A structure-function study of ZraP and ZraS provides new insights into the two-component system Zra

Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1865; no. 3; p. 129810
Main Authors Taher, Raleb, de Rosny, Eve
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system. We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution. Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system. We bring new input on the so far poorly described Zra system and notably on ZraS. •ZraS contains one high affinity zinc binding site.•Zinc binding to ZraS periplasmic domain induces conformational changes.•ZraP only cysteine is reduced in vivo.•In solution and at high concentration ZraP is a globular octamer.•Over-activation of the Zra system reduces cell division rate.
AbstractList Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP.
Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn²⁺, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP.The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system.We show that ZraS binds one Zn²⁺ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution.Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system.We bring new input on the so far poorly described Zra system and notably on ZraS.
Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system. We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution. Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system. We bring new input on the so far poorly described Zra system and notably on ZraS. •ZraS contains one high affinity zinc binding site.•Zinc binding to ZraS periplasmic domain induces conformational changes.•ZraP only cysteine is reduced in vivo.•In solution and at high concentration ZraP is a globular octamer.•Over-activation of the Zra system reduces cell division rate.
Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn , it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system. We show that ZraS binds one Zn molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution. Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system. We bring new input on the so far poorly described Zra system and notably on ZraS.
Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP.BACKGROUNDZra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP.The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system.METHODSThe purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system.We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution.RESULTSWe show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution.Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system.CONCLUSIONOur results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system.We bring new input on the so far poorly described Zra system and notably on ZraS.GENERAL SIGNIFICANCEWe bring new input on the so far poorly described Zra system and notably on ZraS.
ArticleNumber 129810
Author Taher, Raleb
de Rosny, Eve
Author_xml – sequence: 1
  givenname: Raleb
  surname: Taher
  fullname: Taher, Raleb
  organization: Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
– sequence: 2
  givenname: Eve
  surname: de Rosny
  fullname: de Rosny, Eve
  email: eve.derosny@ibs.fr
  organization: Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33309686$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03099217$$DView record in HAL
BookMark eNqFkUFv1DAQhS1URLeFf4BQjvSQxXYcO-aAtKpoi7QSSMCFi-U4k65Xib3Yzlb773GU0gMH6otHT98bzcy7QGfOO0DoLcFrggn_sF-3rb4Ht6aYZonKhuAXaEUaQcsGY36GVrjCrGSE1-foIsY9zq-W9St0XlUVlrzhK2Q2RUxhMmkKUPaTM8l6l6WpOxW-L34F_a3QrpuL78Uh-KPtIBYOHgrror3fpZiL5Iu0gyI9-NL48ZDndKmIp5hgnI2v0cteDxHePP6X6OfN5x_Xd-X26-2X6822NEzUqRRCEtCgay2h09Jw1nLZal6BYboVAIKxSnZN11LcUVE3mLQV6XmjBeaa0OoSXS19d3pQh2BHHU7Ka6vuNls1a_keUlIijiSz7xc27_R7gpjUaKOBYdAO_BQVrWuacczw8ygTGNMaixl994hO7Qjd0xB_750BtgAm-BgD9E8IwWqOVe3VEquaY1VLrNn28R-bsUnPUaWg7fCc-dNihnz7o4WgorHgDHQ2gEmq8_b_Df4AOSi-cA
CitedBy_id crossref_primary_10_1038_s41396_021_01061_2
crossref_primary_10_1073_pnas_2400226121
crossref_primary_10_1021_acs_biochem_3c00296
crossref_primary_10_1016_j_jhazmat_2022_128436
crossref_primary_10_1128_spectrum_02236_23
crossref_primary_10_1002_prot_26819
Cites_doi 10.1074/jbc.M110.194092
10.1039/c1mt00154j
10.1039/b906690j
10.1093/nar/gkh371
10.1093/bioinformatics/btm618
10.1128/JB.01296-10
10.1093/nar/gku968
10.1042/BJ20111639
10.1016/j.str.2008.12.013
10.1111/j.1574-6968.2011.02406.x
10.1006/abio.2000.4706
10.1038/s41579-018-0055-7
10.1016/j.jmb.2010.04.049
10.1042/BJ20150827
10.1046/j.1365-2958.2000.02074.x
10.1006/abio.2000.4880
10.1006/jmbi.2000.4451
10.1074/jbc.273.33.21393
10.1016/j.str.2009.07.015
10.1126/science.aah6345
10.1007/978-1-62703-245-2_20
10.1128/mBio.00047-16
10.1016/j.jmb.2018.10.021
10.1371/journal.pone.0107383
10.1107/S0021889803012779
10.1155/2016/1378680
10.1107/S002188980700252X
10.1093/protein/13.7.501
10.1089/ars.2012.4864
10.1016/j.jinorgbio.2018.12.013
10.1074/jbc.M710592200
10.1038/nsmb.2016
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Attribution - NonCommercial
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
VOOES
DOI 10.1016/j.bbagen.2020.129810
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID oai_HAL_hal_03099217v1
33309686
10_1016_j_bbagen_2020_129810
S0304416520303214
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c475t-7791eaea5a9eda9c64b69ba63ec4ab7ee74439d8db20d275801b31f68a706a123
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri May 09 12:24:04 EDT 2025
Fri Jul 11 08:49:28 EDT 2025
Fri Jul 11 16:35:42 EDT 2025
Wed Feb 19 02:27:43 EST 2025
Tue Jul 01 00:22:14 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Fri Feb 23 02:46:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ZraS
Zinc binding proteins
Two-component systems
ZraP
Envelope stress response
Zra system
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-7791eaea5a9eda9c64b69ba63ec4ab7ee74439d8db20d275801b31f68a706a123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hal.science/hal-03099217
PMID 33309686
PQID 2470025070
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_03099217v1
proquest_miscellaneous_2552030040
proquest_miscellaneous_2470025070
pubmed_primary_33309686
crossref_primary_10_1016_j_bbagen_2020_129810
crossref_citationtrail_10_1016_j_bbagen_2020_129810
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129810
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Rome, Borde, Taher, Cayron, Lesterlin, Gueguen, De Rosny, Rodrigue (bb0055) 2018; 430
Ortet, Whitworth, Santaella, Achouak, Barakat (bb0005) 2015; 43
Petit-Härtlein, Rome, de Rosny, Molton, Duboc, Gueguen, Rodrigue, Covès (bb0040) 2015; 472
Thede, Arthur, Edwards, Buelow, Wong, Raivio, Glover (bb0155) 2011; 193
Hofmann, Stoffel (bb0080) 1993; 374
Vogt, Raivio (bb0015) 2012; 326
Sevcenco, Pinkse, Wolterbeek, Verhaert, Hagen, Hagedoorn (bb0175) 2011; 3
Raivio, Laird, Joly, Silhavy (bb0020) 2000; 37
van der Weel, As, Dekker, van den Eijnden, van Helmond, Schiphorst, Hagen, Hagedoorn (bb0045) 2019; 192
Whitmore, Wallace (bb0060) 2004; 32
Xiao, Wedd (bb0100) 2010; 27
Cheung, Hendrickson (bb0130) 2009; 17
Sreerama, Woody (bb0065) 2000; 287
Moore, Hendrickson (bb0135) 2009; 17
Nadeau, Carlson (bb0085) 2007; 2007
Consalvi, Chiaraluce, Giangiacomo, Scandurra, Christova, Karshikoff, Knapp, Ladenstein (bb0070) 2000; 13
Tschauner, Hörnschemeyer, Müller, Hunke (bb0030) 2014; 9
Noll, Petrukhin, Lutsenko (bb0120) 1998; 273
Leonhartsberger, Huber, Lottspeich, Böck (bb0050) 2001; 307
bb0090
Zhang, Hendrickson (bb0110) 2010; 400
Cheung, Bingman, Reyngold, Hendrickson, Waldburger (bb0095) 2008; 283
Denoncin, Collet (bb0150) 2013; 19
Mylonas, Svergun (bb0165) 2007; 40
Shu, Zhou, Hovmöller (bb0115) 2008; 24
Butkus, O’Riley, Chohan, Basu (bb0125) 2016; 2016
Appia-Ayme, Hall, Patrick, Rajadurai, Clarke, Rowley (bb0035) 2012; 442
Denoncin, Nicolaes, Cho, Leverrier, Collet (bb0145) 2013; 966
Zhou, Keller, Volkmer, Krauss, Scheerer, Hunke (bb0025) 2011; 286
Gushchin, Melnikov, Polovinkin, Ishchenko, Yuzhakova, Buslaev, Bourenkov, Grudinin, Round, Balandin, Borshchevskiy, Willbold, Leonard, Büldt, Popov, Gordeliy (bb0140) 2017; 356
Quan, Koldewey, Tapley, Kirsch, Ruane, Pfizenmaier, Shi, Hofmann, Foit, Ren, Jakob, Xu, Cygler, Bardwell (bb0160) 2011; 18
McCall, Fierke (bb0105) 2000; 284
Delhaye, Collet, Laloux (bb0170) 2016; 7
Konarev, Volkov, Sokolova, Koch, Svergun (bb0075) 2003; 36
Jacob-Dubuisson, Mechaly, Betton, Antoine (bb0010) 2018; 16
Mylonas (10.1016/j.bbagen.2020.129810_bb0165) 2007; 40
Moore (10.1016/j.bbagen.2020.129810_bb0135) 2009; 17
Denoncin (10.1016/j.bbagen.2020.129810_bb0145) 2013; 966
Vogt (10.1016/j.bbagen.2020.129810_bb0015) 2012; 326
Nadeau (10.1016/j.bbagen.2020.129810_bb0085) 2007; 2007
Xiao (10.1016/j.bbagen.2020.129810_bb0100) 2010; 27
Hofmann (10.1016/j.bbagen.2020.129810_bb0080) 1993; 374
Raivio (10.1016/j.bbagen.2020.129810_bb0020) 2000; 37
Leonhartsberger (10.1016/j.bbagen.2020.129810_bb0050) 2001; 307
Rome (10.1016/j.bbagen.2020.129810_bb0055) 2018; 430
Shu (10.1016/j.bbagen.2020.129810_bb0115) 2008; 24
Delhaye (10.1016/j.bbagen.2020.129810_bb0170) 2016; 7
Jacob-Dubuisson (10.1016/j.bbagen.2020.129810_bb0010) 2018; 16
Sevcenco (10.1016/j.bbagen.2020.129810_bb0175) 2011; 3
Gushchin (10.1016/j.bbagen.2020.129810_bb0140) 2017; 356
Cheung (10.1016/j.bbagen.2020.129810_bb0095) 2008; 283
van der Weel (10.1016/j.bbagen.2020.129810_bb0045) 2019; 192
Petit-Härtlein (10.1016/j.bbagen.2020.129810_bb0040) 2015; 472
Whitmore (10.1016/j.bbagen.2020.129810_bb0060) 2004; 32
Zhang (10.1016/j.bbagen.2020.129810_bb0110) 2010; 400
Konarev (10.1016/j.bbagen.2020.129810_bb0075) 2003; 36
Tschauner (10.1016/j.bbagen.2020.129810_bb0030) 2014; 9
Butkus (10.1016/j.bbagen.2020.129810_bb0125) 2016; 2016
Quan (10.1016/j.bbagen.2020.129810_bb0160) 2011; 18
Sreerama (10.1016/j.bbagen.2020.129810_bb0065) 2000; 287
McCall (10.1016/j.bbagen.2020.129810_bb0105) 2000; 284
Thede (10.1016/j.bbagen.2020.129810_bb0155) 2011; 193
Denoncin (10.1016/j.bbagen.2020.129810_bb0150) 2013; 19
Cheung (10.1016/j.bbagen.2020.129810_bb0130) 2009; 17
Zhou (10.1016/j.bbagen.2020.129810_bb0025) 2011; 286
Appia-Ayme (10.1016/j.bbagen.2020.129810_bb0035) 2012; 442
Ortet (10.1016/j.bbagen.2020.129810_bb0005) 2015; 43
Consalvi (10.1016/j.bbagen.2020.129810_bb0070) 2000; 13
Noll (10.1016/j.bbagen.2020.129810_bb0120) 1998; 273
References_xml – volume: 273
  start-page: 21393
  year: 1998
  end-page: 21401
  ident: bb0120
  article-title: Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in
  publication-title: J. Biol. Chem.
– volume: 193
  start-page: 2149
  year: 2011
  end-page: 2157
  ident: bb0155
  article-title: Structure of the periplasmic stress response protein CpxP
  publication-title: J. Bacteriol.
– volume: 18
  start-page: 262
  year: 2011
  end-page: 269
  ident: bb0160
  article-title: Genetic selection designed to stabilize proteins uncovers a chaperone called spy
  publication-title: Nat. Struct. Mol. Biol.
– volume: 40
  start-page: s245
  year: 2007
  end-page: s249
  ident: bb0165
  article-title: Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering
  publication-title: J. Appl. Crystallogr.
– volume: 192
  start-page: 98
  year: 2019
  end-page: 106
  ident: bb0045
  article-title: ZraP, the most prominent zinc protein under zinc stress conditions has no direct role in in-vivo zinc tolerance in E
  publication-title: J. Inorg. Biochem.
– volume: 19
  start-page: 63
  year: 2013
  end-page: 71
  ident: bb0150
  article-title: Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead
  publication-title: Antioxid. Redox Signal.
– volume: 37
  start-page: 1186
  year: 2000
  end-page: 1197
  ident: bb0020
  article-title: Tethering of CpxP to the inner membrane prevents spheroplast induction of the cpx envelope stress response
  publication-title: Mol. Microbiol.
– volume: 356
  year: 2017
  ident: bb0140
  article-title: Mechanism of transmembrane signaling by sensor histidine kinases
  publication-title: Science
– volume: 17
  start-page: 1195
  year: 2009
  end-page: 1204
  ident: bb0135
  article-title: Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS
  publication-title: Structure.
– volume: 966
  start-page: 325
  year: 2013
  end-page: 336
  ident: bb0145
  article-title: Protein disulfide bond formation in the periplasm: determination of the in vivo redox state of cysteine residues
  publication-title: Methods Mol. Biol.
– volume: 7
  year: 2016
  ident: bb0170
  article-title: Fine-tuning of the Cpx envelope stress response is required for Cell Wall homeostasis in
  publication-title: MBio.
– volume: 43
  start-page: D536
  year: 2015
  end-page: D541
  ident: bb0005
  article-title: P2CS: updates of the prokaryotic two-component systems database
  publication-title: Nucleic Acids Res.
– volume: 2016
  start-page: 1378680
  year: 2016
  ident: bb0125
  article-title: Interaction of small zinc complexes with globular proteins and free tryptophan
  publication-title: Int. J. Spectrosc.
– volume: 283
  start-page: 13762
  year: 2008
  end-page: 13770
  ident: bb0095
  article-title: Crystal structure of a functional dimer of the PhoQ sensor domain
  publication-title: J. Biol. Chem.
– volume: 2007
  year: 2007
  ident: bb0085
  article-title: Protein interactions captured by chemical cross-linking: one-step cross-linking with formaldehyde
  publication-title: Cold Spring Harb Protoc
– volume: 472
  start-page: 205
  year: 2015
  end-page: 216
  ident: bb0040
  article-title: Biophysical and physiological characterization of ZraP from
  publication-title: Biochem. J.
– volume: 9
  year: 2014
  ident: bb0030
  article-title: Dynamic interaction between the CpxA sensor kinase and the periplasmic accessory protein CpxP mediates signal recognition in
  publication-title: PLoS One
– volume: 24
  start-page: 775
  year: 2008
  end-page: 782
  ident: bb0115
  article-title: Prediction of zinc-binding sites in proteins from sequence
  publication-title: Bioinformatics (Oxford, England)
– volume: 13
  start-page: 501
  year: 2000
  end-page: 507
  ident: bb0070
  article-title: Thermal unfolding and conformational stability of the recombinant domain II of glutamate dehydrogenase from the hyperthermophile Thermotoga maritima
  publication-title: Protein Eng.
– volume: 32
  start-page: W668
  year: 2004
  end-page: W673
  ident: bb0060
  article-title: DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data
  publication-title: Nucleic Acids Res.
– ident: bb0090
  article-title: JPred4: A Protein Secondary Structure Prediction Server
– volume: 17
  start-page: 190
  year: 2009
  end-page: 201
  ident: bb0130
  article-title: Structural analysis of ligand stimulation of the histidine kinase NarX
  publication-title: Structure.
– volume: 307
  start-page: 93
  year: 2001
  end-page: 105
  ident: bb0050
  article-title: The hydH/G genes from
  publication-title: J. Mol. Biol.
– volume: 27
  start-page: 768
  year: 2010
  end-page: 789
  ident: bb0100
  article-title: The challenges of determining metal-protein affinities
  publication-title: Nat. Prod. Rep.
– volume: 430
  start-page: 4971
  year: 2018
  end-page: 4985
  ident: bb0055
  article-title: The two-component system ZraPSR is a novel ESR that contributes to intrinsic antibiotic tolerance in
  publication-title: J. Mol. Biol.
– volume: 400
  start-page: 335
  year: 2010
  end-page: 353
  ident: bb0110
  article-title: Structural characterization of the predominant family of histidine kinase sensor domains
  publication-title: J. Mol. Biol.
– volume: 16
  start-page: 585
  year: 2018
  end-page: 593
  ident: bb0010
  article-title: Structural insights into the signalling mechanisms of two-component systems
  publication-title: Nat. Rev. Microbiol.
– volume: 3
  start-page: 1324
  year: 2011
  end-page: 1330
  ident: bb0175
  article-title: Exploring the microbial metalloproteome using MIRAGE
  publication-title: Metallomics.
– volume: 442
  start-page: 85
  year: 2012
  end-page: 93
  ident: bb0035
  article-title: ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR
  publication-title: Biochem. J.
– volume: 284
  start-page: 307
  year: 2000
  end-page: 315
  ident: bb0105
  article-title: Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals
  publication-title: Anal. Biochem.
– volume: 287
  start-page: 252
  year: 2000
  end-page: 260
  ident: bb0065
  article-title: Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set
  publication-title: Anal. Biochem.
– volume: 326
  start-page: 2
  year: 2012
  end-page: 11
  ident: bb0015
  article-title: Just scratching the surface: an expanding view of the Cpx envelope stress response
  publication-title: FEMS Microbiol. Lett.
– volume: 36
  start-page: 1277
  year: 2003
  end-page: 1282
  ident: bb0075
  article-title: PRIMUS: a windows PC-based system for small-angle scattering data analysis
  publication-title: J. Appl. Crystallogr.
– volume: 374
  start-page: 166
  year: 1993
  ident: bb0080
  article-title: Mbase-a database of membrane spanning proteins segments
  publication-title: Biol. Chem. Hoppe Seyler
– volume: 286
  start-page: 9805
  year: 2011
  end-page: 9814
  ident: bb0025
  article-title: Structural basis for two-component system inhibition and pilus sensing by the auxiliary CpxP protein
  publication-title: J. Biol. Chem.
– volume: 286
  start-page: 9805
  year: 2011
  ident: 10.1016/j.bbagen.2020.129810_bb0025
  article-title: Structural basis for two-component system inhibition and pilus sensing by the auxiliary CpxP protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.194092
– volume: 2007
  year: 2007
  ident: 10.1016/j.bbagen.2020.129810_bb0085
  article-title: Protein interactions captured by chemical cross-linking: one-step cross-linking with formaldehyde
  publication-title: Cold Spring Harb Protoc
– volume: 3
  start-page: 1324
  year: 2011
  ident: 10.1016/j.bbagen.2020.129810_bb0175
  article-title: Exploring the microbial metalloproteome using MIRAGE
  publication-title: Metallomics.
  doi: 10.1039/c1mt00154j
– volume: 27
  start-page: 768
  year: 2010
  ident: 10.1016/j.bbagen.2020.129810_bb0100
  article-title: The challenges of determining metal-protein affinities
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b906690j
– volume: 32
  start-page: W668
  year: 2004
  ident: 10.1016/j.bbagen.2020.129810_bb0060
  article-title: DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh371
– volume: 24
  start-page: 775
  year: 2008
  ident: 10.1016/j.bbagen.2020.129810_bb0115
  article-title: Prediction of zinc-binding sites in proteins from sequence
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btm618
– volume: 193
  start-page: 2149
  year: 2011
  ident: 10.1016/j.bbagen.2020.129810_bb0155
  article-title: Structure of the periplasmic stress response protein CpxP
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01296-10
– volume: 43
  start-page: D536
  year: 2015
  ident: 10.1016/j.bbagen.2020.129810_bb0005
  article-title: P2CS: updates of the prokaryotic two-component systems database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku968
– volume: 442
  start-page: 85
  year: 2012
  ident: 10.1016/j.bbagen.2020.129810_bb0035
  article-title: ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR
  publication-title: Biochem. J.
  doi: 10.1042/BJ20111639
– volume: 17
  start-page: 190
  year: 2009
  ident: 10.1016/j.bbagen.2020.129810_bb0130
  article-title: Structural analysis of ligand stimulation of the histidine kinase NarX
  publication-title: Structure.
  doi: 10.1016/j.str.2008.12.013
– volume: 326
  start-page: 2
  year: 2012
  ident: 10.1016/j.bbagen.2020.129810_bb0015
  article-title: Just scratching the surface: an expanding view of the Cpx envelope stress response
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2011.02406.x
– volume: 284
  start-page: 307
  year: 2000
  ident: 10.1016/j.bbagen.2020.129810_bb0105
  article-title: Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2000.4706
– volume: 374
  start-page: 166
  year: 1993
  ident: 10.1016/j.bbagen.2020.129810_bb0080
  article-title: Mbase-a database of membrane spanning proteins segments
– volume: 16
  start-page: 585
  year: 2018
  ident: 10.1016/j.bbagen.2020.129810_bb0010
  article-title: Structural insights into the signalling mechanisms of two-component systems
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0055-7
– volume: 400
  start-page: 335
  year: 2010
  ident: 10.1016/j.bbagen.2020.129810_bb0110
  article-title: Structural characterization of the predominant family of histidine kinase sensor domains
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.04.049
– volume: 472
  start-page: 205
  year: 2015
  ident: 10.1016/j.bbagen.2020.129810_bb0040
  article-title: Biophysical and physiological characterization of ZraP from Escherichia coli, the periplasmic accessory protein of the atypical ZraSR two-component system
  publication-title: Biochem. J.
  doi: 10.1042/BJ20150827
– volume: 37
  start-page: 1186
  year: 2000
  ident: 10.1016/j.bbagen.2020.129810_bb0020
  article-title: Tethering of CpxP to the inner membrane prevents spheroplast induction of the cpx envelope stress response
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.02074.x
– volume: 287
  start-page: 252
  year: 2000
  ident: 10.1016/j.bbagen.2020.129810_bb0065
  article-title: Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2000.4880
– volume: 307
  start-page: 93
  year: 2001
  ident: 10.1016/j.bbagen.2020.129810_bb0050
  article-title: The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.4451
– volume: 273
  start-page: 21393
  year: 1998
  ident: 10.1016/j.bbagen.2020.129810_bb0120
  article-title: Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in Escherichia coli
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.33.21393
– volume: 17
  start-page: 1195
  year: 2009
  ident: 10.1016/j.bbagen.2020.129810_bb0135
  article-title: Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS
  publication-title: Structure.
  doi: 10.1016/j.str.2009.07.015
– volume: 356
  year: 2017
  ident: 10.1016/j.bbagen.2020.129810_bb0140
  article-title: Mechanism of transmembrane signaling by sensor histidine kinases
  publication-title: Science
  doi: 10.1126/science.aah6345
– volume: 966
  start-page: 325
  year: 2013
  ident: 10.1016/j.bbagen.2020.129810_bb0145
  article-title: Protein disulfide bond formation in the periplasm: determination of the in vivo redox state of cysteine residues
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-245-2_20
– volume: 7
  year: 2016
  ident: 10.1016/j.bbagen.2020.129810_bb0170
  article-title: Fine-tuning of the Cpx envelope stress response is required for Cell Wall homeostasis in Escherichia coli
  publication-title: MBio.
  doi: 10.1128/mBio.00047-16
– volume: 430
  start-page: 4971
  year: 2018
  ident: 10.1016/j.bbagen.2020.129810_bb0055
  article-title: The two-component system ZraPSR is a novel ESR that contributes to intrinsic antibiotic tolerance in Escherichia coli
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.10.021
– volume: 9
  year: 2014
  ident: 10.1016/j.bbagen.2020.129810_bb0030
  article-title: Dynamic interaction between the CpxA sensor kinase and the periplasmic accessory protein CpxP mediates signal recognition in E. coli
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0107383
– volume: 36
  start-page: 1277
  year: 2003
  ident: 10.1016/j.bbagen.2020.129810_bb0075
  article-title: PRIMUS: a windows PC-based system for small-angle scattering data analysis
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889803012779
– volume: 2016
  start-page: 1378680
  year: 2016
  ident: 10.1016/j.bbagen.2020.129810_bb0125
  article-title: Interaction of small zinc complexes with globular proteins and free tryptophan
  publication-title: Int. J. Spectrosc.
  doi: 10.1155/2016/1378680
– volume: 40
  start-page: s245
  year: 2007
  ident: 10.1016/j.bbagen.2020.129810_bb0165
  article-title: Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S002188980700252X
– volume: 13
  start-page: 501
  year: 2000
  ident: 10.1016/j.bbagen.2020.129810_bb0070
  article-title: Thermal unfolding and conformational stability of the recombinant domain II of glutamate dehydrogenase from the hyperthermophile Thermotoga maritima
  publication-title: Protein Eng.
  doi: 10.1093/protein/13.7.501
– volume: 19
  start-page: 63
  year: 2013
  ident: 10.1016/j.bbagen.2020.129810_bb0150
  article-title: Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.4864
– volume: 192
  start-page: 98
  year: 2019
  ident: 10.1016/j.bbagen.2020.129810_bb0045
  article-title: ZraP, the most prominent zinc protein under zinc stress conditions has no direct role in in-vivo zinc tolerance in Escherichia coli
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2018.12.013
– volume: 283
  start-page: 13762
  year: 2008
  ident: 10.1016/j.bbagen.2020.129810_bb0095
  article-title: Crystal structure of a functional dimer of the PhoQ sensor domain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M710592200
– volume: 18
  start-page: 262
  year: 2011
  ident: 10.1016/j.bbagen.2020.129810_bb0160
  article-title: Genetic selection designed to stabilize proteins uncovers a chaperone called spy
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2016
SSID ssj0000595
Score 2.3900244
Snippet Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129810
SubjectTerms Amino Acid Sequence
Arabinose - chemistry
Arabinose - metabolism
atomic absorption spectrometry
Binding Sites
Biochemistry, Molecular Biology
circular dichroism spectroscopy
Cloning, Molecular
crosslinking
Crystallography, X-Ray
cysteine
Envelope stress response
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
fluorescence
Gene Expression Regulation, Bacterial
Genetic Vectors - chemistry
Genetic Vectors - metabolism
histidine kinase
homeostasis
Life Sciences
Models, Molecular
Periplasm - genetics
Periplasm - metabolism
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Protein Multimerization
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
small-angle X-ray scattering
stress response
Structural Biology
Structure-Activity Relationship
toxicity
Trans-Activators - chemistry
Trans-Activators - genetics
Trans-Activators - metabolism
Two-component systems
X-radiation
zinc
Zinc - chemistry
Zinc - metabolism
Zinc binding proteins
Zra system
ZraP
ZraS
Title A structure-function study of ZraP and ZraS provides new insights into the two-component system Zra
URI https://dx.doi.org/10.1016/j.bbagen.2020.129810
https://www.ncbi.nlm.nih.gov/pubmed/33309686
https://www.proquest.com/docview/2470025070
https://www.proquest.com/docview/2552030040
https://hal.science/hal-03099217
Volume 1865
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SlNJcSps-sm0a1NCrumtbLx-XJWH7CoU0EHoRkiXTLcUO2U1CLvntnbHsDYW2gd6ELCFbM9Z8g2a-AXgrVMxqHWouK6m4qAVR3lYZd7V2yhuBFoPynT8fqfmJ-HAqTzdgNuTCUFhlf_anM707rfuecb-b47PFYnxMl3oIJ2SODSq3QxnsQpOWv7u5DfNA-CDTTYLgNHpIn-tivLzHn5ZYUHOiWSgN5dH-2Tzd-05xkn8DoZ0xOnwMj3oUyabpRZ_ARmy24UGqK3m9DQ9nQxm3p1BNWeKIvTiPnKwYSYJ1rLKsrdm3c_eFuSZQ45j1eXlLhmCbLZolee5LbKxahkCRra5aTjHobYOmiiUSaJr4DE4OD77O5ryvrMAroeUKIXWZRReddGUMrqyU8Kr0ThWxEs7rGLVAoBJM8Pkk5OhSTDJfZLUyTk-UQ2P3HDYbXGsHWI0PhXOZMaURAZ0pWXnjsyB1oYMz5QiKYUNt1dOOU_WLn3aIL_thkxgsicEmMYyAr2edJdqNO8brQVb2N_WxaBnumLmPol0vQmzb8-knS310-1Siy3aZjeDNIHmL4qM7FdfE9mJpc6E7GKkn_xgjOx3F43IEL5LarNcrClxEGfXyvz_gFWzlFGfTxcXtwiaqVHyNQGnl97o_YQ_uT99_nB_9AjBKD8U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_airQvovXr_Izia7zb3Xzt43FYTr0WoS0UX0KyydIT2S29a8UX_3ZnNrsnglrwLewmzG5mkvmFzPwG4I1QMat1qLmspOKiFkR5W2Xc1dopbwR6DMp3PjxS81Px4UyebcFsyIWhsMp-7097erdb90_G_WyOL5bL8TFd6iGckDk2qNzONtwSuHypjMHbH7_iPBA_yHSVIDh1H_LnuiAv73HVEg1qTjwLpaFE2j_7p-1zCpT8GwrtvNHBXbjTw0g2TV96D7Zisw-3U2HJ7_uwOxvquN2HasoSSezVZeTkxkgVrKOVZW3NPl-6T8w1gRrHrE_MWzFE22zZrOjovsLGumWIFNn6W8spCL1t0FexxAJNAx_A6cG7k9mc96UVeCW0XCOmLrPoopOujMGVlRJeld6pIlbCeR2jFohUggk-n4QczxSTzBdZrYzTE-XQ2z2EnQZlPQZW40vhXGZMaUTA05SsvPFZkLrQwZlyBMUwobbqecep_MVXOwSYfbFJDZbUYJMaRsA3oy4S78YN_fWgK_ub_Vh0DTeMfI2q3Qghuu35dGHpGV0_lXhmu85G8GrQvEX10aWKa2J7tbK50B2O1JN_9JGdkeJ-OYJHyWw28ooChSijnvz3D7yE3fnJ4cIu3h99fAp7OQXddEFyz2AHzSs-R9S09i-6VfETRLkRUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+structure-function+study+of+ZraP+and+ZraS+provides+new+insights+into+the+two-component+system+Zra&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Taher%2C+Raleb&rft.au=de+Rosny%2C+Eve&rft.date=2021-03-01&rft.issn=0304-4165&rft.volume=1865&rft.issue=3&rft.spage=129810&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129810&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2020_129810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon