Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy

Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 12; no. 8; pp. 764 - 772
Main Authors Li, Zhi, Chen, Yuanjun, Ji, Shufang, Tang, Yan, Chen, Wenxing, Li, Ang, Zhao, Jie, Xiong, Yu, Wu, Yuen, Gong, Yue, Yao, Tao, Liu, Wei, Zheng, Lirong, Dong, Juncai, Wang, Yu, Zhuang, Zhongbin, Xing, Wei, He, Chun-Ting, Peng, Chao, Cheong, Weng-Chon, Li, Qiheng, Zhang, Maolin, Chen, Zheng, Fu, Ninghua, Gao, Xin, Zhu, Wei, Wan, Jiawei, Zhang, Jian, Gu, Lin, Wei, Shiqiang, Hu, Peijun, Luo, Jun, Li, Jun, Chen, Chen, Peng, Qing, Duan, Xiangfeng, Huang, Yu, Chen, Xiao-Ming, Wang, Dingsheng, Li, Yadong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M 1 /CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir 1 /CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9  A mg Ir − 1 whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10 −3   A mg Ir − 1 ). The activity of Ir 1 /CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir 1 /CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir 1 /CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst. Single-atom catalysts maximize metal atom efficiency and exhibit properties that can be considerably different to their nanoparticle equivalent. Now a general host–guest strategy to make various single-atom catalysts on nitrogen-doped carbon has been developed; the iridium variant electrocatalyses the formic acid oxidation reaction with high mass activity and displays high tolerance to CO poisoning.
AbstractList Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host-guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M1/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir1/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 [Formula: see text] whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10-3 [Formula: see text]). The activity of Ir1/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir1/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir1/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst.Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host-guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M1/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir1/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 [Formula: see text] whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10-3 [Formula: see text]). The activity of Ir1/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir1/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir1/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst.
Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M1/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir1/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 AmgIr−1 whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10−3 AmgIr−1). The activity of Ir1/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir1/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir1/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst.Single-atom catalysts maximize metal atom efficiency and exhibit properties that can be considerably different to their nanoparticle equivalent. Now a general host–guest strategy to make various single-atom catalysts on nitrogen-doped carbon has been developed; the iridium variant electrocatalyses the formic acid oxidation reaction with high mass activity and displays high tolerance to CO poisoning.
Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host-guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M /CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir /CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 [Formula: see text] whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10  [Formula: see text]). The activity of Ir /CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir /CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir /CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst.
Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M 1 /CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir 1 /CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9  A mg Ir − 1 whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10 −3   A mg Ir − 1 ). The activity of Ir 1 /CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir 1 /CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir 1 /CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst. Single-atom catalysts maximize metal atom efficiency and exhibit properties that can be considerably different to their nanoparticle equivalent. Now a general host–guest strategy to make various single-atom catalysts on nitrogen-doped carbon has been developed; the iridium variant electrocatalyses the formic acid oxidation reaction with high mass activity and displays high tolerance to CO poisoning.
Author Ji, Shufang
Li, Yadong
Duan, Xiangfeng
Zhang, Jian
Wang, Dingsheng
Li, Ang
He, Chun-Ting
Chen, Wenxing
Xiong, Yu
Yao, Tao
Fu, Ninghua
Chen, Xiao-Ming
Gu, Lin
Chen, Chen
Zhang, Maolin
Zhu, Wei
Wu, Yuen
Wan, Jiawei
Zhao, Jie
Gong, Yue
Hu, Peijun
Gao, Xin
Zheng, Lirong
Wang, Yu
Liu, Wei
Wei, Shiqiang
Peng, Qing
Huang, Yu
Li, Zhi
Chen, Zheng
Li, Jun
Luo, Jun
Xing, Wei
Li, Qiheng
Dong, Juncai
Cheong, Weng-Chon
Zhuang, Zhongbin
Chen, Yuanjun
Peng, Chao
Tang, Yan
Author_xml – sequence: 1
  givenname: Zhi
  surname: Li
  fullname: Li, Zhi
  organization: Department of Chemistry, Tsinghua University
– sequence: 2
  givenname: Yuanjun
  surname: Chen
  fullname: Chen, Yuanjun
  organization: Department of Chemistry, Tsinghua University
– sequence: 3
  givenname: Shufang
  surname: Ji
  fullname: Ji, Shufang
  organization: Department of Chemistry, Tsinghua University
– sequence: 4
  givenname: Yan
  surname: Tang
  fullname: Tang, Yan
  organization: Department of Chemistry, Tsinghua University
– sequence: 5
  givenname: Wenxing
  orcidid: 0000-0001-9669-4358
  surname: Chen
  fullname: Chen, Wenxing
  organization: Department of Chemistry, Tsinghua University
– sequence: 6
  givenname: Ang
  surname: Li
  fullname: Li, Ang
  organization: Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology
– sequence: 7
  givenname: Jie
  orcidid: 0000-0002-0451-0919
  surname: Zhao
  fullname: Zhao, Jie
  organization: Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Chemistry Department, School of Chemistry and Molecular Engineering, East China University of Science and Technology
– sequence: 8
  givenname: Yu
  orcidid: 0000-0002-9156-0438
  surname: Xiong
  fullname: Xiong, Yu
  organization: Department of Chemistry, Tsinghua University
– sequence: 9
  givenname: Yuen
  orcidid: 0000-0001-9524-2843
  surname: Wu
  fullname: Wu, Yuen
  organization: Department of Chemistry, University of Science and Technology of China
– sequence: 10
  givenname: Yue
  orcidid: 0000-0002-5764-3117
  surname: Gong
  fullname: Gong, Yue
  organization: Institute of Physics, Chinese Academy of Sciences
– sequence: 11
  givenname: Tao
  orcidid: 0000-0001-8699-8294
  surname: Yao
  fullname: Yao, Tao
  organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China
– sequence: 12
  givenname: Wei
  orcidid: 0000-0002-6665-220X
  surname: Liu
  fullname: Liu, Wei
  organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China
– sequence: 13
  givenname: Lirong
  surname: Zheng
  fullname: Zheng, Lirong
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 14
  givenname: Juncai
  orcidid: 0000-0001-8860-093X
  surname: Dong
  fullname: Dong, Juncai
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 15
  givenname: Yu
  orcidid: 0000-0002-9071-0238
  surname: Wang
  fullname: Wang, Yu
  organization: Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences
– sequence: 16
  givenname: Zhongbin
  orcidid: 0000-0001-7187-1266
  surname: Zhuang
  fullname: Zhuang, Zhongbin
  organization: State Key Lab of Organic–Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology
– sequence: 17
  givenname: Wei
  surname: Xing
  fullname: Xing, Wei
  organization: Laboratory of Advanced Chemical Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin Province Key Laboratory of Low Carbon Chemical Power Sources
– sequence: 18
  givenname: Chun-Ting
  surname: He
  fullname: He, Chun-Ting
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen Unversity
– sequence: 19
  givenname: Chao
  orcidid: 0000-0003-3099-2808
  surname: Peng
  fullname: Peng, Chao
  organization: Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, School of Chemistry and Chemical Engineering, Queen’s University Belfast
– sequence: 20
  givenname: Weng-Chon
  orcidid: 0000-0002-7684-2808
  surname: Cheong
  fullname: Cheong, Weng-Chon
  organization: Department of Chemistry, Tsinghua University
– sequence: 21
  givenname: Qiheng
  surname: Li
  fullname: Li, Qiheng
  organization: Department of Chemistry, Tsinghua University
– sequence: 22
  givenname: Maolin
  surname: Zhang
  fullname: Zhang, Maolin
  organization: Department of Chemistry, Tsinghua University
– sequence: 23
  givenname: Zheng
  surname: Chen
  fullname: Chen, Zheng
  organization: Department of Chemistry, Tsinghua University
– sequence: 24
  givenname: Ninghua
  surname: Fu
  fullname: Fu, Ninghua
  organization: Department of Chemistry, Tsinghua University
– sequence: 25
  givenname: Xin
  surname: Gao
  fullname: Gao, Xin
  organization: Department of Chemistry, Tsinghua University
– sequence: 26
  givenname: Wei
  orcidid: 0000-0002-0317-7229
  surname: Zhu
  fullname: Zhu, Wei
  organization: Department of Chemistry, Tsinghua University
– sequence: 27
  givenname: Jiawei
  surname: Wan
  fullname: Wan, Jiawei
  organization: Department of Chemistry, Tsinghua University
– sequence: 28
  givenname: Jian
  orcidid: 0000-0001-9275-5790
  surname: Zhang
  fullname: Zhang, Jian
  organization: Department of Chemistry, Tsinghua University
– sequence: 29
  givenname: Lin
  orcidid: 0000-0002-7504-031X
  surname: Gu
  fullname: Gu, Lin
  organization: Institute of Physics, Chinese Academy of Sciences
– sequence: 30
  givenname: Shiqiang
  orcidid: 0000-0002-2052-1132
  surname: Wei
  fullname: Wei, Shiqiang
  organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China
– sequence: 31
  givenname: Peijun
  orcidid: 0000-0002-6318-1051
  surname: Hu
  fullname: Hu, Peijun
  organization: Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, School of Chemistry and Chemical Engineering, Queen’s University Belfast
– sequence: 32
  givenname: Jun
  orcidid: 0000-0001-5084-2087
  surname: Luo
  fullname: Luo, Jun
  organization: Center for Electron Microscopy, TUT-FEI Joint Laboratory, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology
– sequence: 33
  givenname: Jun
  orcidid: 0000-0002-8456-3980
  surname: Li
  fullname: Li, Jun
  organization: Department of Chemistry, Tsinghua University
– sequence: 34
  givenname: Chen
  orcidid: 0000-0001-5902-3037
  surname: Chen
  fullname: Chen, Chen
  organization: Department of Chemistry, Tsinghua University
– sequence: 35
  givenname: Qing
  surname: Peng
  fullname: Peng, Qing
  organization: Department of Chemistry, Tsinghua University
– sequence: 36
  givenname: Xiangfeng
  orcidid: 0000-0002-4321-6288
  surname: Duan
  fullname: Duan, Xiangfeng
  organization: Department of Chemistry and Biochemistry, University of California, California NanoSystems Institute, University of California
– sequence: 37
  givenname: Yu
  orcidid: 0000-0003-1793-0741
  surname: Huang
  fullname: Huang, Yu
  organization: California NanoSystems Institute, University of California, Department of Materials Science and Engineering, University of California
– sequence: 38
  givenname: Xiao-Ming
  orcidid: 0000-0002-3353-7918
  surname: Chen
  fullname: Chen, Xiao-Ming
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen Unversity
– sequence: 39
  givenname: Dingsheng
  orcidid: 0000-0003-0074-7633
  surname: Wang
  fullname: Wang, Dingsheng
  email: wangdingsheng@mail.tsinghua.edu.cn
  organization: Department of Chemistry, Tsinghua University
– sequence: 40
  givenname: Yadong
  orcidid: 0000-0003-1544-1127
  surname: Li
  fullname: Li, Yadong
  email: ydli@mail.tsinghua.edu.cn
  organization: Department of Chemistry, Tsinghua University, Department of Chemistry, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32541950$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1qFjEUhoNU7I9egBsJuHETTSY_M1lKUVsouNF1yGTOTFNmks8kA36u9Bq8Q6_ETL9WoaCLkHDO876cnPcUHYUYAKHnjL5mlHdvsmBStoQ2lFDRcqIfoRPWSkkEF_roz5vTY3Sa8w2lSnKmnqBj3kjBtKQn6Mdl8oNfF5x9mGYgtsQFO1vsvM8Fx4CDLylOEMgQdzDUVuprdYxpO4t32Do_4PjVD7b42sn7UK4h-28VXjdTbHGVQ7Izvo65_Pr-c1qheueSbIFp_xQ9Hu2c4dndfYY-v3_36fyCXH38cHn-9oo40cpCVMdUr5wVXA3S9Q1THTRaWiktpYxLoIo55sZRjZSNXat6ZgeQArSiQyeAn6FXB99dil-2Cczis4N5tgHimk0jGNdayVZU9OUD9CauKdTpKtW0XFMtu0q9uKPWfoHB7JJfbNqb--VWoD0ALsWcE4zG-XK7pfp1PxtGzRajOcRoaoxmi9HoqmQPlPfm_9M0B02ubJgg_R3636LfjnOxMg
CitedBy_id crossref_primary_10_3390_chemosensors12100209
crossref_primary_10_1039_D1EN01111A
crossref_primary_10_1039_D2TA08542A
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_1021_acsaem_1c03073
crossref_primary_10_1016_j_enrev_2023_100053
crossref_primary_10_1016_j_nanoen_2024_109529
crossref_primary_10_3390_chemistry5030111
crossref_primary_10_1016_j_jcis_2021_03_023
crossref_primary_10_1038_s41467_022_33066_6
crossref_primary_10_1002_adma_202312182
crossref_primary_10_1038_s41467_022_29074_1
crossref_primary_10_1016_j_jechem_2021_12_017
crossref_primary_10_1039_D3QM00561E
crossref_primary_10_1002_adma_202102801
crossref_primary_10_1016_S1872_2067_23_64428_6
crossref_primary_10_1002_ange_202408914
crossref_primary_10_1002_adma_202303243
crossref_primary_10_1016_j_esci_2024_100230
crossref_primary_10_1039_D4SC01220H
crossref_primary_10_1002_adfm_202300815
crossref_primary_10_3390_molecules29163734
crossref_primary_10_1016_j_carbon_2024_119669
crossref_primary_10_1002_anie_202420942
crossref_primary_10_1016_j_apsusc_2025_162457
crossref_primary_10_1016_j_ccr_2022_214710
crossref_primary_10_1016_j_chphma_2022_04_002
crossref_primary_10_1002_ange_202422199
crossref_primary_10_1021_acsnano_4c05568
crossref_primary_10_1016_j_cis_2022_102643
crossref_primary_10_1002_anie_202404019
crossref_primary_10_1039_D0TA04918B
crossref_primary_10_1039_D1TA08287F
crossref_primary_10_1016_j_cej_2024_152626
crossref_primary_10_1063_5_0146265
crossref_primary_10_1073_pnas_2319136121
crossref_primary_10_1039_D1EE00248A
crossref_primary_10_1021_acscatal_2c04563
crossref_primary_10_1038_s41467_022_33984_5
crossref_primary_10_1016_j_fuel_2025_134924
crossref_primary_10_1007_s40843_020_1458_5
crossref_primary_10_1016_j_ijhydene_2022_02_078
crossref_primary_10_1039_D2TA02764J
crossref_primary_10_1016_j_jcat_2023_115144
crossref_primary_10_1002_ange_202400174
crossref_primary_10_1016_j_ccr_2021_214244
crossref_primary_10_1039_D5SC00463B
crossref_primary_10_1093_nsr_nwac231
crossref_primary_10_1002_aenm_202103923
crossref_primary_10_1016_j_mtcata_2023_100009
crossref_primary_10_1002_anie_202408846
crossref_primary_10_1002_ange_202413369
crossref_primary_10_1016_j_cej_2022_136628
crossref_primary_10_1039_D1EE00247C
crossref_primary_10_1021_jacs_1c11241
crossref_primary_10_1021_acs_est_2c07653
crossref_primary_10_2147_IJN_S438278
crossref_primary_10_1002_anie_202316779
crossref_primary_10_1038_s41929_020_00563_0
crossref_primary_10_1021_jacs_4c03048
crossref_primary_10_1002_anie_202200465
crossref_primary_10_1021_acsanm_2c02746
crossref_primary_10_1002_anie_202408914
crossref_primary_10_1016_S1872_2067_21_63888_3
crossref_primary_10_1002_adfm_202308876
crossref_primary_10_1039_D4TA02059F
crossref_primary_10_1002_adma_202100713
crossref_primary_10_1016_j_apcatb_2021_120681
crossref_primary_10_1002_adfm_202309728
crossref_primary_10_1039_D4GC02203C
crossref_primary_10_1007_s12274_022_4429_9
crossref_primary_10_1016_j_ccr_2021_214261
crossref_primary_10_1016_j_electacta_2023_142120
crossref_primary_10_1039_D1SC00716E
crossref_primary_10_1002_adsu_202400958
crossref_primary_10_1002_advs_202206166
crossref_primary_10_1002_ange_202420942
crossref_primary_10_1002_smll_202404758
crossref_primary_10_1021_jacs_2c11739
crossref_primary_10_1002_anie_202314243
crossref_primary_10_1021_acsami_1c17587
crossref_primary_10_1002_anie_202314124
crossref_primary_10_1038_s41467_024_48672_9
crossref_primary_10_1002_adfm_202303299
crossref_primary_10_1039_D1TA08353H
crossref_primary_10_1007_s11581_021_04338_w
crossref_primary_10_1039_D4MH00215F
crossref_primary_10_1088_1361_6463_ace454
crossref_primary_10_1002_anie_202213783
crossref_primary_10_1038_s41467_021_25811_0
crossref_primary_10_1038_s41467_022_30411_7
crossref_primary_10_1021_acsnano_1c10059
crossref_primary_10_1007_s40820_021_00651_1
crossref_primary_10_1016_j_cej_2022_137855
crossref_primary_10_1039_D1TA08365A
crossref_primary_10_1002_sstr_202200041
crossref_primary_10_1515_gps_2023_0076
crossref_primary_10_1021_acsnano_4c18216
crossref_primary_10_1016_j_bios_2024_116622
crossref_primary_10_1016_j_talanta_2020_122042
crossref_primary_10_1002_smll_202203147
crossref_primary_10_1002_adma_202201109
crossref_primary_10_1073_pnas_2107332118
crossref_primary_10_1039_D0SC07040H
crossref_primary_10_3390_catal15030227
crossref_primary_10_1002_adma_202200255
crossref_primary_10_1002_smll_202105683
crossref_primary_10_1021_acs_nanolett_1c00074
crossref_primary_10_1021_acsnano_3c10058
crossref_primary_10_1002_adfm_202008318
crossref_primary_10_1016_j_apcatb_2024_123730
crossref_primary_10_1039_D3RA07029H
crossref_primary_10_1002_smll_202101428
crossref_primary_10_1002_smll_202206768
crossref_primary_10_1016_j_nxmate_2024_100192
crossref_primary_10_1016_j_jallcom_2022_168316
crossref_primary_10_1016_j_ijhydene_2022_02_152
crossref_primary_10_1007_s12274_022_4855_8
crossref_primary_10_1016_j_gee_2022_01_006
crossref_primary_10_1002_adma_202205703
crossref_primary_10_1016_j_jpowsour_2022_231877
crossref_primary_10_1002_advs_202304656
crossref_primary_10_1063_5_0213150
crossref_primary_10_1002_adma_202414283
crossref_primary_10_1021_jacs_1c12642
crossref_primary_10_1002_tcr_202200045
crossref_primary_10_1002_adma_202404692
crossref_primary_10_1016_j_ijhydene_2024_07_286
crossref_primary_10_1021_jacs_3c10524
crossref_primary_10_1016_j_apcatb_2023_123509
crossref_primary_10_1002_anie_202202200
crossref_primary_10_1002_anie_202315003
crossref_primary_10_1002_cctc_202400499
crossref_primary_10_1002_cey2_194
crossref_primary_10_1016_j_scib_2021_02_006
crossref_primary_10_1093_nsr_nwad156
crossref_primary_10_1038_s44160_023_00272_z
crossref_primary_10_1002_cctc_202101727
crossref_primary_10_1007_s12274_021_3816_y
crossref_primary_10_1002_adma_202415101
crossref_primary_10_1016_S1872_2067_21_63965_7
crossref_primary_10_1039_D1TA06915B
crossref_primary_10_1002_anie_202413369
crossref_primary_10_1002_adma_202418504
crossref_primary_10_1021_acs_est_3c03346
crossref_primary_10_1002_aenm_202203913
crossref_primary_10_1002_anie_202422199
crossref_primary_10_1016_j_cej_2024_151395
crossref_primary_10_1039_D3CC01177A
crossref_primary_10_1002_anie_202212015
crossref_primary_10_1039_D3QM01133J
crossref_primary_10_1021_jacs_4c10613
crossref_primary_10_1016_j_ijhydene_2023_12_005
crossref_primary_10_1016_j_surfin_2021_101293
crossref_primary_10_1002_aenm_202003796
crossref_primary_10_1002_smll_202006482
crossref_primary_10_1016_j_cej_2023_142498
crossref_primary_10_1039_D2TA02193E
crossref_primary_10_1021_jacs_3c11632
crossref_primary_10_1039_D1EE00154J
crossref_primary_10_1002_ange_202314243
crossref_primary_10_1039_D3EE02644B
crossref_primary_10_2139_ssrn_4179175
crossref_primary_10_1016_j_cej_2021_131396
crossref_primary_10_1002_ange_202314124
crossref_primary_10_1016_S1872_2067_21_64027_5
crossref_primary_10_1002_aenm_202201823
crossref_primary_10_1039_D2NR05869C
crossref_primary_10_1016_j_apcatb_2023_122766
crossref_primary_10_1002_adfm_202110485
crossref_primary_10_1016_j_apcatb_2023_122768
crossref_primary_10_1007_s12274_022_4319_1
crossref_primary_10_1016_j_apcata_2023_119025
crossref_primary_10_1021_acs_inorgchem_3c00091
crossref_primary_10_1002_ange_202408846
crossref_primary_10_1039_D3EY00150D
crossref_primary_10_1002_adma_202103882
crossref_primary_10_3389_fnano_2023_1257240
crossref_primary_10_1038_s41467_021_26747_1
crossref_primary_10_1039_D0NR05907B
crossref_primary_10_1002_ange_202316779
crossref_primary_10_1016_j_checat_2023_100758
crossref_primary_10_1002_advs_202205299
crossref_primary_10_1007_s10563_022_09378_4
crossref_primary_10_1016_j_chempr_2020_10_023
crossref_primary_10_1016_j_trechm_2021_08_008
crossref_primary_10_1016_j_checat_2023_100514
crossref_primary_10_1039_D1TA01108A
crossref_primary_10_1039_D2TA00752E
crossref_primary_10_1002_anie_202400174
crossref_primary_10_1038_s41467_021_25562_y
crossref_primary_10_1021_acs_jpcc_4c07614
crossref_primary_10_1007_s12274_021_3694_3
crossref_primary_10_3390_molecules26164756
crossref_primary_10_1002_ange_202404019
crossref_primary_10_1021_acsnano_3c11610
crossref_primary_10_1002_nano_202000239
crossref_primary_10_1016_j_jhazmat_2022_130677
crossref_primary_10_1016_j_coche_2023_100921
crossref_primary_10_1016_j_ijbiomac_2021_02_009
crossref_primary_10_1002_smll_202302611
crossref_primary_10_1021_acsami_2c02055
crossref_primary_10_1016_j_chempr_2021_10_030
crossref_primary_10_1007_s41918_021_00124_4
crossref_primary_10_1039_D4TC04761C
crossref_primary_10_1007_s12274_023_6334_2
crossref_primary_10_1007_s12598_023_02512_9
crossref_primary_10_1039_D2CS00806H
crossref_primary_10_1039_D3EY00050H
crossref_primary_10_1002_smll_202406765
crossref_primary_10_1007_s12274_021_3542_5
crossref_primary_10_1002_anie_202301711
crossref_primary_10_1002_anie_202404713
crossref_primary_10_1016_j_jcis_2021_01_062
crossref_primary_10_1073_pnas_2112109119
crossref_primary_10_1002_eom2_12186
crossref_primary_10_1038_s41467_022_32411_z
crossref_primary_10_1016_j_cej_2024_151238
crossref_primary_10_1021_acs_chemmater_4c00030
crossref_primary_10_1021_acssuschemeng_2c01010
crossref_primary_10_1039_D4CC05747C
crossref_primary_10_1016_j_jallcom_2024_174959
crossref_primary_10_1021_acsenergylett_1c02446
crossref_primary_10_1007_s10562_023_04340_z
crossref_primary_10_1002_cey2_286
crossref_primary_10_1002_adma_202418942
crossref_primary_10_1002_smll_202205495
crossref_primary_10_1021_acsnano_4c11307
crossref_primary_10_1007_s12274_022_4265_y
crossref_primary_10_1002_aenm_202003410
crossref_primary_10_1021_acsami_3c16300
crossref_primary_10_1021_acscatal_1c05175
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_1002_eom2_12176
crossref_primary_10_1007_s12274_020_2994_3
crossref_primary_10_1016_j_mtsust_2022_100140
crossref_primary_10_1021_jacs_1c11331
crossref_primary_10_1002_adma_202004287
crossref_primary_10_1039_D1SC00997D
crossref_primary_10_1007_s12274_021_3794_0
crossref_primary_10_1002_aenm_202103289
crossref_primary_10_1002_aenm_202203803
crossref_primary_10_1002_adma_202207850
crossref_primary_10_1002_ange_202208238
crossref_primary_10_1039_D4QM00026A
crossref_primary_10_1002_adfm_202214215
crossref_primary_10_1016_j_jiec_2025_02_011
crossref_primary_10_1002_ange_202408771
crossref_primary_10_34133_energymatadv_0067
crossref_primary_10_1002_ange_202412901
crossref_primary_10_1021_acscatal_3c05160
crossref_primary_10_1021_jacs_4c06173
crossref_primary_10_1002_anie_202211174
crossref_primary_10_1016_j_jallcom_2024_175966
crossref_primary_10_1021_acsnano_1c10003
crossref_primary_10_1002_adfm_202205654
crossref_primary_10_1016_j_cej_2022_135849
crossref_primary_10_1016_j_jechem_2025_02_029
crossref_primary_10_1038_s41467_024_55612_0
crossref_primary_10_1039_D1CC01989A
crossref_primary_10_1039_D1SC02170B
crossref_primary_10_1016_j_mtsust_2024_100731
crossref_primary_10_1002_advs_202104991
crossref_primary_10_1021_acsami_1c07846
crossref_primary_10_1016_j_jcis_2024_06_082
crossref_primary_10_1002_adfm_202108381
crossref_primary_10_1039_D2NJ05383G
crossref_primary_10_1016_j_cej_2022_135735
crossref_primary_10_1021_acscatal_3c06243
crossref_primary_10_1021_acs_inorgchem_4c04369
crossref_primary_10_1002_smll_202207695
crossref_primary_10_1002_sstr_202100007
crossref_primary_10_1002_adma_202308477
crossref_primary_10_1016_j_jechem_2021_05_046
crossref_primary_10_1002_smm2_1101
crossref_primary_10_1016_j_nanoen_2022_106984
crossref_primary_10_1007_s12274_024_6655_9
crossref_primary_10_1021_acs_accounts_2c00212
crossref_primary_10_1016_j_apcatb_2023_122937
crossref_primary_10_1021_acsenergylett_1c01965
crossref_primary_10_1073_pnas_2308828120
crossref_primary_10_1002_smsc_202200059
crossref_primary_10_1016_j_cej_2022_137127
crossref_primary_10_1007_s12274_021_3642_2
crossref_primary_10_1021_acsanm_1c03315
crossref_primary_10_1007_s12274_021_3412_9
crossref_primary_10_1016_j_nanoen_2023_108952
crossref_primary_10_1002_asia_202201161
crossref_primary_10_1021_jacs_2c03982
crossref_primary_10_1021_acsnano_0c06610
crossref_primary_10_1039_D4EE04660A
crossref_primary_10_1021_acsmaterialslett_3c00834
crossref_primary_10_1063_5_0048186
crossref_primary_10_1016_j_mtchem_2022_101001
crossref_primary_10_1016_j_apcatb_2022_121318
crossref_primary_10_1021_acsnano_4c00217
crossref_primary_10_1021_jacs_2c11497
crossref_primary_10_1002_ange_202115835
crossref_primary_10_1002_idm2_12141
crossref_primary_10_1038_s44160_022_00138_w
crossref_primary_10_1002_adma_202208512
crossref_primary_10_1021_acs_nanolett_4c02767
crossref_primary_10_1002_ange_202211174
crossref_primary_10_1088_2515_7639_ac1ab7
crossref_primary_10_1039_D1TA02833B
crossref_primary_10_1088_2043_6262_ad2c7d
crossref_primary_10_1016_j_apsusc_2022_154510
crossref_primary_10_1021_jacs_2c00242
crossref_primary_10_1039_D1NR05209H
crossref_primary_10_1016_j_nanoen_2024_110178
crossref_primary_10_1016_j_chphma_2023_03_003
crossref_primary_10_1016_j_jechem_2022_02_017
crossref_primary_10_1039_D3EE04023B
crossref_primary_10_1016_S1872_2067_23_64587_5
crossref_primary_10_1021_acscatal_3c04422
crossref_primary_10_1007_s40242_022_2245_0
crossref_primary_10_1021_acsestengg_1c00454
crossref_primary_10_1016_j_checat_2023_100586
crossref_primary_10_1007_s12274_023_6333_3
crossref_primary_10_1002_smtd_202100102
crossref_primary_10_1016_j_seppur_2024_127276
crossref_primary_10_1007_s12274_021_4029_0
crossref_primary_10_1021_jacs_1c06349
crossref_primary_10_1002_aenm_202402205
crossref_primary_10_3390_nano12234182
crossref_primary_10_1021_acsmaterialslett_4c00577
crossref_primary_10_1039_D2QI01911F
crossref_primary_10_1016_j_nanoen_2022_107125
crossref_primary_10_1021_acs_iecr_1c04027
crossref_primary_10_1039_D4TA03518F
crossref_primary_10_3390_catal14040221
crossref_primary_10_1002_ange_202212015
crossref_primary_10_1002_anie_202217995
crossref_primary_10_1007_s11426_020_9803_5
crossref_primary_10_1039_D3TC00800B
crossref_primary_10_1002_ange_202202200
crossref_primary_10_1016_j_cej_2023_147774
crossref_primary_10_3390_catal13010187
crossref_primary_10_1002_aenm_202301408
crossref_primary_10_1016_j_ijhydene_2022_06_049
crossref_primary_10_1021_acsnano_1c10544
crossref_primary_10_1039_D2CS00684G
crossref_primary_10_1021_jacs_4c07197
crossref_primary_10_1016_j_ccr_2021_213825
crossref_primary_10_1002_ange_202410413
crossref_primary_10_1016_j_cej_2021_131795
crossref_primary_10_1039_D3QI01576A
crossref_primary_10_1007_s11426_021_1063_2
crossref_primary_10_1007_s40843_022_2249_9
crossref_primary_10_1002_adma_202008151
crossref_primary_10_1080_01614940_2020_1864860
crossref_primary_10_1039_D3CC00005B
crossref_primary_10_1016_j_ccr_2022_214493
crossref_primary_10_1002_adma_202302625
crossref_primary_10_1016_j_jechem_2023_12_042
crossref_primary_10_1021_acs_analchem_1c00635
crossref_primary_10_1038_s41560_021_00940_4
crossref_primary_10_1002_anie_202115835
crossref_primary_10_1016_j_coelec_2024_101606
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1039_D1TA07778C
crossref_primary_10_1016_j_cej_2020_127917
crossref_primary_10_1002_adfm_202418602
crossref_primary_10_1021_acscatal_4c00781
crossref_primary_10_1021_acs_chemrev_1c00158
crossref_primary_10_1126_sciadv_abn5091
crossref_primary_10_1002_adma_202007056
crossref_primary_10_1002_cey2_315
crossref_primary_10_1016_j_scib_2024_01_009
crossref_primary_10_2139_ssrn_4055065
crossref_primary_10_1002_smll_202206071
crossref_primary_10_1002_adma_202413658
crossref_primary_10_1038_s41467_024_51200_4
crossref_primary_10_1002_tcr_202200237
crossref_primary_10_1016_j_mtcata_2024_100041
crossref_primary_10_1016_j_jelechem_2023_117245
crossref_primary_10_1002_adfm_202107672
crossref_primary_10_1016_j_mtener_2022_101197
crossref_primary_10_1007_s12274_023_6279_5
crossref_primary_10_1039_D2TA01011A
crossref_primary_10_1039_D3GC04920E
crossref_primary_10_1002_smsc_202200036
crossref_primary_10_1016_j_ccr_2023_215602
crossref_primary_10_1016_j_cej_2023_147505
crossref_primary_10_1016_j_jclepro_2022_134260
crossref_primary_10_1002_cctc_202402019
crossref_primary_10_1002_aenm_202103564
crossref_primary_10_1016_j_ijhydene_2022_11_207
crossref_primary_10_1016_j_jechem_2023_06_034
crossref_primary_10_1002_nano_202100009
crossref_primary_10_1038_s44160_022_00129_x
crossref_primary_10_1002_adma_202209633
crossref_primary_10_1007_s11426_022_1288_0
crossref_primary_10_1021_jacsau_3c00557
crossref_primary_10_1002_ange_202213783
crossref_primary_10_1021_acsaem_2c01912
crossref_primary_10_1021_acs_nanolett_2c04569
crossref_primary_10_1016_j_jcat_2022_12_025
crossref_primary_10_1021_jacs_2c11380
crossref_primary_10_1007_s12274_023_5510_8
crossref_primary_10_1007_s12274_023_5556_7
crossref_primary_10_1016_j_snb_2023_134139
crossref_primary_10_1007_s11771_024_5831_0
crossref_primary_10_1016_j_cej_2021_129034
crossref_primary_10_1021_acs_accounts_1c00734
crossref_primary_10_1039_D2SC06962H
crossref_primary_10_1142_S1793604721300073
crossref_primary_10_1016_j_ijhydene_2023_08_139
crossref_primary_10_1039_D2SC01110G
crossref_primary_10_1073_pnas_2318174121
crossref_primary_10_1002_anie_202207524
crossref_primary_10_1002_ange_202315003
crossref_primary_10_1039_D2CC06503G
crossref_primary_10_1002_ange_202200465
crossref_primary_10_1016_j_enchem_2022_100096
crossref_primary_10_1039_D2CC06406E
crossref_primary_10_1007_s40242_023_3001_9
crossref_primary_10_1038_s44160_022_00193_3
crossref_primary_10_1002_adfm_202205920
crossref_primary_10_1021_acsnano_2c02324
crossref_primary_10_1039_D3CC00451A
crossref_primary_10_1007_s12274_022_5335_x
crossref_primary_10_1016_j_apmate_2021_10_004
crossref_primary_10_1002_smll_202004398
crossref_primary_10_1021_acscatal_2c04918
crossref_primary_10_1002_aenm_202401061
crossref_primary_10_1002_smll_202202476
crossref_primary_10_1002_adma_202107421
crossref_primary_10_1039_D2NR00994C
crossref_primary_10_1002_smll_202203442
crossref_primary_10_1021_acsenergylett_4c01833
crossref_primary_10_1002_wene_419
crossref_primary_10_1016_j_saa_2022_121782
crossref_primary_10_1002_ange_202207524
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_1088_1361_6463_ac017f
crossref_primary_10_1021_acsami_3c06386
crossref_primary_10_1021_jacs_4c13335
crossref_primary_10_1002_chem_202101645
crossref_primary_10_1016_j_nanoen_2020_105689
crossref_primary_10_1016_j_watres_2021_117314
crossref_primary_10_1016_j_ijhydene_2023_01_147
crossref_primary_10_1002_smll_202103705
crossref_primary_10_1021_acs_jpclett_2c03433
crossref_primary_10_1002_smll_202202587
crossref_primary_10_1016_j_ccr_2024_215775
crossref_primary_10_1016_j_nanoen_2022_107296
crossref_primary_10_1016_j_cej_2023_142820
crossref_primary_10_1039_D4EE02697G
crossref_primary_10_1002_anie_202410413
crossref_primary_10_1016_j_cclet_2021_05_032
crossref_primary_10_1039_D2GC02956A
crossref_primary_10_1016_j_cej_2021_134084
crossref_primary_10_1021_acs_analchem_3c05245
crossref_primary_10_1002_ange_202301711
crossref_primary_10_1016_j_apmt_2021_101029
crossref_primary_10_1039_D4TA01702A
crossref_primary_10_1007_s11426_022_1305_3
crossref_primary_10_1002_ange_202404713
crossref_primary_10_1021_acsaem_2c02575
crossref_primary_10_1021_acsami_4c00911
crossref_primary_10_1021_jacs_3c02364
crossref_primary_10_1039_D1SC05983A
crossref_primary_10_1021_acssuschemeng_1c05352
crossref_primary_10_1038_s41578_023_00633_2
crossref_primary_10_1016_j_esci_2023_100209
crossref_primary_10_1016_j_enchem_2021_100054
crossref_primary_10_1021_acs_energyfuels_4c03417
crossref_primary_10_1021_jacs_3c14312
crossref_primary_10_1021_acsami_0c22106
crossref_primary_10_1093_nsr_nwaa228
crossref_primary_10_1016_j_fmre_2021_06_016
crossref_primary_10_1002_smll_202004500
crossref_primary_10_1038_s41467_024_46140_y
crossref_primary_10_1002_adma_202408364
crossref_primary_10_1007_s42114_023_00625_4
crossref_primary_10_1016_j_matre_2023_100197
crossref_primary_10_2139_ssrn_4108467
crossref_primary_10_1021_acs_analchem_1c01838
crossref_primary_10_1039_D1TA01948A
crossref_primary_10_1039_D1TA05990D
crossref_primary_10_1016_j_jcis_2021_10_195
crossref_primary_10_1002_aenm_202102556
crossref_primary_10_1002_smll_202107799
crossref_primary_10_1039_D1CY01787J
crossref_primary_10_1039_D1CY00650A
crossref_primary_10_1016_j_chempr_2021_08_020
crossref_primary_10_1016_j_nanoen_2023_108225
crossref_primary_10_1002_adfm_202209560
crossref_primary_10_1002_ifm2_19
crossref_primary_10_1021_acs_est_3c00420
crossref_primary_10_1007_s12274_023_5640_z
crossref_primary_10_1002_advs_202200592
crossref_primary_10_1002_anie_202412901
crossref_primary_10_1016_j_cej_2023_141823
crossref_primary_10_1039_D1TA02375F
crossref_primary_10_1016_j_arabjc_2021_103383
crossref_primary_10_1021_acs_nanolett_2c04944
crossref_primary_10_1126_science_adn5871
crossref_primary_10_1039_D2CP04387D
crossref_primary_10_1002_adfm_202315563
crossref_primary_10_1016_j_ensm_2024_103927
crossref_primary_10_1016_j_cclet_2020_11_051
crossref_primary_10_1016_j_ccr_2024_215858
crossref_primary_10_1002_adma_202409436
crossref_primary_10_1002_anie_202208238
crossref_primary_10_1007_s11705_024_2434_0
crossref_primary_10_1103_PhysRevB_107_205421
crossref_primary_10_1002_smll_202105150
crossref_primary_10_1016_j_xcrp_2023_101657
crossref_primary_10_1039_D1TA00022E
crossref_primary_10_1002_smtd_202001194
crossref_primary_10_1002_ange_202217995
crossref_primary_10_1002_sstr_202000051
crossref_primary_10_1016_j_apcatb_2024_124997
crossref_primary_10_1016_j_cej_2024_157208
crossref_primary_10_1016_j_ijhydene_2024_03_367
crossref_primary_10_1088_2399_1984_ac3ec1
crossref_primary_10_1063_5_0099781
crossref_primary_10_1002_advs_202403813
crossref_primary_10_1002_adfm_202407335
crossref_primary_10_1007_s12274_023_6089_9
crossref_primary_10_1016_S1872_2067_23_64611_X
crossref_primary_10_1088_1361_6528_aceb6b
crossref_primary_10_1007_s12274_021_3526_5
crossref_primary_10_1002_cctc_202101266
crossref_primary_10_1002_adfm_202300294
crossref_primary_10_1016_j_trechm_2021_05_009
crossref_primary_10_1038_s41467_023_38497_3
crossref_primary_10_1007_s00216_024_05240_w
crossref_primary_10_1021_acs_nanolett_3c03962
crossref_primary_10_1039_D0NA00803F
crossref_primary_10_1021_acscatal_4c00365
crossref_primary_10_1021_jacs_3c07851
crossref_primary_10_1007_s40843_021_1662_8
crossref_primary_10_3390_nano11102476
crossref_primary_10_1002_adfm_202212604
crossref_primary_10_1016_j_cej_2024_148963
crossref_primary_10_1002_eem2_12552
crossref_primary_10_1002_aenm_202101670
crossref_primary_10_1039_D2CP00736C
crossref_primary_10_1002_adma_202314340
crossref_primary_10_1002_adma_202406380
crossref_primary_10_1002_anie_202408771
crossref_primary_10_1016_j_cej_2024_155363
crossref_primary_10_1039_D3CY00779K
crossref_primary_10_1007_s12209_021_00295_7
crossref_primary_10_1039_D2TA06050G
crossref_primary_10_26599_NBE_2023_9290047
crossref_primary_10_1038_s41467_024_46175_1
crossref_primary_10_1002_cctc_202301106
crossref_primary_10_1021_acs_nanolett_2c03623
crossref_primary_10_1002_aenm_202300884
Cites_doi 10.1103/PhysRevB.54.11169
10.1038/nchem.1095
10.1016/j.apcatb.2011.11.002
10.1038/nature05118
10.1038/s41563-018-0167-5
10.1103/PhysRevLett.77.3865
10.1016/j.jpowsour.2007.10.011
10.1016/j.electacta.2010.04.014
10.1238/Physica.Topical.115a01007
10.1038/525325a
10.1021/om050661a
10.1016/j.susc.2015.10.007
10.1038/s41929-018-0195-1
10.1002/anie.201308620
10.1002/anie.201604802
10.1016/S1452-3981(23)06539-2
10.1021/cr00005a013
10.1002/adma.201504831
10.1016/S0378-7753(03)00026-0
10.1039/C8NR10236H
10.1126/science.aaf8800
10.1021/jacs.8b03121
10.1021/ja205747j
10.1126/science.1253150
10.1038/nnano.2010.235
10.1126/science.1140484
10.1038/s41467-017-01258-0
10.1021/cs300219j
10.1016/0927-0256(96)00008-0
10.1002/anie.201509241
10.1021/jacs.7b08643
10.1021/ja203184k
10.1126/sciadv.1600858
10.1238/Physica.Topical.115a00813
10.1038/s41560-017-0078-8
10.1016/j.apcata.2014.06.016
10.1021/nn302147s
10.1038/nmat4367
10.1016/j.jelechem.2005.05.002
10.1002/anie.201100512
10.1103/PhysRevB.63.125120
10.1016/S0378-7753(02)00271-9
10.1088/0953-8984/21/34/345501
10.1021/j150567a019
10.1103/PhysRevB.59.1758
10.1021/ar300361m
10.1126/science.aal3439
10.1021/ja505943h
10.1038/nchem.553
10.1038/nmat3795
10.1038/ncomms1427
10.1038/2011212a0
10.1002/anie.201702473
10.1039/C7TA06458F
10.1038/s41565-018-0197-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7QR
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/s41557-020-0473-9
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1755-4349
EndPage 772
ExternalDocumentID 32541950
10_1038_s41557_020_0473_9
Genre Journal Article
GroupedDBID ---
0R~
123
29M
39C
4.4
53G
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABFSG
ABJCF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACSTC
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFHIU
AFKRA
AFSHS
AFWHJ
AGAYW
AGGDT
AGQPQ
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
AIYXT
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L-9
LK8
M1P
M7P
ML-
NFIDA
NNMJJ
O9-
ODYON
P2P
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
AAYXX
ALIPV
CITATION
NPM
3V.
7QR
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c475t-6816b6ca436d5cb2168e295a55a00135e061c1cff6f01f876b1ade54e960d84e3
IEDL.DBID 7X7
ISSN 1755-4330
1755-4349
IngestDate Mon Jul 21 09:20:32 EDT 2025
Sat Aug 23 13:08:35 EDT 2025
Mon Jul 21 06:06:40 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Tue Jul 01 03:02:11 EDT 2025
Sun Aug 31 08:58:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-6816b6ca436d5cb2168e295a55a00135e061c1cff6f01f876b1ade54e960d84e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7187-1266
0000-0002-2052-1132
0000-0002-9071-0238
0000-0002-9156-0438
0000-0001-8699-8294
0000-0002-7504-031X
0000-0001-9524-2843
0000-0002-0317-7229
0000-0001-9669-4358
0000-0002-8456-3980
0000-0001-5084-2087
0000-0002-6318-1051
0000-0003-0074-7633
0000-0002-0451-0919
0000-0001-5902-3037
0000-0003-1544-1127
0000-0003-1793-0741
0000-0002-3353-7918
0000-0002-6665-220X
0000-0002-4321-6288
0000-0002-5764-3117
0000-0002-7684-2808
0000-0001-9275-5790
0000-0001-8860-093X
0000-0003-3099-2808
PMID 32541950
PQID 2427390958
PQPubID 536302
PageCount 9
ParticipantIDs proquest_miscellaneous_2413996574
proquest_journals_2427390958
pubmed_primary_32541950
crossref_citationtrail_10_1038_s41557_020_0473_9
crossref_primary_10_1038_s41557_020_0473_9
springer_journals_10_1038_s41557_020_0473_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature chemistry
PublicationTitleAbbrev Nat. Chem
PublicationTitleAlternate Nat Chem
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Choi (CR15) 2016; 7
Yang (CR14) 2018; 3
Yang, Kim, Tak, Soon, Lee (CR10) 2016; 55
Yin (CR4) 2016; 55
Wang, Tang, Gao, Lu (CR35) 2008; 175
Chen (CR34) 2017; 56
Zhou (CR47) 2010; 55
Chen (CR13) 2018; 140
Liu (CR23) 2016; 2
Bader (CR59) 1991; 91
Yang (CR3) 2013; 46
Zhang (CR8) 2018; 9
Duchesne (CR22) 2018; 17
Ravel, Newville (CR52) 2005; 115
Rice, Ha, Masel, Wieckowski (CR19) 2003; 115
Chen (CR44) 2012; 6
Guo (CR16) 2014; 344
Hoene, Charles, Hickam (CR38) 2002; 62
Tianou (CR30) 2017; 8
Jiang (CR39) 2011; 133
Kresse, Furthmüller (CR56) 1996; 54
Cheng (CR11) 2016; 7
Rice (CR18) 2002; 111
Yoshida, Nonoyama, Hattori (CR43) 2005; 2005
Xi (CR25) 2017; 139
Shimizu (CR42) 2012; 111
Kresse, Furthmüller (CR55) 1996; 6
Jones (CR9) 2016; 353
Wang, Zhang, Jiang, Cai (CR46) 2011; 133
Zhang (CR12) 2018; 1
Rong (CR27) 2016; 28
Jasinski (CR32) 1964; 201
Thomas (CR1) 2015; 525
Joly (CR53) 2001; 63
Tian, Zhou, Sun, Ding, Wang (CR21) 2007; 316
Lovic (CR45) 2005; 581
Yeung, Chan (CR48) 2005; 24
Kresse, Joubert (CR57) 1999; 59
Zheng (CR41) 2019; 11
Perales-Rondon, Ferre-Vilaplana, Feliu, Herrero (CR24) 2014; 136
Proietti (CR40) 2011; 2
Wang (CR6) 2016; 7
Li (CR50) 2012; 2
Siahrostami (CR17) 2013; 12
Zhang (CR49) 2016; 648
Perdew, Burke, Ernzerhof (CR58) 1996; 77
Malta (CR7) 2017; 355
Ji (CR20) 2010; 2
Ziaei-Azad, Semagina (CR51) 2014; 482
Qiao (CR2) 2011; 3
Al-Akraa, Mohammad, El-Deab, El-Anadouli (CR37) 2015; 10
Bashyam, Zelenay (CR33) 2006; 443
Wei (CR5) 2018; 13
Niu, Peng, Gong, Rong, Li (CR28) 2011; 50
Zitolo (CR31) 2015; 14
Taylor (CR36) 2017; 5
Chang, Feng, Liu, Xing, Hu (CR26) 2014; 53
Bunău, Joly (CR54) 2009; 21
Huang (CR29) 2011; 6
B Qiao (473_CR2) 2011; 3
N Cheng (473_CR11) 2016; 7
RF Bader (473_CR59) 1991; 91
R Bashyam (473_CR33) 2006; 443
S Wei (473_CR5) 2018; 13
R Jasinski (473_CR32) 1964; 201
IM Al-Akraa (473_CR37) 2015; 10
D Li (473_CR50) 2012; 2
G Malta (473_CR7) 2017; 355
J Zhang (473_CR12) 2018; 1
Y Chen (473_CR13) 2018; 140
B Ravel (473_CR52) 2005; 115
Y Joly (473_CR53) 2001; 63
J Jones (473_CR9) 2016; 353
L Wang (473_CR6) 2016; 7
S Siahrostami (473_CR17) 2013; 12
G Kresse (473_CR57) 1999; 59
Y Zheng (473_CR41) 2019; 11
X Huang (473_CR29) 2011; 6
E Proietti (473_CR40) 2011; 2
CH Choi (473_CR15) 2016; 7
C Rice (473_CR18) 2002; 111
Z Niu (473_CR28) 2011; 50
JM Thomas (473_CR1) 2015; 525
H Tianou (473_CR30) 2017; 8
C Rice (473_CR19) 2003; 115
Y Chen (473_CR34) 2017; 56
J Zhang (473_CR8) 2018; 9
JD Lovic (473_CR45) 2005; 581
HB Yang (473_CR14) 2018; 3
S Yang (473_CR10) 2016; 55
Y Zhou (473_CR47) 2010; 55
J Liu (473_CR23) 2016; 2
JV Perales-Rondon (473_CR24) 2014; 136
A Zitolo (473_CR31) 2015; 14
J-Y Wang (473_CR46) 2011; 133
JV Hoene (473_CR38) 2002; 62
O Bunău (473_CR54) 2009; 21
HL Jiang (473_CR39) 2011; 133
H Rong (473_CR27) 2016; 28
K-i Shimizu (473_CR42) 2012; 111
G Kresse (473_CR55) 1996; 6
H Ziaei-Azad (473_CR51) 2014; 482
SK Yeung (473_CR48) 2005; 24
T Zhang (473_CR49) 2016; 648
N Tian (473_CR21) 2007; 316
J Chang (473_CR26) 2014; 53
DH Yoshida (473_CR43) 2005; 2005
P Yin (473_CR4) 2016; 55
Z Xi (473_CR25) 2017; 139
L-F Chen (473_CR44) 2012; 6
PN Duchesne (473_CR22) 2018; 17
XF Yang (473_CR3) 2013; 46
X Wang (473_CR35) 2008; 175
G Kresse (473_CR56) 1996; 54
X Ji (473_CR20) 2010; 2
AK Taylor (473_CR36) 2017; 5
JP Perdew (473_CR58) 1996; 77
X Guo (473_CR16) 2014; 344
References_xml – volume: 2
  start-page: 1358
  year: 2012
  end-page: 1362
  ident: CR50
  article-title: Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance
  publication-title: ACS Catal.
– volume: 353
  start-page: 150
  year: 2016
  end-page: 154
  ident: CR9
  article-title: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping
  publication-title: Science
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR57
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 53
  start-page: 122
  year: 2014
  end-page: 126
  ident: CR26
  article-title: An effective Pd-Ni P/C anode catalyst for direct formic acid fuel cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 115
  start-page: 1007
  year: 2005
  end-page: 1010
  ident: CR52
  article-title: ATHENA and ARTEMIS: interactive graphical data analysis using IFEFFIT
  publication-title: Phys. Scr.
– volume: 2
  start-page: e1600858
  year: 2016
  ident: CR23
  article-title: Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis
  publication-title: Sci. Adv.
– volume: 115
  start-page: 229
  year: 2003
  end-page: 235
  ident: CR19
  article-title: Catalysts for direct formic acid fuel cells
  publication-title: J. Power Sources
– volume: 56
  start-page: 6937
  year: 2017
  end-page: 6941
  ident: CR34
  article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 525
  start-page: 325
  year: 2015
  end-page: 326
  ident: CR1
  article-title: Catalysis: tens of thousands of atoms replaced by one
  publication-title: Nature
– volume: 136
  start-page: 13110
  year: 2014
  end-page: 13113
  ident: CR24
  article-title: Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 7407
  year: 2018
  end-page: 7410
  ident: CR13
  article-title: Discovering partially charged single-atom Pt for enhanced anti-Markovnikov alkene hydrosilylation
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 10800
  year: 2016
  end-page: 10805
  ident: CR4
  article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 316
  start-page: 732
  year: 2007
  end-page: 735
  ident: CR21
  article-title: Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity
  publication-title: Science
– volume: 8
  year: 2017
  ident: CR30
  article-title: Inflating hollow nanocrystals through a repeated kirkendall cavitation process
  publication-title: Nat. Commun.
– volume: 14
  start-page: 937
  year: 2015
  end-page: 942
  ident: CR31
  article-title: Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials
  publication-title: Nat. Mater.
– volume: 2
  year: 2011
  ident: CR40
  article-title: Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells
  publication-title: Nat. Commun.
– volume: 133
  start-page: 14876
  year: 2011
  end-page: 14879
  ident: CR46
  article-title: From HCOOH to CO at Pd electrodes: a surface-enhanced infrared spectroscopy study
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 21514
  year: 2017
  end-page: 21527
  ident: CR36
  article-title: Block copolymer templated synthesis of PtIr bimetallic nanocatalysts for the formic acid oxidation reaction
  publication-title: J. Mater. Chem. A
– volume: 648
  start-page: 319
  year: 2016
  end-page: 327
  ident: CR49
  article-title: Iridium ultrasmall nanoparticles, worm-like chain nanowires, and porous nanodendrites: one-pot solvothermal synthesis and catalytic CO oxidation activity
  publication-title: Surf. Sci.
– volume: 482
  start-page: 327
  year: 2014
  end-page: 335
  ident: CR51
  article-title: Bimetallic catalysts: requirements for stabilizing PVP removal depend on the surface composition
  publication-title: Appl. Catal. A
– volume: 17
  start-page: 1033
  year: 2018
  end-page: 1039
  ident: CR22
  article-title: Golden single-atomic-site platinum electrocatalysts
  publication-title: Nat. Mater.
– volume: 28
  start-page: 2540
  year: 2016
  end-page: 2546
  ident: CR27
  article-title: Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: effective and stable catalysts
  publication-title: Adv. Mater.
– volume: 21
  start-page: 345501
  year: 2009
  ident: CR54
  article-title: Self-consistent aspects of X-ray absorption calculations
  publication-title: J. Phys. Condens. Matter.
– volume: 355
  start-page: 1399
  year: 2017
  end-page: 1403
  ident: CR7
  article-title: Identification of single-site gold catalysis in acetylene hydrochlorination
  publication-title: Science
– volume: 3
  start-page: 140
  year: 2018
  end-page: 147
  ident: CR14
  article-title: Atomically dispersed Ni( ) as the active site for electrochemical CO reduction
  publication-title: Nat. Energy
– volume: 46
  start-page: 1740
  year: 2013
  end-page: 1748
  ident: CR3
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
– volume: 175
  start-page: 784
  year: 2008
  end-page: 788
  ident: CR35
  article-title: Carbon-supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell
  publication-title: J. Power Sources
– volume: 2005
  start-page: 813
  year: 2005
  ident: CR43
  article-title: Quantitative determination of platinum oxidation state by XANES analysis
  publication-title: Phys. Scr.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR58
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 63
  start-page: 125120
  year: 2001
  ident: CR53
  article-title: X-ray absorption near-edge structure calculations beyond the muffin-tin approximation
  publication-title: Phys. Rev. B
– volume: 201
  start-page: 1212
  year: 1964
  end-page: 1213
  ident: CR32
  article-title: A new fuel cell cathode catalyst
  publication-title: Nature
– volume: 7
  year: 2016
  ident: CR15
  article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst
  publication-title: Nat. Commun.
– volume: 55
  start-page: 2058
  year: 2016
  end-page: 2062
  ident: CR10
  article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  year: 2016
  ident: CR6
  article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst
  publication-title: Nat. Commun.
– volume: 111
  start-page: 83
  year: 2002
  end-page: 89
  ident: CR18
  article-title: Direct formic acid fuel cells
  publication-title: J. Power Sources
– volume: 111
  start-page: 509
  year: 2012
  end-page: 514
  ident: CR42
  article-title: Quantitative determination of average rhodium oxidation state by a simple XANES analysis
  publication-title: Appl. Catal. B
– volume: 6
  start-page: 7092
  year: 2012
  end-page: 7102
  ident: CR44
  article-title: Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors
  publication-title: ACS Nano
– volume: 55
  start-page: 5024
  year: 2010
  end-page: 5027
  ident: CR47
  article-title: Poisoning and regeneration of Pd catalyst in direct formic acid fuel cell
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  ident: CR2
  article-title: Single-atom catalysis of CO oxidation using Pt /FeO
  publication-title: Nat. Chem.
– volume: 133
  start-page: 11854
  year: 2011
  end-page: 11857
  ident: CR39
  article-title: From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 6315
  year: 2011
  end-page: 6319
  ident: CR28
  article-title: Oleylamine-mediated shape evolution of palladium nanocrystals
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR55
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comp. Mater. Sci.
– volume: 91
  start-page: 893
  year: 1991
  end-page: 928
  ident: CR59
  article-title: A quantum theory of molecular structure and its applications
  publication-title: Chem. Rev.
– volume: 1
  start-page: 985
  year: 2018
  end-page: 992
  ident: CR12
  article-title: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction
  publication-title: Nat. Catal.
– volume: 139
  start-page: 15191
  year: 2017
  end-page: 15196
  ident: CR25
  article-title: Stabilizing CuPd nanoparticles via CuPd coupling to WO nanorods in electrochemical oxidation of formic acid
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3282
  year: 2015
  end-page: 3290
  ident: CR37
  article-title: Advances in direct formic acid fuel cells: fabrication of efficient Ir/Pd nanocatalysts for formic acid electro-oxidation
  publication-title: Int. J. Electrochem. Sci.
– volume: 13
  start-page: 856
  year: 2018
  end-page: 861
  ident: CR5
  article-title: Direct observation of noble metal nanoparticles transforming to thermally stable single atoms
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 286
  year: 2010
  end-page: 293
  ident: CR20
  article-title: Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes
  publication-title: Nat. Chem.
– volume: 443
  start-page: 63
  year: 2006
  end-page: 66
  ident: CR33
  article-title: A class of non-precious metal composite catalysts for fuel cells
  publication-title: Nature
– volume: 6
  start-page: 28
  year: 2011
  end-page: 32
  ident: CR29
  article-title: Freestanding palladium nanosheets with plasmonic and catalytic properties
  publication-title: Nat. Nanotechnol.
– volume: 62
  start-page: 1098
  year: 2002
  end-page: 1101
  ident: CR38
  article-title: Thermal decomposition of metal acetylacetonates: mass spectrometer studies
  publication-title: J. Phys. Chem.
– volume: 24
  start-page: 6426
  year: 2005
  end-page: 6430
  ident: CR48
  article-title: Selective oxidation of (porphyrinato)iridium( ) arylethyls by nitroxide: evidence for stabilization of carbon-centered Ir–CH –CHR radicals by iridium
  publication-title: Organometallics
– volume: 9
  year: 2018
  ident: CR8
  article-title: Cation vacancy stabilization of single-atomic-site Pt /Ni(OH) catalyst for diboration of alkynes and alkenes
  publication-title: Nat. Commun.
– volume: 344
  start-page: 616
  year: 2014
  end-page: 619
  ident: CR16
  article-title: Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen
  publication-title: Science
– volume: 581
  start-page: 294
  year: 2005
  end-page: 302
  ident: CR45
  article-title: Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst
  publication-title: J. Electroanal. Chem.
– volume: 12
  start-page: 1137
  year: 2013
  end-page: 1143
  ident: CR17
  article-title: Enabling direct H O production through rational electrocatalyst design
  publication-title: Nat. Mater.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR56
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 7
  year: 2016
  ident: CR11
  article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction
  publication-title: Nat. Commun.
– volume: 11
  start-page: 4911
  year: 2019
  end-page: 4917
  ident: CR41
  article-title: MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO to CO: the calcining temperature effect and the mechanism
  publication-title: Nanoscale
– volume: 54
  start-page: 11169
  year: 1996
  ident: 473_CR56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 3
  start-page: 634
  year: 2011
  ident: 473_CR2
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 111
  start-page: 509
  year: 2012
  ident: 473_CR42
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2011.11.002
– volume: 443
  start-page: 63
  year: 2006
  ident: 473_CR33
  publication-title: Nature
  doi: 10.1038/nature05118
– volume: 17
  start-page: 1033
  year: 2018
  ident: 473_CR22
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0167-5
– volume: 77
  start-page: 3865
  year: 1996
  ident: 473_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 175
  start-page: 784
  year: 2008
  ident: 473_CR35
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.10.011
– volume: 55
  start-page: 5024
  year: 2010
  ident: 473_CR47
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.04.014
– volume: 115
  start-page: 1007
  year: 2005
  ident: 473_CR52
  publication-title: Phys. Scr.
  doi: 10.1238/Physica.Topical.115a01007
– volume: 525
  start-page: 325
  year: 2015
  ident: 473_CR1
  publication-title: Nature
  doi: 10.1038/525325a
– volume: 24
  start-page: 6426
  year: 2005
  ident: 473_CR48
  publication-title: Organometallics
  doi: 10.1021/om050661a
– volume: 648
  start-page: 319
  year: 2016
  ident: 473_CR49
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2015.10.007
– volume: 1
  start-page: 985
  year: 2018
  ident: 473_CR12
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0195-1
– volume: 53
  start-page: 122
  year: 2014
  ident: 473_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308620
– volume: 55
  start-page: 10800
  year: 2016
  ident: 473_CR4
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604802
– volume: 10
  start-page: 3282
  year: 2015
  ident: 473_CR37
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)06539-2
– volume: 91
  start-page: 893
  year: 1991
  ident: 473_CR59
  publication-title: Chem. Rev.
  doi: 10.1021/cr00005a013
– volume: 28
  start-page: 2540
  year: 2016
  ident: 473_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504831
– volume: 115
  start-page: 229
  year: 2003
  ident: 473_CR19
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00026-0
– volume: 11
  start-page: 4911
  year: 2019
  ident: 473_CR41
  publication-title: Nanoscale
  doi: 10.1039/C8NR10236H
– volume: 353
  start-page: 150
  year: 2016
  ident: 473_CR9
  publication-title: Science
  doi: 10.1126/science.aaf8800
– volume: 140
  start-page: 7407
  year: 2018
  ident: 473_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03121
– volume: 133
  start-page: 14876
  year: 2011
  ident: 473_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205747j
– volume: 344
  start-page: 616
  year: 2014
  ident: 473_CR16
  publication-title: Science
  doi: 10.1126/science.1253150
– volume: 6
  start-page: 28
  year: 2011
  ident: 473_CR29
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.235
– volume: 316
  start-page: 732
  year: 2007
  ident: 473_CR21
  publication-title: Science
  doi: 10.1126/science.1140484
– volume: 8
  year: 2017
  ident: 473_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01258-0
– volume: 2
  start-page: 1358
  year: 2012
  ident: 473_CR50
  publication-title: ACS Catal.
  doi: 10.1021/cs300219j
– volume: 6
  start-page: 15
  year: 1996
  ident: 473_CR55
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 55
  start-page: 2058
  year: 2016
  ident: 473_CR10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509241
– volume: 139
  start-page: 15191
  year: 2017
  ident: 473_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08643
– volume: 133
  start-page: 11854
  year: 2011
  ident: 473_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203184k
– volume: 2
  start-page: e1600858
  year: 2016
  ident: 473_CR23
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600858
– volume: 9
  year: 2018
  ident: 473_CR8
  publication-title: Nat. Commun.
– volume: 2005
  start-page: 813
  year: 2005
  ident: 473_CR43
  publication-title: Phys. Scr.
  doi: 10.1238/Physica.Topical.115a00813
– volume: 3
  start-page: 140
  year: 2018
  ident: 473_CR14
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0078-8
– volume: 7
  year: 2016
  ident: 473_CR11
  publication-title: Nat. Commun.
– volume: 482
  start-page: 327
  year: 2014
  ident: 473_CR51
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2014.06.016
– volume: 6
  start-page: 7092
  year: 2012
  ident: 473_CR44
  publication-title: ACS Nano
  doi: 10.1021/nn302147s
– volume: 14
  start-page: 937
  year: 2015
  ident: 473_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4367
– volume: 581
  start-page: 294
  year: 2005
  ident: 473_CR45
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2005.05.002
– volume: 7
  year: 2016
  ident: 473_CR15
  publication-title: Nat. Commun.
– volume: 50
  start-page: 6315
  year: 2011
  ident: 473_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201100512
– volume: 63
  start-page: 125120
  year: 2001
  ident: 473_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.125120
– volume: 111
  start-page: 83
  year: 2002
  ident: 473_CR18
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00271-9
– volume: 21
  start-page: 345501
  year: 2009
  ident: 473_CR54
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/21/34/345501
– volume: 62
  start-page: 1098
  year: 2002
  ident: 473_CR38
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150567a019
– volume: 7
  year: 2016
  ident: 473_CR6
  publication-title: Nat. Commun.
– volume: 59
  start-page: 1758
  year: 1999
  ident: 473_CR57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 46
  start-page: 1740
  year: 2013
  ident: 473_CR3
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 355
  start-page: 1399
  year: 2017
  ident: 473_CR7
  publication-title: Science
  doi: 10.1126/science.aal3439
– volume: 136
  start-page: 13110
  year: 2014
  ident: 473_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505943h
– volume: 2
  start-page: 286
  year: 2010
  ident: 473_CR20
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.553
– volume: 12
  start-page: 1137
  year: 2013
  ident: 473_CR17
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3795
– volume: 2
  year: 2011
  ident: 473_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1427
– volume: 201
  start-page: 1212
  year: 1964
  ident: 473_CR32
  publication-title: Nature
  doi: 10.1038/2011212a0
– volume: 56
  start-page: 6937
  year: 2017
  ident: 473_CR34
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201702473
– volume: 5
  start-page: 21514
  year: 2017
  ident: 473_CR36
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06458F
– volume: 13
  start-page: 856
  year: 2018
  ident: 473_CR5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0197-9
SSID ssj0065316
Score 2.7066891
Snippet Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 764
SubjectTerms 639/638/161/886
639/638/298
639/638/77/886
Analytical Chemistry
Atom economy
Biochemistry
Carbon
Carbon monoxide
Carbon monoxide poisoning
Catalysts
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Copper
Density functional theory
Displays
Electronic structure
Equivalence
First principles
Formic acid
Inorganic Chemistry
Iridium
Manganese
Molybdenum
Nanoparticles
Nickel
Nitrogen
Organic Chemistry
Oxidation
Palladium
Physical Chemistry
Platinum
Poisoning
Properties (attributes)
Single atom catalysts
Strategy
Title Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy
URI https://link.springer.com/article/10.1038/s41557-020-0473-9
https://www.ncbi.nlm.nih.gov/pubmed/32541950
https://www.proquest.com/docview/2427390958
https://www.proquest.com/docview/2413996574
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAF8e6WUhmJE8hqsn7EPqFu1aVwWCFEpb1Fju2sInWTZbMrdTnBb-Af8kuYyatCFT0kkWInGWXGnvk84xlC3mbceqsVwJI8xqTasWJaescyIQTIVIQ6DqMtZuriUnyey3m34FZ3YZX9nNhM1L5yuEZ-AqokAXxupP6w-s6wahR6V7sSGvfJPqYuQ6lO5gPgUiBfze6iRErcGTR4Nbk-qVGRJgzBUyQSzsy_eumWsXnLUdron-lj8qgzHOlpy-kn5F4on5IHZ329tmfk16d14YvtkiL6vwoM0PSSNqszu3pDq5LC4F1XIC_MV6vgoWmdwV0wWvFYFo5aV3haXRdtmSVa70qwDuviB3TG8PgFtXTRZqmmuDfkz8_fC6Se1m2G291zcjk9_3Z2wboCC8yJRG6Y0rHKlLOCKy9dNo6VDmMjrZQWTUMZQNm72OW5yqM4h3kzi60PUgSAPV6LwF-QvbIqwwGhkYqMz3kix94K77TmufKxNsFomZtIjEjU_97UddnHsQjGVdp4wblOW46kwJEUOZKaEXk3PLJqU2_c1fmo51najcI6vZGZEXkzNANb0Cliy1BtsQ_YwEbJBEh82fJ6-BoH9Ixlckfkfc_8m5f_l5TDu0l5RR6OG7HDIMIjsrdZb8NrMGw22XEjvXDW04_HZP90OpnM4Do5n335-hfLU_h2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlUC6Id7ctYCS4gKwm8SPOoUKosOzS0lMr9RYc21lF6ibLZlewnNpv6H_wUXwJM8lmK1TRWw-5xI4z8ozn4XkR8jrjxhmtwCzJQyyqHSqmpbMsE0IATQUo4zDa4kgNTsSXU3m6Rn53uTAYVtnxxIZRu8riHfkuiJIY7PNE6veT7wy7RqF3tWuh0ZLFgV_8AJOt3ht-BPy-iaL-p-P9AVt2FWBWxHLGlA5VpqwRXDlpsyhU2keJNFIa1IekBwlnQ5vnKg_CHJhFFhrnpfCg6zstPId175C7goMkx8z0_ueO8yug5yabKZYSM5FWXlSud2sU3DFDYy0QMWfJv3LwmnJ7zTHbyLv-A3J_qajSDy1lPSRrvnxENva7_nCPycVwWrhiPqZ423DmGVjvY9rcBi3qGa1KCsxiWgF9MldNvIOhaQZvQUnGZ1xYamzhaPWzaNs60XpRgjZaF79gMobjj6iho7YqNsVclD_nlyOEntZtRd3FE3JyK1v_lKyXVek3CQ1UkLicxzJyRjirNc-VC3XiEy3zJBA9EnTbm9pltXNsunGWNl53rtMWIylgJEWMpEmPvF19MmlLfdw0eafDWbo89XV6RaM98mo1DGhBJ4wpfTXHOaBzJ0rGAOKzFterv3Gw1rEtb4-865B_tfh_Qdm6GZSXZGNw_PUwPRweHWyTe1FDghjAuEPWZ9O5fw5K1Sx70VAyJd9u--j8Bc2yMMk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbCbgg3iwUMBJcQNbmYTvOASFou-pStKoQlXoLju2sInWTZbMrWE7tN_Rv-jl8CTN5bIUqeushl9hxRp7xPDwvQl6nobZaSTBLMh-LavuSKWENSznnQFMeyjiMthjLvUP--UgcbZDzLhcGwyo7nlgzalsavCMfgCiJwD6PhRpkbVjEwc7ww-wHww5S6Gnt2mk0JLLvVj_BfKvej3YA12-CYLj7bXuPtR0GmOGRWDCpfJlKo3korTBp4EvlglhoITTqRsKBtDO-yTKZeX4GjCP1tXWCO9D7reIuhHVvkM0IraIe2fy0Oz742skBCdRd5zZFQmBe0tqnGqpBhWI8Ymi6eTwKWfyvVLyk6l5y09bSb3iX3GnVVvqxobN7ZMMV98mt7a5b3ANyOprnNl9OKd49HDsGtvyU1ndDq2pBy4IC65iXQK3MljNnYWiewltQmfGZ5oZqk1ta_sqbJk-0WhWgm1b5b5iMwfkTqumkqZFNMTPlz8nZBKGnVVNfd_WQHF7L5j8ivaIs3BNCPenFNgsjEVjNrVEqzKT1VexiJbLY433iddubmLb2ObbgOE5qH3yokgYjCWAkQYwkcZ-8XX8yawp_XDV5q8NZ0vKAKrmg2D55tR4GtKBLRheuXOIc0MBjKSIA8XGD6_XfQrDdsUlvn7zrkH-x-H9BeXo1KC_JTTg2yZfReP8ZuR3UFIjRjFukt5gv3XPQsBbpi5aUKfl-3afnLyvYNls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iridium+single-atom+catalyst+on+nitrogen-doped+carbon+for+formic+acid+oxidation+synthesized+using+a+general+host-guest+strategy&rft.jtitle=Nature+chemistry&rft.au=Li%2C+Zhi&rft.au=Chen%2C+Yuanjun&rft.au=Ji%2C+Shufang&rft.au=Tang%2C+Yan&rft.date=2020-08-01&rft.eissn=1755-4349&rft.volume=12&rft.issue=8&rft.spage=764&rft_id=info:doi/10.1038%2Fs41557-020-0473-9&rft_id=info%3Apmid%2F32541950&rft.externalDocID=32541950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon