Fully Convolutional Network-Based Multifocus Image Fusion

As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished...

Full description

Saved in:
Bibliographic Details
Published inNeural computation Vol. 30; no. 7; pp. 1775 - 1800
Main Authors Guo, Xiaopeng, Nie, Rencan, Cao, Jinde, Zhou, Dongming, Qian, Wenhua
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.07.2018
MIT Press Journals, The
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished the fusion task in spatial or transform domains. However, fusion rules are always a problem in most methods. In this letter, from the aspect of focus region detection, we propose a novel multifocus image fusion method based on a fully convolutional network (FCN) learned from synthesized multifocus images. The primary novelty of this method is that the pixel-wise focus regions are detected through a learning FCN, and the entire image, not just the image patches, are exploited to train the FCN. First, we synthesize 4500 pairs of multifocus images by repeatedly using a gaussian filter for each image from PASCAL VOC 2012, to train the FCN. After that, a pair of source images is fed into the trained FCN, and two score maps indicating the focus property are generated. Next, an inversed score map is averaged with another score map to produce an aggregative score map, which take full advantage of focus probabilities in two score maps. We implement the fully connected conditional random field (CRF) on the aggregative score map to accomplish and refine a binary decision map for the fusion task. Finally, we exploit the weighted strategy based on the refined decision map to produce the fused image. To demonstrate the performance of the proposed method, we compare its fused results with several start-of-the-art methods not only on a gray data set but also on a color data set. Experimental results show that the proposed method can achieve superior fusion performance in both human visual quality and objective assessment.
AbstractList As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished the fusion task in spatial or transform domains. However, fusion rules are always a problem in most methods. In this letter, from the aspect of focus region detection, we propose a novel multifocus image fusion method based on a fully convolutional network (FCN) learned from synthesized multifocus images. The primary novelty of this method is that the pixel-wise focus regions are detected through a learning FCN, and the entire image, not just the image patches, are exploited to train the FCN. First, we synthesize 4500 pairs of multifocus images by repeatedly using a gaussian filter for each image from PASCAL VOC 2012, to train the FCN. After that, a pair of source images is fed into the trained FCN, and two score maps indicating the focus property are generated. Next, an inversed score map is averaged with another score map to produce an aggregative score map, which take full advantage of focus probabilities in two score maps. We implement the fully connected conditional random field (CRF) on the aggregative score map to accomplish and refine a binary decision map for the fusion task. Finally, we exploit the weighted strategy based on the refined decision map to produce the fused image. To demonstrate the performance of the proposed method, we compare its fused results with several start-of-the-art methods not only on a gray data set but also on a color data set. Experimental results show that the proposed method can achieve superior fusion performance in both human visual quality and objective assessment.
As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished the fusion task in spatial or transform domains. However, fusion rules are always a problem in most methods. In this letter, from the aspect of focus region detection, we propose a novel multifocus image fusion method based on a fully convolutional network (FCN) learned from synthesized multifocus images. The primary novelty of this method is that the pixel-wise focus regions are detected through a learning FCN, and the entire image, not just the image patches, are exploited to train the FCN. First, we synthesize 4500 pairs of multifocus images by repeatedly using a gaussian filter for each image from PASCAL VOC 2012, to train the FCN. After that, a pair of source images is fed into the trained FCN, and two score maps indicating the focus property are generated. Next, an inversed score map is averaged with another score map to produce an aggregative score map, which take full advantage of focus probabilities in two score maps. We implement the fully connected conditional random field (CRF) on the aggregative score map to accomplish and refine a binary decision map for the fusion task. Finally, we exploit the weighted strategy based on the refined decision map to produce the fused image. To demonstrate the performance of the proposed method, we compare its fused results with several start-of-the-art methods not only on a gray data set but also on a color data set. Experimental results show that the proposed method can achieve superior fusion performance in both human visual quality and objective assessment.As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished the fusion task in spatial or transform domains. However, fusion rules are always a problem in most methods. In this letter, from the aspect of focus region detection, we propose a novel multifocus image fusion method based on a fully convolutional network (FCN) learned from synthesized multifocus images. The primary novelty of this method is that the pixel-wise focus regions are detected through a learning FCN, and the entire image, not just the image patches, are exploited to train the FCN. First, we synthesize 4500 pairs of multifocus images by repeatedly using a gaussian filter for each image from PASCAL VOC 2012, to train the FCN. After that, a pair of source images is fed into the trained FCN, and two score maps indicating the focus property are generated. Next, an inversed score map is averaged with another score map to produce an aggregative score map, which take full advantage of focus probabilities in two score maps. We implement the fully connected conditional random field (CRF) on the aggregative score map to accomplish and refine a binary decision map for the fusion task. Finally, we exploit the weighted strategy based on the refined decision map to produce the fused image. To demonstrate the performance of the proposed method, we compare its fused results with several start-of-the-art methods not only on a gray data set but also on a color data set. Experimental results show that the proposed method can achieve superior fusion performance in both human visual quality and objective assessment.
Author Guo, Xiaopeng
Cao, Jinde
Nie, Rencan
Qian, Wenhua
Zhou, Dongming
Author_xml – sequence: 1
  givenname: Xiaopeng
  surname: Guo
  fullname: Guo, Xiaopeng
  email: xiaopengguo@mail.ynu.edu.cn
  organization: School of Information Science and Engineering, Yunnan University, Kunming, Yunnan 650091, China xiaopengguo@mail.ynu.edu.cn
– sequence: 2
  givenname: Rencan
  surname: Nie
  fullname: Nie, Rencan
  email: rcnie@ynu.edu.cn
– sequence: 3
  givenname: Jinde
  surname: Cao
  fullname: Cao, Jinde
  email: jdcao@seu.edu.cn
  organization: School of Mathematics, Southeast University, Jiangsu, Nanjing 210096, China jdcao@seu.edu.cn
– sequence: 4
  givenname: Dongming
  surname: Zhou
  fullname: Zhou, Dongming
  email: zhoudm@ynu.edu.cn
  organization: School of Information Science and Engineering, Yunnan University, Kunming, Yunnan 650091, China zhoudm@ynu.edu.cn
– sequence: 5
  givenname: Wenhua
  surname: Qian
  fullname: Qian, Wenhua
  organization: School of Information Science and Engineering, Yunnan University, Kunming, Yunnan 650091, China qwhua003@sina.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29894654$$D View this record in MEDLINE/PubMed
BookMark eNp10E1v1DAQBmALFdFt4ca5itQLhwbGnsQft7arLqxU4AISN8vxOsitEy9xvKj99c2qC1oqeprLM6N53yNy0MfeEfKWwntKOfvQOxu10UBByRdkRmuEUkr544DMQCpVCs7FITlK6QYAOIX6FTlkSqqK19WMqEUO4a6Yx34TQx597E0ovrjxdxxuy0uT3Kr4nMPo22hzKpad-emKRU6Te01etiYk92Y3j8n3xdW3-afy-uvH5fziurSVqMdSKGO5qxtsqZHKgnPIeGM4tIYjOtYgKGpqWvEWsGUUV4yvDJcSG5SNs3hM3j3eXQ_xV3Zp1J1P1oVgehdz0gzqSiEyQSd6-oTexDxMibZKMCEAUU3qZKdy07mVXg--M8Od_lPKBM4egR1iSoNr_xIKetu53u984uwJt3402yrHwfjw3NIuVef3vnyGnv-HbskGwQuNwGrBpoSMTtsalL73639PPABww6aD
CitedBy_id crossref_primary_10_3389_fnins_2020_615435
crossref_primary_10_1155_2021_6051009
crossref_primary_10_3390_su141912321
crossref_primary_10_1109_TIP_2023_3276330
crossref_primary_10_1109_ACCESS_2019_2935006
crossref_primary_10_1007_s11042_023_16074_6
crossref_primary_10_1088_1742_6596_1961_1_012024
crossref_primary_10_1109_JSEN_2021_3106063
crossref_primary_10_1155_2023_4155948
crossref_primary_10_1007_s10462_021_09961_7
crossref_primary_10_1007_s11042_022_12031_x
crossref_primary_10_1587_transinf_2024EDP7046
crossref_primary_10_1007_s00371_021_02300_5
crossref_primary_10_1109_JPHOT_2021_3073022
crossref_primary_10_1016_j_inffus_2019_02_003
crossref_primary_10_1016_j_inffus_2022_06_001
crossref_primary_10_1007_s11042_019_08070_6
crossref_primary_10_1145_3640811
crossref_primary_10_1049_ipr2_12383
crossref_primary_10_1155_2022_4326638
crossref_primary_10_1007_s10489_021_02358_7
crossref_primary_10_1109_TIM_2021_3124058
crossref_primary_10_1016_j_patcog_2021_108045
crossref_primary_10_1007_s11042_021_11576_7
crossref_primary_10_1016_j_inffus_2020_06_013
crossref_primary_10_1109_TIP_2020_2976190
crossref_primary_10_1007_s11042_022_13323_y
crossref_primary_10_1016_j_measurement_2019_04_034
crossref_primary_10_1016_j_asoc_2020_106253
crossref_primary_10_1109_JPHOT_2019_2950949
crossref_primary_10_1364_AO_381082
crossref_primary_10_1007_s12652_019_01199_0
crossref_primary_10_3390_electronics9091531
crossref_primary_10_1016_j_sigpro_2020_107793
crossref_primary_10_3390_s20143901
crossref_primary_10_3390_f12101419
crossref_primary_10_1007_s00521_021_05926_7
crossref_primary_10_1109_TCI_2021_3059497
crossref_primary_10_1109_ACCESS_2020_3022208
crossref_primary_10_1016_j_cmpb_2023_107688
crossref_primary_10_1109_TCDS_2021_3126330
crossref_primary_10_37126_aige_v2_i2_12
crossref_primary_10_1007_s10489_022_03194_z
crossref_primary_10_3233_JIFS_211434
crossref_primary_10_1007_s10489_024_05983_0
crossref_primary_10_1109_ACCESS_2020_3018264
crossref_primary_10_1109_JSEN_2019_2928818
crossref_primary_10_1109_TIP_2020_3033158
crossref_primary_10_2174_1573405616999200817103920
crossref_primary_10_1049_ipr2_12668
crossref_primary_10_1137_20M1334103
crossref_primary_10_1109_TCSVT_2023_3344222
crossref_primary_10_1364_JOSAA_473908
crossref_primary_10_1016_j_cviu_2021_103228
crossref_primary_10_1371_journal_pone_0302545
crossref_primary_10_1007_s11045_019_00675_2
crossref_primary_10_1049_ipr2_12363
crossref_primary_10_1109_ACCESS_2019_2937461
crossref_primary_10_1080_17480272_2024_2428963
crossref_primary_10_1016_j_knosys_2020_105794
crossref_primary_10_1007_s10489_022_03658_2
crossref_primary_10_1007_s10489_022_03160_9
crossref_primary_10_3390_electronics11010034
crossref_primary_10_1016_j_cmpb_2021_106361
crossref_primary_10_1109_TPAMI_2021_3078906
crossref_primary_10_1049_iet_ipr_2019_0883
crossref_primary_10_1002_tee_23271
crossref_primary_10_1007_s00138_022_01345_3
crossref_primary_10_1109_ACCESS_2019_2900376
Cites_doi 10.1109/34.868688
10.1016/j.imavis.2007.10.012
10.1109/TIP.2005.859376
10.1006/gmip.1995.1022
10.1016/j.jvcir.2017.02.006
10.1016/S0167-8655(02)00029-6
10.1049/el:20000267
10.1109/ICCV.2017.322
10.1016/j.compeleceng.2017.02.003
10.1109/TIP.2005.859378
10.1016/j.inffus.2011.07.001
10.1016/j.patcog.2004.03.010
10.1109/CVPR.2005.202
10.1016/j.patrec.2007.01.013
10.1007/s11760-012-0361-x
10.1145/2897824.2925972
10.1145/2647868.2654889
10.1109/TPAMI.2012.213
10.1016/S1566-2535(01)00038-0
10.1016/j.inffus.2005.09.006
10.1016/j.inffus.2016.09.006
10.1109/LGRS.2014.2376034
10.1016/j.inffus.2017.10.007
10.1109/LGRS.2017.2736020
10.1109/CVPR.2015.7298965
10.1162/neco.1989.1.4.541
10.1016/j.inffus.2014.05.004
10.1007/978-3-7908-2604-3_16
10.1016/j.inffus.2016.12.001
10.1109/TIP.2002.801588
10.1109/TIP.2004.823821
10.1145/3072959.3073609
10.1016/j.sigpro.2012.01.027
10.1016/j.patcog.2010.01.011
10.1007/s11760-013-0556-9
10.1016/j.inffus.2013.11.005
10.1109/MSP.2005.1550194
10.1016/j.neucom.2016.07.039
10.1016/j.optcom.2010.08.085
10.1016/j.eswa.2010.06.011
10.1109/TIP.2013.2244222
10.1016/j.inffus.2014.10.004
10.1016/j.inffus.2009.05.001
10.23919/ICIF.2017.8009769
10.1016/j.sigpro.2009.01.012
10.1016/j.inffus.2012.01.007
10.1109/LGRS.2017.2668299
ContentType Journal Article
Copyright Copyright MIT Press Journals, The Jul 2018
Copyright_xml – notice: Copyright MIT Press Journals, The Jul 2018
DBID AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1162/neco_a_01098
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
Computer and Information Systems Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1530-888X
EndPage 1800
ExternalDocumentID 29894654
10_1162_neco_a_01098
neco_a_01098.pdf
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
0R
123
36B
4.4
4S
6IK
AAJGR
AALMD
AAPBV
ABDBF
ABDNZ
ABFLS
ABIVO
ABPTK
ACGFO
ACYGS
AEGXH
AEILP
AENEX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CS3
DC
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HZ
I-F
IPLJI
JAVBF
MCG
MKJ
O9-
OCL
P2P
PK0
PQEST
PQQKQ
RMI
SV3
TUS
WG8
WH7
X
XJE
ZWS
---
-~X
.4S
.DC
0R~
41~
53G
AAFWJ
AAYOK
AAYXX
ABAZT
ABEFU
ABJNI
ABVLG
ACUHS
ADIYS
ADMLS
AMVHM
CITATION
COF
EMOBN
HVGLF
HZ~
H~9
MINIK
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c475t-79ac6e5b3f1a89c0ee326ba60fa633e2b3091a5146f03f213d26da6883b38bec3
ISSN 0899-7667
1530-888X
IngestDate Fri Jul 11 09:51:17 EDT 2025
Mon Jun 30 11:20:50 EDT 2025
Mon Jul 21 06:18:09 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Tue Jul 01 01:19:53 EDT 2025
Sun Jul 17 10:31:15 EDT 2022
Tue Mar 01 17:17:47 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c475t-79ac6e5b3f1a89c0ee326ba60fa633e2b3091a5146f03f213d26da6883b38bec3
Notes July, 2018
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 29894654
PQID 2072770339
PQPubID 37252
PageCount 26
ParticipantIDs crossref_primary_10_1162_neco_a_01098
mit_journals_10_1162_neco_a_01098
crossref_citationtrail_10_1162_neco_a_01098
proquest_miscellaneous_2054933271
proquest_journals_2072770339
mit_journals_necov30i7_302572_2021_11_09_zip_neco_a_01098
pubmed_primary_29894654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: United States
– name: Cambridge
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2018
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References B20
B21
B22
B23
Fischer P. (B9) 2015
B24
B25
B26
B27
B28
B29
Rao Y. (B40) 2017
B30
B31
B32
B33
B34
MacKay D. J. (B35) 2003
B36
B37
B38
B39
B1
B2
B4
B5
B6
B7
Azarang A. (B3) 2017
B41
B42
B43
B45
B46
B48
B49
Everingham M. (B8) 2011
Simonyan K. (B44) 2014
Krähenbühl P. (B17) 2011; 24
Stathaki T. (B47) 2008
Xie S. (B52) 2016
Krizhevsky A. (B18) 2012; 25
Glorot X. (B10) 2010; 9
B50
B51
B53
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B16
B19
References_xml – ident: B43
  doi: 10.1109/34.868688
– start-page: 1
  volume-title: Proceedings of the International Workshop on Remote Sensing with Intelligent Processing
  year: 2017
  ident: B40
– ident: B28
  doi: 10.1016/j.imavis.2007.10.012
– ident: B7
  doi: 10.1109/TIP.2005.859376
– volume: 25
  start-page: 1097
  volume-title: Advances in neural information processing systems
  year: 2012
  ident: B18
– ident: B23
  doi: 10.1006/gmip.1995.1022
– ident: B34
  doi: 10.1016/j.jvcir.2017.02.006
– ident: B27
  doi: 10.1016/S0167-8655(02)00029-6
– ident: B53
  doi: 10.1049/el:20000267
– ident: B12
  doi: 10.1109/ICCV.2017.322
– ident: B2
  doi: 10.1016/j.compeleceng.2017.02.003
– ident: B42
  doi: 10.1109/TIP.2005.859378
– ident: B25
  doi: 10.1016/j.inffus.2011.07.001
– volume: 9
  start-page: 249
  year: 2010
  ident: B10
  publication-title: Journal of Machine Learning Research
– ident: B37
  doi: 10.1016/j.patcog.2004.03.010
– year: 2014
  ident: B44
  publication-title: Very deep convolutional networks for large-scale image recognition
– ident: B5
  doi: 10.1109/CVPR.2005.202
– volume: 24
  start-page: 109
  volume-title: Advances in neural information processing systems
  year: 2011
  ident: B17
– ident: B13
  doi: 10.1016/j.patrec.2007.01.013
– ident: B19
  doi: 10.1007/s11760-012-0361-x
– ident: B45
  doi: 10.1145/2897824.2925972
– ident: B15
  doi: 10.1145/2647868.2654889
– volume-title: Image fusion: Algorithms and applications
  year: 2008
  ident: B47
– ident: B11
  doi: 10.1109/TPAMI.2012.213
– ident: B26
  doi: 10.1016/S1566-2535(01)00038-0
– start-page: 2758
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2015
  ident: B9
– ident: B22
  doi: 10.1016/j.inffus.2005.09.006
– ident: B57
  doi: 10.1016/j.inffus.2016.09.006
– ident: B14
  doi: 10.1109/LGRS.2014.2376034
– ident: B31
  doi: 10.1016/j.inffus.2017.10.007
– ident: B51
  doi: 10.1109/LGRS.2017.2736020
– ident: B33
  doi: 10.1109/CVPR.2015.7298965
– ident: B21
  doi: 10.1162/neco.1989.1.4.541
– ident: B32
  doi: 10.1016/j.inffus.2014.05.004
– year: 2011
  ident: B8
  publication-title: The Pascal visual object classes challenge 2012 (voc2012) results (2012)
– ident: B4
  doi: 10.1007/978-3-7908-2604-3_16
– ident: B30
  doi: 10.1016/j.inffus.2016.12.001
– ident: B46
  doi: 10.1109/TIP.2002.801588
– ident: B39
  doi: 10.1109/TIP.2004.823821
– ident: B16
  doi: 10.1145/3072959.3073609
– ident: B48
  doi: 10.1016/j.sigpro.2012.01.027
– ident: B50
  doi: 10.1016/j.patcog.2010.01.011
– start-page: 1
  volume-title: Proceedings of the International Conference on Pattern Recognition and Image Analysis
  year: 2017
  ident: B3
– ident: B20
  doi: 10.1007/s11760-013-0556-9
– ident: B58
  doi: 10.1016/j.inffus.2013.11.005
– ident: B41
  doi: 10.1109/MSP.2005.1550194
– start-page: 1395
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2016
  ident: B52
– ident: B55
  doi: 10.1016/j.neucom.2016.07.039
– ident: B49
  doi: 10.1016/j.optcom.2010.08.085
– ident: B1
  doi: 10.1016/j.eswa.2010.06.011
– ident: B24
  doi: 10.1109/TIP.2013.2244222
– ident: B36
  doi: 10.1016/j.inffus.2014.10.004
– volume-title: Information theory, inference and learning algorithms
  year: 2003
  ident: B35
– ident: B54
  doi: 10.1016/j.inffus.2009.05.001
– ident: B29
  doi: 10.23919/ICIF.2017.8009769
– ident: B56
  doi: 10.1016/j.sigpro.2009.01.012
– ident: B6
  doi: 10.1016/j.inffus.2012.01.007
– ident: B38
  doi: 10.1109/LGRS.2017.2668299
SSID ssj0006105
Score 2.5190907
Snippet As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is...
SourceID proquest
pubmed
crossref
mit
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1775
SubjectTerms Artificial neural networks
Computer vision
Datasets
Depth of field
Fusion
Human performance
Image detection
Image filters
Image processing
Letters
Optics
Quality assessment
Sensors
Synthesis
Title Fully Convolutional Network-Based Multifocus Image Fusion
URI https://direct.mit.edu/neco/article/doi/10.1162/neco_a_01098
https://www.ncbi.nlm.nih.gov/pubmed/29894654
https://www.proquest.com/docview/2072770339
https://www.proquest.com/docview/2054933271
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9sKF92NpQUGC0yqQ2ImdHLuFpSDRUyvtLbIdu1rEZlds0kN_fcd2nEdhJeASreJxrPXnxzcezwxC74iISFnqPAS2KsMECHUoEp6EmGZYm2RJWhoH5-_n9Owy-bZMl31mOutdUosP8uaPfiX_gyq8A1yNl-w_INt9FF7Ab8AXnoAwPP8KY6M_mildXbfNQH-fu3vd4Ry2p3Jm_Wv1Rja72de1uZ6zaHYeiR8-cJONvCFteoeRXf5LY89Rlytucmxd9SYM5YCpZD-0Trkz4Zjoi_1h9KZxJL26Wvstsj1hiLPuNipsEH5VjEJQlZfDZbM1p7jhwQZrYMxcLpTfF2dqg72CWl3wwpjksqEYdO12bYGyQeGpiy19Jxi2LzpAhxj0AjxBhyfzT_NFt_kCG0y9fwPFH4eNmbjPbfURCTlYr-r9-oXlGReP0INWQQhOHNqP0T1VPUEPffKNoF2Ln6Lcgh-MwA9G4Ac9-IEFP3DgP0OXi88Xp2dhmwcjlAlL65DlXFKVCqJjnuUyUgo4t-A00pwSorAgQPo4MF-qI6JxTEpMS06zjAiSwRwlz9Gk2lTqJQoyEgugJKUuU5rwmHLNaKwzJRMB85SxKZr5jilkGyTe5Cr5WVhlkeJi2KNT9L6T3rrgKHvk3kIfF-3M2e2RyUcypuyaRCtWEKDlDBcY2ChUK6K8uFlt79Q99uj1H8ARUHPYz0gOzXfFsHgaixiv1KYxMmmSE4JZPEUvHOrdH_Fj5dXekiN0v58ux2hS_2rUa6CotXjTDstbHceQGg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+Convolutional+Network-Based+Multifocus+Image+Fusion&rft.jtitle=Neural+computation&rft.au=Guo%2C+Xiaopeng&rft.au=Nie%2C+Rencan&rft.au=Cao%2C+Jinde&rft.au=Zhou%2C+Dongming&rft.date=2018-07-01&rft.eissn=1530-888X&rft.volume=30&rft.issue=7&rft.spage=1775&rft_id=info:doi/10.1162%2Fneco_a_01098&rft_id=info%3Apmid%2F29894654&rft.externalDocID=29894654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon