A structure-function study of ZraP and ZraS provides new insights into the two-component system Zra
Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1865; no. 3; p. 129810 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP.
The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system.
We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution.
Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system.
We bring new input on the so far poorly described Zra system and notably on ZraS.
•ZraS contains one high affinity zinc binding site.•Zinc binding to ZraS periplasmic domain induces conformational changes.•ZraP only cysteine is reduced in vivo.•In solution and at high concentration ZraP is a globular octamer.•Over-activation of the Zra system reduces cell division rate. |
---|---|
AbstractList | Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn²⁺, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP.The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system.We show that ZraS binds one Zn²⁺ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution.Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system.We bring new input on the so far poorly described Zra system and notably on ZraS. Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system. We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution. Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system. We bring new input on the so far poorly described Zra system and notably on ZraS. •ZraS contains one high affinity zinc binding site.•Zinc binding to ZraS periplasmic domain induces conformational changes.•ZraP only cysteine is reduced in vivo.•In solution and at high concentration ZraP is a globular octamer.•Over-activation of the Zra system reduces cell division rate. Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn , it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system. We show that ZraS binds one Zn molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution. Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system. We bring new input on the so far poorly described Zra system and notably on ZraS. Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP.BACKGROUNDZra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP.The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system.METHODSThe purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system.We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution.RESULTSWe show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution.Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system.CONCLUSIONOur results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system.We bring new input on the so far poorly described Zra system and notably on ZraS.GENERAL SIGNIFICANCEWe bring new input on the so far poorly described Zra system and notably on ZraS. |
ArticleNumber | 129810 |
Author | Taher, Raleb de Rosny, Eve |
Author_xml | – sequence: 1 givenname: Raleb surname: Taher fullname: Taher, Raleb organization: Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France – sequence: 2 givenname: Eve surname: de Rosny fullname: de Rosny, Eve email: eve.derosny@ibs.fr organization: Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33309686$$D View this record in MEDLINE/PubMed https://hal.science/hal-03099217$$DView record in HAL |
BookMark | eNqFkUFv1DAQhS1URLeFf4BQjvSQxXYcO-aAtKpoi7QSSMCFi-U4k65Xib3Yzlb773GU0gMH6otHT98bzcy7QGfOO0DoLcFrggn_sF-3rb4Ht6aYZonKhuAXaEUaQcsGY36GVrjCrGSE1-foIsY9zq-W9St0XlUVlrzhK2Q2RUxhMmkKUPaTM8l6l6WpOxW-L34F_a3QrpuL78Uh-KPtIBYOHgrror3fpZiL5Iu0gyI9-NL48ZDndKmIp5hgnI2v0cteDxHePP6X6OfN5x_Xd-X26-2X6822NEzUqRRCEtCgay2h09Jw1nLZal6BYboVAIKxSnZN11LcUVE3mLQV6XmjBeaa0OoSXS19d3pQh2BHHU7Ka6vuNls1a_keUlIijiSz7xc27_R7gpjUaKOBYdAO_BQVrWuacczw8ygTGNMaixl994hO7Qjd0xB_750BtgAm-BgD9E8IwWqOVe3VEquaY1VLrNn28R-bsUnPUaWg7fCc-dNihnz7o4WgorHgDHQ2gEmq8_b_Df4AOSi-cA |
CitedBy_id | crossref_primary_10_1038_s41396_021_01061_2 crossref_primary_10_1073_pnas_2400226121 crossref_primary_10_1021_acs_biochem_3c00296 crossref_primary_10_1016_j_jhazmat_2022_128436 crossref_primary_10_1128_spectrum_02236_23 crossref_primary_10_1002_prot_26819 |
Cites_doi | 10.1074/jbc.M110.194092 10.1039/c1mt00154j 10.1039/b906690j 10.1093/nar/gkh371 10.1093/bioinformatics/btm618 10.1128/JB.01296-10 10.1093/nar/gku968 10.1042/BJ20111639 10.1016/j.str.2008.12.013 10.1111/j.1574-6968.2011.02406.x 10.1006/abio.2000.4706 10.1038/s41579-018-0055-7 10.1016/j.jmb.2010.04.049 10.1042/BJ20150827 10.1046/j.1365-2958.2000.02074.x 10.1006/abio.2000.4880 10.1006/jmbi.2000.4451 10.1074/jbc.273.33.21393 10.1016/j.str.2009.07.015 10.1126/science.aah6345 10.1007/978-1-62703-245-2_20 10.1128/mBio.00047-16 10.1016/j.jmb.2018.10.021 10.1371/journal.pone.0107383 10.1107/S0021889803012779 10.1155/2016/1378680 10.1107/S002188980700252X 10.1093/protein/13.7.501 10.1089/ars.2012.4864 10.1016/j.jinorgbio.2018.12.013 10.1074/jbc.M710592200 10.1038/nsmb.2016 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. Attribution - NonCommercial |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.bbagen.2020.129810 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | oai_HAL_hal_03099217v1 33309686 10_1016_j_bbagen_2020_129810 S0304416520303214 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c475t-7791eaea5a9eda9c64b69ba63ec4ab7ee74439d8db20d275801b31f68a706a123 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri May 09 12:24:04 EDT 2025 Fri Jul 11 08:49:28 EDT 2025 Fri Jul 11 16:35:42 EDT 2025 Wed Feb 19 02:27:43 EST 2025 Tue Jul 01 00:22:14 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri Feb 23 02:46:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | ZraS Zinc binding proteins Two-component systems ZraP Envelope stress response Zra system |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-7791eaea5a9eda9c64b69ba63ec4ab7ee74439d8db20d275801b31f68a706a123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://hal.science/hal-03099217 |
PMID | 33309686 |
PQID | 2470025070 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_03099217v1 proquest_miscellaneous_2552030040 proquest_miscellaneous_2470025070 pubmed_primary_33309686 crossref_primary_10_1016_j_bbagen_2020_129810 crossref_citationtrail_10_1016_j_bbagen_2020_129810 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129810 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Rome, Borde, Taher, Cayron, Lesterlin, Gueguen, De Rosny, Rodrigue (bb0055) 2018; 430 Ortet, Whitworth, Santaella, Achouak, Barakat (bb0005) 2015; 43 Petit-Härtlein, Rome, de Rosny, Molton, Duboc, Gueguen, Rodrigue, Covès (bb0040) 2015; 472 Thede, Arthur, Edwards, Buelow, Wong, Raivio, Glover (bb0155) 2011; 193 Hofmann, Stoffel (bb0080) 1993; 374 Vogt, Raivio (bb0015) 2012; 326 Sevcenco, Pinkse, Wolterbeek, Verhaert, Hagen, Hagedoorn (bb0175) 2011; 3 Raivio, Laird, Joly, Silhavy (bb0020) 2000; 37 van der Weel, As, Dekker, van den Eijnden, van Helmond, Schiphorst, Hagen, Hagedoorn (bb0045) 2019; 192 Whitmore, Wallace (bb0060) 2004; 32 Xiao, Wedd (bb0100) 2010; 27 Cheung, Hendrickson (bb0130) 2009; 17 Sreerama, Woody (bb0065) 2000; 287 Moore, Hendrickson (bb0135) 2009; 17 Nadeau, Carlson (bb0085) 2007; 2007 Consalvi, Chiaraluce, Giangiacomo, Scandurra, Christova, Karshikoff, Knapp, Ladenstein (bb0070) 2000; 13 Tschauner, Hörnschemeyer, Müller, Hunke (bb0030) 2014; 9 Noll, Petrukhin, Lutsenko (bb0120) 1998; 273 Leonhartsberger, Huber, Lottspeich, Böck (bb0050) 2001; 307 bb0090 Zhang, Hendrickson (bb0110) 2010; 400 Cheung, Bingman, Reyngold, Hendrickson, Waldburger (bb0095) 2008; 283 Denoncin, Collet (bb0150) 2013; 19 Mylonas, Svergun (bb0165) 2007; 40 Shu, Zhou, Hovmöller (bb0115) 2008; 24 Butkus, O’Riley, Chohan, Basu (bb0125) 2016; 2016 Appia-Ayme, Hall, Patrick, Rajadurai, Clarke, Rowley (bb0035) 2012; 442 Denoncin, Nicolaes, Cho, Leverrier, Collet (bb0145) 2013; 966 Zhou, Keller, Volkmer, Krauss, Scheerer, Hunke (bb0025) 2011; 286 Gushchin, Melnikov, Polovinkin, Ishchenko, Yuzhakova, Buslaev, Bourenkov, Grudinin, Round, Balandin, Borshchevskiy, Willbold, Leonard, Büldt, Popov, Gordeliy (bb0140) 2017; 356 Quan, Koldewey, Tapley, Kirsch, Ruane, Pfizenmaier, Shi, Hofmann, Foit, Ren, Jakob, Xu, Cygler, Bardwell (bb0160) 2011; 18 McCall, Fierke (bb0105) 2000; 284 Delhaye, Collet, Laloux (bb0170) 2016; 7 Konarev, Volkov, Sokolova, Koch, Svergun (bb0075) 2003; 36 Jacob-Dubuisson, Mechaly, Betton, Antoine (bb0010) 2018; 16 Mylonas (10.1016/j.bbagen.2020.129810_bb0165) 2007; 40 Moore (10.1016/j.bbagen.2020.129810_bb0135) 2009; 17 Denoncin (10.1016/j.bbagen.2020.129810_bb0145) 2013; 966 Vogt (10.1016/j.bbagen.2020.129810_bb0015) 2012; 326 Nadeau (10.1016/j.bbagen.2020.129810_bb0085) 2007; 2007 Xiao (10.1016/j.bbagen.2020.129810_bb0100) 2010; 27 Hofmann (10.1016/j.bbagen.2020.129810_bb0080) 1993; 374 Raivio (10.1016/j.bbagen.2020.129810_bb0020) 2000; 37 Leonhartsberger (10.1016/j.bbagen.2020.129810_bb0050) 2001; 307 Rome (10.1016/j.bbagen.2020.129810_bb0055) 2018; 430 Shu (10.1016/j.bbagen.2020.129810_bb0115) 2008; 24 Delhaye (10.1016/j.bbagen.2020.129810_bb0170) 2016; 7 Jacob-Dubuisson (10.1016/j.bbagen.2020.129810_bb0010) 2018; 16 Sevcenco (10.1016/j.bbagen.2020.129810_bb0175) 2011; 3 Gushchin (10.1016/j.bbagen.2020.129810_bb0140) 2017; 356 Cheung (10.1016/j.bbagen.2020.129810_bb0095) 2008; 283 van der Weel (10.1016/j.bbagen.2020.129810_bb0045) 2019; 192 Petit-Härtlein (10.1016/j.bbagen.2020.129810_bb0040) 2015; 472 Whitmore (10.1016/j.bbagen.2020.129810_bb0060) 2004; 32 Zhang (10.1016/j.bbagen.2020.129810_bb0110) 2010; 400 Konarev (10.1016/j.bbagen.2020.129810_bb0075) 2003; 36 Tschauner (10.1016/j.bbagen.2020.129810_bb0030) 2014; 9 Butkus (10.1016/j.bbagen.2020.129810_bb0125) 2016; 2016 Quan (10.1016/j.bbagen.2020.129810_bb0160) 2011; 18 Sreerama (10.1016/j.bbagen.2020.129810_bb0065) 2000; 287 McCall (10.1016/j.bbagen.2020.129810_bb0105) 2000; 284 Thede (10.1016/j.bbagen.2020.129810_bb0155) 2011; 193 Denoncin (10.1016/j.bbagen.2020.129810_bb0150) 2013; 19 Cheung (10.1016/j.bbagen.2020.129810_bb0130) 2009; 17 Zhou (10.1016/j.bbagen.2020.129810_bb0025) 2011; 286 Appia-Ayme (10.1016/j.bbagen.2020.129810_bb0035) 2012; 442 Ortet (10.1016/j.bbagen.2020.129810_bb0005) 2015; 43 Consalvi (10.1016/j.bbagen.2020.129810_bb0070) 2000; 13 Noll (10.1016/j.bbagen.2020.129810_bb0120) 1998; 273 |
References_xml | – volume: 273 start-page: 21393 year: 1998 end-page: 21401 ident: bb0120 article-title: Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in publication-title: J. Biol. Chem. – volume: 193 start-page: 2149 year: 2011 end-page: 2157 ident: bb0155 article-title: Structure of the periplasmic stress response protein CpxP publication-title: J. Bacteriol. – volume: 18 start-page: 262 year: 2011 end-page: 269 ident: bb0160 article-title: Genetic selection designed to stabilize proteins uncovers a chaperone called spy publication-title: Nat. Struct. Mol. Biol. – volume: 40 start-page: s245 year: 2007 end-page: s249 ident: bb0165 article-title: Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering publication-title: J. Appl. Crystallogr. – volume: 192 start-page: 98 year: 2019 end-page: 106 ident: bb0045 article-title: ZraP, the most prominent zinc protein under zinc stress conditions has no direct role in in-vivo zinc tolerance in E publication-title: J. Inorg. Biochem. – volume: 19 start-page: 63 year: 2013 end-page: 71 ident: bb0150 article-title: Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead publication-title: Antioxid. Redox Signal. – volume: 37 start-page: 1186 year: 2000 end-page: 1197 ident: bb0020 article-title: Tethering of CpxP to the inner membrane prevents spheroplast induction of the cpx envelope stress response publication-title: Mol. Microbiol. – volume: 356 year: 2017 ident: bb0140 article-title: Mechanism of transmembrane signaling by sensor histidine kinases publication-title: Science – volume: 17 start-page: 1195 year: 2009 end-page: 1204 ident: bb0135 article-title: Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS publication-title: Structure. – volume: 966 start-page: 325 year: 2013 end-page: 336 ident: bb0145 article-title: Protein disulfide bond formation in the periplasm: determination of the in vivo redox state of cysteine residues publication-title: Methods Mol. Biol. – volume: 7 year: 2016 ident: bb0170 article-title: Fine-tuning of the Cpx envelope stress response is required for Cell Wall homeostasis in publication-title: MBio. – volume: 43 start-page: D536 year: 2015 end-page: D541 ident: bb0005 article-title: P2CS: updates of the prokaryotic two-component systems database publication-title: Nucleic Acids Res. – volume: 2016 start-page: 1378680 year: 2016 ident: bb0125 article-title: Interaction of small zinc complexes with globular proteins and free tryptophan publication-title: Int. J. Spectrosc. – volume: 283 start-page: 13762 year: 2008 end-page: 13770 ident: bb0095 article-title: Crystal structure of a functional dimer of the PhoQ sensor domain publication-title: J. Biol. Chem. – volume: 2007 year: 2007 ident: bb0085 article-title: Protein interactions captured by chemical cross-linking: one-step cross-linking with formaldehyde publication-title: Cold Spring Harb Protoc – volume: 472 start-page: 205 year: 2015 end-page: 216 ident: bb0040 article-title: Biophysical and physiological characterization of ZraP from publication-title: Biochem. J. – volume: 9 year: 2014 ident: bb0030 article-title: Dynamic interaction between the CpxA sensor kinase and the periplasmic accessory protein CpxP mediates signal recognition in publication-title: PLoS One – volume: 24 start-page: 775 year: 2008 end-page: 782 ident: bb0115 article-title: Prediction of zinc-binding sites in proteins from sequence publication-title: Bioinformatics (Oxford, England) – volume: 13 start-page: 501 year: 2000 end-page: 507 ident: bb0070 article-title: Thermal unfolding and conformational stability of the recombinant domain II of glutamate dehydrogenase from the hyperthermophile Thermotoga maritima publication-title: Protein Eng. – volume: 32 start-page: W668 year: 2004 end-page: W673 ident: bb0060 article-title: DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data publication-title: Nucleic Acids Res. – ident: bb0090 article-title: JPred4: A Protein Secondary Structure Prediction Server – volume: 17 start-page: 190 year: 2009 end-page: 201 ident: bb0130 article-title: Structural analysis of ligand stimulation of the histidine kinase NarX publication-title: Structure. – volume: 307 start-page: 93 year: 2001 end-page: 105 ident: bb0050 article-title: The hydH/G genes from publication-title: J. Mol. Biol. – volume: 27 start-page: 768 year: 2010 end-page: 789 ident: bb0100 article-title: The challenges of determining metal-protein affinities publication-title: Nat. Prod. Rep. – volume: 430 start-page: 4971 year: 2018 end-page: 4985 ident: bb0055 article-title: The two-component system ZraPSR is a novel ESR that contributes to intrinsic antibiotic tolerance in publication-title: J. Mol. Biol. – volume: 400 start-page: 335 year: 2010 end-page: 353 ident: bb0110 article-title: Structural characterization of the predominant family of histidine kinase sensor domains publication-title: J. Mol. Biol. – volume: 16 start-page: 585 year: 2018 end-page: 593 ident: bb0010 article-title: Structural insights into the signalling mechanisms of two-component systems publication-title: Nat. Rev. Microbiol. – volume: 3 start-page: 1324 year: 2011 end-page: 1330 ident: bb0175 article-title: Exploring the microbial metalloproteome using MIRAGE publication-title: Metallomics. – volume: 442 start-page: 85 year: 2012 end-page: 93 ident: bb0035 article-title: ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR publication-title: Biochem. J. – volume: 284 start-page: 307 year: 2000 end-page: 315 ident: bb0105 article-title: Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals publication-title: Anal. Biochem. – volume: 287 start-page: 252 year: 2000 end-page: 260 ident: bb0065 article-title: Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set publication-title: Anal. Biochem. – volume: 326 start-page: 2 year: 2012 end-page: 11 ident: bb0015 article-title: Just scratching the surface: an expanding view of the Cpx envelope stress response publication-title: FEMS Microbiol. Lett. – volume: 36 start-page: 1277 year: 2003 end-page: 1282 ident: bb0075 article-title: PRIMUS: a windows PC-based system for small-angle scattering data analysis publication-title: J. Appl. Crystallogr. – volume: 374 start-page: 166 year: 1993 ident: bb0080 article-title: Mbase-a database of membrane spanning proteins segments publication-title: Biol. Chem. Hoppe Seyler – volume: 286 start-page: 9805 year: 2011 end-page: 9814 ident: bb0025 article-title: Structural basis for two-component system inhibition and pilus sensing by the auxiliary CpxP protein publication-title: J. Biol. Chem. – volume: 286 start-page: 9805 year: 2011 ident: 10.1016/j.bbagen.2020.129810_bb0025 article-title: Structural basis for two-component system inhibition and pilus sensing by the auxiliary CpxP protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.194092 – volume: 2007 year: 2007 ident: 10.1016/j.bbagen.2020.129810_bb0085 article-title: Protein interactions captured by chemical cross-linking: one-step cross-linking with formaldehyde publication-title: Cold Spring Harb Protoc – volume: 3 start-page: 1324 year: 2011 ident: 10.1016/j.bbagen.2020.129810_bb0175 article-title: Exploring the microbial metalloproteome using MIRAGE publication-title: Metallomics. doi: 10.1039/c1mt00154j – volume: 27 start-page: 768 year: 2010 ident: 10.1016/j.bbagen.2020.129810_bb0100 article-title: The challenges of determining metal-protein affinities publication-title: Nat. Prod. Rep. doi: 10.1039/b906690j – volume: 32 start-page: W668 year: 2004 ident: 10.1016/j.bbagen.2020.129810_bb0060 article-title: DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh371 – volume: 24 start-page: 775 year: 2008 ident: 10.1016/j.bbagen.2020.129810_bb0115 article-title: Prediction of zinc-binding sites in proteins from sequence publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btm618 – volume: 193 start-page: 2149 year: 2011 ident: 10.1016/j.bbagen.2020.129810_bb0155 article-title: Structure of the periplasmic stress response protein CpxP publication-title: J. Bacteriol. doi: 10.1128/JB.01296-10 – volume: 43 start-page: D536 year: 2015 ident: 10.1016/j.bbagen.2020.129810_bb0005 article-title: P2CS: updates of the prokaryotic two-component systems database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku968 – volume: 442 start-page: 85 year: 2012 ident: 10.1016/j.bbagen.2020.129810_bb0035 article-title: ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR publication-title: Biochem. J. doi: 10.1042/BJ20111639 – volume: 17 start-page: 190 year: 2009 ident: 10.1016/j.bbagen.2020.129810_bb0130 article-title: Structural analysis of ligand stimulation of the histidine kinase NarX publication-title: Structure. doi: 10.1016/j.str.2008.12.013 – volume: 326 start-page: 2 year: 2012 ident: 10.1016/j.bbagen.2020.129810_bb0015 article-title: Just scratching the surface: an expanding view of the Cpx envelope stress response publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2011.02406.x – volume: 284 start-page: 307 year: 2000 ident: 10.1016/j.bbagen.2020.129810_bb0105 article-title: Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals publication-title: Anal. Biochem. doi: 10.1006/abio.2000.4706 – volume: 374 start-page: 166 year: 1993 ident: 10.1016/j.bbagen.2020.129810_bb0080 article-title: Mbase-a database of membrane spanning proteins segments – volume: 16 start-page: 585 year: 2018 ident: 10.1016/j.bbagen.2020.129810_bb0010 article-title: Structural insights into the signalling mechanisms of two-component systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0055-7 – volume: 400 start-page: 335 year: 2010 ident: 10.1016/j.bbagen.2020.129810_bb0110 article-title: Structural characterization of the predominant family of histidine kinase sensor domains publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.04.049 – volume: 472 start-page: 205 year: 2015 ident: 10.1016/j.bbagen.2020.129810_bb0040 article-title: Biophysical and physiological characterization of ZraP from Escherichia coli, the periplasmic accessory protein of the atypical ZraSR two-component system publication-title: Biochem. J. doi: 10.1042/BJ20150827 – volume: 37 start-page: 1186 year: 2000 ident: 10.1016/j.bbagen.2020.129810_bb0020 article-title: Tethering of CpxP to the inner membrane prevents spheroplast induction of the cpx envelope stress response publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2000.02074.x – volume: 287 start-page: 252 year: 2000 ident: 10.1016/j.bbagen.2020.129810_bb0065 article-title: Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set publication-title: Anal. Biochem. doi: 10.1006/abio.2000.4880 – volume: 307 start-page: 93 year: 2001 ident: 10.1016/j.bbagen.2020.129810_bb0050 article-title: The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.4451 – volume: 273 start-page: 21393 year: 1998 ident: 10.1016/j.bbagen.2020.129810_bb0120 article-title: Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in Escherichia coli publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.33.21393 – volume: 17 start-page: 1195 year: 2009 ident: 10.1016/j.bbagen.2020.129810_bb0135 article-title: Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS publication-title: Structure. doi: 10.1016/j.str.2009.07.015 – volume: 356 year: 2017 ident: 10.1016/j.bbagen.2020.129810_bb0140 article-title: Mechanism of transmembrane signaling by sensor histidine kinases publication-title: Science doi: 10.1126/science.aah6345 – volume: 966 start-page: 325 year: 2013 ident: 10.1016/j.bbagen.2020.129810_bb0145 article-title: Protein disulfide bond formation in the periplasm: determination of the in vivo redox state of cysteine residues publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-245-2_20 – volume: 7 year: 2016 ident: 10.1016/j.bbagen.2020.129810_bb0170 article-title: Fine-tuning of the Cpx envelope stress response is required for Cell Wall homeostasis in Escherichia coli publication-title: MBio. doi: 10.1128/mBio.00047-16 – volume: 430 start-page: 4971 year: 2018 ident: 10.1016/j.bbagen.2020.129810_bb0055 article-title: The two-component system ZraPSR is a novel ESR that contributes to intrinsic antibiotic tolerance in Escherichia coli publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2018.10.021 – volume: 9 year: 2014 ident: 10.1016/j.bbagen.2020.129810_bb0030 article-title: Dynamic interaction between the CpxA sensor kinase and the periplasmic accessory protein CpxP mediates signal recognition in E. coli publication-title: PLoS One doi: 10.1371/journal.pone.0107383 – volume: 36 start-page: 1277 year: 2003 ident: 10.1016/j.bbagen.2020.129810_bb0075 article-title: PRIMUS: a windows PC-based system for small-angle scattering data analysis publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889803012779 – volume: 2016 start-page: 1378680 year: 2016 ident: 10.1016/j.bbagen.2020.129810_bb0125 article-title: Interaction of small zinc complexes with globular proteins and free tryptophan publication-title: Int. J. Spectrosc. doi: 10.1155/2016/1378680 – volume: 40 start-page: s245 year: 2007 ident: 10.1016/j.bbagen.2020.129810_bb0165 article-title: Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering publication-title: J. Appl. Crystallogr. doi: 10.1107/S002188980700252X – volume: 13 start-page: 501 year: 2000 ident: 10.1016/j.bbagen.2020.129810_bb0070 article-title: Thermal unfolding and conformational stability of the recombinant domain II of glutamate dehydrogenase from the hyperthermophile Thermotoga maritima publication-title: Protein Eng. doi: 10.1093/protein/13.7.501 – volume: 19 start-page: 63 year: 2013 ident: 10.1016/j.bbagen.2020.129810_bb0150 article-title: Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4864 – volume: 192 start-page: 98 year: 2019 ident: 10.1016/j.bbagen.2020.129810_bb0045 article-title: ZraP, the most prominent zinc protein under zinc stress conditions has no direct role in in-vivo zinc tolerance in Escherichia coli publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2018.12.013 – volume: 283 start-page: 13762 year: 2008 ident: 10.1016/j.bbagen.2020.129810_bb0095 article-title: Crystal structure of a functional dimer of the PhoQ sensor domain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M710592200 – volume: 18 start-page: 262 year: 2011 ident: 10.1016/j.bbagen.2020.129810_bb0160 article-title: Genetic selection designed to stabilize proteins uncovers a chaperone called spy publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2016 |
SSID | ssj0000595 |
Score | 2.3900244 |
Snippet | Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129810 |
SubjectTerms | Amino Acid Sequence Arabinose - chemistry Arabinose - metabolism atomic absorption spectrometry Binding Sites Biochemistry, Molecular Biology circular dichroism spectroscopy Cloning, Molecular crosslinking Crystallography, X-Ray cysteine Envelope stress response Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism fluorescence Gene Expression Regulation, Bacterial Genetic Vectors - chemistry Genetic Vectors - metabolism histidine kinase homeostasis Life Sciences Models, Molecular Periplasm - genetics Periplasm - metabolism Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Protein Multimerization Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism small-angle X-ray scattering stress response Structural Biology Structure-Activity Relationship toxicity Trans-Activators - chemistry Trans-Activators - genetics Trans-Activators - metabolism Two-component systems X-radiation zinc Zinc - chemistry Zinc - metabolism Zinc binding proteins Zra system ZraP ZraS |
Title | A structure-function study of ZraP and ZraS provides new insights into the two-component system Zra |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129810 https://www.ncbi.nlm.nih.gov/pubmed/33309686 https://www.proquest.com/docview/2470025070 https://www.proquest.com/docview/2552030040 https://hal.science/hal-03099217 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SlNJcSps-sm0a1NCrumtbLx-XJWH7CoU0EHoRkiXTLcUO2U1CLvntnbHsDYW2gd6ELCFbM9Z8g2a-AXgrVMxqHWouK6m4qAVR3lYZd7V2yhuBFoPynT8fqfmJ-HAqTzdgNuTCUFhlf_anM707rfuecb-b47PFYnxMl3oIJ2SODSq3QxnsQpOWv7u5DfNA-CDTTYLgNHpIn-tivLzHn5ZYUHOiWSgN5dH-2Tzd-05xkn8DoZ0xOnwMj3oUyabpRZ_ARmy24UGqK3m9DQ9nQxm3p1BNWeKIvTiPnKwYSYJ1rLKsrdm3c_eFuSZQ45j1eXlLhmCbLZolee5LbKxahkCRra5aTjHobYOmiiUSaJr4DE4OD77O5ryvrMAroeUKIXWZRReddGUMrqyU8Kr0ThWxEs7rGLVAoBJM8Pkk5OhSTDJfZLUyTk-UQ2P3HDYbXGsHWI0PhXOZMaURAZ0pWXnjsyB1oYMz5QiKYUNt1dOOU_WLn3aIL_thkxgsicEmMYyAr2edJdqNO8brQVb2N_WxaBnumLmPol0vQmzb8-knS310-1Siy3aZjeDNIHmL4qM7FdfE9mJpc6E7GKkn_xgjOx3F43IEL5LarNcrClxEGfXyvz_gFWzlFGfTxcXtwiaqVHyNQGnl97o_YQ_uT99_nB_9AjBKD8U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_airQvovXr_Izia7zb3Xzt43FYTr0WoS0UX0KyydIT2S29a8UX_3ZnNrsnglrwLewmzG5mkvmFzPwG4I1QMat1qLmspOKiFkR5W2Xc1dopbwR6DMp3PjxS81Px4UyebcFsyIWhsMp-7097erdb90_G_WyOL5bL8TFd6iGckDk2qNzONtwSuHypjMHbH7_iPBA_yHSVIDh1H_LnuiAv73HVEg1qTjwLpaFE2j_7p-1zCpT8GwrtvNHBXbjTw0g2TV96D7Zisw-3U2HJ7_uwOxvquN2HasoSSezVZeTkxkgVrKOVZW3NPl-6T8w1gRrHrE_MWzFE22zZrOjovsLGumWIFNn6W8spCL1t0FexxAJNAx_A6cG7k9mc96UVeCW0XCOmLrPoopOujMGVlRJeld6pIlbCeR2jFohUggk-n4QczxSTzBdZrYzTE-XQ2z2EnQZlPQZW40vhXGZMaUTA05SsvPFZkLrQwZlyBMUwobbqecep_MVXOwSYfbFJDZbUYJMaRsA3oy4S78YN_fWgK_ub_Vh0DTeMfI2q3Qghuu35dGHpGV0_lXhmu85G8GrQvEX10aWKa2J7tbK50B2O1JN_9JGdkeJ-OYJHyWw28ooChSijnvz3D7yE3fnJ4cIu3h99fAp7OQXddEFyz2AHzSs-R9S09i-6VfETRLkRUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+structure-function+study+of+ZraP+and+ZraS+provides+new+insights+into+the+two-component+system+Zra&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Taher%2C+Raleb&rft.au=de+Rosny%2C+Eve&rft.date=2021-03-01&rft.issn=0304-4165&rft.volume=1865&rft.issue=3&rft.spage=129810&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129810&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2020_129810 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |