Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy
Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate...
Saved in:
Published in | Nature chemistry Vol. 12; no. 8; pp. 764 - 772 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M
1
/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir
1
/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9
A
mg
Ir
−
1
whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10
−3
A
mg
Ir
−
1
). The activity of Ir
1
/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir
1
/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir
1
/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst.
Single-atom catalysts maximize metal atom efficiency and exhibit properties that can be considerably different to their nanoparticle equivalent. Now a general host–guest strategy to make various single-atom catalysts on nitrogen-doped carbon has been developed; the iridium variant electrocatalyses the formic acid oxidation reaction with high mass activity and displays high tolerance to CO poisoning. |
---|---|
AbstractList | Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host-guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M1/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir1/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 [Formula: see text] whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10-3 [Formula: see text]). The activity of Ir1/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir1/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir1/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst.Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host-guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M1/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir1/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 [Formula: see text] whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10-3 [Formula: see text]). The activity of Ir1/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir1/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir1/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst. Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M1/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir1/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 AmgIr−1 whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10−3 AmgIr−1). The activity of Ir1/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir1/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir1/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst.Single-atom catalysts maximize metal atom efficiency and exhibit properties that can be considerably different to their nanoparticle equivalent. Now a general host–guest strategy to make various single-atom catalysts on nitrogen-doped carbon has been developed; the iridium variant electrocatalyses the formic acid oxidation reaction with high mass activity and displays high tolerance to CO poisoning. Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host-guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M /CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir /CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 [Formula: see text] whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10 [Formula: see text]). The activity of Ir /CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir /CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir /CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst. Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M 1 /CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir 1 /CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 A mg Ir − 1 whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10 −3 A mg Ir − 1 ). The activity of Ir 1 /CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir 1 /CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir 1 /CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst. Single-atom catalysts maximize metal atom efficiency and exhibit properties that can be considerably different to their nanoparticle equivalent. Now a general host–guest strategy to make various single-atom catalysts on nitrogen-doped carbon has been developed; the iridium variant electrocatalyses the formic acid oxidation reaction with high mass activity and displays high tolerance to CO poisoning. |
Author | Ji, Shufang Li, Yadong Duan, Xiangfeng Zhang, Jian Wang, Dingsheng Li, Ang He, Chun-Ting Chen, Wenxing Xiong, Yu Yao, Tao Fu, Ninghua Chen, Xiao-Ming Gu, Lin Chen, Chen Zhang, Maolin Zhu, Wei Wu, Yuen Wan, Jiawei Zhao, Jie Gong, Yue Hu, Peijun Gao, Xin Zheng, Lirong Wang, Yu Liu, Wei Wei, Shiqiang Peng, Qing Huang, Yu Li, Zhi Chen, Zheng Li, Jun Luo, Jun Xing, Wei Li, Qiheng Dong, Juncai Cheong, Weng-Chon Zhuang, Zhongbin Chen, Yuanjun Peng, Chao Tang, Yan |
Author_xml | – sequence: 1 givenname: Zhi surname: Li fullname: Li, Zhi organization: Department of Chemistry, Tsinghua University – sequence: 2 givenname: Yuanjun surname: Chen fullname: Chen, Yuanjun organization: Department of Chemistry, Tsinghua University – sequence: 3 givenname: Shufang surname: Ji fullname: Ji, Shufang organization: Department of Chemistry, Tsinghua University – sequence: 4 givenname: Yan surname: Tang fullname: Tang, Yan organization: Department of Chemistry, Tsinghua University – sequence: 5 givenname: Wenxing orcidid: 0000-0001-9669-4358 surname: Chen fullname: Chen, Wenxing organization: Department of Chemistry, Tsinghua University – sequence: 6 givenname: Ang surname: Li fullname: Li, Ang organization: Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology – sequence: 7 givenname: Jie orcidid: 0000-0002-0451-0919 surname: Zhao fullname: Zhao, Jie organization: Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Chemistry Department, School of Chemistry and Molecular Engineering, East China University of Science and Technology – sequence: 8 givenname: Yu orcidid: 0000-0002-9156-0438 surname: Xiong fullname: Xiong, Yu organization: Department of Chemistry, Tsinghua University – sequence: 9 givenname: Yuen orcidid: 0000-0001-9524-2843 surname: Wu fullname: Wu, Yuen organization: Department of Chemistry, University of Science and Technology of China – sequence: 10 givenname: Yue orcidid: 0000-0002-5764-3117 surname: Gong fullname: Gong, Yue organization: Institute of Physics, Chinese Academy of Sciences – sequence: 11 givenname: Tao orcidid: 0000-0001-8699-8294 surname: Yao fullname: Yao, Tao organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China – sequence: 12 givenname: Wei orcidid: 0000-0002-6665-220X surname: Liu fullname: Liu, Wei organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China – sequence: 13 givenname: Lirong surname: Zheng fullname: Zheng, Lirong organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 14 givenname: Juncai orcidid: 0000-0001-8860-093X surname: Dong fullname: Dong, Juncai organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 15 givenname: Yu orcidid: 0000-0002-9071-0238 surname: Wang fullname: Wang, Yu organization: Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences – sequence: 16 givenname: Zhongbin orcidid: 0000-0001-7187-1266 surname: Zhuang fullname: Zhuang, Zhongbin organization: State Key Lab of Organic–Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology – sequence: 17 givenname: Wei surname: Xing fullname: Xing, Wei organization: Laboratory of Advanced Chemical Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin Province Key Laboratory of Low Carbon Chemical Power Sources – sequence: 18 givenname: Chun-Ting surname: He fullname: He, Chun-Ting organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen Unversity – sequence: 19 givenname: Chao orcidid: 0000-0003-3099-2808 surname: Peng fullname: Peng, Chao organization: Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, School of Chemistry and Chemical Engineering, Queen’s University Belfast – sequence: 20 givenname: Weng-Chon orcidid: 0000-0002-7684-2808 surname: Cheong fullname: Cheong, Weng-Chon organization: Department of Chemistry, Tsinghua University – sequence: 21 givenname: Qiheng surname: Li fullname: Li, Qiheng organization: Department of Chemistry, Tsinghua University – sequence: 22 givenname: Maolin surname: Zhang fullname: Zhang, Maolin organization: Department of Chemistry, Tsinghua University – sequence: 23 givenname: Zheng surname: Chen fullname: Chen, Zheng organization: Department of Chemistry, Tsinghua University – sequence: 24 givenname: Ninghua surname: Fu fullname: Fu, Ninghua organization: Department of Chemistry, Tsinghua University – sequence: 25 givenname: Xin surname: Gao fullname: Gao, Xin organization: Department of Chemistry, Tsinghua University – sequence: 26 givenname: Wei orcidid: 0000-0002-0317-7229 surname: Zhu fullname: Zhu, Wei organization: Department of Chemistry, Tsinghua University – sequence: 27 givenname: Jiawei surname: Wan fullname: Wan, Jiawei organization: Department of Chemistry, Tsinghua University – sequence: 28 givenname: Jian orcidid: 0000-0001-9275-5790 surname: Zhang fullname: Zhang, Jian organization: Department of Chemistry, Tsinghua University – sequence: 29 givenname: Lin orcidid: 0000-0002-7504-031X surname: Gu fullname: Gu, Lin organization: Institute of Physics, Chinese Academy of Sciences – sequence: 30 givenname: Shiqiang orcidid: 0000-0002-2052-1132 surname: Wei fullname: Wei, Shiqiang organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China – sequence: 31 givenname: Peijun orcidid: 0000-0002-6318-1051 surname: Hu fullname: Hu, Peijun organization: Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, School of Chemistry and Chemical Engineering, Queen’s University Belfast – sequence: 32 givenname: Jun orcidid: 0000-0001-5084-2087 surname: Luo fullname: Luo, Jun organization: Center for Electron Microscopy, TUT-FEI Joint Laboratory, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology – sequence: 33 givenname: Jun orcidid: 0000-0002-8456-3980 surname: Li fullname: Li, Jun organization: Department of Chemistry, Tsinghua University – sequence: 34 givenname: Chen orcidid: 0000-0001-5902-3037 surname: Chen fullname: Chen, Chen organization: Department of Chemistry, Tsinghua University – sequence: 35 givenname: Qing surname: Peng fullname: Peng, Qing organization: Department of Chemistry, Tsinghua University – sequence: 36 givenname: Xiangfeng orcidid: 0000-0002-4321-6288 surname: Duan fullname: Duan, Xiangfeng organization: Department of Chemistry and Biochemistry, University of California, California NanoSystems Institute, University of California – sequence: 37 givenname: Yu orcidid: 0000-0003-1793-0741 surname: Huang fullname: Huang, Yu organization: California NanoSystems Institute, University of California, Department of Materials Science and Engineering, University of California – sequence: 38 givenname: Xiao-Ming orcidid: 0000-0002-3353-7918 surname: Chen fullname: Chen, Xiao-Ming organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen Unversity – sequence: 39 givenname: Dingsheng orcidid: 0000-0003-0074-7633 surname: Wang fullname: Wang, Dingsheng email: wangdingsheng@mail.tsinghua.edu.cn organization: Department of Chemistry, Tsinghua University – sequence: 40 givenname: Yadong orcidid: 0000-0003-1544-1127 surname: Li fullname: Li, Yadong email: ydli@mail.tsinghua.edu.cn organization: Department of Chemistry, Tsinghua University, Department of Chemistry, University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32541950$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1qFjEUhoNU7I9egBsJuHETTSY_M1lKUVsouNF1yGTOTFNmks8kA36u9Bq8Q6_ETL9WoaCLkHDO876cnPcUHYUYAKHnjL5mlHdvsmBStoQ2lFDRcqIfoRPWSkkEF_roz5vTY3Sa8w2lSnKmnqBj3kjBtKQn6Mdl8oNfF5x9mGYgtsQFO1vsvM8Fx4CDLylOEMgQdzDUVuprdYxpO4t32Do_4PjVD7b42sn7UK4h-28VXjdTbHGVQ7Izvo65_Pr-c1qheueSbIFp_xQ9Hu2c4dndfYY-v3_36fyCXH38cHn-9oo40cpCVMdUr5wVXA3S9Q1THTRaWiktpYxLoIo55sZRjZSNXat6ZgeQArSiQyeAn6FXB99dil-2Cczis4N5tgHimk0jGNdayVZU9OUD9CauKdTpKtW0XFMtu0q9uKPWfoHB7JJfbNqb--VWoD0ALsWcE4zG-XK7pfp1PxtGzRajOcRoaoxmi9HoqmQPlPfm_9M0B02ubJgg_R3636LfjnOxMg |
CitedBy_id | crossref_primary_10_3390_chemosensors12100209 crossref_primary_10_1039_D1EN01111A crossref_primary_10_1039_D2TA08542A crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_1021_acsaem_1c03073 crossref_primary_10_1016_j_enrev_2023_100053 crossref_primary_10_1016_j_nanoen_2024_109529 crossref_primary_10_3390_chemistry5030111 crossref_primary_10_1016_j_jcis_2021_03_023 crossref_primary_10_1038_s41467_022_33066_6 crossref_primary_10_1002_adma_202312182 crossref_primary_10_1038_s41467_022_29074_1 crossref_primary_10_1016_j_jechem_2021_12_017 crossref_primary_10_1039_D3QM00561E crossref_primary_10_1002_adma_202102801 crossref_primary_10_1016_S1872_2067_23_64428_6 crossref_primary_10_1002_ange_202408914 crossref_primary_10_1002_adma_202303243 crossref_primary_10_1016_j_esci_2024_100230 crossref_primary_10_1039_D4SC01220H crossref_primary_10_1002_adfm_202300815 crossref_primary_10_3390_molecules29163734 crossref_primary_10_1016_j_carbon_2024_119669 crossref_primary_10_1002_anie_202420942 crossref_primary_10_1016_j_apsusc_2025_162457 crossref_primary_10_1016_j_ccr_2022_214710 crossref_primary_10_1016_j_chphma_2022_04_002 crossref_primary_10_1002_ange_202422199 crossref_primary_10_1021_acsnano_4c05568 crossref_primary_10_1016_j_cis_2022_102643 crossref_primary_10_1002_anie_202404019 crossref_primary_10_1039_D0TA04918B crossref_primary_10_1039_D1TA08287F crossref_primary_10_1016_j_cej_2024_152626 crossref_primary_10_1063_5_0146265 crossref_primary_10_1073_pnas_2319136121 crossref_primary_10_1039_D1EE00248A crossref_primary_10_1021_acscatal_2c04563 crossref_primary_10_1038_s41467_022_33984_5 crossref_primary_10_1016_j_fuel_2025_134924 crossref_primary_10_1007_s40843_020_1458_5 crossref_primary_10_1016_j_ijhydene_2022_02_078 crossref_primary_10_1039_D2TA02764J crossref_primary_10_1016_j_jcat_2023_115144 crossref_primary_10_1002_ange_202400174 crossref_primary_10_1016_j_ccr_2021_214244 crossref_primary_10_1039_D5SC00463B crossref_primary_10_1093_nsr_nwac231 crossref_primary_10_1002_aenm_202103923 crossref_primary_10_1016_j_mtcata_2023_100009 crossref_primary_10_1002_anie_202408846 crossref_primary_10_1002_ange_202413369 crossref_primary_10_1016_j_cej_2022_136628 crossref_primary_10_1039_D1EE00247C crossref_primary_10_1021_jacs_1c11241 crossref_primary_10_1021_acs_est_2c07653 crossref_primary_10_2147_IJN_S438278 crossref_primary_10_1002_anie_202316779 crossref_primary_10_1038_s41929_020_00563_0 crossref_primary_10_1021_jacs_4c03048 crossref_primary_10_1002_anie_202200465 crossref_primary_10_1021_acsanm_2c02746 crossref_primary_10_1002_anie_202408914 crossref_primary_10_1016_S1872_2067_21_63888_3 crossref_primary_10_1002_adfm_202308876 crossref_primary_10_1039_D4TA02059F crossref_primary_10_1002_adma_202100713 crossref_primary_10_1016_j_apcatb_2021_120681 crossref_primary_10_1002_adfm_202309728 crossref_primary_10_1039_D4GC02203C crossref_primary_10_1007_s12274_022_4429_9 crossref_primary_10_1016_j_ccr_2021_214261 crossref_primary_10_1016_j_electacta_2023_142120 crossref_primary_10_1039_D1SC00716E crossref_primary_10_1002_adsu_202400958 crossref_primary_10_1002_advs_202206166 crossref_primary_10_1002_ange_202420942 crossref_primary_10_1002_smll_202404758 crossref_primary_10_1021_jacs_2c11739 crossref_primary_10_1002_anie_202314243 crossref_primary_10_1021_acsami_1c17587 crossref_primary_10_1002_anie_202314124 crossref_primary_10_1038_s41467_024_48672_9 crossref_primary_10_1002_adfm_202303299 crossref_primary_10_1039_D1TA08353H crossref_primary_10_1007_s11581_021_04338_w crossref_primary_10_1039_D4MH00215F crossref_primary_10_1088_1361_6463_ace454 crossref_primary_10_1002_anie_202213783 crossref_primary_10_1038_s41467_021_25811_0 crossref_primary_10_1038_s41467_022_30411_7 crossref_primary_10_1021_acsnano_1c10059 crossref_primary_10_1007_s40820_021_00651_1 crossref_primary_10_1016_j_cej_2022_137855 crossref_primary_10_1039_D1TA08365A crossref_primary_10_1002_sstr_202200041 crossref_primary_10_1515_gps_2023_0076 crossref_primary_10_1021_acsnano_4c18216 crossref_primary_10_1016_j_bios_2024_116622 crossref_primary_10_1016_j_talanta_2020_122042 crossref_primary_10_1002_smll_202203147 crossref_primary_10_1002_adma_202201109 crossref_primary_10_1073_pnas_2107332118 crossref_primary_10_1039_D0SC07040H crossref_primary_10_3390_catal15030227 crossref_primary_10_1002_adma_202200255 crossref_primary_10_1002_smll_202105683 crossref_primary_10_1021_acs_nanolett_1c00074 crossref_primary_10_1021_acsnano_3c10058 crossref_primary_10_1002_adfm_202008318 crossref_primary_10_1016_j_apcatb_2024_123730 crossref_primary_10_1039_D3RA07029H crossref_primary_10_1002_smll_202101428 crossref_primary_10_1002_smll_202206768 crossref_primary_10_1016_j_nxmate_2024_100192 crossref_primary_10_1016_j_jallcom_2022_168316 crossref_primary_10_1016_j_ijhydene_2022_02_152 crossref_primary_10_1007_s12274_022_4855_8 crossref_primary_10_1016_j_gee_2022_01_006 crossref_primary_10_1002_adma_202205703 crossref_primary_10_1016_j_jpowsour_2022_231877 crossref_primary_10_1002_advs_202304656 crossref_primary_10_1063_5_0213150 crossref_primary_10_1002_adma_202414283 crossref_primary_10_1021_jacs_1c12642 crossref_primary_10_1002_tcr_202200045 crossref_primary_10_1002_adma_202404692 crossref_primary_10_1016_j_ijhydene_2024_07_286 crossref_primary_10_1021_jacs_3c10524 crossref_primary_10_1016_j_apcatb_2023_123509 crossref_primary_10_1002_anie_202202200 crossref_primary_10_1002_anie_202315003 crossref_primary_10_1002_cctc_202400499 crossref_primary_10_1002_cey2_194 crossref_primary_10_1016_j_scib_2021_02_006 crossref_primary_10_1093_nsr_nwad156 crossref_primary_10_1038_s44160_023_00272_z crossref_primary_10_1002_cctc_202101727 crossref_primary_10_1007_s12274_021_3816_y crossref_primary_10_1002_adma_202415101 crossref_primary_10_1016_S1872_2067_21_63965_7 crossref_primary_10_1039_D1TA06915B crossref_primary_10_1002_anie_202413369 crossref_primary_10_1002_adma_202418504 crossref_primary_10_1021_acs_est_3c03346 crossref_primary_10_1002_aenm_202203913 crossref_primary_10_1002_anie_202422199 crossref_primary_10_1016_j_cej_2024_151395 crossref_primary_10_1039_D3CC01177A crossref_primary_10_1002_anie_202212015 crossref_primary_10_1039_D3QM01133J crossref_primary_10_1021_jacs_4c10613 crossref_primary_10_1016_j_ijhydene_2023_12_005 crossref_primary_10_1016_j_surfin_2021_101293 crossref_primary_10_1002_aenm_202003796 crossref_primary_10_1002_smll_202006482 crossref_primary_10_1016_j_cej_2023_142498 crossref_primary_10_1039_D2TA02193E crossref_primary_10_1021_jacs_3c11632 crossref_primary_10_1039_D1EE00154J crossref_primary_10_1002_ange_202314243 crossref_primary_10_1039_D3EE02644B crossref_primary_10_2139_ssrn_4179175 crossref_primary_10_1016_j_cej_2021_131396 crossref_primary_10_1002_ange_202314124 crossref_primary_10_1016_S1872_2067_21_64027_5 crossref_primary_10_1002_aenm_202201823 crossref_primary_10_1039_D2NR05869C crossref_primary_10_1016_j_apcatb_2023_122766 crossref_primary_10_1002_adfm_202110485 crossref_primary_10_1016_j_apcatb_2023_122768 crossref_primary_10_1007_s12274_022_4319_1 crossref_primary_10_1016_j_apcata_2023_119025 crossref_primary_10_1021_acs_inorgchem_3c00091 crossref_primary_10_1002_ange_202408846 crossref_primary_10_1039_D3EY00150D crossref_primary_10_1002_adma_202103882 crossref_primary_10_3389_fnano_2023_1257240 crossref_primary_10_1038_s41467_021_26747_1 crossref_primary_10_1039_D0NR05907B crossref_primary_10_1002_ange_202316779 crossref_primary_10_1016_j_checat_2023_100758 crossref_primary_10_1002_advs_202205299 crossref_primary_10_1007_s10563_022_09378_4 crossref_primary_10_1016_j_chempr_2020_10_023 crossref_primary_10_1016_j_trechm_2021_08_008 crossref_primary_10_1016_j_checat_2023_100514 crossref_primary_10_1039_D1TA01108A crossref_primary_10_1039_D2TA00752E crossref_primary_10_1002_anie_202400174 crossref_primary_10_1038_s41467_021_25562_y crossref_primary_10_1021_acs_jpcc_4c07614 crossref_primary_10_1007_s12274_021_3694_3 crossref_primary_10_3390_molecules26164756 crossref_primary_10_1002_ange_202404019 crossref_primary_10_1021_acsnano_3c11610 crossref_primary_10_1002_nano_202000239 crossref_primary_10_1016_j_jhazmat_2022_130677 crossref_primary_10_1016_j_coche_2023_100921 crossref_primary_10_1016_j_ijbiomac_2021_02_009 crossref_primary_10_1002_smll_202302611 crossref_primary_10_1021_acsami_2c02055 crossref_primary_10_1016_j_chempr_2021_10_030 crossref_primary_10_1007_s41918_021_00124_4 crossref_primary_10_1039_D4TC04761C crossref_primary_10_1007_s12274_023_6334_2 crossref_primary_10_1007_s12598_023_02512_9 crossref_primary_10_1039_D2CS00806H crossref_primary_10_1039_D3EY00050H crossref_primary_10_1002_smll_202406765 crossref_primary_10_1007_s12274_021_3542_5 crossref_primary_10_1002_anie_202301711 crossref_primary_10_1002_anie_202404713 crossref_primary_10_1016_j_jcis_2021_01_062 crossref_primary_10_1073_pnas_2112109119 crossref_primary_10_1002_eom2_12186 crossref_primary_10_1038_s41467_022_32411_z crossref_primary_10_1016_j_cej_2024_151238 crossref_primary_10_1021_acs_chemmater_4c00030 crossref_primary_10_1021_acssuschemeng_2c01010 crossref_primary_10_1039_D4CC05747C crossref_primary_10_1016_j_jallcom_2024_174959 crossref_primary_10_1021_acsenergylett_1c02446 crossref_primary_10_1007_s10562_023_04340_z crossref_primary_10_1002_cey2_286 crossref_primary_10_1002_adma_202418942 crossref_primary_10_1002_smll_202205495 crossref_primary_10_1021_acsnano_4c11307 crossref_primary_10_1007_s12274_022_4265_y crossref_primary_10_1002_aenm_202003410 crossref_primary_10_1021_acsami_3c16300 crossref_primary_10_1021_acscatal_1c05175 crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_1002_eom2_12176 crossref_primary_10_1007_s12274_020_2994_3 crossref_primary_10_1016_j_mtsust_2022_100140 crossref_primary_10_1021_jacs_1c11331 crossref_primary_10_1002_adma_202004287 crossref_primary_10_1039_D1SC00997D crossref_primary_10_1007_s12274_021_3794_0 crossref_primary_10_1002_aenm_202103289 crossref_primary_10_1002_aenm_202203803 crossref_primary_10_1002_adma_202207850 crossref_primary_10_1002_ange_202208238 crossref_primary_10_1039_D4QM00026A crossref_primary_10_1002_adfm_202214215 crossref_primary_10_1016_j_jiec_2025_02_011 crossref_primary_10_1002_ange_202408771 crossref_primary_10_34133_energymatadv_0067 crossref_primary_10_1002_ange_202412901 crossref_primary_10_1021_acscatal_3c05160 crossref_primary_10_1021_jacs_4c06173 crossref_primary_10_1002_anie_202211174 crossref_primary_10_1016_j_jallcom_2024_175966 crossref_primary_10_1021_acsnano_1c10003 crossref_primary_10_1002_adfm_202205654 crossref_primary_10_1016_j_cej_2022_135849 crossref_primary_10_1016_j_jechem_2025_02_029 crossref_primary_10_1038_s41467_024_55612_0 crossref_primary_10_1039_D1CC01989A crossref_primary_10_1039_D1SC02170B crossref_primary_10_1016_j_mtsust_2024_100731 crossref_primary_10_1002_advs_202104991 crossref_primary_10_1021_acsami_1c07846 crossref_primary_10_1016_j_jcis_2024_06_082 crossref_primary_10_1002_adfm_202108381 crossref_primary_10_1039_D2NJ05383G crossref_primary_10_1016_j_cej_2022_135735 crossref_primary_10_1021_acscatal_3c06243 crossref_primary_10_1021_acs_inorgchem_4c04369 crossref_primary_10_1002_smll_202207695 crossref_primary_10_1002_sstr_202100007 crossref_primary_10_1002_adma_202308477 crossref_primary_10_1016_j_jechem_2021_05_046 crossref_primary_10_1002_smm2_1101 crossref_primary_10_1016_j_nanoen_2022_106984 crossref_primary_10_1007_s12274_024_6655_9 crossref_primary_10_1021_acs_accounts_2c00212 crossref_primary_10_1016_j_apcatb_2023_122937 crossref_primary_10_1021_acsenergylett_1c01965 crossref_primary_10_1073_pnas_2308828120 crossref_primary_10_1002_smsc_202200059 crossref_primary_10_1016_j_cej_2022_137127 crossref_primary_10_1007_s12274_021_3642_2 crossref_primary_10_1021_acsanm_1c03315 crossref_primary_10_1007_s12274_021_3412_9 crossref_primary_10_1016_j_nanoen_2023_108952 crossref_primary_10_1002_asia_202201161 crossref_primary_10_1021_jacs_2c03982 crossref_primary_10_1021_acsnano_0c06610 crossref_primary_10_1039_D4EE04660A crossref_primary_10_1021_acsmaterialslett_3c00834 crossref_primary_10_1063_5_0048186 crossref_primary_10_1016_j_mtchem_2022_101001 crossref_primary_10_1016_j_apcatb_2022_121318 crossref_primary_10_1021_acsnano_4c00217 crossref_primary_10_1021_jacs_2c11497 crossref_primary_10_1002_ange_202115835 crossref_primary_10_1002_idm2_12141 crossref_primary_10_1038_s44160_022_00138_w crossref_primary_10_1002_adma_202208512 crossref_primary_10_1021_acs_nanolett_4c02767 crossref_primary_10_1002_ange_202211174 crossref_primary_10_1088_2515_7639_ac1ab7 crossref_primary_10_1039_D1TA02833B crossref_primary_10_1088_2043_6262_ad2c7d crossref_primary_10_1016_j_apsusc_2022_154510 crossref_primary_10_1021_jacs_2c00242 crossref_primary_10_1039_D1NR05209H crossref_primary_10_1016_j_nanoen_2024_110178 crossref_primary_10_1016_j_chphma_2023_03_003 crossref_primary_10_1016_j_jechem_2022_02_017 crossref_primary_10_1039_D3EE04023B crossref_primary_10_1016_S1872_2067_23_64587_5 crossref_primary_10_1021_acscatal_3c04422 crossref_primary_10_1007_s40242_022_2245_0 crossref_primary_10_1021_acsestengg_1c00454 crossref_primary_10_1016_j_checat_2023_100586 crossref_primary_10_1007_s12274_023_6333_3 crossref_primary_10_1002_smtd_202100102 crossref_primary_10_1016_j_seppur_2024_127276 crossref_primary_10_1007_s12274_021_4029_0 crossref_primary_10_1021_jacs_1c06349 crossref_primary_10_1002_aenm_202402205 crossref_primary_10_3390_nano12234182 crossref_primary_10_1021_acsmaterialslett_4c00577 crossref_primary_10_1039_D2QI01911F crossref_primary_10_1016_j_nanoen_2022_107125 crossref_primary_10_1021_acs_iecr_1c04027 crossref_primary_10_1039_D4TA03518F crossref_primary_10_3390_catal14040221 crossref_primary_10_1002_ange_202212015 crossref_primary_10_1002_anie_202217995 crossref_primary_10_1007_s11426_020_9803_5 crossref_primary_10_1039_D3TC00800B crossref_primary_10_1002_ange_202202200 crossref_primary_10_1016_j_cej_2023_147774 crossref_primary_10_3390_catal13010187 crossref_primary_10_1002_aenm_202301408 crossref_primary_10_1016_j_ijhydene_2022_06_049 crossref_primary_10_1021_acsnano_1c10544 crossref_primary_10_1039_D2CS00684G crossref_primary_10_1021_jacs_4c07197 crossref_primary_10_1016_j_ccr_2021_213825 crossref_primary_10_1002_ange_202410413 crossref_primary_10_1016_j_cej_2021_131795 crossref_primary_10_1039_D3QI01576A crossref_primary_10_1007_s11426_021_1063_2 crossref_primary_10_1007_s40843_022_2249_9 crossref_primary_10_1002_adma_202008151 crossref_primary_10_1080_01614940_2020_1864860 crossref_primary_10_1039_D3CC00005B crossref_primary_10_1016_j_ccr_2022_214493 crossref_primary_10_1002_adma_202302625 crossref_primary_10_1016_j_jechem_2023_12_042 crossref_primary_10_1021_acs_analchem_1c00635 crossref_primary_10_1038_s41560_021_00940_4 crossref_primary_10_1002_anie_202115835 crossref_primary_10_1016_j_coelec_2024_101606 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1039_D1TA07778C crossref_primary_10_1016_j_cej_2020_127917 crossref_primary_10_1002_adfm_202418602 crossref_primary_10_1021_acscatal_4c00781 crossref_primary_10_1021_acs_chemrev_1c00158 crossref_primary_10_1126_sciadv_abn5091 crossref_primary_10_1002_adma_202007056 crossref_primary_10_1002_cey2_315 crossref_primary_10_1016_j_scib_2024_01_009 crossref_primary_10_2139_ssrn_4055065 crossref_primary_10_1002_smll_202206071 crossref_primary_10_1002_adma_202413658 crossref_primary_10_1038_s41467_024_51200_4 crossref_primary_10_1002_tcr_202200237 crossref_primary_10_1016_j_mtcata_2024_100041 crossref_primary_10_1016_j_jelechem_2023_117245 crossref_primary_10_1002_adfm_202107672 crossref_primary_10_1016_j_mtener_2022_101197 crossref_primary_10_1007_s12274_023_6279_5 crossref_primary_10_1039_D2TA01011A crossref_primary_10_1039_D3GC04920E crossref_primary_10_1002_smsc_202200036 crossref_primary_10_1016_j_ccr_2023_215602 crossref_primary_10_1016_j_cej_2023_147505 crossref_primary_10_1016_j_jclepro_2022_134260 crossref_primary_10_1002_cctc_202402019 crossref_primary_10_1002_aenm_202103564 crossref_primary_10_1016_j_ijhydene_2022_11_207 crossref_primary_10_1016_j_jechem_2023_06_034 crossref_primary_10_1002_nano_202100009 crossref_primary_10_1038_s44160_022_00129_x crossref_primary_10_1002_adma_202209633 crossref_primary_10_1007_s11426_022_1288_0 crossref_primary_10_1021_jacsau_3c00557 crossref_primary_10_1002_ange_202213783 crossref_primary_10_1021_acsaem_2c01912 crossref_primary_10_1021_acs_nanolett_2c04569 crossref_primary_10_1016_j_jcat_2022_12_025 crossref_primary_10_1021_jacs_2c11380 crossref_primary_10_1007_s12274_023_5510_8 crossref_primary_10_1007_s12274_023_5556_7 crossref_primary_10_1016_j_snb_2023_134139 crossref_primary_10_1007_s11771_024_5831_0 crossref_primary_10_1016_j_cej_2021_129034 crossref_primary_10_1021_acs_accounts_1c00734 crossref_primary_10_1039_D2SC06962H crossref_primary_10_1142_S1793604721300073 crossref_primary_10_1016_j_ijhydene_2023_08_139 crossref_primary_10_1039_D2SC01110G crossref_primary_10_1073_pnas_2318174121 crossref_primary_10_1002_anie_202207524 crossref_primary_10_1002_ange_202315003 crossref_primary_10_1039_D2CC06503G crossref_primary_10_1002_ange_202200465 crossref_primary_10_1016_j_enchem_2022_100096 crossref_primary_10_1039_D2CC06406E crossref_primary_10_1007_s40242_023_3001_9 crossref_primary_10_1038_s44160_022_00193_3 crossref_primary_10_1002_adfm_202205920 crossref_primary_10_1021_acsnano_2c02324 crossref_primary_10_1039_D3CC00451A crossref_primary_10_1007_s12274_022_5335_x crossref_primary_10_1016_j_apmate_2021_10_004 crossref_primary_10_1002_smll_202004398 crossref_primary_10_1021_acscatal_2c04918 crossref_primary_10_1002_aenm_202401061 crossref_primary_10_1002_smll_202202476 crossref_primary_10_1002_adma_202107421 crossref_primary_10_1039_D2NR00994C crossref_primary_10_1002_smll_202203442 crossref_primary_10_1021_acsenergylett_4c01833 crossref_primary_10_1002_wene_419 crossref_primary_10_1016_j_saa_2022_121782 crossref_primary_10_1002_ange_202207524 crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_1088_1361_6463_ac017f crossref_primary_10_1021_acsami_3c06386 crossref_primary_10_1021_jacs_4c13335 crossref_primary_10_1002_chem_202101645 crossref_primary_10_1016_j_nanoen_2020_105689 crossref_primary_10_1016_j_watres_2021_117314 crossref_primary_10_1016_j_ijhydene_2023_01_147 crossref_primary_10_1002_smll_202103705 crossref_primary_10_1021_acs_jpclett_2c03433 crossref_primary_10_1002_smll_202202587 crossref_primary_10_1016_j_ccr_2024_215775 crossref_primary_10_1016_j_nanoen_2022_107296 crossref_primary_10_1016_j_cej_2023_142820 crossref_primary_10_1039_D4EE02697G crossref_primary_10_1002_anie_202410413 crossref_primary_10_1016_j_cclet_2021_05_032 crossref_primary_10_1039_D2GC02956A crossref_primary_10_1016_j_cej_2021_134084 crossref_primary_10_1021_acs_analchem_3c05245 crossref_primary_10_1002_ange_202301711 crossref_primary_10_1016_j_apmt_2021_101029 crossref_primary_10_1039_D4TA01702A crossref_primary_10_1007_s11426_022_1305_3 crossref_primary_10_1002_ange_202404713 crossref_primary_10_1021_acsaem_2c02575 crossref_primary_10_1021_acsami_4c00911 crossref_primary_10_1021_jacs_3c02364 crossref_primary_10_1039_D1SC05983A crossref_primary_10_1021_acssuschemeng_1c05352 crossref_primary_10_1038_s41578_023_00633_2 crossref_primary_10_1016_j_esci_2023_100209 crossref_primary_10_1016_j_enchem_2021_100054 crossref_primary_10_1021_acs_energyfuels_4c03417 crossref_primary_10_1021_jacs_3c14312 crossref_primary_10_1021_acsami_0c22106 crossref_primary_10_1093_nsr_nwaa228 crossref_primary_10_1016_j_fmre_2021_06_016 crossref_primary_10_1002_smll_202004500 crossref_primary_10_1038_s41467_024_46140_y crossref_primary_10_1002_adma_202408364 crossref_primary_10_1007_s42114_023_00625_4 crossref_primary_10_1016_j_matre_2023_100197 crossref_primary_10_2139_ssrn_4108467 crossref_primary_10_1021_acs_analchem_1c01838 crossref_primary_10_1039_D1TA01948A crossref_primary_10_1039_D1TA05990D crossref_primary_10_1016_j_jcis_2021_10_195 crossref_primary_10_1002_aenm_202102556 crossref_primary_10_1002_smll_202107799 crossref_primary_10_1039_D1CY01787J crossref_primary_10_1039_D1CY00650A crossref_primary_10_1016_j_chempr_2021_08_020 crossref_primary_10_1016_j_nanoen_2023_108225 crossref_primary_10_1002_adfm_202209560 crossref_primary_10_1002_ifm2_19 crossref_primary_10_1021_acs_est_3c00420 crossref_primary_10_1007_s12274_023_5640_z crossref_primary_10_1002_advs_202200592 crossref_primary_10_1002_anie_202412901 crossref_primary_10_1016_j_cej_2023_141823 crossref_primary_10_1039_D1TA02375F crossref_primary_10_1016_j_arabjc_2021_103383 crossref_primary_10_1021_acs_nanolett_2c04944 crossref_primary_10_1126_science_adn5871 crossref_primary_10_1039_D2CP04387D crossref_primary_10_1002_adfm_202315563 crossref_primary_10_1016_j_ensm_2024_103927 crossref_primary_10_1016_j_cclet_2020_11_051 crossref_primary_10_1016_j_ccr_2024_215858 crossref_primary_10_1002_adma_202409436 crossref_primary_10_1002_anie_202208238 crossref_primary_10_1007_s11705_024_2434_0 crossref_primary_10_1103_PhysRevB_107_205421 crossref_primary_10_1002_smll_202105150 crossref_primary_10_1016_j_xcrp_2023_101657 crossref_primary_10_1039_D1TA00022E crossref_primary_10_1002_smtd_202001194 crossref_primary_10_1002_ange_202217995 crossref_primary_10_1002_sstr_202000051 crossref_primary_10_1016_j_apcatb_2024_124997 crossref_primary_10_1016_j_cej_2024_157208 crossref_primary_10_1016_j_ijhydene_2024_03_367 crossref_primary_10_1088_2399_1984_ac3ec1 crossref_primary_10_1063_5_0099781 crossref_primary_10_1002_advs_202403813 crossref_primary_10_1002_adfm_202407335 crossref_primary_10_1007_s12274_023_6089_9 crossref_primary_10_1016_S1872_2067_23_64611_X crossref_primary_10_1088_1361_6528_aceb6b crossref_primary_10_1007_s12274_021_3526_5 crossref_primary_10_1002_cctc_202101266 crossref_primary_10_1002_adfm_202300294 crossref_primary_10_1016_j_trechm_2021_05_009 crossref_primary_10_1038_s41467_023_38497_3 crossref_primary_10_1007_s00216_024_05240_w crossref_primary_10_1021_acs_nanolett_3c03962 crossref_primary_10_1039_D0NA00803F crossref_primary_10_1021_acscatal_4c00365 crossref_primary_10_1021_jacs_3c07851 crossref_primary_10_1007_s40843_021_1662_8 crossref_primary_10_3390_nano11102476 crossref_primary_10_1002_adfm_202212604 crossref_primary_10_1016_j_cej_2024_148963 crossref_primary_10_1002_eem2_12552 crossref_primary_10_1002_aenm_202101670 crossref_primary_10_1039_D2CP00736C crossref_primary_10_1002_adma_202314340 crossref_primary_10_1002_adma_202406380 crossref_primary_10_1002_anie_202408771 crossref_primary_10_1016_j_cej_2024_155363 crossref_primary_10_1039_D3CY00779K crossref_primary_10_1007_s12209_021_00295_7 crossref_primary_10_1039_D2TA06050G crossref_primary_10_26599_NBE_2023_9290047 crossref_primary_10_1038_s41467_024_46175_1 crossref_primary_10_1002_cctc_202301106 crossref_primary_10_1021_acs_nanolett_2c03623 crossref_primary_10_1002_aenm_202300884 |
Cites_doi | 10.1103/PhysRevB.54.11169 10.1038/nchem.1095 10.1016/j.apcatb.2011.11.002 10.1038/nature05118 10.1038/s41563-018-0167-5 10.1103/PhysRevLett.77.3865 10.1016/j.jpowsour.2007.10.011 10.1016/j.electacta.2010.04.014 10.1238/Physica.Topical.115a01007 10.1038/525325a 10.1021/om050661a 10.1016/j.susc.2015.10.007 10.1038/s41929-018-0195-1 10.1002/anie.201308620 10.1002/anie.201604802 10.1016/S1452-3981(23)06539-2 10.1021/cr00005a013 10.1002/adma.201504831 10.1016/S0378-7753(03)00026-0 10.1039/C8NR10236H 10.1126/science.aaf8800 10.1021/jacs.8b03121 10.1021/ja205747j 10.1126/science.1253150 10.1038/nnano.2010.235 10.1126/science.1140484 10.1038/s41467-017-01258-0 10.1021/cs300219j 10.1016/0927-0256(96)00008-0 10.1002/anie.201509241 10.1021/jacs.7b08643 10.1021/ja203184k 10.1126/sciadv.1600858 10.1238/Physica.Topical.115a00813 10.1038/s41560-017-0078-8 10.1016/j.apcata.2014.06.016 10.1021/nn302147s 10.1038/nmat4367 10.1016/j.jelechem.2005.05.002 10.1002/anie.201100512 10.1103/PhysRevB.63.125120 10.1016/S0378-7753(02)00271-9 10.1088/0953-8984/21/34/345501 10.1021/j150567a019 10.1103/PhysRevB.59.1758 10.1021/ar300361m 10.1126/science.aal3439 10.1021/ja505943h 10.1038/nchem.553 10.1038/nmat3795 10.1038/ncomms1427 10.1038/2011212a0 10.1002/anie.201702473 10.1039/C7TA06458F 10.1038/s41565-018-0197-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION NPM 3V. 7QR 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1038/s41557-020-0473-9 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Chemoreception Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1755-4349 |
EndPage | 772 |
ExternalDocumentID | 32541950 10_1038_s41557_020_0473_9 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 123 29M 39C 4.4 53G 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABFSG ABJCF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACSTC ACUHS ADBBV ADNMO AENEX AEUYN AEZWR AFANA AFBBN AFHIU AFKRA AFSHS AFWHJ AGAYW AGGDT AGQPQ AHMBA AHOSX AHSBF AHWEU AIBTJ AIXLP AIYXT ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ KB. L-9 LK8 M1P M7P ML- NFIDA NNMJJ O9- ODYON P2P PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP AAYXX ALIPV CITATION NPM 3V. 7QR 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c475t-6816b6ca436d5cb2168e295a55a00135e061c1cff6f01f876b1ade54e960d84e3 |
IEDL.DBID | 7X7 |
ISSN | 1755-4330 1755-4349 |
IngestDate | Mon Jul 21 09:20:32 EDT 2025 Sat Aug 23 13:08:35 EDT 2025 Mon Jul 21 06:06:40 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 Tue Jul 01 03:02:11 EDT 2025 Sun Aug 31 08:58:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-6816b6ca436d5cb2168e295a55a00135e061c1cff6f01f876b1ade54e960d84e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7187-1266 0000-0002-2052-1132 0000-0002-9071-0238 0000-0002-9156-0438 0000-0001-8699-8294 0000-0002-7504-031X 0000-0001-9524-2843 0000-0002-0317-7229 0000-0001-9669-4358 0000-0002-8456-3980 0000-0001-5084-2087 0000-0002-6318-1051 0000-0003-0074-7633 0000-0002-0451-0919 0000-0001-5902-3037 0000-0003-1544-1127 0000-0003-1793-0741 0000-0002-3353-7918 0000-0002-6665-220X 0000-0002-4321-6288 0000-0002-5764-3117 0000-0002-7684-2808 0000-0001-9275-5790 0000-0001-8860-093X 0000-0003-3099-2808 |
PMID | 32541950 |
PQID | 2427390958 |
PQPubID | 536302 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2413996574 proquest_journals_2427390958 pubmed_primary_32541950 crossref_citationtrail_10_1038_s41557_020_0473_9 crossref_primary_10_1038_s41557_020_0473_9 springer_journals_10_1038_s41557_020_0473_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature chemistry |
PublicationTitleAbbrev | Nat. Chem |
PublicationTitleAlternate | Nat Chem |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Choi (CR15) 2016; 7 Yang (CR14) 2018; 3 Yang, Kim, Tak, Soon, Lee (CR10) 2016; 55 Yin (CR4) 2016; 55 Wang, Tang, Gao, Lu (CR35) 2008; 175 Chen (CR34) 2017; 56 Zhou (CR47) 2010; 55 Chen (CR13) 2018; 140 Liu (CR23) 2016; 2 Bader (CR59) 1991; 91 Yang (CR3) 2013; 46 Zhang (CR8) 2018; 9 Duchesne (CR22) 2018; 17 Ravel, Newville (CR52) 2005; 115 Rice, Ha, Masel, Wieckowski (CR19) 2003; 115 Chen (CR44) 2012; 6 Guo (CR16) 2014; 344 Hoene, Charles, Hickam (CR38) 2002; 62 Tianou (CR30) 2017; 8 Jiang (CR39) 2011; 133 Kresse, Furthmüller (CR56) 1996; 54 Cheng (CR11) 2016; 7 Rice (CR18) 2002; 111 Yoshida, Nonoyama, Hattori (CR43) 2005; 2005 Xi (CR25) 2017; 139 Shimizu (CR42) 2012; 111 Kresse, Furthmüller (CR55) 1996; 6 Jones (CR9) 2016; 353 Wang, Zhang, Jiang, Cai (CR46) 2011; 133 Zhang (CR12) 2018; 1 Rong (CR27) 2016; 28 Jasinski (CR32) 1964; 201 Thomas (CR1) 2015; 525 Joly (CR53) 2001; 63 Tian, Zhou, Sun, Ding, Wang (CR21) 2007; 316 Lovic (CR45) 2005; 581 Yeung, Chan (CR48) 2005; 24 Kresse, Joubert (CR57) 1999; 59 Zheng (CR41) 2019; 11 Perales-Rondon, Ferre-Vilaplana, Feliu, Herrero (CR24) 2014; 136 Proietti (CR40) 2011; 2 Wang (CR6) 2016; 7 Li (CR50) 2012; 2 Siahrostami (CR17) 2013; 12 Zhang (CR49) 2016; 648 Perdew, Burke, Ernzerhof (CR58) 1996; 77 Malta (CR7) 2017; 355 Ji (CR20) 2010; 2 Ziaei-Azad, Semagina (CR51) 2014; 482 Qiao (CR2) 2011; 3 Al-Akraa, Mohammad, El-Deab, El-Anadouli (CR37) 2015; 10 Bashyam, Zelenay (CR33) 2006; 443 Wei (CR5) 2018; 13 Niu, Peng, Gong, Rong, Li (CR28) 2011; 50 Zitolo (CR31) 2015; 14 Taylor (CR36) 2017; 5 Chang, Feng, Liu, Xing, Hu (CR26) 2014; 53 Bunău, Joly (CR54) 2009; 21 Huang (CR29) 2011; 6 B Qiao (473_CR2) 2011; 3 N Cheng (473_CR11) 2016; 7 RF Bader (473_CR59) 1991; 91 R Bashyam (473_CR33) 2006; 443 S Wei (473_CR5) 2018; 13 R Jasinski (473_CR32) 1964; 201 IM Al-Akraa (473_CR37) 2015; 10 D Li (473_CR50) 2012; 2 G Malta (473_CR7) 2017; 355 J Zhang (473_CR12) 2018; 1 Y Chen (473_CR13) 2018; 140 B Ravel (473_CR52) 2005; 115 Y Joly (473_CR53) 2001; 63 J Jones (473_CR9) 2016; 353 L Wang (473_CR6) 2016; 7 S Siahrostami (473_CR17) 2013; 12 G Kresse (473_CR57) 1999; 59 Y Zheng (473_CR41) 2019; 11 X Huang (473_CR29) 2011; 6 E Proietti (473_CR40) 2011; 2 CH Choi (473_CR15) 2016; 7 C Rice (473_CR18) 2002; 111 Z Niu (473_CR28) 2011; 50 JM Thomas (473_CR1) 2015; 525 H Tianou (473_CR30) 2017; 8 C Rice (473_CR19) 2003; 115 Y Chen (473_CR34) 2017; 56 J Zhang (473_CR8) 2018; 9 JD Lovic (473_CR45) 2005; 581 HB Yang (473_CR14) 2018; 3 S Yang (473_CR10) 2016; 55 Y Zhou (473_CR47) 2010; 55 J Liu (473_CR23) 2016; 2 JV Perales-Rondon (473_CR24) 2014; 136 A Zitolo (473_CR31) 2015; 14 J-Y Wang (473_CR46) 2011; 133 JV Hoene (473_CR38) 2002; 62 O Bunău (473_CR54) 2009; 21 HL Jiang (473_CR39) 2011; 133 H Rong (473_CR27) 2016; 28 K-i Shimizu (473_CR42) 2012; 111 G Kresse (473_CR55) 1996; 6 H Ziaei-Azad (473_CR51) 2014; 482 SK Yeung (473_CR48) 2005; 24 T Zhang (473_CR49) 2016; 648 N Tian (473_CR21) 2007; 316 J Chang (473_CR26) 2014; 53 DH Yoshida (473_CR43) 2005; 2005 P Yin (473_CR4) 2016; 55 Z Xi (473_CR25) 2017; 139 L-F Chen (473_CR44) 2012; 6 PN Duchesne (473_CR22) 2018; 17 XF Yang (473_CR3) 2013; 46 X Wang (473_CR35) 2008; 175 G Kresse (473_CR56) 1996; 54 X Ji (473_CR20) 2010; 2 AK Taylor (473_CR36) 2017; 5 JP Perdew (473_CR58) 1996; 77 X Guo (473_CR16) 2014; 344 |
References_xml | – volume: 2 start-page: 1358 year: 2012 end-page: 1362 ident: CR50 article-title: Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance publication-title: ACS Catal. – volume: 353 start-page: 150 year: 2016 end-page: 154 ident: CR9 article-title: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping publication-title: Science – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR57 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 53 start-page: 122 year: 2014 end-page: 126 ident: CR26 article-title: An effective Pd-Ni P/C anode catalyst for direct formic acid fuel cells publication-title: Angew. Chem. Int. Ed. – volume: 115 start-page: 1007 year: 2005 end-page: 1010 ident: CR52 article-title: ATHENA and ARTEMIS: interactive graphical data analysis using IFEFFIT publication-title: Phys. Scr. – volume: 2 start-page: e1600858 year: 2016 ident: CR23 article-title: Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis publication-title: Sci. Adv. – volume: 115 start-page: 229 year: 2003 end-page: 235 ident: CR19 article-title: Catalysts for direct formic acid fuel cells publication-title: J. Power Sources – volume: 56 start-page: 6937 year: 2017 end-page: 6941 ident: CR34 article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 525 start-page: 325 year: 2015 end-page: 326 ident: CR1 article-title: Catalysis: tens of thousands of atoms replaced by one publication-title: Nature – volume: 136 start-page: 13110 year: 2014 end-page: 13113 ident: CR24 article-title: Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 7407 year: 2018 end-page: 7410 ident: CR13 article-title: Discovering partially charged single-atom Pt for enhanced anti-Markovnikov alkene hydrosilylation publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 10800 year: 2016 end-page: 10805 ident: CR4 article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts publication-title: Angew. Chem. Int. Ed. – volume: 316 start-page: 732 year: 2007 end-page: 735 ident: CR21 article-title: Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity publication-title: Science – volume: 8 year: 2017 ident: CR30 article-title: Inflating hollow nanocrystals through a repeated kirkendall cavitation process publication-title: Nat. Commun. – volume: 14 start-page: 937 year: 2015 end-page: 942 ident: CR31 article-title: Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials publication-title: Nat. Mater. – volume: 2 year: 2011 ident: CR40 article-title: Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells publication-title: Nat. Commun. – volume: 133 start-page: 14876 year: 2011 end-page: 14879 ident: CR46 article-title: From HCOOH to CO at Pd electrodes: a surface-enhanced infrared spectroscopy study publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 21514 year: 2017 end-page: 21527 ident: CR36 article-title: Block copolymer templated synthesis of PtIr bimetallic nanocatalysts for the formic acid oxidation reaction publication-title: J. Mater. Chem. A – volume: 648 start-page: 319 year: 2016 end-page: 327 ident: CR49 article-title: Iridium ultrasmall nanoparticles, worm-like chain nanowires, and porous nanodendrites: one-pot solvothermal synthesis and catalytic CO oxidation activity publication-title: Surf. Sci. – volume: 482 start-page: 327 year: 2014 end-page: 335 ident: CR51 article-title: Bimetallic catalysts: requirements for stabilizing PVP removal depend on the surface composition publication-title: Appl. Catal. A – volume: 17 start-page: 1033 year: 2018 end-page: 1039 ident: CR22 article-title: Golden single-atomic-site platinum electrocatalysts publication-title: Nat. Mater. – volume: 28 start-page: 2540 year: 2016 end-page: 2546 ident: CR27 article-title: Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: effective and stable catalysts publication-title: Adv. Mater. – volume: 21 start-page: 345501 year: 2009 ident: CR54 article-title: Self-consistent aspects of X-ray absorption calculations publication-title: J. Phys. Condens. Matter. – volume: 355 start-page: 1399 year: 2017 end-page: 1403 ident: CR7 article-title: Identification of single-site gold catalysis in acetylene hydrochlorination publication-title: Science – volume: 3 start-page: 140 year: 2018 end-page: 147 ident: CR14 article-title: Atomically dispersed Ni( ) as the active site for electrochemical CO reduction publication-title: Nat. Energy – volume: 46 start-page: 1740 year: 2013 end-page: 1748 ident: CR3 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. – volume: 175 start-page: 784 year: 2008 end-page: 788 ident: CR35 article-title: Carbon-supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell publication-title: J. Power Sources – volume: 2005 start-page: 813 year: 2005 ident: CR43 article-title: Quantitative determination of platinum oxidation state by XANES analysis publication-title: Phys. Scr. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR58 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 63 start-page: 125120 year: 2001 ident: CR53 article-title: X-ray absorption near-edge structure calculations beyond the muffin-tin approximation publication-title: Phys. Rev. B – volume: 201 start-page: 1212 year: 1964 end-page: 1213 ident: CR32 article-title: A new fuel cell cathode catalyst publication-title: Nature – volume: 7 year: 2016 ident: CR15 article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst publication-title: Nat. Commun. – volume: 55 start-page: 2058 year: 2016 end-page: 2062 ident: CR10 article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions publication-title: Angew. Chem. Int. Ed. – volume: 7 year: 2016 ident: CR6 article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst publication-title: Nat. Commun. – volume: 111 start-page: 83 year: 2002 end-page: 89 ident: CR18 article-title: Direct formic acid fuel cells publication-title: J. Power Sources – volume: 111 start-page: 509 year: 2012 end-page: 514 ident: CR42 article-title: Quantitative determination of average rhodium oxidation state by a simple XANES analysis publication-title: Appl. Catal. B – volume: 6 start-page: 7092 year: 2012 end-page: 7102 ident: CR44 article-title: Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors publication-title: ACS Nano – volume: 55 start-page: 5024 year: 2010 end-page: 5027 ident: CR47 article-title: Poisoning and regeneration of Pd catalyst in direct formic acid fuel cell publication-title: Electrochim. Acta – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: CR2 article-title: Single-atom catalysis of CO oxidation using Pt /FeO publication-title: Nat. Chem. – volume: 133 start-page: 11854 year: 2011 end-page: 11857 ident: CR39 article-title: From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 6315 year: 2011 end-page: 6319 ident: CR28 article-title: Oleylamine-mediated shape evolution of palladium nanocrystals publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR55 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comp. Mater. Sci. – volume: 91 start-page: 893 year: 1991 end-page: 928 ident: CR59 article-title: A quantum theory of molecular structure and its applications publication-title: Chem. Rev. – volume: 1 start-page: 985 year: 2018 end-page: 992 ident: CR12 article-title: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction publication-title: Nat. Catal. – volume: 139 start-page: 15191 year: 2017 end-page: 15196 ident: CR25 article-title: Stabilizing CuPd nanoparticles via CuPd coupling to WO nanorods in electrochemical oxidation of formic acid publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3282 year: 2015 end-page: 3290 ident: CR37 article-title: Advances in direct formic acid fuel cells: fabrication of efficient Ir/Pd nanocatalysts for formic acid electro-oxidation publication-title: Int. J. Electrochem. Sci. – volume: 13 start-page: 856 year: 2018 end-page: 861 ident: CR5 article-title: Direct observation of noble metal nanoparticles transforming to thermally stable single atoms publication-title: Nat. Nanotechnol. – volume: 2 start-page: 286 year: 2010 end-page: 293 ident: CR20 article-title: Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes publication-title: Nat. Chem. – volume: 443 start-page: 63 year: 2006 end-page: 66 ident: CR33 article-title: A class of non-precious metal composite catalysts for fuel cells publication-title: Nature – volume: 6 start-page: 28 year: 2011 end-page: 32 ident: CR29 article-title: Freestanding palladium nanosheets with plasmonic and catalytic properties publication-title: Nat. Nanotechnol. – volume: 62 start-page: 1098 year: 2002 end-page: 1101 ident: CR38 article-title: Thermal decomposition of metal acetylacetonates: mass spectrometer studies publication-title: J. Phys. Chem. – volume: 24 start-page: 6426 year: 2005 end-page: 6430 ident: CR48 article-title: Selective oxidation of (porphyrinato)iridium( ) arylethyls by nitroxide: evidence for stabilization of carbon-centered Ir–CH –CHR radicals by iridium publication-title: Organometallics – volume: 9 year: 2018 ident: CR8 article-title: Cation vacancy stabilization of single-atomic-site Pt /Ni(OH) catalyst for diboration of alkynes and alkenes publication-title: Nat. Commun. – volume: 344 start-page: 616 year: 2014 end-page: 619 ident: CR16 article-title: Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen publication-title: Science – volume: 581 start-page: 294 year: 2005 end-page: 302 ident: CR45 article-title: Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst publication-title: J. Electroanal. Chem. – volume: 12 start-page: 1137 year: 2013 end-page: 1143 ident: CR17 article-title: Enabling direct H O production through rational electrocatalyst design publication-title: Nat. Mater. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR56 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 7 year: 2016 ident: CR11 article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction publication-title: Nat. Commun. – volume: 11 start-page: 4911 year: 2019 end-page: 4917 ident: CR41 article-title: MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO to CO: the calcining temperature effect and the mechanism publication-title: Nanoscale – volume: 54 start-page: 11169 year: 1996 ident: 473_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 3 start-page: 634 year: 2011 ident: 473_CR2 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 111 start-page: 509 year: 2012 ident: 473_CR42 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2011.11.002 – volume: 443 start-page: 63 year: 2006 ident: 473_CR33 publication-title: Nature doi: 10.1038/nature05118 – volume: 17 start-page: 1033 year: 2018 ident: 473_CR22 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0167-5 – volume: 77 start-page: 3865 year: 1996 ident: 473_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 175 start-page: 784 year: 2008 ident: 473_CR35 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.10.011 – volume: 55 start-page: 5024 year: 2010 ident: 473_CR47 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.04.014 – volume: 115 start-page: 1007 year: 2005 ident: 473_CR52 publication-title: Phys. Scr. doi: 10.1238/Physica.Topical.115a01007 – volume: 525 start-page: 325 year: 2015 ident: 473_CR1 publication-title: Nature doi: 10.1038/525325a – volume: 24 start-page: 6426 year: 2005 ident: 473_CR48 publication-title: Organometallics doi: 10.1021/om050661a – volume: 648 start-page: 319 year: 2016 ident: 473_CR49 publication-title: Surf. Sci. doi: 10.1016/j.susc.2015.10.007 – volume: 1 start-page: 985 year: 2018 ident: 473_CR12 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0195-1 – volume: 53 start-page: 122 year: 2014 ident: 473_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201308620 – volume: 55 start-page: 10800 year: 2016 ident: 473_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604802 – volume: 10 start-page: 3282 year: 2015 ident: 473_CR37 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)06539-2 – volume: 91 start-page: 893 year: 1991 ident: 473_CR59 publication-title: Chem. Rev. doi: 10.1021/cr00005a013 – volume: 28 start-page: 2540 year: 2016 ident: 473_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201504831 – volume: 115 start-page: 229 year: 2003 ident: 473_CR19 publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00026-0 – volume: 11 start-page: 4911 year: 2019 ident: 473_CR41 publication-title: Nanoscale doi: 10.1039/C8NR10236H – volume: 353 start-page: 150 year: 2016 ident: 473_CR9 publication-title: Science doi: 10.1126/science.aaf8800 – volume: 140 start-page: 7407 year: 2018 ident: 473_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03121 – volume: 133 start-page: 14876 year: 2011 ident: 473_CR46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205747j – volume: 344 start-page: 616 year: 2014 ident: 473_CR16 publication-title: Science doi: 10.1126/science.1253150 – volume: 6 start-page: 28 year: 2011 ident: 473_CR29 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.235 – volume: 316 start-page: 732 year: 2007 ident: 473_CR21 publication-title: Science doi: 10.1126/science.1140484 – volume: 8 year: 2017 ident: 473_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01258-0 – volume: 2 start-page: 1358 year: 2012 ident: 473_CR50 publication-title: ACS Catal. doi: 10.1021/cs300219j – volume: 6 start-page: 15 year: 1996 ident: 473_CR55 publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 55 start-page: 2058 year: 2016 ident: 473_CR10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509241 – volume: 139 start-page: 15191 year: 2017 ident: 473_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08643 – volume: 133 start-page: 11854 year: 2011 ident: 473_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203184k – volume: 2 start-page: e1600858 year: 2016 ident: 473_CR23 publication-title: Sci. Adv. doi: 10.1126/sciadv.1600858 – volume: 9 year: 2018 ident: 473_CR8 publication-title: Nat. Commun. – volume: 2005 start-page: 813 year: 2005 ident: 473_CR43 publication-title: Phys. Scr. doi: 10.1238/Physica.Topical.115a00813 – volume: 3 start-page: 140 year: 2018 ident: 473_CR14 publication-title: Nat. Energy doi: 10.1038/s41560-017-0078-8 – volume: 7 year: 2016 ident: 473_CR11 publication-title: Nat. Commun. – volume: 482 start-page: 327 year: 2014 ident: 473_CR51 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2014.06.016 – volume: 6 start-page: 7092 year: 2012 ident: 473_CR44 publication-title: ACS Nano doi: 10.1021/nn302147s – volume: 14 start-page: 937 year: 2015 ident: 473_CR31 publication-title: Nat. Mater. doi: 10.1038/nmat4367 – volume: 581 start-page: 294 year: 2005 ident: 473_CR45 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2005.05.002 – volume: 7 year: 2016 ident: 473_CR15 publication-title: Nat. Commun. – volume: 50 start-page: 6315 year: 2011 ident: 473_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201100512 – volume: 63 start-page: 125120 year: 2001 ident: 473_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.125120 – volume: 111 start-page: 83 year: 2002 ident: 473_CR18 publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00271-9 – volume: 21 start-page: 345501 year: 2009 ident: 473_CR54 publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/21/34/345501 – volume: 62 start-page: 1098 year: 2002 ident: 473_CR38 publication-title: J. Phys. Chem. doi: 10.1021/j150567a019 – volume: 7 year: 2016 ident: 473_CR6 publication-title: Nat. Commun. – volume: 59 start-page: 1758 year: 1999 ident: 473_CR57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 46 start-page: 1740 year: 2013 ident: 473_CR3 publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 355 start-page: 1399 year: 2017 ident: 473_CR7 publication-title: Science doi: 10.1126/science.aal3439 – volume: 136 start-page: 13110 year: 2014 ident: 473_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505943h – volume: 2 start-page: 286 year: 2010 ident: 473_CR20 publication-title: Nat. Chem. doi: 10.1038/nchem.553 – volume: 12 start-page: 1137 year: 2013 ident: 473_CR17 publication-title: Nat. Mater. doi: 10.1038/nmat3795 – volume: 2 year: 2011 ident: 473_CR40 publication-title: Nat. Commun. doi: 10.1038/ncomms1427 – volume: 201 start-page: 1212 year: 1964 ident: 473_CR32 publication-title: Nature doi: 10.1038/2011212a0 – volume: 56 start-page: 6937 year: 2017 ident: 473_CR34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201702473 – volume: 5 start-page: 21514 year: 2017 ident: 473_CR36 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06458F – volume: 13 start-page: 856 year: 2018 ident: 473_CR5 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0197-9 |
SSID | ssj0065316 |
Score | 2.7066891 |
Snippet | Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 764 |
SubjectTerms | 639/638/161/886 639/638/298 639/638/77/886 Analytical Chemistry Atom economy Biochemistry Carbon Carbon monoxide Carbon monoxide poisoning Catalysts Chemistry Chemistry and Materials Science Chemistry/Food Science Copper Density functional theory Displays Electronic structure Equivalence First principles Formic acid Inorganic Chemistry Iridium Manganese Molybdenum Nanoparticles Nickel Nitrogen Organic Chemistry Oxidation Palladium Physical Chemistry Platinum Poisoning Properties (attributes) Single atom catalysts Strategy |
Title | Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy |
URI | https://link.springer.com/article/10.1038/s41557-020-0473-9 https://www.ncbi.nlm.nih.gov/pubmed/32541950 https://www.proquest.com/docview/2427390958 https://www.proquest.com/docview/2413996574 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAF8e6WUhmJE8hqsn7EPqFu1aVwWCFEpb1Fju2sInWTZbMrdTnBb-Af8kuYyatCFT0kkWInGWXGnvk84xlC3mbceqsVwJI8xqTasWJaescyIQTIVIQ6DqMtZuriUnyey3m34FZ3YZX9nNhM1L5yuEZ-AqokAXxupP6w-s6wahR6V7sSGvfJPqYuQ6lO5gPgUiBfze6iRErcGTR4Nbk-qVGRJgzBUyQSzsy_eumWsXnLUdron-lj8qgzHOlpy-kn5F4on5IHZ329tmfk16d14YvtkiL6vwoM0PSSNqszu3pDq5LC4F1XIC_MV6vgoWmdwV0wWvFYFo5aV3haXRdtmSVa70qwDuviB3TG8PgFtXTRZqmmuDfkz8_fC6Se1m2G291zcjk9_3Z2wboCC8yJRG6Y0rHKlLOCKy9dNo6VDmMjrZQWTUMZQNm72OW5yqM4h3kzi60PUgSAPV6LwF-QvbIqwwGhkYqMz3kix94K77TmufKxNsFomZtIjEjU_97UddnHsQjGVdp4wblOW46kwJEUOZKaEXk3PLJqU2_c1fmo51najcI6vZGZEXkzNANb0Cliy1BtsQ_YwEbJBEh82fJ6-BoH9Ixlckfkfc_8m5f_l5TDu0l5RR6OG7HDIMIjsrdZb8NrMGw22XEjvXDW04_HZP90OpnM4Do5n335-hfLU_h2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlUC6Id7ctYCS4gKwm8SPOoUKosOzS0lMr9RYc21lF6ibLZlewnNpv6H_wUXwJM8lmK1TRWw-5xI4z8ozn4XkR8jrjxhmtwCzJQyyqHSqmpbMsE0IATQUo4zDa4kgNTsSXU3m6Rn53uTAYVtnxxIZRu8riHfkuiJIY7PNE6veT7wy7RqF3tWuh0ZLFgV_8AJOt3ht-BPy-iaL-p-P9AVt2FWBWxHLGlA5VpqwRXDlpsyhU2keJNFIa1IekBwlnQ5vnKg_CHJhFFhrnpfCg6zstPId175C7goMkx8z0_ueO8yug5yabKZYSM5FWXlSud2sU3DFDYy0QMWfJv3LwmnJ7zTHbyLv-A3J_qajSDy1lPSRrvnxENva7_nCPycVwWrhiPqZ423DmGVjvY9rcBi3qGa1KCsxiWgF9MldNvIOhaQZvQUnGZ1xYamzhaPWzaNs60XpRgjZaF79gMobjj6iho7YqNsVclD_nlyOEntZtRd3FE3JyK1v_lKyXVek3CQ1UkLicxzJyRjirNc-VC3XiEy3zJBA9EnTbm9pltXNsunGWNl53rtMWIylgJEWMpEmPvF19MmlLfdw0eafDWbo89XV6RaM98mo1DGhBJ4wpfTXHOaBzJ0rGAOKzFterv3Gw1rEtb4-865B_tfh_Qdm6GZSXZGNw_PUwPRweHWyTe1FDghjAuEPWZ9O5fw5K1Sx70VAyJd9u--j8Bc2yMMk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbCbgg3iwUMBJcQNbmYTvOASFou-pStKoQlXoLju2sInWTZbMrWE7tN_Rv-jl8CTN5bIUqeushl9hxRp7xPDwvQl6nobZaSTBLMh-LavuSKWENSznnQFMeyjiMthjLvUP--UgcbZDzLhcGwyo7nlgzalsavCMfgCiJwD6PhRpkbVjEwc7ww-wHww5S6Gnt2mk0JLLvVj_BfKvej3YA12-CYLj7bXuPtR0GmOGRWDCpfJlKo3korTBp4EvlglhoITTqRsKBtDO-yTKZeX4GjCP1tXWCO9D7reIuhHVvkM0IraIe2fy0Oz742skBCdRd5zZFQmBe0tqnGqpBhWI8Ymi6eTwKWfyvVLyk6l5y09bSb3iX3GnVVvqxobN7ZMMV98mt7a5b3ANyOprnNl9OKd49HDsGtvyU1ndDq2pBy4IC65iXQK3MljNnYWiewltQmfGZ5oZqk1ta_sqbJk-0WhWgm1b5b5iMwfkTqumkqZFNMTPlz8nZBKGnVVNfd_WQHF7L5j8ivaIs3BNCPenFNgsjEVjNrVEqzKT1VexiJbLY433iddubmLb2ObbgOE5qH3yokgYjCWAkQYwkcZ-8XX8yawp_XDV5q8NZ0vKAKrmg2D55tR4GtKBLRheuXOIc0MBjKSIA8XGD6_XfQrDdsUlvn7zrkH-x-H9BeXo1KC_JTTg2yZfReP8ZuR3UFIjRjFukt5gv3XPQsBbpi5aUKfl-3afnLyvYNls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iridium+single-atom+catalyst+on+nitrogen-doped+carbon+for+formic+acid+oxidation+synthesized+using+a+general+host-guest+strategy&rft.jtitle=Nature+chemistry&rft.au=Li%2C+Zhi&rft.au=Chen%2C+Yuanjun&rft.au=Ji%2C+Shufang&rft.au=Tang%2C+Yan&rft.date=2020-08-01&rft.eissn=1755-4349&rft.volume=12&rft.issue=8&rft.spage=764&rft_id=info:doi/10.1038%2Fs41557-020-0473-9&rft_id=info%3Apmid%2F32541950&rft.externalDocID=32541950 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon |