Marine-derived new peptaibols with antibacterial activities by targeting bacterial membrane phospholipids
Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical di...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 15; no. 5; pp. 2764 - 2777 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds.
SK-Ps, a new subfamily of peptaibol isolated from a deep-sea fungus, effectively killed multidrug-resistant bacteria by targeting bacterial membrane phospholipids, leading to bacterial membrane dysfunction, abnormal division, and ultimately death. [Display omitted] |
---|---|
AbstractList | Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus
LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant
(MRSA) in both
and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds. Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds. Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds. SK-Ps, a new subfamily of peptaibol isolated from a deep-sea fungus, effectively killed multidrug-resistant bacteria by targeting bacterial membrane phospholipids, leading to bacterial membrane dysfunction, abnormal division, and ultimately death. Image 1 Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds. SK-Ps, a new subfamily of peptaibol isolated from a deep-sea fungus, effectively killed multidrug-resistant bacteria by targeting bacterial membrane phospholipids, leading to bacterial membrane dysfunction, abnormal division, and ultimately death. [Display omitted] Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds.Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential compounds to combat multidrug-resistant (MDR) bacteria. Marine fungi offer a promising avenue for mining antibiotic-like molecules with chemical diversity. To discover structurally novel and antibiotic metabolites, we screened the in-house marine fungus genome library and found a fungus Stephanonectria keithii LZD-10-1 containing a non-ribosomal peptide synthetase (NRPS) cluster with 18 modules to synthesize a new subfamily of peptaibols with effective eradication against MDR pathogens. Targeting isolation of the cultured fungus afforded six new peptaibols, which exhibit the ability to kill MDR bacteria by targeting bacterial membrane phospholipids, especially phosphatidylglycerol (PG), leading to the dysfunction of bacterial membranes. Furthermore, their efficacies against methicillin-resistant Staphylococcus aureus (MRSA) in both Galleria mellonella and mouse wound infection models were observed. This study underscores the significance of employing genome-guided approaches to identify untapped marine fungi as potential sources for novel antibiotic candidates with unique scaffolds. |
Author | Zhu, Kui Fan, Aili Chen, Shang Lin, Wenhan Xu, Ning Wang, Liyang Wu, Mengyue Liu, Dong |
Author_xml | – sequence: 1 givenname: Shang orcidid: 0000-0002-4874-2922 surname: Chen fullname: Chen, Shang organization: State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China – sequence: 2 givenname: Dong orcidid: 0000-0002-1686-9638 surname: Liu fullname: Liu, Dong organization: State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China – sequence: 3 givenname: Liyang orcidid: 0000-0002-3499-4280 surname: Wang fullname: Wang, Liyang organization: National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China – sequence: 4 givenname: Aili orcidid: 0000-0003-4738-0517 surname: Fan fullname: Fan, Aili organization: State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China – sequence: 5 givenname: Mengyue surname: Wu fullname: Wu, Mengyue organization: State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China – sequence: 6 givenname: Ning surname: Xu fullname: Xu, Ning organization: The Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China – sequence: 7 givenname: Kui orcidid: 0000-0001-8242-3952 surname: Zhu fullname: Zhu, Kui email: zhuk@cau.edu.cn organization: National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China – sequence: 8 givenname: Wenhan surname: Lin fullname: Lin, Wenhan email: whlin@bjmu.edu.cn organization: State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40487657$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksluFDEQhi0URELIC3BAfeTSjZde3BISQhFLpCAucLa8VM_UqMdubM9EeXs8mTCQC5Ysl8pf_WWV_5fkzAcPhLxmtGGU9e82jV6SaTjlXUN5Q0X_jFxwzlgtZCvOTrHozslVShtaVk85H7oX5LylrRz6brgg-E1H9FA7iLgHV3m4qxZYskYT5lTdYV5X2mc02uaC6LkqAe4xI6TK3FdZxxVk9KvqL7GFrYnaQ7WsQyp7xgVdekWeT3pOcPV4XpKfnz_9uP5a337_cnP98ba27dDlWoqxNdBLY2nb0Z5rShnlE-2HseQmymF0tkBuMs5OEzVSOlfu7QSyl8yJS3Jz1HVBb9QScavjvQoa1UMixJXSMaOdQTFZRNnQUit4ywWXRmjRjp2cRnDwoPXhqLXszBacBZ-jnp-IPr3xuFarsFeMs_L6jheFt48KMfzaQcpqi8nCPJf5hF1SgrN-ZFIMsqBv_m126vLnswrAj4CNIaUI0wlhVB1MoTbqYAp1MIWiXBVTlKL3xyIoM98jRJUsgrfgMILNZSj4v_Lf5BzBtw |
Cites_doi | 10.1073/pnas.2217254120 10.1080/21505594.2015.1135289 10.1002/anie.202115802 10.1007/s00232-001-0077-2 10.1021/acs.orglett.5b00172 10.1021/acsinfecdis.0c00913 10.1016/S0021-9673(01)96420-9 10.1039/D1SC03597E 10.1016/S1473-3099(15)00424-7 10.1111/j.1749-6632.2012.06819.x 10.1139/v96-020 10.1038/s41467-018-02875-z 10.1074/jbc.M112.407817 10.1021/acsinfecdis.2c00262 10.1002/chem.201600430 10.7164/antibiotics.50.722 10.1126/science.aaw6732 10.1016/j.cell.2020.01.021 10.1016/S1473-3099(18)30711-4 10.1093/nar/gkad344 10.1016/S1074-5521(99)80082-9 10.1016/j.apsb.2022.01.006 10.3389/fmicb.2021.725526 10.1038/s41467-020-15257-1 10.1002/bip.21679 10.1038/s41467-017-00419-5 10.1002/advs.202100749 10.1002/rcm.2430 10.1073/pnas.1707565114 10.1016/j.cell.2007.06.049 10.1002/cbdv.201200390 10.1038/s41467-022-28292-x 10.1016/j.cell.2020.02.056 10.1021/acs.langmuir.2c00953 10.1021/acs.orglett.6b02313 10.1042/bst0290565 10.1021/ja00032a035 10.1016/j.mib.2005.02.012 10.1016/j.apsb.2023.08.032 10.1038/s41586-021-04264-x 10.1093/jac/dkac387 10.1016/S0140-6736(21)02724-0 10.1038/s41564-019-0445-2 10.1021/acs.accounts.1c00007 10.3390/antibiotics9060340 10.1016/j.plipres.2024.101307 10.1016/j.cej.2023.146246 10.7164/antibiotics.50.105 10.1038/s41586-020-1990-9 10.1021/ja00411a052 10.1128/mBio.01615-20 10.3390/md17040241 10.1016/j.cell.2023.07.038 10.1039/C8NP00031J 10.1128/spectrum.02515-21 10.1038/nrd3975 10.1039/c39810000585 10.1038/s41564-020-0723-z 10.1016/j.bpc.2018.04.001 10.1016/j.apsb.2021.07.014 |
ContentType | Journal Article |
Copyright | 2025 The Authors 2025 The Authors. 2025 The Authors 2025 |
Copyright_xml | – notice: 2025 The Authors – notice: 2025 The Authors. – notice: 2025 The Authors 2025 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.apsb.2025.02.036 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2211-3843 |
EndPage | 2777 |
ExternalDocumentID | oai_doaj_org_article_187981740c3242328b3a34958f9ede1d PMC12145052 40487657 10_1016_j_apsb_2025_02_036 S2211383525001315 |
Genre | Journal Article |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 1~5 4.4 457 4G. 53G 5VR 5VS 6I. 7-5 92M 9D9 9DE AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABKZE ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFPUW AFUIB AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV CAJEE CCEZO CIEJG DIK EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB JUIAU KQ8 M41 M48 O-L O9- OK1 Q-- R-E RIG ROL RPM RT5 SES SSZ T8U U1F U1G U5E U5O XH2 ~NG AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c475t-8394be68bc045062a00102f06798bcf02e9dc839dfbdcff0b88dd2f0cfe8681d3 |
IEDL.DBID | M48 |
ISSN | 2211-3835 |
IngestDate | Wed Aug 27 01:23:16 EDT 2025 Thu Aug 21 18:25:09 EDT 2025 Fri Jul 11 17:07:40 EDT 2025 Thu Jun 12 01:53:22 EDT 2025 Tue Jul 01 04:46:51 EDT 2025 Sat Jun 14 16:52:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Antibiotic Peptaibol NRPS Natural product Phospholipid Phosphatidylglycerol Marine fungus Bactericidal activity |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-8394be68bc045062a00102f06798bcf02e9dc839dfbdcff0b88dd2f0cfe8681d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors made equal contributions to this work. |
ORCID | 0000-0002-1686-9638 0000-0003-4738-0517 0000-0002-3499-4280 0000-0001-8242-3952 0000-0002-4874-2922 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.apsb.2025.02.036 |
PMID | 40487657 |
PQID | 3216918378 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_187981740c3242328b3a34958f9ede1d pubmedcentral_primary_oai_pubmedcentral_nih_gov_12145052 proquest_miscellaneous_3216918378 pubmed_primary_40487657 crossref_primary_10_1016_j_apsb_2025_02_036 elsevier_sciencedirect_doi_10_1016_j_apsb_2025_02_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Acta pharmaceutica Sinica. B |
PublicationTitleAlternate | Acta Pharm Sin B |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wu, Wiese, Wenzel-Storjohann, Malien, Schmaljohann, Imhoff (bib13) 2016; 22 Rinehart, Gaudioso, Moore, Pandey, Cook, Barber (bib30) 1981; 103 Renner, Weibel (bib45) 2012; 287 Wang, Forelli, Hernandez, Ternei, Brady (bib17) 2022; 13 Brückner, Przybylski (bib29) 1984; 296 Murray, Ikuta, Sharara, Swetschinski, Robles Aguilar, Gray (bib1) 2022; 399 Liu, Ding, Shen, Zhu (bib16) 2019; 36 Karpiński (bib12) 2019; 17 Lewis (bib4) 2013; 12 Song, Chen, Lin, Zhu (bib60) 2024; 96 Hernandez-Villa, Manrique-Moreno, Leidy, Jemiola-Rzeminska, Ortiz, Strzalka (bib48) 2018; 238 MacNair, Brown (bib40) 2020; 11 Culp, Waglechner, Wang, Fiebig-Comyn, Hsu, Koteva (bib21) 2020; 578 MacNair, Stokes, Carfrae, Fiebig-Comyn, Coombes, Mulvey (bib41) 2018; 9 Chen, Liu, Zhang, Guo, Ding, Shen (bib59) 2021; 7 Su, Li, Hu, Wang, Zhang, Fu (bib55) 2022; 10 Blin, Shaw, Augustijn, Reitz, Biermann, Alanjary (bib28) 2023; 51 Stokes, Yang, Swanson, Jin, Cubillos-Ruiz, Donghia (bib53) 2020; 180 Rao, Su, Wu, Chai, Li, Yang (bib8) 2024; 14 Liu, Lin, Proksch, Tang, Shao, Lin (bib26) 2015; 17 Wang, Koirala, Hernandez, Zimmerman, Park, Perlin (bib20) 2022; 601 Duclohier, Wróblewski (bib23) 2001; 184 Valdes-Pena, Massaro, Lin, Pierce (bib15) 2021; 54 Song, Liu, Huang, Ding, Wang, Shen (bib46) 2020; 5 Mileykovskaya, Dowhan (bib44) 2005; 8 Willems, De Mol, De Bruycker, De Maeseneire, Soetaert (bib11) 2020; 9 Dieterich, Probst, Ueoka, Sandu, Schäfle, Molin (bib14) 2022; 61 Ritzau, Heinze, Dornberger, Berg, Fleck, Schlegel (bib33) 1997; 50 Ma, Huang, Xie, Liu, Zhao, Zhang (bib10) 2017; 8 Yang, Song, Li, Zhang, Shen, Zhu (bib43) 2022; 78 Stachelhaus, Mootz, Marahiel (bib25) 1999; 6 Su, Leitch, Lipkowski (bib39) 2022; 38 Bayer, Schneider, Sahl (bib18) 2013; 1277 Chikanishi, Hasumi, Harada, Kawasaki, Endo (bib35) 1997; 50 Kredics, Szekeres, Czifra, Vágvölgyi, Leitgeb (bib38) 2013; 10 Chen, Xing, Han, Liu, Xiang, Shen (bib58) 2023; 475 Liu, El-Hossary, Oelschlaeger, Donia, Quinn, Abdelmohsen (bib6) 2019; 19 Xu, Liu, Liu, Ren, Liu, Qi (bib7) 2022; 12 Moreira, Taylor (bib51) 2022; 8 Hilton, Manwani, Boles, White, Ozturk, Garrett (bib47) 2021; 12 Lv, Huang, Lijia, Ma, Bian, Li (bib52) 2023; 120 Tsantrizos, Pischos, Sauriol, Widden (bib34) 1996; 74 Mohamed-Benkada, Montagu, Biard, Mondeguer, Verite, Dalgalarrondo (bib31) 2006; 20 Zan, Li, Tianero, Davis, Hill, Donia (bib9) 2019; 364 Fujita, Takaishi, Okamura, Fujita, Fuji, Hiratsuka (bib36) 1981 Grein, Muller, Scherer, Liu, Ludwig, Klockner (bib50) 2020; 11 Lin, Chi, Yan, Luo, Feng, Zheng (bib24) 2021; 11 Bolosov, Panteleev, Sychev, Sukhanov, Mironov, Myshkin (bib49) 2021; 12 Shukla, Peoples, Ludwig, Maity, Derks, De Benedetti (bib19) 2023; 186 Du, Risinger, Mitchell, You, Stamps, Pan (bib37) 2017; 114 Liu, Wang, Walsh, Yi, Zhang, Spencer (bib2) 2016; 16 Auvin-Guette, Rebuffat, Prigent, Bodo (bib32) 1992; 114 Long, Cheng, Huang, Wu, Li, Cui (bib27) 2016; 18 He, Wang, Liu, Walsh, Zhang, Lv (bib3) 2019; 4 Lewis (bib5) 2020; 181 Chugh, Wallace (bib22) 2001; 29 De Zotti, Biondi, Crisma, Hjørringgaard, Berg, Brückner (bib57) 2012; 98 Kohanski, Dwyer, Hayete, Lawrence, Collins (bib54) 2007; 130 Song, Liu, Li, Liu, Hao, Ding (bib42) 2021; 8 Tsai, Loh, Proft (bib56) 2016; 7 Zan (10.1016/j.apsb.2025.02.036_bib9) 2019; 364 Su (10.1016/j.apsb.2025.02.036_bib39) 2022; 38 Shukla (10.1016/j.apsb.2025.02.036_bib19) 2023; 186 Bolosov (10.1016/j.apsb.2025.02.036_bib49) 2021; 12 Chugh (10.1016/j.apsb.2025.02.036_bib22) 2001; 29 MacNair (10.1016/j.apsb.2025.02.036_bib40) 2020; 11 Mileykovskaya (10.1016/j.apsb.2025.02.036_bib44) 2005; 8 Valdes-Pena (10.1016/j.apsb.2025.02.036_bib15) 2021; 54 Song (10.1016/j.apsb.2025.02.036_bib46) 2020; 5 Liu (10.1016/j.apsb.2025.02.036_bib2) 2016; 16 Fujita (10.1016/j.apsb.2025.02.036_bib36) 1981 Moreira (10.1016/j.apsb.2025.02.036_bib51) 2022; 8 Tsantrizos (10.1016/j.apsb.2025.02.036_bib34) 1996; 74 Culp (10.1016/j.apsb.2025.02.036_bib21) 2020; 578 Blin (10.1016/j.apsb.2025.02.036_bib28) 2023; 51 De Zotti (10.1016/j.apsb.2025.02.036_bib57) 2012; 98 Chikanishi (10.1016/j.apsb.2025.02.036_bib35) 1997; 50 Liu (10.1016/j.apsb.2025.02.036_bib26) 2015; 17 Brückner (10.1016/j.apsb.2025.02.036_bib29) 1984; 296 MacNair (10.1016/j.apsb.2025.02.036_bib41) 2018; 9 Lv (10.1016/j.apsb.2025.02.036_bib52) 2023; 120 Wu (10.1016/j.apsb.2025.02.036_bib13) 2016; 22 Liu (10.1016/j.apsb.2025.02.036_bib6) 2019; 19 Duclohier (10.1016/j.apsb.2025.02.036_bib23) 2001; 184 Rao (10.1016/j.apsb.2025.02.036_bib8) 2024; 14 Yang (10.1016/j.apsb.2025.02.036_bib43) 2022; 78 Kohanski (10.1016/j.apsb.2025.02.036_bib54) 2007; 130 Xu (10.1016/j.apsb.2025.02.036_bib7) 2022; 12 Mohamed-Benkada (10.1016/j.apsb.2025.02.036_bib31) 2006; 20 Renner (10.1016/j.apsb.2025.02.036_bib45) 2012; 287 Hilton (10.1016/j.apsb.2025.02.036_bib47) 2021; 12 Ma (10.1016/j.apsb.2025.02.036_bib10) 2017; 8 Karpiński (10.1016/j.apsb.2025.02.036_bib12) 2019; 17 Lewis (10.1016/j.apsb.2025.02.036_bib5) 2020; 181 Kredics (10.1016/j.apsb.2025.02.036_bib38) 2013; 10 Chen (10.1016/j.apsb.2025.02.036_bib58) 2023; 475 Auvin-Guette (10.1016/j.apsb.2025.02.036_bib32) 1992; 114 Stokes (10.1016/j.apsb.2025.02.036_bib53) 2020; 180 Willems (10.1016/j.apsb.2025.02.036_bib11) 2020; 9 Wang (10.1016/j.apsb.2025.02.036_bib20) 2022; 601 Liu (10.1016/j.apsb.2025.02.036_bib16) 2019; 36 Hernandez-Villa (10.1016/j.apsb.2025.02.036_bib48) 2018; 238 Grein (10.1016/j.apsb.2025.02.036_bib50) 2020; 11 Dieterich (10.1016/j.apsb.2025.02.036_bib14) 2022; 61 Stachelhaus (10.1016/j.apsb.2025.02.036_bib25) 1999; 6 Su (10.1016/j.apsb.2025.02.036_bib55) 2022; 10 Bayer (10.1016/j.apsb.2025.02.036_bib18) 2013; 1277 Song (10.1016/j.apsb.2025.02.036_bib42) 2021; 8 Lewis (10.1016/j.apsb.2025.02.036_bib4) 2013; 12 Tsai (10.1016/j.apsb.2025.02.036_bib56) 2016; 7 Long (10.1016/j.apsb.2025.02.036_bib27) 2016; 18 Lin (10.1016/j.apsb.2025.02.036_bib24) 2021; 11 Ritzau (10.1016/j.apsb.2025.02.036_bib33) 1997; 50 Du (10.1016/j.apsb.2025.02.036_bib37) 2017; 114 He (10.1016/j.apsb.2025.02.036_bib3) 2019; 4 Chen (10.1016/j.apsb.2025.02.036_bib59) 2021; 7 Wang (10.1016/j.apsb.2025.02.036_bib17) 2022; 13 Rinehart (10.1016/j.apsb.2025.02.036_bib30) 1981; 103 Song (10.1016/j.apsb.2025.02.036_bib60) 2024; 96 Murray (10.1016/j.apsb.2025.02.036_bib1) 2022; 399 |
References_xml | – volume: 6 start-page: 493 year: 1999 end-page: 505 ident: bib25 article-title: The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases publication-title: Chem Biol – volume: 103 start-page: 6517 year: 1981 end-page: 6520 ident: bib30 article-title: Structures of eleven zervamicin and two emerimicin peptide antibiotics studied by fast atom bombardment mass spectrometry publication-title: J Am Chem Soc – volume: 61 year: 2022 ident: bib14 article-title: Aquimarins, peptide antibiotics with amino-modified publication-title: Angew Chem Int Edit – volume: 399 start-page: 629 year: 2022 end-page: 655 ident: bib1 article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis publication-title: Lancet – volume: 22 start-page: 7452 year: 2016 end-page: 7462 ident: bib13 article-title: Engyodontochones, antibiotic polyketides from the marine fungus publication-title: Chem-eur J – volume: 601 start-page: 606 year: 2022 end-page: 611 ident: bib20 article-title: A naturally inspired antibiotic to target multidrug-resistant pathogens publication-title: Nature – volume: 475 year: 2023 ident: bib58 article-title: Multifunctional MMP9-responsive silicasomes-GelMA hydrogels with bacteria-targeting capability and tissue restoration function for chronic wound infection publication-title: Chem Eng J – volume: 8 start-page: 1674 year: 2022 end-page: 1686 ident: bib51 article-title: Establishing the structure-activity relationship between phosphatidylglycerol and daptomycin publication-title: ACS Infect Dis – volume: 7 start-page: 214 year: 2016 end-page: 229 ident: bib56 article-title: infection models for the study of bacterial diseases and for antimicrobial drug testing publication-title: Virulence – volume: 12 start-page: 13273 year: 2021 end-page: 13282 ident: bib47 article-title: The phospholipid membrane compositions of bacterial cells, cancer cell lines and biological samples from cancer patients publication-title: Chem Sci – volume: 54 start-page: 1866 year: 2021 end-page: 1877 ident: bib15 article-title: Leveraging marine natural products as a platform to tackle bacterial resistance and persistence publication-title: Acc Chem Res – volume: 51 start-page: W46 year: 2023 end-page: W50 ident: bib28 article-title: antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation publication-title: Nucleic Acids Res – volume: 13 start-page: e842 year: 2022 ident: bib17 article-title: Lapcin, a potent dual topoisomerase I/II inhibitor discovered by soil metagenome guided total chemical synthesis publication-title: Nat Commun – volume: 181 start-page: 29 year: 2020 end-page: 45 ident: bib5 article-title: The science of antibiotic discovery publication-title: Cell – volume: 36 start-page: 573 year: 2019 end-page: 592 ident: bib16 article-title: Nonribosomal antibacterial peptides that target multidrug-resistant bacteria publication-title: Nat Prod Rep – volume: 8 start-page: 135 year: 2005 end-page: 142 ident: bib44 article-title: Role of membrane lipids in bacterial division-site selection publication-title: Curr Opin Microbiol – volume: 29 start-page: 565 year: 2001 end-page: 570 ident: bib22 article-title: Peptaibols: models for ion channels publication-title: Biochem Soc Trans – volume: 11 start-page: 2609 year: 2021 end-page: 2644 ident: bib24 article-title: Membrane-disruptive peptides/peptidomimetics-based therapeutics: promising systems to combat bacteria and cancer in the drug-resistant era publication-title: Acta Pharm Sin B – volume: 9 start-page: e458 year: 2018 ident: bib41 article-title: Overcoming publication-title: Nat Commun – volume: 50 start-page: 105 year: 1997 end-page: 110 ident: bib35 article-title: Clonostachin, a novel peptaibol that inhibits platelet aggregation publication-title: J Antibiot – volume: 114 start-page: E8957 year: 2017 end-page: E8966 ident: bib37 article-title: Unique amalgamation of primary and secondary structural elements transform peptaibols into potent bioactive cell-penetrating peptides publication-title: Proc Natl Acad Sci USA – volume: 296 start-page: 263 year: 1984 end-page: 275 ident: bib29 article-title: Isolation and structural characterization of polypeptide antibiotics of the peptaibol class by high-performance liquid chromatography with field desorption and fast atom bombardment mass spectrometry publication-title: J Chromatogr A – volume: 10 year: 2022 ident: bib55 article-title: LcCCL28-25, derived from piscine chemokine, exhibits antimicrobial activity against Gram-negative and Gram-positive bacteria publication-title: Microbiol Spect – volume: 238 start-page: 8 year: 2018 end-page: 15 ident: bib48 article-title: Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides publication-title: Biophys Chem – volume: 18 start-page: 4678 year: 2016 end-page: 4681 ident: bib27 article-title: Diasteltoxins A–C, asteltoxin-based dimers from a mutant of the sponge-associated publication-title: Org Lett – volume: 4 start-page: 1450 year: 2019 end-page: 1456 ident: bib3 article-title: Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans publication-title: Nat Microbiol – volume: 38 start-page: 8398 year: 2022 end-page: 8406 ident: bib39 article-title: Effect of lipid composition on the inhibition mechanism of amiloride on alamethicin ion channels in supported phospholipid bilayers publication-title: Langmuir – volume: 186 start-page: 4059 year: 2023 end-page: 4073 ident: bib19 article-title: An antibiotic from an uncultured bacterium binds to an immutable target publication-title: Cell – volume: 20 start-page: 1176 year: 2006 end-page: 1180 ident: bib31 article-title: New short peptaibols from a marine publication-title: Rapid Commun Mass Sp – volume: 11 year: 2020 ident: bib40 article-title: Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance publication-title: mBio – volume: 78 start-page: 263 year: 2022 end-page: 271 ident: bib43 article-title: Synergy of outer membrane disruptor SLAP-S25 with hydrophobic antibiotics against Gram-negative pathogens publication-title: J Antimicrob Chemoth – start-page: 585 year: 1981 end-page: 587 ident: bib36 article-title: New peptide antibiotics, trichopolyns I and II, from publication-title: J Chem Soc , Chem Commun – volume: 19 start-page: e237 year: 2019 ident: bib6 article-title: Potential of marine natural products against drug-resistant bacterial infections publication-title: Lancet Infect Dis – volume: 364 year: 2019 ident: bib9 article-title: A microbial factory for defensive kahalalides in a tripartite marine symbiosis publication-title: Science – volume: 578 start-page: 582 year: 2020 end-page: 587 ident: bib21 article-title: Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling publication-title: Nature – volume: 96 start-page: 101307 year: 2024 ident: bib60 article-title: Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery publication-title: Prog Lipid Res – volume: 184 start-page: 1 year: 2001 end-page: 12 ident: bib23 article-title: Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues publication-title: J Membr Biol – volume: 74 start-page: 165 year: 1996 end-page: 172 ident: bib34 article-title: Peptaibol metabolites of publication-title: Can J Chem – volume: 8 year: 2021 ident: bib42 article-title: Plant natural flavonoids against multidrug resistant pathogens publication-title: Adv Sci – volume: 98 start-page: 36 year: 2012 end-page: 49 ident: bib57 article-title: Isovaline in naturally occurring peptides: a nondestructive methodology for configurational assignment publication-title: Pept Sci – volume: 130 start-page: 797 year: 2007 end-page: 810 ident: bib54 article-title: A common mechanism of cellular death induced by bactericidal antibiotics publication-title: Cell – volume: 11 year: 2020 ident: bib50 article-title: Ca publication-title: Nat Commun – volume: 180 start-page: 688 year: 2020 end-page: 702 ident: bib53 article-title: A deep learning approach to antibiotic discovery publication-title: Cell – volume: 5 start-page: 1040 year: 2020 end-page: 1050 ident: bib46 article-title: A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens publication-title: Nat Microbiol – volume: 120 year: 2023 ident: bib52 article-title: Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 1220 year: 2015 end-page: 1223 ident: bib26 article-title: Microbacterins A and B, new peptaibols from the deep sea actinomycete publication-title: Org Lett – volume: 14 start-page: 304 year: 2024 end-page: 318 ident: bib8 article-title: Identification of a natural PLA2 inhibitor from the marine fungus publication-title: Acta Pharm Sin B – volume: 12 start-page: 2358 year: 2022 end-page: 2373 ident: bib7 article-title: Equisetin is an anti-obesity candidate through targeting 11 publication-title: Acta Pharm Sin B – volume: 17 start-page: e241 year: 2019 ident: bib12 article-title: Marine macrolides with antibacterial and/or antifungal activity publication-title: Mar Drugs – volume: 287 start-page: 38835 year: 2012 end-page: 38844 ident: bib45 article-title: MinD and MinE interact with anionic phospholipids and regulate division plane formation in publication-title: J Biol Chem – volume: 16 start-page: 161 year: 2016 end-page: 168 ident: bib2 article-title: Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study publication-title: Lancet Infect Dis – volume: 50 start-page: 722 year: 1997 end-page: 728 ident: bib33 article-title: Ampullosporin, a new peptaibol-type antibiotic from publication-title: J Antibiot – volume: 7 start-page: 884 year: 2021 end-page: 893 ident: bib59 article-title: A marine antibiotic kills multidrug-resistant bacteria without detectable high-level resistance publication-title: ACS Infect Dis – volume: 12 start-page: 371 year: 2013 end-page: 387 ident: bib4 article-title: Platforms for antibiotic discovery publication-title: Nat Rev Drug Discov – volume: 9 start-page: 340 year: 2020 ident: bib11 article-title: Alkaloids from marine fungi: promising antimicrobials publication-title: Antibiotics – volume: 8 start-page: e391 year: 2017 ident: bib10 article-title: Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents publication-title: Nat Commun – volume: 10 start-page: 744 year: 2013 end-page: 771 ident: bib38 article-title: Recent results in alamethicin research publication-title: Chem Biodivers – volume: 1277 start-page: 139 year: 2013 end-page: 158 ident: bib18 article-title: Mechanisms of daptomycin resistance in publication-title: Ann NY Acad Sci – volume: 114 start-page: 2170 year: 1992 end-page: 2174 ident: bib32 article-title: Trichogin A IV, an 11-residue lipopeptaibol from publication-title: J Am Chem Soc – volume: 12 year: 2021 ident: bib49 article-title: Dodecapeptide cathelicidins of cetartiodactyla: structure, mechanism of antimicrobial action, and synergistic interaction with other cathelicidins publication-title: Front Microbiol – volume: 120 year: 2023 ident: 10.1016/j.apsb.2025.02.036_bib52 article-title: Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2217254120 – volume: 7 start-page: 214 year: 2016 ident: 10.1016/j.apsb.2025.02.036_bib56 article-title: Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing publication-title: Virulence doi: 10.1080/21505594.2015.1135289 – volume: 61 year: 2022 ident: 10.1016/j.apsb.2025.02.036_bib14 article-title: Aquimarins, peptide antibiotics with amino-modified c-termini from a sponge-derived Aquimarina sp. bacterium publication-title: Angew Chem Int Edit doi: 10.1002/anie.202115802 – volume: 184 start-page: 1 year: 2001 ident: 10.1016/j.apsb.2025.02.036_bib23 article-title: Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues publication-title: J Membr Biol doi: 10.1007/s00232-001-0077-2 – volume: 17 start-page: 1220 year: 2015 ident: 10.1016/j.apsb.2025.02.036_bib26 article-title: Microbacterins A and B, new peptaibols from the deep sea actinomycete Microbacterium sediminis sp. nov. YLB-01(T) publication-title: Org Lett doi: 10.1021/acs.orglett.5b00172 – volume: 7 start-page: 884 year: 2021 ident: 10.1016/j.apsb.2025.02.036_bib59 article-title: A marine antibiotic kills multidrug-resistant bacteria without detectable high-level resistance publication-title: ACS Infect Dis doi: 10.1021/acsinfecdis.0c00913 – volume: 296 start-page: 263 year: 1984 ident: 10.1016/j.apsb.2025.02.036_bib29 article-title: Isolation and structural characterization of polypeptide antibiotics of the peptaibol class by high-performance liquid chromatography with field desorption and fast atom bombardment mass spectrometry publication-title: J Chromatogr A doi: 10.1016/S0021-9673(01)96420-9 – volume: 12 start-page: 13273 year: 2021 ident: 10.1016/j.apsb.2025.02.036_bib47 article-title: The phospholipid membrane compositions of bacterial cells, cancer cell lines and biological samples from cancer patients publication-title: Chem Sci doi: 10.1039/D1SC03597E – volume: 16 start-page: 161 year: 2016 ident: 10.1016/j.apsb.2025.02.036_bib2 article-title: Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(15)00424-7 – volume: 1277 start-page: 139 year: 2013 ident: 10.1016/j.apsb.2025.02.036_bib18 article-title: Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.2012.06819.x – volume: 74 start-page: 165 year: 1996 ident: 10.1016/j.apsb.2025.02.036_bib34 article-title: Peptaibol metabolites of Tolypocladium geodes publication-title: Can J Chem doi: 10.1139/v96-020 – volume: 9 start-page: e458 year: 2018 ident: 10.1016/j.apsb.2025.02.036_bib41 article-title: Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics publication-title: Nat Commun doi: 10.1038/s41467-018-02875-z – volume: 287 start-page: 38835 year: 2012 ident: 10.1016/j.apsb.2025.02.036_bib45 article-title: MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli publication-title: J Biol Chem doi: 10.1074/jbc.M112.407817 – volume: 8 start-page: 1674 year: 2022 ident: 10.1016/j.apsb.2025.02.036_bib51 article-title: Establishing the structure-activity relationship between phosphatidylglycerol and daptomycin publication-title: ACS Infect Dis doi: 10.1021/acsinfecdis.2c00262 – volume: 22 start-page: 7452 year: 2016 ident: 10.1016/j.apsb.2025.02.036_bib13 article-title: Engyodontochones, antibiotic polyketides from the marine fungus Engyodontium album strain LF069 publication-title: Chem-eur J doi: 10.1002/chem.201600430 – volume: 50 start-page: 722 year: 1997 ident: 10.1016/j.apsb.2025.02.036_bib33 article-title: Ampullosporin, a new peptaibol-type antibiotic from Sepedonium ampullosporum HKI-0053 with neuroleptic activity in mice publication-title: J Antibiot doi: 10.7164/antibiotics.50.722 – volume: 364 year: 2019 ident: 10.1016/j.apsb.2025.02.036_bib9 article-title: A microbial factory for defensive kahalalides in a tripartite marine symbiosis publication-title: Science doi: 10.1126/science.aaw6732 – volume: 180 start-page: 688 year: 2020 ident: 10.1016/j.apsb.2025.02.036_bib53 article-title: A deep learning approach to antibiotic discovery publication-title: Cell doi: 10.1016/j.cell.2020.01.021 – volume: 19 start-page: e237 year: 2019 ident: 10.1016/j.apsb.2025.02.036_bib6 article-title: Potential of marine natural products against drug-resistant bacterial infections publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(18)30711-4 – volume: 51 start-page: W46 year: 2023 ident: 10.1016/j.apsb.2025.02.036_bib28 article-title: antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkad344 – volume: 6 start-page: 493 year: 1999 ident: 10.1016/j.apsb.2025.02.036_bib25 article-title: The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases publication-title: Chem Biol doi: 10.1016/S1074-5521(99)80082-9 – volume: 12 start-page: 2358 year: 2022 ident: 10.1016/j.apsb.2025.02.036_bib7 article-title: Equisetin is an anti-obesity candidate through targeting 11β-HSD1 publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2022.01.006 – volume: 12 year: 2021 ident: 10.1016/j.apsb.2025.02.036_bib49 article-title: Dodecapeptide cathelicidins of cetartiodactyla: structure, mechanism of antimicrobial action, and synergistic interaction with other cathelicidins publication-title: Front Microbiol doi: 10.3389/fmicb.2021.725526 – volume: 11 year: 2020 ident: 10.1016/j.apsb.2025.02.036_bib50 article-title: Ca2+-daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids publication-title: Nat Commun doi: 10.1038/s41467-020-15257-1 – volume: 98 start-page: 36 year: 2012 ident: 10.1016/j.apsb.2025.02.036_bib57 article-title: Isovaline in naturally occurring peptides: a nondestructive methodology for configurational assignment publication-title: Pept Sci doi: 10.1002/bip.21679 – volume: 8 start-page: e391 year: 2017 ident: 10.1016/j.apsb.2025.02.036_bib10 article-title: Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents publication-title: Nat Commun doi: 10.1038/s41467-017-00419-5 – volume: 8 year: 2021 ident: 10.1016/j.apsb.2025.02.036_bib42 article-title: Plant natural flavonoids against multidrug resistant pathogens publication-title: Adv Sci doi: 10.1002/advs.202100749 – volume: 20 start-page: 1176 year: 2006 ident: 10.1016/j.apsb.2025.02.036_bib31 article-title: New short peptaibols from a marine Trichoderma strain publication-title: Rapid Commun Mass Sp doi: 10.1002/rcm.2430 – volume: 114 start-page: E8957 year: 2017 ident: 10.1016/j.apsb.2025.02.036_bib37 article-title: Unique amalgamation of primary and secondary structural elements transform peptaibols into potent bioactive cell-penetrating peptides publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1707565114 – volume: 130 start-page: 797 year: 2007 ident: 10.1016/j.apsb.2025.02.036_bib54 article-title: A common mechanism of cellular death induced by bactericidal antibiotics publication-title: Cell doi: 10.1016/j.cell.2007.06.049 – volume: 10 start-page: 744 year: 2013 ident: 10.1016/j.apsb.2025.02.036_bib38 article-title: Recent results in alamethicin research publication-title: Chem Biodivers doi: 10.1002/cbdv.201200390 – volume: 13 start-page: e842 year: 2022 ident: 10.1016/j.apsb.2025.02.036_bib17 article-title: Lapcin, a potent dual topoisomerase I/II inhibitor discovered by soil metagenome guided total chemical synthesis publication-title: Nat Commun doi: 10.1038/s41467-022-28292-x – volume: 181 start-page: 29 year: 2020 ident: 10.1016/j.apsb.2025.02.036_bib5 article-title: The science of antibiotic discovery publication-title: Cell doi: 10.1016/j.cell.2020.02.056 – volume: 38 start-page: 8398 year: 2022 ident: 10.1016/j.apsb.2025.02.036_bib39 article-title: Effect of lipid composition on the inhibition mechanism of amiloride on alamethicin ion channels in supported phospholipid bilayers publication-title: Langmuir doi: 10.1021/acs.langmuir.2c00953 – volume: 18 start-page: 4678 year: 2016 ident: 10.1016/j.apsb.2025.02.036_bib27 article-title: Diasteltoxins A–C, asteltoxin-based dimers from a mutant of the sponge-associated Emericella variecolor Fungus publication-title: Org Lett doi: 10.1021/acs.orglett.6b02313 – volume: 29 start-page: 565 year: 2001 ident: 10.1016/j.apsb.2025.02.036_bib22 article-title: Peptaibols: models for ion channels publication-title: Biochem Soc Trans doi: 10.1042/bst0290565 – volume: 114 start-page: 2170 year: 1992 ident: 10.1016/j.apsb.2025.02.036_bib32 article-title: Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum publication-title: J Am Chem Soc doi: 10.1021/ja00032a035 – volume: 8 start-page: 135 year: 2005 ident: 10.1016/j.apsb.2025.02.036_bib44 article-title: Role of membrane lipids in bacterial division-site selection publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2005.02.012 – volume: 14 start-page: 304 year: 2024 ident: 10.1016/j.apsb.2025.02.036_bib8 article-title: Identification of a natural PLA2 inhibitor from the marine fungus Aspergillus sp. c1 for MAFLD treatment that suppressed lipotoxicity by inhibiting the IRE-1α/XBP-1s axis and JNK signaling publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2023.08.032 – volume: 601 start-page: 606 year: 2022 ident: 10.1016/j.apsb.2025.02.036_bib20 article-title: A naturally inspired antibiotic to target multidrug-resistant pathogens publication-title: Nature doi: 10.1038/s41586-021-04264-x – volume: 78 start-page: 263 year: 2022 ident: 10.1016/j.apsb.2025.02.036_bib43 article-title: Synergy of outer membrane disruptor SLAP-S25 with hydrophobic antibiotics against Gram-negative pathogens publication-title: J Antimicrob Chemoth doi: 10.1093/jac/dkac387 – volume: 399 start-page: 629 year: 2022 ident: 10.1016/j.apsb.2025.02.036_bib1 article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis publication-title: Lancet doi: 10.1016/S0140-6736(21)02724-0 – volume: 4 start-page: 1450 year: 2019 ident: 10.1016/j.apsb.2025.02.036_bib3 article-title: Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans publication-title: Nat Microbiol doi: 10.1038/s41564-019-0445-2 – volume: 54 start-page: 1866 year: 2021 ident: 10.1016/j.apsb.2025.02.036_bib15 article-title: Leveraging marine natural products as a platform to tackle bacterial resistance and persistence publication-title: Acc Chem Res doi: 10.1021/acs.accounts.1c00007 – volume: 9 start-page: 340 year: 2020 ident: 10.1016/j.apsb.2025.02.036_bib11 article-title: Alkaloids from marine fungi: promising antimicrobials publication-title: Antibiotics doi: 10.3390/antibiotics9060340 – volume: 96 start-page: 101307 year: 2024 ident: 10.1016/j.apsb.2025.02.036_bib60 article-title: Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2024.101307 – volume: 475 year: 2023 ident: 10.1016/j.apsb.2025.02.036_bib58 article-title: Multifunctional MMP9-responsive silicasomes-GelMA hydrogels with bacteria-targeting capability and tissue restoration function for chronic wound infection publication-title: Chem Eng J doi: 10.1016/j.cej.2023.146246 – volume: 50 start-page: 105 year: 1997 ident: 10.1016/j.apsb.2025.02.036_bib35 article-title: Clonostachin, a novel peptaibol that inhibits platelet aggregation publication-title: J Antibiot doi: 10.7164/antibiotics.50.105 – volume: 578 start-page: 582 year: 2020 ident: 10.1016/j.apsb.2025.02.036_bib21 article-title: Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling publication-title: Nature doi: 10.1038/s41586-020-1990-9 – volume: 103 start-page: 6517 year: 1981 ident: 10.1016/j.apsb.2025.02.036_bib30 article-title: Structures of eleven zervamicin and two emerimicin peptide antibiotics studied by fast atom bombardment mass spectrometry publication-title: J Am Chem Soc doi: 10.1021/ja00411a052 – volume: 11 year: 2020 ident: 10.1016/j.apsb.2025.02.036_bib40 article-title: Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance publication-title: mBio doi: 10.1128/mBio.01615-20 – volume: 17 start-page: e241 year: 2019 ident: 10.1016/j.apsb.2025.02.036_bib12 article-title: Marine macrolides with antibacterial and/or antifungal activity publication-title: Mar Drugs doi: 10.3390/md17040241 – volume: 186 start-page: 4059 year: 2023 ident: 10.1016/j.apsb.2025.02.036_bib19 article-title: An antibiotic from an uncultured bacterium binds to an immutable target publication-title: Cell doi: 10.1016/j.cell.2023.07.038 – volume: 36 start-page: 573 year: 2019 ident: 10.1016/j.apsb.2025.02.036_bib16 article-title: Nonribosomal antibacterial peptides that target multidrug-resistant bacteria publication-title: Nat Prod Rep doi: 10.1039/C8NP00031J – volume: 10 year: 2022 ident: 10.1016/j.apsb.2025.02.036_bib55 article-title: LcCCL28-25, derived from piscine chemokine, exhibits antimicrobial activity against Gram-negative and Gram-positive bacteria in vitro and in vivo publication-title: Microbiol Spect doi: 10.1128/spectrum.02515-21 – volume: 12 start-page: 371 year: 2013 ident: 10.1016/j.apsb.2025.02.036_bib4 article-title: Platforms for antibiotic discovery publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3975 – start-page: 585 year: 1981 ident: 10.1016/j.apsb.2025.02.036_bib36 article-title: New peptide antibiotics, trichopolyns I and II, from Trichoderma polysporum publication-title: J Chem Soc , Chem Commun doi: 10.1039/c39810000585 – volume: 5 start-page: 1040 year: 2020 ident: 10.1016/j.apsb.2025.02.036_bib46 article-title: A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens publication-title: Nat Microbiol doi: 10.1038/s41564-020-0723-z – volume: 238 start-page: 8 year: 2018 ident: 10.1016/j.apsb.2025.02.036_bib48 article-title: Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides publication-title: Biophys Chem doi: 10.1016/j.bpc.2018.04.001 – volume: 11 start-page: 2609 year: 2021 ident: 10.1016/j.apsb.2025.02.036_bib24 article-title: Membrane-disruptive peptides/peptidomimetics-based therapeutics: promising systems to combat bacteria and cancer in the drug-resistant era publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.07.014 |
SSID | ssj0000602275 |
Score | 2.326427 |
Snippet | Antibiotic resistance is spreading at a faster rate than new antibiotic agents applied for clinical remedies. It is an urgent need to discover potential... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2764 |
SubjectTerms | Antibiotic Bactericidal activity Marine fungus Natural product NRPS Original Peptaibol Phosphatidylglycerol Phospholipid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NT9wwEIatihOXqlDaho_KSBWXEuF1Esc5AipClbbiABI3y45tEQTZiCxI---ZsbNfRSqXHvaSeDexZ-J5Jzt-TMgPxrXjVS5Sx5hGqDZLdaU15DxMZ_ClnGtc4Dz-Iy5v8t-3xe3KVl9YExbxwHHgTnA3bAmymdUh9HNpMp2Bqpe-ctaNLM6-EPNWkqk4ByMaD-sXOUdOH-iMYcVMLO7SXW8gOeRFAHYGPvMyKgV4_1pweis-_66hXAlKF5_Ix0FN0tPYiy3ywbXb5Ogq4qhnx_R6ubqqP6ZH9GoJqp59Js1Y49q_1IIXvjhLQWHTznVT3ZjJQ0_xFS2FgW9MJDrDhXAVxEtgsFIzo7GKHGIfXbZ4dI-Qf7eOdneTHj4PTdfYfofcXPy6Pr9Mh60X0jovi2kKsik3TkhTg-RjguvAnvP41gmOecZdZWtoZL2xtffMSGktnK-9kwIkcPaFbLST1n0jVFSSl2CFkhWQ6vlagiYVXnskD45kJRLycz70qouEDTUvPbtXaCiFhlKMKzBUQs7QOouWSMcOB8Bn1OAz6j2fSUgxt60ahEYUEPBTzT8vfjh3BAVPIf61AgM6ee5VxhE6hHD-hHyNjrG4xRwmyVIUZULkmsus9WH9TNvcBdL3CDnyMG67_6PXe2QT-xKrNffJxvTp2R2Aopqa7-HheQXOBh2L priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp15K33XTFhVKLo1ZrWzL8rEJDaGQEmgCexOSJTUuiW3iTWD_fWcke7duoYcefLAelqwZS9_IM58I-ci4drzKReoY00iqzVJdaQ02D9MZVMq5xgDn82_i7Cr_uipWe-RkioVBt8px7o9zepitx5TFOJqLvmkW3znYLhkCiCKQxmCgeZbLEMS3Ot7uszCBJHnoyYjlU6wwxs5ENy_dDwbMRF4E6s7A1LxbnwKN_2yZ-huG_ulN-dvydPqEPB5xJf0cu_6U7Ln2GTm8iMTUmyN6uYuzGo7oIb3YUVZvnpPmXGMUYGpBHx-cpYC1ae_6tW5MdzNQ3KylIILGRG5naAjjIR4CGys1Gxr9yWEVpLsSt-4WLPHW0f66G-C6afrGDi_I1emXy5OzdDyEIa3zslinAKBy44Q0NYA_JrgOLHQe958gzTPuKltDIeuNrb1nRkprIb_2TgoAw9lLst92rXtNqKgkL0EKJSvA6PO1BHQqvPbIQbiUlUjIp2noVR-5NtTkhPZToaAUCkoxrkBQCTlG6WxLIk92SOjufqhRURSepS7B6GJ1AI5cmkxnYBNKXznrljYhxSRbNVM7eFTzz8Y_TIqg4HvEnywwoN39oDKO9ENI05-QV1Extl3MYbosRVEmRM5UZvYO85y2uQ6c30tklIdxe_OfHT4gj_Auumq-Jfvru3v3DuDU2rwP38svDcMfLw priority: 102 providerName: Elsevier |
Title | Marine-derived new peptaibols with antibacterial activities by targeting bacterial membrane phospholipids |
URI | https://dx.doi.org/10.1016/j.apsb.2025.02.036 https://www.ncbi.nlm.nih.gov/pubmed/40487657 https://www.proquest.com/docview/3216918378 https://pubmed.ncbi.nlm.nih.gov/PMC12145052 https://doaj.org/article/187981740c3242328b3a34958f9ede1d |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBUF7hURkJ9UKDvE7iOAeEaNWqgBYVqSvtzbJjmwZtk7DZVuy_ZyaPbgMV4pAcEidOPOPMN87MN4S8YVw7nsUidIxpJNVmoc60Bp-H6QguirnGBOfpV3Eyiz_Pk_kWGcod9QPY3OraYT2p2XLx7tfP9QeY8O83sVq6bgz4ejxp-TcjcYfcBcuUYkWDaQ_3uy8zEuZhVCPnyN4H6KPPo7n9NiNb1VL6j0zW35D0z8jKG6bq-AG532NM-rFTiodky5U7ZO-0I6le79OzTc5Vs0_36OmGvnr9iBRTjRmBoQXdvHKWAu6mtatXujDVoqG4cEtBHIXpeJ6hI8yNuGqZWalZ0y62HCwi3bS4cBfglZeO1udVA9uiqAvbPCaz46Ozw5OwL8gQ5nGarEIAU7FxQpocgCATXLeMdB7XouCYZ9xlNodG1hube8-MlNbC-dw7KQAYR0_IdlmV7hmhIpM8BSmkLAEH0OcSkKrw2iMf4URmIiBvh6FXdce7oYaAtB8KBaVQUIpxBYIKyAFK57olcma3B6rld9VPQYV11SU4YCxvQSSXJtIR-IfSZ866iQ1IMshW9fCjgxVwq-Kfnb8eFEHB3MQfLjCg1WWjIo5UREjZH5CnnWJcP2IMn85UJGlA5EhlRu8wPlMW5y3_9wTZ5WHcnv9Hxy_IPXzULkTzJdleLS_dK4BRK7PbLj_A_tP8APZfvsnddrb8BsT6H0Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGOMAFjc-F8WEk2IVFdZ3EcQ4cGDC1bJ0m0Um9GSd2WNCWREs31L-Lf5D3nKSlIHFA2qEX203c956ff89972dCXjOuLU9C4VvGNJJqM18nWkPMw3QAXwq5xgLnybEYnYafZ9Fsg_zsa2EwrbLz_a1Pd966axl00hzURTH4wiF2CRBARI40ps-sPLSLHxC3Ne_GH0HJbzg_-DT9MPK7qwX8LIyjuQ-wIEytkGkGkIYJrh23Wo6nKtCWM24Tk8Egk6cmy3OWSmkM9Ge5lQIgXgDPvUVuA_qI0RuMZ_vLgx0mkJUPUydxgj7OsCvWafPKdN2kEJfyyHGFOmro1Ybo7g1Y2xf_xr1_pm_-th8ebJF7HZCl71tZ3ScbtnxAdk9aJuzFHp2uCruaPbpLT1Yc2YuHpJhoLDv0DSyAa2sogHta23qui7Q6byieDlPQeZG2ZNLwIizAuHb0rzRd0DaBHbZduhpxYS8g9C8trc-qBj7nRV2Y5hE5vRHVPCabZVXabUJFInkMWohZBFFmnkmAwyLXOZIeDmUiPPK2F72qW3IP1We9fVeoKIWKUowrUJRH9lE7y5FIzO0aqstvqrNMhZe3S4jyWOaQKpdpoAMIQmWeWGOHxiNRr1u1ZufwqOKfL3_VG4ICB4D_6oBAq6tGBRz5jvBeAI88aQ1jOcUQ_HMsotgjcs1k1n7Dek9ZnDmS8SFS2IPcnv7nhF-SO6Pp5EgdjY8Pd8hd7GnzRJ-RzfnllX0OWG6evnBrh5KvN71YfwGo_11b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marine-derived+new+peptaibols+with+antibacterial+activities+by+targeting+bacterial+membrane+phospholipids&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Chen%2C+Shang&rft.au=Liu%2C+Dong&rft.au=Wang%2C+Liyang&rft.au=Fan%2C+Aili&rft.date=2025-05-01&rft.issn=2211-3835&rft.volume=15&rft.issue=5&rft.spage=2764&rft_id=info:doi/10.1016%2Fj.apsb.2025.02.036&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon |