: 387
  ident: bib4
  article-title: Platforms for antibiotic discovery
  publication-title: Nat Rev Drug Discov
– volume: 9
  start-page: 340
  year: 2020
  ident: bib11
  article-title: Alkaloids from marine fungi: promising antimicrobials
  publication-title: Antibiotics
– volume: 8
  start-page: e391
  year: 2017
  ident: bib10
  article-title: Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents
  publication-title: Nat Commun
– volume: 10
  start-page: 744
  year: 2013
  end-page: 771
  ident: bib38
  article-title: Recent results in alamethicin research
  publication-title: Chem Biodivers
– volume: 1277
  start-page: 139
  year: 2013
  end-page: 158
  ident: bib18
  article-title: Mechanisms of daptomycin resistance in
  publication-title: Ann NY Acad Sci
– volume: 114
  start-page: 2170
  year: 1992
  end-page: 2174
  ident: bib32
  article-title: Trichogin A IV, an 11-residue lipopeptaibol from
  publication-title: J Am Chem Soc
– volume: 12
  year: 2021
  ident: bib49
  article-title: Dodecapeptide cathelicidins of cetartiodactyla: structure, mechanism of antimicrobial action, and synergistic interaction with other cathelicidins
  publication-title: Front Microbiol
– volume: 120
  year: 2023
  ident: 10.1016/j.apsb.2025.02.036_bib52
  article-title: Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2217254120
– volume: 7
  start-page: 214
  year: 2016
  ident: 10.1016/j.apsb.2025.02.036_bib56
  article-title: Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing
  publication-title: Virulence
  doi: 10.1080/21505594.2015.1135289
– volume: 61
  year: 2022
  ident: 10.1016/j.apsb.2025.02.036_bib14
  article-title: Aquimarins, peptide antibiotics with amino-modified c-termini from a sponge-derived Aquimarina sp. bacterium
  publication-title: Angew Chem Int Edit
  doi: 10.1002/anie.202115802
– volume: 184
  start-page: 1
  year: 2001
  ident: 10.1016/j.apsb.2025.02.036_bib23
  article-title: Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues
  publication-title: J Membr Biol
  doi: 10.1007/s00232-001-0077-2
– volume: 17
  start-page: 1220
  year: 2015
  ident: 10.1016/j.apsb.2025.02.036_bib26
  article-title: Microbacterins A and B, new peptaibols from the deep sea actinomycete Microbacterium sediminis sp. nov. YLB-01(T)
  publication-title: Org Lett
  doi: 10.1021/acs.orglett.5b00172
– volume: 7
  start-page: 884
  year: 2021
  ident: 10.1016/j.apsb.2025.02.036_bib59
  article-title: A marine antibiotic kills multidrug-resistant bacteria without detectable high-level resistance
  publication-title: ACS Infect Dis
  doi: 10.1021/acsinfecdis.0c00913
– volume: 296
  start-page: 263
  year: 1984
  ident: 10.1016/j.apsb.2025.02.036_bib29
  article-title: Isolation and structural characterization of polypeptide antibiotics of the peptaibol class by high-performance liquid chromatography with field desorption and fast atom bombardment mass spectrometry
  publication-title: J Chromatogr A
  doi: 10.1016/S0021-9673(01)96420-9
– volume: 12
  start-page: 13273
  year: 2021
  ident: 10.1016/j.apsb.2025.02.036_bib47
  article-title: The phospholipid membrane compositions of bacterial cells, cancer cell lines and biological samples from cancer patients
  publication-title: Chem Sci
  doi: 10.1039/D1SC03597E
– volume: 16
  start-page: 161
  year: 2016
  ident: 10.1016/j.apsb.2025.02.036_bib2
  article-title: Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(15)00424-7
– volume: 1277
  start-page: 139
  year: 2013
  ident: 10.1016/j.apsb.2025.02.036_bib18
  article-title: Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.2012.06819.x
– volume: 74
  start-page: 165
  year: 1996
  ident: 10.1016/j.apsb.2025.02.036_bib34
  article-title: Peptaibol metabolites of Tolypocladium geodes
  publication-title: Can J Chem
  doi: 10.1139/v96-020
– volume: 9
  start-page: e458
  year: 2018
  ident: 10.1016/j.apsb.2025.02.036_bib41
  article-title: Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-02875-z
– volume: 287
  start-page: 38835
  year: 2012
  ident: 10.1016/j.apsb.2025.02.036_bib45
  article-title: MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.407817
– volume: 8
  start-page: 1674
  year: 2022
  ident: 10.1016/j.apsb.2025.02.036_bib51
  article-title: Establishing the structure-activity relationship between phosphatidylglycerol and daptomycin
  publication-title: ACS Infect Dis
  doi: 10.1021/acsinfecdis.2c00262
– volume: 22
  start-page: 7452
  year: 2016
  ident: 10.1016/j.apsb.2025.02.036_bib13
  article-title: Engyodontochones, antibiotic polyketides from the marine fungus Engyodontium album strain LF069
  publication-title: Chem-eur J
  doi: 10.1002/chem.201600430
– volume: 50
  start-page: 722
  year: 1997
  ident: 10.1016/j.apsb.2025.02.036_bib33
  article-title: Ampullosporin, a new peptaibol-type antibiotic from Sepedonium ampullosporum HKI-0053 with neuroleptic activity in mice
  publication-title: J Antibiot
  doi: 10.7164/antibiotics.50.722
– volume: 364
  year: 2019
  ident: 10.1016/j.apsb.2025.02.036_bib9
  article-title: A microbial factory for defensive kahalalides in a tripartite marine symbiosis
  publication-title: Science
  doi: 10.1126/science.aaw6732
– volume: 180
  start-page: 688
  year: 2020
  ident: 10.1016/j.apsb.2025.02.036_bib53
  article-title: A deep learning approach to antibiotic discovery
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.021
– volume: 19
  start-page: e237
  year: 2019
  ident: 10.1016/j.apsb.2025.02.036_bib6
  article-title: Potential of marine natural products against drug-resistant bacterial infections
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(18)30711-4
– volume: 51
  start-page: W46
  year: 2023
  ident: 10.1016/j.apsb.2025.02.036_bib28
  article-title: antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkad344
– volume: 6
  start-page: 493
  year: 1999
  ident: 10.1016/j.apsb.2025.02.036_bib25
  article-title: The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases
  publication-title: Chem Biol
  doi: 10.1016/S1074-5521(99)80082-9
– volume: 12
  start-page: 2358
  year: 2022
  ident: 10.1016/j.apsb.2025.02.036_bib7
  article-title: Equisetin is an anti-obesity candidate through targeting 11β-HSD1
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2022.01.006
– volume: 12
  year: 2021
  ident: 10.1016/j.apsb.2025.02.036_bib49
  article-title: Dodecapeptide cathelicidins of cetartiodactyla: structure, mechanism of antimicrobial action, and synergistic interaction with other cathelicidins
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.725526
– volume: 11
  year: 2020
  ident: 10.1016/j.apsb.2025.02.036_bib50
  article-title: Ca2+-daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15257-1
– volume: 98
  start-page: 36
  year: 2012
  ident: 10.1016/j.apsb.2025.02.036_bib57
  article-title: Isovaline in naturally occurring peptides: a nondestructive methodology for configurational assignment
  publication-title: Pept Sci
  doi: 10.1002/bip.21679
– volume: 8
  start-page: e391
  year: 2017
  ident: 10.1016/j.apsb.2025.02.036_bib10
  article-title: Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00419-5
– volume: 8
  year: 2021
  ident: 10.1016/j.apsb.2025.02.036_bib42
  article-title: Plant natural flavonoids against multidrug resistant pathogens
  publication-title: Adv Sci
  doi: 10.1002/advs.202100749
– volume: 20
  start-page: 1176
  year: 2006
  ident: 10.1016/j.apsb.2025.02.036_bib31
  article-title: New short peptaibols from a marine Trichoderma strain
  publication-title: Rapid Commun Mass Sp
  doi: 10.1002/rcm.2430
– volume: 114
  start-page: E8957
  year: 2017
  ident: 10.1016/j.apsb.2025.02.036_bib37
  article-title: Unique amalgamation of primary and secondary structural elements transform peptaibols into potent bioactive cell-penetrating peptides
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1707565114
– volume: 130
  start-page: 797
  year: 2007
  ident: 10.1016/j.apsb.2025.02.036_bib54
  article-title: A common mechanism of cellular death induced by bactericidal antibiotics
  publication-title: Cell
  doi: 10.1016/j.cell.2007.06.049
– volume: 10
  start-page: 744
  year: 2013
  ident: 10.1016/j.apsb.2025.02.036_bib38
  article-title: Recent results in alamethicin research
  publication-title: Chem Biodivers
  doi: 10.1002/cbdv.201200390
– volume: 13
  start-page: e842
  year: 2022
  ident: 10.1016/j.apsb.2025.02.036_bib17
  article-title: Lapcin, a potent dual topoisomerase I/II inhibitor discovered by soil metagenome guided total chemical synthesis
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28292-x
– volume: 181
  start-page: 29
  year: 2020
  ident: 10.1016/j.apsb.2025.02.036_bib5
  article-title: The science of antibiotic discovery
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.056
– volume: 38
  start-page: 8398
  year: 2022
  ident: 10.1016/j.apsb.2025.02.036_bib39
  article-title: Effect of lipid composition on the inhibition mechanism of amiloride on alamethicin ion channels in supported phospholipid bilayers
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.2c00953
– volume: 18
  start-page: 4678
  year: 2016
  ident: 10.1016/j.apsb.2025.02.036_bib27
  article-title: Diasteltoxins A–C, asteltoxin-based dimers from a mutant of the sponge-associated Emericella variecolor Fungus
  publication-title: Org Lett
  doi: 10.1021/acs.orglett.6b02313
– volume: 29
  start-page: 565
  year: 2001
  ident: 10.1016/j.apsb.2025.02.036_bib22
  article-title: Peptaibols: models for ion channels
  publication-title: Biochem Soc Trans
  doi: 10.1042/bst0290565
– volume: 114
  start-page: 2170
  year: 1992
  ident: 10.1016/j.apsb.2025.02.036_bib32
  article-title: Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00032a035
– volume: 8
  start-page: 135
  year: 2005
  ident: 10.1016/j.apsb.2025.02.036_bib44
  article-title: Role of membrane lipids in bacterial division-site selection
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2005.02.012
– volume: 14
  start-page: 304
  year: 2024
  ident: 10.1016/j.apsb.2025.02.036_bib8
  article-title: Identification of a natural PLA2 inhibitor from the marine fungus Aspergillus sp. c1 for MAFLD treatment that suppressed lipotoxicity by inhibiting the IRE-1α/XBP-1s axis and JNK signaling
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2023.08.032
– volume: 601
  start-page: 606
  year: 2022
  ident: 10.1016/j.apsb.2025.02.036_bib20
  article-title: A naturally inspired antibiotic to target multidrug-resistant pathogens
  publication-title: Nature
  doi: 10.1038/s41586-021-04264-x
– volume: 78
  start-page: 263
  year: 2022
  ident: 10.1016/j.apsb.2025.02.036_bib43
  article-title: Synergy of outer membrane disruptor SLAP-S25 with hydrophobic antibiotics against Gram-negative pathogens
  publication-title: J Antimicrob Chemoth
  doi: 10.1093/jac/dkac387
– volume: 399
  start-page: 629
  year: 2022
  ident: 10.1016/j.apsb.2025.02.036_bib1
  article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)02724-0
– volume: 4
  start-page: 1450
  year: 2019
  ident: 10.1016/j.apsb.2025.02.036_bib3
  article-title: Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-019-0445-2
– volume: 54
  start-page: 1866
  year: 2021
  ident: 10.1016/j.apsb.2025.02.036_bib15
  article-title: Leveraging marine natural products as a platform to tackle bacterial resistance and persistence
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.1c00007
– volume: 9
  start-page: 340
  year: 2020
  ident: 10.1016/j.apsb.2025.02.036_bib11
  article-title: Alkaloids from marine fungi: promising antimicrobials
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9060340
– volume: 96
  start-page: 101307
  year: 2024
  ident: 10.1016/j.apsb.2025.02.036_bib60
  article-title: Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery
  publication-title: Prog Lipid Res
  doi: 10.1016/j.plipres.2024.101307
– volume: 475
  year: 2023
  ident: 10.1016/j.apsb.2025.02.036_bib58
  article-title: Multifunctional MMP9-responsive silicasomes-GelMA hydrogels with bacteria-targeting capability and tissue restoration function for chronic wound infection
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.146246
– volume: 50
  start-page: 105
  year: 1997
  ident: 10.1016/j.apsb.2025.02.036_bib35
  article-title: Clonostachin, a novel peptaibol that inhibits platelet aggregation
  publication-title: J Antibiot
  doi: 10.7164/antibiotics.50.105
– volume: 578
  start-page: 582
  year: 2020
  ident: 10.1016/j.apsb.2025.02.036_bib21
  article-title: Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling
  publication-title: Nature
  doi: 10.1038/s41586-020-1990-9
– volume: 103
  start-page: 6517
  year: 1981
  ident: 10.1016/j.apsb.2025.02.036_bib30
  article-title: Structures of eleven zervamicin and two emerimicin peptide antibiotics studied by fast atom bombardment mass spectrometry
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00411a052
– volume: 11
  year: 2020
  ident: 10.1016/j.apsb.2025.02.036_bib40
  article-title: Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance
  publication-title: mBio
  doi: 10.1128/mBio.01615-20
– volume: 17
  start-page: e241
  year: 2019
  ident: 10.1016/j.apsb.2025.02.036_bib12
  article-title: Marine macrolides with antibacterial and/or antifungal activity
  publication-title: Mar Drugs
  doi: 10.3390/md17040241
– volume: 186
  start-page: 4059
  year: 2023
  ident: 10.1016/j.apsb.2025.02.036_bib19
  article-title: An antibiotic from an uncultured bacterium binds to an immutable target
  publication-title: Cell
  doi: 10.1016/j.cell.2023.07.038
– volume: 36
  start-page: 573
  year: 2019
  ident: 10.1016/j.apsb.2025.02.036_bib16
  article-title: Nonribosomal antibacterial peptides that target multidrug-resistant bacteria
  publication-title: Nat Prod Rep
  doi: 10.1039/C8NP00031J
– volume: 10
  year: 2022
  ident: 10.1016/j.apsb.2025.02.036_bib55
  article-title: LcCCL28-25, derived from piscine chemokine, exhibits antimicrobial activity against Gram-negative and Gram-positive bacteria in vitro and in vivo
  publication-title: Microbiol Spect
  doi: 10.1128/spectrum.02515-21
– volume: 12
  start-page: 371
  year: 2013
  ident: 10.1016/j.apsb.2025.02.036_bib4
  article-title: Platforms for antibiotic discovery
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3975
– start-page: 585
  year: 1981
  ident: 10.1016/j.apsb.2025.02.036_bib36
  article-title: New peptide antibiotics, trichopolyns I and II, from Trichoderma polysporum
  publication-title: J Chem Soc , Chem Commun
  doi: 10.1039/c39810000585
– volume: 5
  start-page: 1040
  year: 2020
  ident: 10.1016/j.apsb.2025.02.036_bib46
  article-title: A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-020-0723-z
– volume: 238
  start-page: 8
  year: 2018
  ident: 10.1016/j.apsb.2025.02.036_bib48
  article-title: Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides
  publication-title: Biophys Chem
  doi: 10.1016/j.bpc.2018.04.001
– volume: 11
  start-page: 2609
  year: 2021
  ident: 10.1016/j.apsb.2025.02.036_bib24
  article-title: Membrane-disruptive peptides/peptidomimetics-based therapeutics: promising systems to combat bacteria and cancer in the drug-resistant era
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2021.07.014
SSID ssj0000602275
Score 2.326427
Snippet Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2764
SubjectTerms Antibiotic
Bactericidal activity
Marine fungus
Natural product
NRPS
Original
Peptaibol
Phosphatidylglycerol
Phospholipid
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NT9wwEIatihOXqlDaho_KSBWXEuF1Esc5AipClbbiABI3y45tEQTZiCxI---ZsbNfRSqXHvaSeDexZ-J5Jzt-TMgPxrXjVS5Sx5hGqDZLdaU15DxMZ_ClnGtc4Dz-Iy5v8t-3xe3KVl9YExbxwHHgTnA3bAmymdUh9HNpMp2Bqpe-ctaNLM6-EPNWkqk4ByMaD-sXOUdOH-iMYcVMLO7SXW8gOeRFAHYGPvMyKgV4_1pweis-_66hXAlKF5_Ix0FN0tPYiy3ywbXb5Ogq4qhnx_R6ubqqP6ZH9GoJqp59Js1Y49q_1IIXvjhLQWHTznVT3ZjJQ0_xFS2FgW9MJDrDhXAVxEtgsFIzo7GKHGIfXbZ4dI-Qf7eOdneTHj4PTdfYfofcXPy6Pr9Mh60X0jovi2kKsik3TkhTg-RjguvAnvP41gmOecZdZWtoZL2xtffMSGktnK-9kwIkcPaFbLST1n0jVFSSl2CFkhWQ6vlagiYVXnskD45kJRLycz70qouEDTUvPbtXaCiFhlKMKzBUQs7QOouWSMcOB8Bn1OAz6j2fSUgxt60ahEYUEPBTzT8vfjh3BAVPIf61AgM6ee5VxhE6hHD-hHyNjrG4xRwmyVIUZULkmsus9WH9TNvcBdL3CDnyMG67_6PXe2QT-xKrNffJxvTp2R2Aopqa7-HheQXOBh2L
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp15K33XTFhVKLo1ZrWzL8rEJDaGQEmgCexOSJTUuiW3iTWD_fWcke7duoYcefLAelqwZS9_IM58I-ci4drzKReoY00iqzVJdaQ02D9MZVMq5xgDn82_i7Cr_uipWe-RkioVBt8px7o9zepitx5TFOJqLvmkW3znYLhkCiCKQxmCgeZbLEMS3Ot7uszCBJHnoyYjlU6wwxs5ENy_dDwbMRF4E6s7A1LxbnwKN_2yZ-huG_ulN-dvydPqEPB5xJf0cu_6U7Ln2GTm8iMTUmyN6uYuzGo7oIb3YUVZvnpPmXGMUYGpBHx-cpYC1ae_6tW5MdzNQ3KylIILGRG5naAjjIR4CGys1Gxr9yWEVpLsSt-4WLPHW0f66G-C6afrGDi_I1emXy5OzdDyEIa3zslinAKBy44Q0NYA_JrgOLHQe958gzTPuKltDIeuNrb1nRkprIb_2TgoAw9lLst92rXtNqKgkL0EKJSvA6PO1BHQqvPbIQbiUlUjIp2noVR-5NtTkhPZToaAUCkoxrkBQCTlG6WxLIk92SOjufqhRURSepS7B6GJ1AI5cmkxnYBNKXznrljYhxSRbNVM7eFTzz8Y_TIqg4HvEnywwoN39oDKO9ENI05-QV1Extl3MYbosRVEmRM5UZvYO85y2uQ6c30tklIdxe_OfHT4gj_Auumq-Jfvru3v3DuDU2rwP38svDcMfLw
  priority: 102
  providerName: Elsevier
Title Marine-derived new peptaibols with antibacterial activities by targeting bacterial membrane phospholipids
URI https://dx.doi.org/10.1016/j.apsb.2025.02.036
https://www.ncbi.nlm.nih.gov/pubmed/40487657
https://www.proquest.com/docview/3216918378
https://pubmed.ncbi.nlm.nih.gov/PMC12145052
https://doaj.org/article/187981740c3242328b3a34958f9ede1d
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBUF7hURkJ9UKDvE7iOAeEaNWqgBYVqSvtzbJjmwZtk7DZVuy_ZyaPbgMV4pAcEidOPOPMN87MN4S8YVw7nsUidIxpJNVmoc60Bp-H6QguirnGBOfpV3Eyiz_Pk_kWGcod9QPY3OraYT2p2XLx7tfP9QeY8O83sVq6bgz4ejxp-TcjcYfcBcuUYkWDaQ_3uy8zEuZhVCPnyN4H6KPPo7n9NiNb1VL6j0zW35D0z8jKG6bq-AG532NM-rFTiodky5U7ZO-0I6le79OzTc5Vs0_36OmGvnr9iBRTjRmBoQXdvHKWAu6mtatXujDVoqG4cEtBHIXpeJ6hI8yNuGqZWalZ0y62HCwi3bS4cBfglZeO1udVA9uiqAvbPCaz46Ozw5OwL8gQ5nGarEIAU7FxQpocgCATXLeMdB7XouCYZ9xlNodG1hube8-MlNbC-dw7KQAYR0_IdlmV7hmhIpM8BSmkLAEH0OcSkKrw2iMf4URmIiBvh6FXdce7oYaAtB8KBaVQUIpxBYIKyAFK57olcma3B6rld9VPQYV11SU4YCxvQSSXJtIR-IfSZ866iQ1IMshW9fCjgxVwq-Kfnb8eFEHB3MQfLjCg1WWjIo5UREjZH5CnnWJcP2IMn85UJGlA5EhlRu8wPlMW5y3_9wTZ5WHcnv9Hxy_IPXzULkTzJdleLS_dK4BRK7PbLj_A_tP8APZfvsnddrb8BsT6H0Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGOMAFjc-F8WEk2IVFdZ3EcQ4cGDC1bJ0m0Um9GSd2WNCWREs31L-Lf5D3nKSlIHFA2qEX203c956ff89972dCXjOuLU9C4VvGNJJqM18nWkPMw3QAXwq5xgLnybEYnYafZ9Fsg_zsa2EwrbLz_a1Pd966axl00hzURTH4wiF2CRBARI40ps-sPLSLHxC3Ne_GH0HJbzg_-DT9MPK7qwX8LIyjuQ-wIEytkGkGkIYJrh23Wo6nKtCWM24Tk8Egk6cmy3OWSmkM9Ge5lQIgXgDPvUVuA_qI0RuMZ_vLgx0mkJUPUydxgj7OsCvWafPKdN2kEJfyyHGFOmro1Ybo7g1Y2xf_xr1_pm_-th8ebJF7HZCl71tZ3ScbtnxAdk9aJuzFHp2uCruaPbpLT1Yc2YuHpJhoLDv0DSyAa2sogHta23qui7Q6byieDlPQeZG2ZNLwIizAuHb0rzRd0DaBHbZduhpxYS8g9C8trc-qBj7nRV2Y5hE5vRHVPCabZVXabUJFInkMWohZBFFmnkmAwyLXOZIeDmUiPPK2F72qW3IP1We9fVeoKIWKUowrUJRH9lE7y5FIzO0aqstvqrNMhZe3S4jyWOaQKpdpoAMIQmWeWGOHxiNRr1u1ZufwqOKfL3_VG4ICB4D_6oBAq6tGBRz5jvBeAI88aQ1jOcUQ_HMsotgjcs1k1n7Dek9ZnDmS8SFS2IPcnv7nhF-SO6Pp5EgdjY8Pd8hd7GnzRJ-RzfnllX0OWG6evnBrh5KvN71YfwGo_11b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marine-derived+new+peptaibols+with+antibacterial+activities+by+targeting+bacterial+membrane+phospholipids&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Chen%2C+Shang&rft.au=Liu%2C+Dong&rft.au=Wang%2C+Liyang&rft.au=Fan%2C+Aili&rft.date=2025-05-01&rft.issn=2211-3835&rft.volume=15&rft.issue=5&rft.spage=2764&rft_id=info:doi/10.1016%2Fj.apsb.2025.02.036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon