Influences of Ga Doping on Crystal Structure and Polarimetric Pattern of SHG in ZnO Nanofilms

The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 9; no. 6; p. 905
Main Authors Long, Hua, Habeeb, Ammar, Kinyua, Dickson, Wang, Kai, Wang, Bing, Lu, Peixiang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.06.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d33/d31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method.
AbstractList The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d33/d31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method.
The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of / (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method.
The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d 33 / d 31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method.
The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d33/d31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method.The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d33/d31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method.
Author Wang, Bing
Habeeb, Ammar
Long, Hua
Kinyua, Dickson
Wang, Kai
Lu, Peixiang
AuthorAffiliation 3 Hubei Key Laboratory of Optical information and Pattern Recognition, Wuhan Institute of Technology Wuhan 430205, China
1 Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; I201622178@hust.edu.cn (D.M.K.); kale_wong@hust.edu.cn (K.W.); wangbing@hust.edu.cn (B.W.)
2 Physics Department of College Science, Diyala University, Baqubah 964, Iraq; ammarlaser72@yahoo.com
AuthorAffiliation_xml – name: 3 Hubei Key Laboratory of Optical information and Pattern Recognition, Wuhan Institute of Technology Wuhan 430205, China
– name: 2 Physics Department of College Science, Diyala University, Baqubah 964, Iraq; ammarlaser72@yahoo.com
– name: 1 Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; I201622178@hust.edu.cn (D.M.K.); kale_wong@hust.edu.cn (K.W.); wangbing@hust.edu.cn (B.W.)
Author_xml – sequence: 1
  givenname: Hua
  surname: Long
  fullname: Long, Hua
– sequence: 2
  givenname: Ammar
  surname: Habeeb
  fullname: Habeeb, Ammar
– sequence: 3
  givenname: Dickson
  surname: Kinyua
  fullname: Kinyua, Dickson
– sequence: 4
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
– sequence: 5
  givenname: Bing
  surname: Wang
  fullname: Wang, Bing
– sequence: 6
  givenname: Peixiang
  surname: Lu
  fullname: Lu, Peixiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31234399$$D View this record in MEDLINE/PubMed
BookMark eNptks1rVDEUxYNUbK1duZeAG0FG8_FePjaCjDodKLbQrgQJeXnJmCGTTJM8of-9GaeWaTGbhOR3D-fc3JfgKKZoAXiN0QdKJfoYdUwSMSRR_wycEMTlrJMSHx2cj8FZKWvUlsRU9PQFOKaY0I5KeQJ-LqMLk43GFpgcXGj4JW19XMEU4TzflaoDvK55MnXKFuo4wqsUdPYbW7M38ErXanPclV6fL6CP8Ee8hN-bKefDprwCz50OxZ7d76fg5tvXm_n57OJysZx_vpiZjvd1xnvNx95Qag2nA9OWdY5wM2BkhBy7ruODNdY4MYjOyV6OvOccazT2LeSA6SlY7mXHpNdq29zpfKeS9urvRcorpXP1JlglnbC6I4MjmLcOjJoSgQQzjDIhDEVN69NeazsNGzsaG2vW4ZHo45fof6lV-q0Yo0gy2QTe3QvkdDvZUtXGF2ND0NGmqShCOiYRF5I09O0TdJ2mHFunFKGIYEp7tEv35tDRg5V_n9iA93vA5FRKtu4BwUjtpkQdTEmj8RPa-KqrT7s4Pvy35g_2Rr6S
CitedBy_id crossref_primary_10_1088_1402_4896_ab99f7
crossref_primary_10_1021_acsanm_2c02159
crossref_primary_10_1088_1361_6463_ad4a80
crossref_primary_10_1016_j_surfin_2023_103236
crossref_primary_10_1016_j_surfin_2022_102541
crossref_primary_10_1016_j_heliyon_2024_e39836
crossref_primary_10_3390_nano9101427
Cites_doi 10.1103/PhysRevLett.122.193901
10.1016/j.vacuum.2008.04.038
10.1364/JOSAB.36.001731
10.1016/j.optmat.2018.11.003
10.1021/acs.nanolett.5b00607
10.1002/smll.201100694
10.1016/j.optmat.2016.11.034
10.1016/j.tsf.2011.06.094
10.1021/acsphotonics.6b00286
10.1016/j.optcom.2006.08.042
10.1021/cg0702129
10.1007/s00340-006-2292-0
10.1021/nl403328s
10.1103/PhysRevLett.51.1983
10.1016/j.electacta.2009.12.068
10.1021/acs.nanolett.6b04087
10.1002/adom.201500442
10.1088/0957-4484/23/14/145201
10.1016/j.solener.2018.08.050
10.1021/acs.nanolett.6b01537
10.1016/j.jeurceramsoc.2008.09.014
10.1088/1361-6528/ab1739
10.1016/j.solmat.2009.07.016
10.1364/OE.15.010666
10.1103/PhysRevB.87.161403
10.1103/PhysRevB.95.205307
10.1021/nl015686n
10.1002/adom.201801270
10.1016/j.solmat.2008.07.009
10.1016/j.molstruc.2018.11.064
10.1088/0957-4484/25/22/225202
10.1016/j.tsf.2003.11.225
10.1063/1.2723671
10.1021/acsami.7b08864
10.1088/0957-4484/25/45/458001
10.1002/adom.201600200
10.1021/nl401561r
10.1016/j.optmat.2016.08.022
10.1088/0957-4484/23/12/125702
10.1364/OL.41.000187
10.1021/acs.jpcc.7b12356
10.1088/1361-648X/aae85b
10.1021/acs.nanolett.7b05033
10.1038/s41467-018-05713-4
10.1063/1.121830
10.1103/PhysRevLett.118.063602
10.1063/1.4928032
10.1007/s11082-017-1170-9
10.1021/cg401676r
10.1016/j.apsusc.2018.07.135
10.1364/JOSAB.25.000955
10.1021/ic1000733
10.1016/j.ijleo.2016.06.033
10.1039/C7NR04627H
10.1103/PhysRevLett.105.077401
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/nano9060905
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
ProQuest SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_9f8ea42bf217439da328086c63688c30
PMC6630969
31234399
10_3390_nano9060905
Genre Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11204097, 11674117 and 11804109
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c475t-75a7d5c33ec73b6ae64f27cb10c89d4447bececf8b84f959d75771a0d5207b13
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:22:28 EDT 2025
Thu Aug 21 13:48:22 EDT 2025
Fri Jul 11 07:03:33 EDT 2025
Fri Jul 25 11:50:24 EDT 2025
Wed Feb 19 02:34:59 EST 2025
Thu Apr 24 23:09:07 EDT 2025
Tue Jul 01 01:16:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords ZnO nanofilms
Ga doping
SHG
polarization angle
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-75a7d5c33ec73b6ae64f27cb10c89d4447bececf8b84f959d75771a0d5207b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/9f8ea42bf217439da328086c63688c30
PMID 31234399
PQID 2302133501
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_9f8ea42bf217439da328086c63688c30
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6630969
proquest_miscellaneous_2246907892
proquest_journals_2302133501
pubmed_primary_31234399
crossref_primary_10_3390_nano9060905
crossref_citationtrail_10_3390_nano9060905
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190621
PublicationDateYYYYMMDD 2019-06-21
PublicationDate_xml – month: 6
  year: 2019
  text: 20190621
  day: 21
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_53) 2007; 15
Jassim (ref_29) 2017; 64
Neeman (ref_25) 2017; 17
Bachelier (ref_52) 2008; 25
Shinde (ref_35) 2011; 520
Wickberg (ref_15) 2016; 4
Zhao (ref_14) 2019; 36
Han (ref_26) 2016; 3
Kim (ref_19) 2013; 13
Stefan (ref_9) 2018; 122
Chen (ref_1) 2011; 7
Maria (ref_49) 2015; 2
Long (ref_7) 2017; 49
Castaneda (ref_10) 2007; 269
Li (ref_12) 2019; 122
Wang (ref_3) 2017; 9
Correia (ref_5) 2018; 458
Hu (ref_22) 2015; 15
Thierry (ref_31) 2012; 23
Li (ref_20) 2013; 13
Wei (ref_21) 2017; 9
Chan (ref_55) 2006; 84
Kumar (ref_45) 2013; 87
Dhara (ref_42) 2014; 25
Weber (ref_18) 2017; 95
Vispute (ref_37) 1988; 73
Helene (ref_38) 2010; 49
Zhang (ref_54) 2004; 450
Brixius (ref_24) 2018; 30
Michele (ref_47) 2016; 41
Li (ref_11) 2019; 7
Yao (ref_41) 2012; 23
Dickson (ref_28) 2019; 30
Wang (ref_17) 2017; 118
Ren (ref_16) 2016; 16
Stijn (ref_8) 2018; 9
Seyda (ref_40) 2019; 1180
Kishimoto (ref_34) 2009; 83
Fortunato (ref_36) 2008; 92
Park (ref_4) 2009; 93
Zhan (ref_32) 2016; 4
Butet (ref_51) 2010; 105
Tom (ref_23) 1983; 51
Mohammad (ref_48) 2019; 88
Chen (ref_30) 2018; 18
Liu (ref_6) 2018; 174
Charles (ref_39) 2016; 127
Huang (ref_33) 2014; 14
Long (ref_27) 2016; 60
Wiff (ref_44) 2009; 29
Johnson (ref_46) 2002; 2
Bhagavannarayana (ref_50) 2008; 8
Zhang (ref_2) 2010; 55
Lo (ref_13) 2007; 90
Vanpoucke (ref_43) 2014; 25
References_xml – volume: 122
  start-page: 193901
  year: 2019
  ident: ref_12
  article-title: Reciprocal-space-trajectory perspective on high-harmonic generation in solids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.193901
– volume: 83
  start-page: 544
  year: 2009
  ident: ref_34
  article-title: Improvement in moisture durability of ZnO transparent conductive films with Ga heavy doping process
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2008.04.038
– volume: 36
  start-page: 1731
  year: 2019
  ident: ref_14
  article-title: Optical bistability of graphene embedded in parity-time-symmetric photonic lattices
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.36.001731
– volume: 88
  start-page: 30
  year: 2019
  ident: ref_48
  article-title: Nonlinear optical susceptibility of atomically thin WX2 crystals
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2018.11.003
– volume: 15
  start-page: 3351
  year: 2015
  ident: ref_22
  article-title: Precise determination of the crystallographic orientations in single ZnS nanowires by second-harmonic generation microscopy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00607
– volume: 7
  start-page: 2449
  year: 2011
  ident: ref_1
  article-title: ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetec
  publication-title: Small
  doi: 10.1002/smll.201100694
– volume: 64
  start-page: 257
  year: 2017
  ident: ref_29
  article-title: Plasmon assisted enhanced second-harmonic generation in singlehybrid Au/ZnS nanowires
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2016.11.034
– volume: 520
  start-page: 1212
  year: 2011
  ident: ref_35
  article-title: Effect of Ga doping on micro/structural, electrical and optical properties of pulsed laser deposited ZnO thin films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.06.094
– volume: 3
  start-page: 1308
  year: 2016
  ident: ref_26
  article-title: Highly sensitive detection of the lattice distortion in single bent ZnO nanowires by second-harmonic generation microscopy
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00286
– volume: 269
  start-page: 370
  year: 2007
  ident: ref_10
  article-title: Second harmonic generation of fluorine-doped zinc oxide thin films grown on soda-lime glass substrates by a chemical spray technique
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2006.08.042
– volume: 8
  start-page: 446
  year: 2008
  ident: ref_50
  article-title: An interesting correlation between crystalline perfection and second harmonic generation efficiency on KCl- and oxalic acid-doped ADP crystals
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg0702129
– volume: 84
  start-page: 351
  year: 2006
  ident: ref_55
  article-title: Second harmonic generation in zinc oxide nanorods
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-006-2292-0
– volume: 13
  start-page: 5660
  year: 2013
  ident: ref_19
  article-title: Stacking order dependent second harmonic generation and topological defects in h-BN bilayers
  publication-title: Nano Lett.
  doi: 10.1021/nl403328s
– volume: 51
  start-page: 1983
  year: 1983
  ident: ref_23
  article-title: Second-harmonic reflection from silicon surfaces and its relation to structural symmetry
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.1983
– volume: 55
  start-page: 2835
  year: 2010
  ident: ref_2
  article-title: A hydroxyllamine electrochemical sensor based on electro deposition of porous ZnO nanofilms onto carbon nanotubes films modified electrode
  publication-title: Electroch. Acta
  doi: 10.1016/j.electacta.2009.12.068
– volume: 17
  start-page: 842
  year: 2017
  ident: ref_25
  article-title: Crystallographic mapping of guided nanowires by second harmonic generation polarimetry
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04087
– volume: 4
  start-page: 126
  year: 2016
  ident: ref_32
  article-title: Surface-energy-driven growth of ZnO hexagonal microtube optical resonators
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500442
– volume: 23
  start-page: 145201
  year: 2012
  ident: ref_41
  article-title: Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/14/145201
– volume: 174
  start-page: 83
  year: 2018
  ident: ref_6
  article-title: Improvement of CIGS solar cells with high performance transparent conducting Ti-doped GaZnO thin films
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.08.050
– volume: 16
  start-page: 4404
  year: 2016
  ident: ref_16
  article-title: Nanotwin detection and domain polarity determination via optical second harmonic generation polarimetry
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01537
– volume: 29
  start-page: 1413
  year: 2009
  ident: ref_44
  article-title: Correlations between thermoelectric properties and effective mass caused by lattice distortion in Al-doped ZnO ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2008.09.014
– volume: 30
  start-page: 305201
  year: 2019
  ident: ref_28
  article-title: Gigahertz acoustic vibrations of Ga-doped ZnO nanoparticle array
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab1739
– volume: 93
  start-page: 1994
  year: 2009
  ident: ref_4
  article-title: Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.07.016
– volume: 15
  start-page: 10666
  year: 2007
  ident: ref_53
  article-title: Reflective second harmonic generation near resonance in the epitaxial Al-doped ZnO thin film
  publication-title: Opt. Express
  doi: 10.1364/OE.15.010666
– volume: 87
  start-page: 161403
  year: 2013
  ident: ref_45
  article-title: Second harmonic microscopy of monolayer MoS2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.161403
– volume: 95
  start-page: 205307
  year: 2017
  ident: ref_18
  article-title: Double resonant plasmonic nanoantennas for efficient second harmonic generation in zinc oxide
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.205307
– volume: 2
  start-page: 279
  year: 2002
  ident: ref_46
  article-title: Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires
  publication-title: Nano Lett.
  doi: 10.1021/nl015686n
– volume: 7
  start-page: 1801270
  year: 2019
  ident: ref_11
  article-title: Enhancement of the second harmonic generation from WS2 monolayers by cooperating with dielectric microspheres
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801270
– volume: 92
  start-page: 1605
  year: 2008
  ident: ref_36
  article-title: Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2008.07.009
– volume: 1180
  start-page: 505
  year: 2019
  ident: ref_40
  article-title: Monitoring the characteristic properties of Ga-doped ZnO by Raman spectroscopy and atomic scale calculations
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2018.11.064
– volume: 25
  start-page: 225202
  year: 2014
  ident: ref_42
  article-title: Europium doping induced symmetry deviation and its impact on the second harmonic generation of doped ZnO nanowires
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/22/225202
– volume: 450
  start-page: 320
  year: 2004
  ident: ref_54
  article-title: Second harmonic generation in self-assembled ZnO microcrystallite thin films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2003.11.225
– volume: 90
  start-page: 161904
  year: 2007
  ident: ref_13
  article-title: Reflective second harmonic generation from ZnO thin films: A study on the Zn–O Bonding
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2723671
– volume: 9
  start-page: 33609
  year: 2017
  ident: ref_3
  article-title: Enhanced anti-infective efficacy of ZnO nanoreservoirs through a combination of intrinsic anti-biofilm activity and reinforced innate defense
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b08864
– volume: 25
  start-page: 458001
  year: 2014
  ident: ref_43
  article-title: Comment on ‘Europium doping induced symmetry deviation and its impact on the second harmonic generation of doped ZnO nanowires’
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/45/458001
– volume: 4
  start-page: 1203
  year: 2016
  ident: ref_15
  article-title: Second-harmonic generation from ZnO/Al2O3 nanolaminate optical metamaterials grown by atomic-layer deposition
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600200
– volume: 13
  start-page: 3329
  year: 2013
  ident: ref_20
  article-title: Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation
  publication-title: Nano Lett.
  doi: 10.1021/nl401561r
– volume: 60
  start-page: 571
  year: 2016
  ident: ref_27
  article-title: Local-field enhancement of optical nonlinearities in the AGZO nanotriangle array
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2016.08.022
– volume: 23
  start-page: 125702
  year: 2012
  ident: ref_31
  article-title: Compared growth mechanisms of Zn-polar ZnO nanowires on O-polar ZnO and on sapphire
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/12/125702
– volume: 41
  start-page: 187
  year: 2016
  ident: ref_47
  article-title: Nonlinear optical response of a two-dimensional atomic crystal
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.000187
– volume: 122
  start-page: 4019
  year: 2018
  ident: ref_9
  article-title: Role of donor and acceptor substituents on the nonlinear optical properties of gold nanoclusters
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b12356
– volume: 30
  start-page: 484001
  year: 2018
  ident: ref_24
  article-title: Second-harmonic generation as a probe for structural and electronic properties of buried GaP/Si(0 0 1) interfaces
  publication-title: J. Phys-Condens. Matter
  doi: 10.1088/1361-648X/aae85b
– volume: 18
  start-page: 1344
  year: 2018
  ident: ref_30
  article-title: Tungsten disulfide–gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05033
– volume: 9
  start-page: 3418
  year: 2018
  ident: ref_8
  article-title: Morphology and structure of ZIF-8 during crystallisation measured by dynamic angle resolved second harmonic scattering
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05713-4
– volume: 73
  start-page: 348
  year: 1988
  ident: ref_37
  article-title: Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121830
– volume: 118
  start-page: 063602
  year: 2017
  ident: ref_17
  article-title: Exciton-Polariton Fano Resonance Driven by Second Harmonic Generation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.063602
– volume: 2
  start-page: 031302
  year: 2015
  ident: ref_49
  article-title: Second harmonic generation from ZnO films and nanostructures
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4928032
– volume: 49
  start-page: 345
  year: 2017
  ident: ref_7
  article-title: Effects of doping concentration on the surface plasmonic resonances and optical nonlinearities in AGZO nanotriangle arrays
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-017-1170-9
– volume: 14
  start-page: 2179
  year: 2014
  ident: ref_33
  article-title: Controllable tuning various ratios of ZnO Polar facets by crystal seed-assisted growth and their photocatalytic activity
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg401676r
– volume: 458
  start-page: 1043
  year: 2018
  ident: ref_5
  article-title: XPS analysis of ZnO:Ga films deposited by magnetron sputtering: Substrate bias effect
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.07.135
– volume: 25
  start-page: 955
  year: 2008
  ident: ref_52
  article-title: Multipolar second-harmonic generation in noble metal nanoparticles
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.25.000955
– volume: 49
  start-page: 6853
  year: 2010
  ident: ref_38
  article-title: Investigation of Ga substitution in ZnO powder and opto-electronic properties
  publication-title: Inorg. Chem.
  doi: 10.1021/ic1000733
– volume: 127
  start-page: 8317
  year: 2016
  ident: ref_39
  article-title: Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.06.033
– volume: 9
  start-page: 16066
  year: 2017
  ident: ref_21
  article-title: Structural discontinuity induced surface second harmonic generation in single, thin zinc-blende GaAs nanowires
  publication-title: Nanoscale
  doi: 10.1039/C7NR04627H
– volume: 105
  start-page: 077401
  year: 2010
  ident: ref_51
  article-title: Interference between selected dipoles and octupoles in the optical second harmonic generation from spherical gold nanoparticles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.077401
SSID ssj0000913853
Score 2.1356847
Snippet The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 905
SubjectTerms Crystal structure
Distortion
Doping
Ga doping
Gallium
Incident light
Laboratories
Lasers
Luminous intensity
Microscopy
Nanomaterials
Nanoparticles
Nanotechnology
Nanowires
Nondestructive testing
Polarimetry
polarization angle
Second harmonic generation
SHG
Spectrum analysis
Symmetry
Thin films
Zinc oxide
Zinc oxides
ZnO nanofilms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1daxQxFA3avuiD-O3UKhH6JAydyXeexNa2q2BdbIUiyJBkEl1oM-1u--C_9yYzO-5K8XVyB0JuknvPTXIOQjvaBq2JciXRDAAKU1VpPWNlEFZTHnjwWbXk87GYfGOfzvjZUHBbDNcql3ti3qjbzqUa-S6kygTwFK_qd5dXZVKNSqerg4TGXbQJW7AC8LW5d3A8_TpWWRLrJQSk_mEeBXy_G03sdCUqnQTrVkJRZuy_Lc3897bkSvg5fIgeDHkjft87-hG64-NjdH-FTfAJ-vFxKTiywF3ARwZ_yK-hcBfx_vw3pIHn-CTTxd7MPTaxxdOEa2cXSVTL4Wlm2ozp15PJEZ5F_D1-wbD7JlHvi8VTdHp4cLo_KQf1hNIxya9LyY1suaPUO0mtMF6wQKSzdeWUbhljEtznXVBWsaC5biWXsjZVy0klbU2foY3YRf8CYWJEYonjAcI7syJo4VjtZbCOtwBmTYHeLsexcQOzeBK4OG8AYaRBb1YGvUA7o_FlT6hxu9lecshokliw84du_rMZFlWjg_KGERt6XNUaShRANCeoUMrRqkDbS3c2w9JcNH8nUoHejM2wqNJJiYm-uwEbkqsGSpMCPe-9P_aEQqxPIK5Acm1erHV1vSXOfmXibsjuADHqrf936yW6B1lZ4oYoSb2NNmBi-FeQ-Vzb18P0_gOZqgRc
  priority: 102
  providerName: ProQuest
Title Influences of Ga Doping on Crystal Structure and Polarimetric Pattern of SHG in ZnO Nanofilms
URI https://www.ncbi.nlm.nih.gov/pubmed/31234399
https://www.proquest.com/docview/2302133501
https://www.proquest.com/docview/2246907892
https://pubmed.ncbi.nlm.nih.gov/PMC6630969
https://doaj.org/article/9f8ea42bf217439da328086c63688c30
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOCA-CalrIzUE1LUxN8-0tLdBYmyokWqkFBkO7ZYqXVQtz303zN2sqssqsSFazyRnJlxZl5iv4fQvrZBa6JcSTQDgMJUVVrPWBmE1ZQHHnxWLflyIubf2edzfj6S-kp7wnp64N5xBzoobxixoe-dW0OJgjbcCSqUcjSjdah5IzCV38G6plCI-gN5FHD9QTSx05WodBKqG5WgzNR_V3v59y7JUdmZPkGPh34Rf-jn-RTd8_EZejRiEXyOfn5aC42scBfwzOCP-RQU7iI-urqF9u8Cn2aa2Jsrj01s8SLh2eVlEtNyeJEZNmO69XQ-w8uIf8SvGN66Scz7cvUCnU2Pz47m5aCaUDom-XUpuZEtd5R6J6kVxgsWiHS2rpzSLWNMQti8C8oqFjTXreRS1qZqOamkrelLtBO76F8jTIxI7HA8QFlnVgQtHKu9DNbxFkCsKdD7tR8bNzCKJ2GLiwaQRXJ6M3J6gfY3xr97Io27zQ5TQDYmif06X4CcaIacaP6VEwXaW4ezGZbkqgGsRQCQ86ou0LvNMCym9IfERN_dgA3JXwuUJgV61Ud_MxMKNT6BtwLJrbzYmur2SFz-yoTd0NUBUtS7_-PZ3qCH0LMl5oiS1HtoB9LHv4W-6NpO0H01nU3Qg8Pjk8W3SV4QfwAfJw0x
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwGLVKOQAHxE6ggJHKBSlq4iW2DwhByyx0oVIHqaqEItuxYaTWKTOtUH9U_2M_J5NhBlXceo2dyLE_2-95eQ-hdWW8UkTalCgGBIXJLDWOsdQXRlHuuXeNa8nuXjH4zr4e8sMVdNndhYnHKrsxsRmoq9rGNfINgMoE-BTP8o-nv9PoGhV3VzsLjTYstt3FH6Bs0w_DLWjfd4T0vow2B-nMVSC1TPCzVHAtKm4pdVZQU2hXME-ENXlmpaoYYwJ-y1kvjWRecVUJLkSus4qTTJicwmdvoduMUhU7lOz150s6UWITZr_2FiCkZxtBh1plRaaiO97CvNfYA1yHaf89mrkw1_UeoPszkIo_tVH1EK248AjdW5AufIx-DDt3kymuPe5rvNVcvcJ1wJuTC8Ccx_ig0aY9nzisQ4X3I4ken0QHL4v3G1nPEF89GPTxOOCj8A3DUB8dxE-mT9DoJir1KVoNdXDPESa6iJJ03AOWYKbwqrAsd8IbyytgzjpB77t6LO1Mxjy6aRyXQGdipZcLlZ6g9Xnm01a94_psn2ODzLNEye3mQT35Wc56cKm8dJoR41sSV2lKJPBBW9BCSkuzBK11zVnOxoFp-TdqE_R2ngw9OG7L6ODqc8hDmiUKqUiCnrWtPy8JBWARGWOCxFJcLBV1OSWMfzUq4QAlgZ6qF_8v1ht0ZzDa3Sl3hnvbL9FdgINRlCIl-RpahSBxrwBynZnXTaBjVN5wx7oCdOM_vg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwGLVGJyF4QNwJDDDSeEGKlvgSxw8IsXVdy6BUbEjTJBTZjg2VNme0m9B-Gv-Oz7mUFk287TV2Isf-bJ_jyzkIbUrtpCS5iYlkQFBYnsTaMha7TEvKHXe2di35NM6GX9mHI360hn53d2HCscpuTKwH6rIyYY18C6AyAT7Fk3TLtcciJv3Bu7OfcXCQCjutnZ1GEyL79vIX0Lf521Ef2vo1IYPdw51h3DoMxIYJfh4LrkTJDaXWCKozZTPmiDA6TUwuS8aYgF-0xuU6Z05yWQouRKqSkpNE6JTCZ2-gdQGkKOmh9e3d8eTLYoEnCG7CXNjcCaRUJlte-UomWSKDV97SLFibBVyFcP89qLk08w3uojstZMXvmxi7h9asv49uLwkZPkDfRp3XyRxXDu8p3K8vYuHK453ZJSDQE3xQK9VezCxWvsSTQKmnp8HPy-BJLfLpw6sHwz089fjYf8Yw8Ac_8dP5Q3R4HdX6CPV85e0ThInKgkAdd4AsmM6czAxLrXDa8BJ4tIrQm64eC9OKmgdvjZMCyE2o9GKp0iO0uch81mh5XJ1tOzTIIksQ4K4fVLPvRdufC-lyqxjRrqF0paIkB3ZoMprluaFJhDa65izaUWFe_I3hCL1aJEN_Dps0ytvqAvKQesEilyRCj5vWX5SEAswI_DFCYiUuVoq6muKnP2rNcACWQFbl0_8X6yW6CZ2q-Dga7z9DtwAbBoWKmKQbqAcxYp8D_jrXL9pIx6i45r71B3_tRVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+Ga+Doping+on+Crystal+Structure+and+Polarimetric+Pattern+of+SHG+in+ZnO+Nanofilms&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Long%2C+Hua&rft.au=Habeeb%2C+Ammar+Ayesh&rft.au=Kinyua%2C+Dickson+Mwenda&rft.au=Wang%2C+Kai&rft.date=2019-06-21&rft.pub=MDPI&rft.eissn=2079-4991&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Fnano9060905&rft_id=info%3Apmid%2F31234399&rft.externalDocID=PMC6630969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon