Influences of Ga Doping on Crystal Structure and Polarimetric Pattern of SHG in ZnO Nanofilms
The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 9; no. 6; p. 905 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.06.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d33/d31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method. |
---|---|
AbstractList | The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d33/d31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method. The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of / (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method. The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d 33 / d 31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method. The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d33/d31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method.The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d33/d31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method. |
Author | Wang, Bing Habeeb, Ammar Long, Hua Kinyua, Dickson Wang, Kai Lu, Peixiang |
AuthorAffiliation | 3 Hubei Key Laboratory of Optical information and Pattern Recognition, Wuhan Institute of Technology Wuhan 430205, China 1 Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; I201622178@hust.edu.cn (D.M.K.); kale_wong@hust.edu.cn (K.W.); wangbing@hust.edu.cn (B.W.) 2 Physics Department of College Science, Diyala University, Baqubah 964, Iraq; ammarlaser72@yahoo.com |
AuthorAffiliation_xml | – name: 3 Hubei Key Laboratory of Optical information and Pattern Recognition, Wuhan Institute of Technology Wuhan 430205, China – name: 2 Physics Department of College Science, Diyala University, Baqubah 964, Iraq; ammarlaser72@yahoo.com – name: 1 Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; I201622178@hust.edu.cn (D.M.K.); kale_wong@hust.edu.cn (K.W.); wangbing@hust.edu.cn (B.W.) |
Author_xml | – sequence: 1 givenname: Hua surname: Long fullname: Long, Hua – sequence: 2 givenname: Ammar surname: Habeeb fullname: Habeeb, Ammar – sequence: 3 givenname: Dickson surname: Kinyua fullname: Kinyua, Dickson – sequence: 4 givenname: Kai surname: Wang fullname: Wang, Kai – sequence: 5 givenname: Bing surname: Wang fullname: Wang, Bing – sequence: 6 givenname: Peixiang surname: Lu fullname: Lu, Peixiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31234399$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1rVDEUxYNUbK1duZeAG0FG8_FePjaCjDodKLbQrgQJeXnJmCGTTJM8of-9GaeWaTGbhOR3D-fc3JfgKKZoAXiN0QdKJfoYdUwSMSRR_wycEMTlrJMSHx2cj8FZKWvUlsRU9PQFOKaY0I5KeQJ-LqMLk43GFpgcXGj4JW19XMEU4TzflaoDvK55MnXKFuo4wqsUdPYbW7M38ErXanPclV6fL6CP8Ee8hN-bKefDprwCz50OxZ7d76fg5tvXm_n57OJysZx_vpiZjvd1xnvNx95Qag2nA9OWdY5wM2BkhBy7ruODNdY4MYjOyV6OvOccazT2LeSA6SlY7mXHpNdq29zpfKeS9urvRcorpXP1JlglnbC6I4MjmLcOjJoSgQQzjDIhDEVN69NeazsNGzsaG2vW4ZHo45fof6lV-q0Yo0gy2QTe3QvkdDvZUtXGF2ND0NGmqShCOiYRF5I09O0TdJ2mHFunFKGIYEp7tEv35tDRg5V_n9iA93vA5FRKtu4BwUjtpkQdTEmj8RPa-KqrT7s4Pvy35g_2Rr6S |
CitedBy_id | crossref_primary_10_1088_1402_4896_ab99f7 crossref_primary_10_1021_acsanm_2c02159 crossref_primary_10_1088_1361_6463_ad4a80 crossref_primary_10_1016_j_surfin_2023_103236 crossref_primary_10_1016_j_surfin_2022_102541 crossref_primary_10_1016_j_heliyon_2024_e39836 crossref_primary_10_3390_nano9101427 |
Cites_doi | 10.1103/PhysRevLett.122.193901 10.1016/j.vacuum.2008.04.038 10.1364/JOSAB.36.001731 10.1016/j.optmat.2018.11.003 10.1021/acs.nanolett.5b00607 10.1002/smll.201100694 10.1016/j.optmat.2016.11.034 10.1016/j.tsf.2011.06.094 10.1021/acsphotonics.6b00286 10.1016/j.optcom.2006.08.042 10.1021/cg0702129 10.1007/s00340-006-2292-0 10.1021/nl403328s 10.1103/PhysRevLett.51.1983 10.1016/j.electacta.2009.12.068 10.1021/acs.nanolett.6b04087 10.1002/adom.201500442 10.1088/0957-4484/23/14/145201 10.1016/j.solener.2018.08.050 10.1021/acs.nanolett.6b01537 10.1016/j.jeurceramsoc.2008.09.014 10.1088/1361-6528/ab1739 10.1016/j.solmat.2009.07.016 10.1364/OE.15.010666 10.1103/PhysRevB.87.161403 10.1103/PhysRevB.95.205307 10.1021/nl015686n 10.1002/adom.201801270 10.1016/j.solmat.2008.07.009 10.1016/j.molstruc.2018.11.064 10.1088/0957-4484/25/22/225202 10.1016/j.tsf.2003.11.225 10.1063/1.2723671 10.1021/acsami.7b08864 10.1088/0957-4484/25/45/458001 10.1002/adom.201600200 10.1021/nl401561r 10.1016/j.optmat.2016.08.022 10.1088/0957-4484/23/12/125702 10.1364/OL.41.000187 10.1021/acs.jpcc.7b12356 10.1088/1361-648X/aae85b 10.1021/acs.nanolett.7b05033 10.1038/s41467-018-05713-4 10.1063/1.121830 10.1103/PhysRevLett.118.063602 10.1063/1.4928032 10.1007/s11082-017-1170-9 10.1021/cg401676r 10.1016/j.apsusc.2018.07.135 10.1364/JOSAB.25.000955 10.1021/ic1000733 10.1016/j.ijleo.2016.06.033 10.1039/C7NR04627H 10.1103/PhysRevLett.105.077401 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano9060905 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_9f8ea42bf217439da328086c63688c30 PMC6630969 31234399 10_3390_nano9060905 |
Genre | Journal Article |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11204097, 11674117 and 11804109 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c475t-75a7d5c33ec73b6ae64f27cb10c89d4447bececf8b84f959d75771a0d5207b13 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:22:28 EDT 2025 Thu Aug 21 13:48:22 EDT 2025 Fri Jul 11 07:03:33 EDT 2025 Fri Jul 25 11:50:24 EDT 2025 Wed Feb 19 02:34:59 EST 2025 Thu Apr 24 23:09:07 EDT 2025 Tue Jul 01 01:16:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | ZnO nanofilms Ga doping SHG polarization angle |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-75a7d5c33ec73b6ae64f27cb10c89d4447bececf8b84f959d75771a0d5207b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/9f8ea42bf217439da328086c63688c30 |
PMID | 31234399 |
PQID | 2302133501 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9f8ea42bf217439da328086c63688c30 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6630969 proquest_miscellaneous_2246907892 proquest_journals_2302133501 pubmed_primary_31234399 crossref_primary_10_3390_nano9060905 crossref_citationtrail_10_3390_nano9060905 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190621 |
PublicationDateYYYYMMDD | 2019-06-21 |
PublicationDate_xml | – month: 6 year: 2019 text: 20190621 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Liu (ref_53) 2007; 15 Jassim (ref_29) 2017; 64 Neeman (ref_25) 2017; 17 Bachelier (ref_52) 2008; 25 Shinde (ref_35) 2011; 520 Wickberg (ref_15) 2016; 4 Zhao (ref_14) 2019; 36 Han (ref_26) 2016; 3 Kim (ref_19) 2013; 13 Stefan (ref_9) 2018; 122 Chen (ref_1) 2011; 7 Maria (ref_49) 2015; 2 Long (ref_7) 2017; 49 Castaneda (ref_10) 2007; 269 Li (ref_12) 2019; 122 Wang (ref_3) 2017; 9 Correia (ref_5) 2018; 458 Hu (ref_22) 2015; 15 Thierry (ref_31) 2012; 23 Li (ref_20) 2013; 13 Wei (ref_21) 2017; 9 Chan (ref_55) 2006; 84 Kumar (ref_45) 2013; 87 Dhara (ref_42) 2014; 25 Weber (ref_18) 2017; 95 Vispute (ref_37) 1988; 73 Helene (ref_38) 2010; 49 Zhang (ref_54) 2004; 450 Brixius (ref_24) 2018; 30 Michele (ref_47) 2016; 41 Li (ref_11) 2019; 7 Yao (ref_41) 2012; 23 Dickson (ref_28) 2019; 30 Wang (ref_17) 2017; 118 Ren (ref_16) 2016; 16 Stijn (ref_8) 2018; 9 Seyda (ref_40) 2019; 1180 Kishimoto (ref_34) 2009; 83 Fortunato (ref_36) 2008; 92 Park (ref_4) 2009; 93 Zhan (ref_32) 2016; 4 Butet (ref_51) 2010; 105 Tom (ref_23) 1983; 51 Mohammad (ref_48) 2019; 88 Chen (ref_30) 2018; 18 Liu (ref_6) 2018; 174 Charles (ref_39) 2016; 127 Huang (ref_33) 2014; 14 Long (ref_27) 2016; 60 Wiff (ref_44) 2009; 29 Johnson (ref_46) 2002; 2 Bhagavannarayana (ref_50) 2008; 8 Zhang (ref_2) 2010; 55 Lo (ref_13) 2007; 90 Vanpoucke (ref_43) 2014; 25 |
References_xml | – volume: 122 start-page: 193901 year: 2019 ident: ref_12 article-title: Reciprocal-space-trajectory perspective on high-harmonic generation in solids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.193901 – volume: 83 start-page: 544 year: 2009 ident: ref_34 article-title: Improvement in moisture durability of ZnO transparent conductive films with Ga heavy doping process publication-title: Vacuum doi: 10.1016/j.vacuum.2008.04.038 – volume: 36 start-page: 1731 year: 2019 ident: ref_14 article-title: Optical bistability of graphene embedded in parity-time-symmetric photonic lattices publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.36.001731 – volume: 88 start-page: 30 year: 2019 ident: ref_48 article-title: Nonlinear optical susceptibility of atomically thin WX2 crystals publication-title: Opt. Mater. doi: 10.1016/j.optmat.2018.11.003 – volume: 15 start-page: 3351 year: 2015 ident: ref_22 article-title: Precise determination of the crystallographic orientations in single ZnS nanowires by second-harmonic generation microscopy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00607 – volume: 7 start-page: 2449 year: 2011 ident: ref_1 article-title: ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetec publication-title: Small doi: 10.1002/smll.201100694 – volume: 64 start-page: 257 year: 2017 ident: ref_29 article-title: Plasmon assisted enhanced second-harmonic generation in singlehybrid Au/ZnS nanowires publication-title: Opt. Mater. doi: 10.1016/j.optmat.2016.11.034 – volume: 520 start-page: 1212 year: 2011 ident: ref_35 article-title: Effect of Ga doping on micro/structural, electrical and optical properties of pulsed laser deposited ZnO thin films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.06.094 – volume: 3 start-page: 1308 year: 2016 ident: ref_26 article-title: Highly sensitive detection of the lattice distortion in single bent ZnO nanowires by second-harmonic generation microscopy publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00286 – volume: 269 start-page: 370 year: 2007 ident: ref_10 article-title: Second harmonic generation of fluorine-doped zinc oxide thin films grown on soda-lime glass substrates by a chemical spray technique publication-title: Opt. Commun. doi: 10.1016/j.optcom.2006.08.042 – volume: 8 start-page: 446 year: 2008 ident: ref_50 article-title: An interesting correlation between crystalline perfection and second harmonic generation efficiency on KCl- and oxalic acid-doped ADP crystals publication-title: Cryst. Growth Des. doi: 10.1021/cg0702129 – volume: 84 start-page: 351 year: 2006 ident: ref_55 article-title: Second harmonic generation in zinc oxide nanorods publication-title: Appl. Phys. B doi: 10.1007/s00340-006-2292-0 – volume: 13 start-page: 5660 year: 2013 ident: ref_19 article-title: Stacking order dependent second harmonic generation and topological defects in h-BN bilayers publication-title: Nano Lett. doi: 10.1021/nl403328s – volume: 51 start-page: 1983 year: 1983 ident: ref_23 article-title: Second-harmonic reflection from silicon surfaces and its relation to structural symmetry publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.1983 – volume: 55 start-page: 2835 year: 2010 ident: ref_2 article-title: A hydroxyllamine electrochemical sensor based on electro deposition of porous ZnO nanofilms onto carbon nanotubes films modified electrode publication-title: Electroch. Acta doi: 10.1016/j.electacta.2009.12.068 – volume: 17 start-page: 842 year: 2017 ident: ref_25 article-title: Crystallographic mapping of guided nanowires by second harmonic generation polarimetry publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04087 – volume: 4 start-page: 126 year: 2016 ident: ref_32 article-title: Surface-energy-driven growth of ZnO hexagonal microtube optical resonators publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500442 – volume: 23 start-page: 145201 year: 2012 ident: ref_41 article-title: Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices publication-title: Nanotechnology doi: 10.1088/0957-4484/23/14/145201 – volume: 174 start-page: 83 year: 2018 ident: ref_6 article-title: Improvement of CIGS solar cells with high performance transparent conducting Ti-doped GaZnO thin films publication-title: Sol. Energy doi: 10.1016/j.solener.2018.08.050 – volume: 16 start-page: 4404 year: 2016 ident: ref_16 article-title: Nanotwin detection and domain polarity determination via optical second harmonic generation polarimetry publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01537 – volume: 29 start-page: 1413 year: 2009 ident: ref_44 article-title: Correlations between thermoelectric properties and effective mass caused by lattice distortion in Al-doped ZnO ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2008.09.014 – volume: 30 start-page: 305201 year: 2019 ident: ref_28 article-title: Gigahertz acoustic vibrations of Ga-doped ZnO nanoparticle array publication-title: Nanotechnology doi: 10.1088/1361-6528/ab1739 – volume: 93 start-page: 1994 year: 2009 ident: ref_4 article-title: Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2009.07.016 – volume: 15 start-page: 10666 year: 2007 ident: ref_53 article-title: Reflective second harmonic generation near resonance in the epitaxial Al-doped ZnO thin film publication-title: Opt. Express doi: 10.1364/OE.15.010666 – volume: 87 start-page: 161403 year: 2013 ident: ref_45 article-title: Second harmonic microscopy of monolayer MoS2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.161403 – volume: 95 start-page: 205307 year: 2017 ident: ref_18 article-title: Double resonant plasmonic nanoantennas for efficient second harmonic generation in zinc oxide publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.205307 – volume: 2 start-page: 279 year: 2002 ident: ref_46 article-title: Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires publication-title: Nano Lett. doi: 10.1021/nl015686n – volume: 7 start-page: 1801270 year: 2019 ident: ref_11 article-title: Enhancement of the second harmonic generation from WS2 monolayers by cooperating with dielectric microspheres publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801270 – volume: 92 start-page: 1605 year: 2008 ident: ref_36 article-title: Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.07.009 – volume: 1180 start-page: 505 year: 2019 ident: ref_40 article-title: Monitoring the characteristic properties of Ga-doped ZnO by Raman spectroscopy and atomic scale calculations publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2018.11.064 – volume: 25 start-page: 225202 year: 2014 ident: ref_42 article-title: Europium doping induced symmetry deviation and its impact on the second harmonic generation of doped ZnO nanowires publication-title: Nanotechnology doi: 10.1088/0957-4484/25/22/225202 – volume: 450 start-page: 320 year: 2004 ident: ref_54 article-title: Second harmonic generation in self-assembled ZnO microcrystallite thin films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2003.11.225 – volume: 90 start-page: 161904 year: 2007 ident: ref_13 article-title: Reflective second harmonic generation from ZnO thin films: A study on the Zn–O Bonding publication-title: Appl. Phys. Lett. doi: 10.1063/1.2723671 – volume: 9 start-page: 33609 year: 2017 ident: ref_3 article-title: Enhanced anti-infective efficacy of ZnO nanoreservoirs through a combination of intrinsic anti-biofilm activity and reinforced innate defense publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b08864 – volume: 25 start-page: 458001 year: 2014 ident: ref_43 article-title: Comment on ‘Europium doping induced symmetry deviation and its impact on the second harmonic generation of doped ZnO nanowires’ publication-title: Nanotechnology doi: 10.1088/0957-4484/25/45/458001 – volume: 4 start-page: 1203 year: 2016 ident: ref_15 article-title: Second-harmonic generation from ZnO/Al2O3 nanolaminate optical metamaterials grown by atomic-layer deposition publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600200 – volume: 13 start-page: 3329 year: 2013 ident: ref_20 article-title: Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation publication-title: Nano Lett. doi: 10.1021/nl401561r – volume: 60 start-page: 571 year: 2016 ident: ref_27 article-title: Local-field enhancement of optical nonlinearities in the AGZO nanotriangle array publication-title: Opt. Mater. doi: 10.1016/j.optmat.2016.08.022 – volume: 23 start-page: 125702 year: 2012 ident: ref_31 article-title: Compared growth mechanisms of Zn-polar ZnO nanowires on O-polar ZnO and on sapphire publication-title: Nanotechnology doi: 10.1088/0957-4484/23/12/125702 – volume: 41 start-page: 187 year: 2016 ident: ref_47 article-title: Nonlinear optical response of a two-dimensional atomic crystal publication-title: Opt. Lett. doi: 10.1364/OL.41.000187 – volume: 122 start-page: 4019 year: 2018 ident: ref_9 article-title: Role of donor and acceptor substituents on the nonlinear optical properties of gold nanoclusters publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b12356 – volume: 30 start-page: 484001 year: 2018 ident: ref_24 article-title: Second-harmonic generation as a probe for structural and electronic properties of buried GaP/Si(0 0 1) interfaces publication-title: J. Phys-Condens. Matter doi: 10.1088/1361-648X/aae85b – volume: 18 start-page: 1344 year: 2018 ident: ref_30 article-title: Tungsten disulfide–gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05033 – volume: 9 start-page: 3418 year: 2018 ident: ref_8 article-title: Morphology and structure of ZIF-8 during crystallisation measured by dynamic angle resolved second harmonic scattering publication-title: Nat. Commun. doi: 10.1038/s41467-018-05713-4 – volume: 73 start-page: 348 year: 1988 ident: ref_37 article-title: Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices publication-title: Appl. Phys. Lett. doi: 10.1063/1.121830 – volume: 118 start-page: 063602 year: 2017 ident: ref_17 article-title: Exciton-Polariton Fano Resonance Driven by Second Harmonic Generation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.063602 – volume: 2 start-page: 031302 year: 2015 ident: ref_49 article-title: Second harmonic generation from ZnO films and nanostructures publication-title: Appl. Phys. Rev. doi: 10.1063/1.4928032 – volume: 49 start-page: 345 year: 2017 ident: ref_7 article-title: Effects of doping concentration on the surface plasmonic resonances and optical nonlinearities in AGZO nanotriangle arrays publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-017-1170-9 – volume: 14 start-page: 2179 year: 2014 ident: ref_33 article-title: Controllable tuning various ratios of ZnO Polar facets by crystal seed-assisted growth and their photocatalytic activity publication-title: Cryst. Growth Des. doi: 10.1021/cg401676r – volume: 458 start-page: 1043 year: 2018 ident: ref_5 article-title: XPS analysis of ZnO:Ga films deposited by magnetron sputtering: Substrate bias effect publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.07.135 – volume: 25 start-page: 955 year: 2008 ident: ref_52 article-title: Multipolar second-harmonic generation in noble metal nanoparticles publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.25.000955 – volume: 49 start-page: 6853 year: 2010 ident: ref_38 article-title: Investigation of Ga substitution in ZnO powder and opto-electronic properties publication-title: Inorg. Chem. doi: 10.1021/ic1000733 – volume: 127 start-page: 8317 year: 2016 ident: ref_39 article-title: Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis publication-title: Optik doi: 10.1016/j.ijleo.2016.06.033 – volume: 9 start-page: 16066 year: 2017 ident: ref_21 article-title: Structural discontinuity induced surface second harmonic generation in single, thin zinc-blende GaAs nanowires publication-title: Nanoscale doi: 10.1039/C7NR04627H – volume: 105 start-page: 077401 year: 2010 ident: ref_51 article-title: Interference between selected dipoles and octupoles in the optical second harmonic generation from spherical gold nanoparticles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.077401 |
SSID | ssj0000913853 |
Score | 2.1356847 |
Snippet | The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 905 |
SubjectTerms | Crystal structure Distortion Doping Ga doping Gallium Incident light Laboratories Lasers Luminous intensity Microscopy Nanomaterials Nanoparticles Nanotechnology Nanowires Nondestructive testing Polarimetry polarization angle Second harmonic generation SHG Spectrum analysis Symmetry Thin films Zinc oxide Zinc oxides ZnO nanofilms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1daxQxFA3avuiD-O3UKhH6JAydyXeexNa2q2BdbIUiyJBkEl1oM-1u--C_9yYzO-5K8XVyB0JuknvPTXIOQjvaBq2JciXRDAAKU1VpPWNlEFZTHnjwWbXk87GYfGOfzvjZUHBbDNcql3ti3qjbzqUa-S6kygTwFK_qd5dXZVKNSqerg4TGXbQJW7AC8LW5d3A8_TpWWRLrJQSk_mEeBXy_G03sdCUqnQTrVkJRZuy_Lc3897bkSvg5fIgeDHkjft87-hG64-NjdH-FTfAJ-vFxKTiywF3ARwZ_yK-hcBfx_vw3pIHn-CTTxd7MPTaxxdOEa2cXSVTL4Wlm2ozp15PJEZ5F_D1-wbD7JlHvi8VTdHp4cLo_KQf1hNIxya9LyY1suaPUO0mtMF6wQKSzdeWUbhljEtznXVBWsaC5biWXsjZVy0klbU2foY3YRf8CYWJEYonjAcI7syJo4VjtZbCOtwBmTYHeLsexcQOzeBK4OG8AYaRBb1YGvUA7o_FlT6hxu9lecshokliw84du_rMZFlWjg_KGERt6XNUaShRANCeoUMrRqkDbS3c2w9JcNH8nUoHejM2wqNJJiYm-uwEbkqsGSpMCPe-9P_aEQqxPIK5Acm1erHV1vSXOfmXibsjuADHqrf936yW6B1lZ4oYoSb2NNmBi-FeQ-Vzb18P0_gOZqgRc priority: 102 providerName: ProQuest |
Title | Influences of Ga Doping on Crystal Structure and Polarimetric Pattern of SHG in ZnO Nanofilms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31234399 https://www.proquest.com/docview/2302133501 https://www.proquest.com/docview/2246907892 https://pubmed.ncbi.nlm.nih.gov/PMC6630969 https://doaj.org/article/9f8ea42bf217439da328086c63688c30 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOCA-CalrIzUE1LUxN8-0tLdBYmyokWqkFBkO7ZYqXVQtz303zN2sqssqsSFazyRnJlxZl5iv4fQvrZBa6JcSTQDgMJUVVrPWBmE1ZQHHnxWLflyIubf2edzfj6S-kp7wnp64N5xBzoobxixoe-dW0OJgjbcCSqUcjSjdah5IzCV38G6plCI-gN5FHD9QTSx05WodBKqG5WgzNR_V3v59y7JUdmZPkGPh34Rf-jn-RTd8_EZejRiEXyOfn5aC42scBfwzOCP-RQU7iI-urqF9u8Cn2aa2Jsrj01s8SLh2eVlEtNyeJEZNmO69XQ-w8uIf8SvGN66Scz7cvUCnU2Pz47m5aCaUDom-XUpuZEtd5R6J6kVxgsWiHS2rpzSLWNMQti8C8oqFjTXreRS1qZqOamkrelLtBO76F8jTIxI7HA8QFlnVgQtHKu9DNbxFkCsKdD7tR8bNzCKJ2GLiwaQRXJ6M3J6gfY3xr97Io27zQ5TQDYmif06X4CcaIacaP6VEwXaW4ezGZbkqgGsRQCQ86ou0LvNMCym9IfERN_dgA3JXwuUJgV61Ud_MxMKNT6BtwLJrbzYmur2SFz-yoTd0NUBUtS7_-PZ3qCH0LMl5oiS1HtoB9LHv4W-6NpO0H01nU3Qg8Pjk8W3SV4QfwAfJw0x |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwGLVKOQAHxE6ggJHKBSlq4iW2DwhByyx0oVIHqaqEItuxYaTWKTOtUH9U_2M_J5NhBlXceo2dyLE_2-95eQ-hdWW8UkTalCgGBIXJLDWOsdQXRlHuuXeNa8nuXjH4zr4e8sMVdNndhYnHKrsxsRmoq9rGNfINgMoE-BTP8o-nv9PoGhV3VzsLjTYstt3FH6Bs0w_DLWjfd4T0vow2B-nMVSC1TPCzVHAtKm4pdVZQU2hXME-ENXlmpaoYYwJ-y1kvjWRecVUJLkSus4qTTJicwmdvoduMUhU7lOz150s6UWITZr_2FiCkZxtBh1plRaaiO97CvNfYA1yHaf89mrkw1_UeoPszkIo_tVH1EK248AjdW5AufIx-DDt3kymuPe5rvNVcvcJ1wJuTC8Ccx_ig0aY9nzisQ4X3I4ken0QHL4v3G1nPEF89GPTxOOCj8A3DUB8dxE-mT9DoJir1KVoNdXDPESa6iJJ03AOWYKbwqrAsd8IbyytgzjpB77t6LO1Mxjy6aRyXQGdipZcLlZ6g9Xnm01a94_psn2ODzLNEye3mQT35Wc56cKm8dJoR41sSV2lKJPBBW9BCSkuzBK11zVnOxoFp-TdqE_R2ngw9OG7L6ODqc8hDmiUKqUiCnrWtPy8JBWARGWOCxFJcLBV1OSWMfzUq4QAlgZ6qF_8v1ht0ZzDa3Sl3hnvbL9FdgINRlCIl-RpahSBxrwBynZnXTaBjVN5wx7oCdOM_vg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwGLVGJyF4QNwJDDDSeEGKlvgSxw8IsXVdy6BUbEjTJBTZjg2VNme0m9B-Gv-Oz7mUFk287TV2Isf-bJ_jyzkIbUrtpCS5iYlkQFBYnsTaMha7TEvKHXe2di35NM6GX9mHI360hn53d2HCscpuTKwH6rIyYY18C6AyAT7Fk3TLtcciJv3Bu7OfcXCQCjutnZ1GEyL79vIX0Lf521Ef2vo1IYPdw51h3DoMxIYJfh4LrkTJDaXWCKozZTPmiDA6TUwuS8aYgF-0xuU6Z05yWQouRKqSkpNE6JTCZ2-gdQGkKOmh9e3d8eTLYoEnCG7CXNjcCaRUJlte-UomWSKDV97SLFibBVyFcP89qLk08w3uojstZMXvmxi7h9asv49uLwkZPkDfRp3XyRxXDu8p3K8vYuHK453ZJSDQE3xQK9VezCxWvsSTQKmnp8HPy-BJLfLpw6sHwz089fjYf8Yw8Ac_8dP5Q3R4HdX6CPV85e0ThInKgkAdd4AsmM6czAxLrXDa8BJ4tIrQm64eC9OKmgdvjZMCyE2o9GKp0iO0uch81mh5XJ1tOzTIIksQ4K4fVLPvRdufC-lyqxjRrqF0paIkB3ZoMprluaFJhDa65izaUWFe_I3hCL1aJEN_Dps0ytvqAvKQesEilyRCj5vWX5SEAswI_DFCYiUuVoq6muKnP2rNcACWQFbl0_8X6yW6CZ2q-Dga7z9DtwAbBoWKmKQbqAcxYp8D_jrXL9pIx6i45r71B3_tRVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+Ga+Doping+on+Crystal+Structure+and+Polarimetric+Pattern+of+SHG+in+ZnO+Nanofilms&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Long%2C+Hua&rft.au=Habeeb%2C+Ammar+Ayesh&rft.au=Kinyua%2C+Dickson+Mwenda&rft.au=Wang%2C+Kai&rft.date=2019-06-21&rft.pub=MDPI&rft.eissn=2079-4991&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Fnano9060905&rft_id=info%3Apmid%2F31234399&rft.externalDocID=PMC6630969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |