Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm

Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detect...

Full description

Saved in:
Bibliographic Details
Published inJournal of cardiovascular development and disease Vol. 9; no. 10; p. 326
Main Authors Jain, Pankaj K., Dubey, Abhishek, Saba, Luca, Khanna, Narender N., Laird, John R., Nicolaides, Andrew, Fouda, Mostafa M., Suri, Jasjit S., Sharma, Neeraj
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.09.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.
AbstractList Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.
Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.
Author Saba, Luca
Dubey, Abhishek
Nicolaides, Andrew
Fouda, Mostafa M.
Jain, Pankaj K.
Laird, John R.
Sharma, Neeraj
Khanna, Narender N.
Suri, Jasjit S.
AuthorAffiliation 1 School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
2 Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India
4 Department of Cardiology, Indraprastha APOLLO Hospital, New Delhi 110076, India
7 Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
6 Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2409, Cyprus
8 Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
5 Heart and Vascular Institute, Adventist Heath St. Helena, St. Helena, CA 94574, USA
3 Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy
AuthorAffiliation_xml – name: 3 Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy
– name: 4 Department of Cardiology, Indraprastha APOLLO Hospital, New Delhi 110076, India
– name: 8 Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
– name: 1 School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
– name: 6 Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2409, Cyprus
– name: 5 Heart and Vascular Institute, Adventist Heath St. Helena, St. Helena, CA 94574, USA
– name: 7 Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
– name: 2 Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India
Author_xml – sequence: 1
  givenname: Pankaj K.
  orcidid: 0000-0002-4600-8513
  surname: Jain
  fullname: Jain, Pankaj K.
– sequence: 2
  givenname: Abhishek
  surname: Dubey
  fullname: Dubey, Abhishek
– sequence: 3
  givenname: Luca
  surname: Saba
  fullname: Saba, Luca
– sequence: 4
  givenname: Narender N.
  surname: Khanna
  fullname: Khanna, Narender N.
– sequence: 5
  givenname: John R.
  surname: Laird
  fullname: Laird, John R.
– sequence: 6
  givenname: Andrew
  surname: Nicolaides
  fullname: Nicolaides, Andrew
– sequence: 7
  givenname: Mostafa M.
  orcidid: 0000-0003-1790-8640
  surname: Fouda
  fullname: Fouda, Mostafa M.
– sequence: 8
  givenname: Jasjit S.
  surname: Suri
  fullname: Suri, Jasjit S.
– sequence: 9
  givenname: Neeraj
  surname: Sharma
  fullname: Sharma, Neeraj
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36286278$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNUREvpiTuyxAUJLfg7MYdKy_K10gIVpWdrkkyCt4m9OFkk_gq_Fme3RduKk8fj5331ajyPsyMfPGbZU0ZfCWHo63VV14ZRKrh-kJ1wQYuZkFwdHdTH2dkwrCmlLN0o44-yY6F5oXlenGR_5uOIfnTBz97CgDW5-oIjeYe4ISuE6J1vyedQY0eaEMlFBz-3SC6x7ZMIJhlxniwghtElbTdGGMLW1zv6cozhGsk3N1xPdcIbV-1Eb8jck3ncNRx0ZOlH7DrXoq-QXECE2rX9k-xhA92AZzfnaXb14f33xafZ6uvH5WK-mlUyV-NMC8Gw0Yo3JWNC50IrqBpTNExQrIGb0kiUhWlKyhkokwCpgCsJkhWizMVpttz71gHWdhNdD_G3DeDsrhFiayFFrTq0poTSIOOmUEYCMNAlZ1goqhQHISev873XZlv2WFdpShG6O6Z3X7z7YdvwyxpNpeQyGby4MYghjXoYbe-GKg0HPIbtYHnODeUqlzShz--h67CNPo1qogpZaC0mw2eHif5FuV2BBLA9UMUwDBEbW7n916aArrOM2mnT7MGmJc3Le5pb2__RfwFzK9SF
CitedBy_id crossref_primary_10_1007_s11831_024_10098_3
crossref_primary_10_1007_s11042_023_17243_3
crossref_primary_10_3390_jcdd10120485
crossref_primary_10_1016_j_conbuildmat_2023_132766
crossref_primary_10_3389_fcvm_2022_949454
crossref_primary_10_3390_biomedicines11102617
crossref_primary_10_1177_00033197251324630
crossref_primary_10_3389_frai_2024_1304483
crossref_primary_10_12677_mos_2024_132149
crossref_primary_10_3390_diagnostics13122092
crossref_primary_10_3389_fpls_2023_1175027
crossref_primary_10_31083_j_rcm2512454
crossref_primary_10_37015_AUDT_2023_230018
crossref_primary_10_3233_THC_231306
Cites_doi 10.1142/S0219519409003115
10.1007/s11517-006-0140-3
10.1007/s11883-013-0393-x
10.1007/s11883-019-0766-x
10.7863/ultra.34.3.469
10.1007/s11883-015-0529-2
10.1016/j.ejrad.2019.02.038
10.1016/j.compbiomed.2021.104721
10.1177/1544316718806421
10.1016/j.ultrasmedbio.2014.12.024
10.1109/TIP.2011.2169270
10.1007/s10278-021-00461-2
10.1007/s11883-016-0635-9
10.1016/j.neucom.2014.09.066
10.3390/diagnostics12030722
10.1007/s10916-016-0504-7
10.1016/j.compbiomed.2022.105273
10.1007/978-1-4899-7618-5
10.1007/978-1-4614-1180-2
10.1007/978-1-4614-1180-2_6
10.1016/j.compbiomed.2016.06.010
10.21037/atm-20-7676
10.1177/0161734620951216
10.3390/diagnostics11112109
10.3390/diagnostics12061482
10.1016/j.cmpb.2018.05.015
10.1007/978-1-4614-7425-8_17
10.1007/s10916-016-0543-0
10.1201/b11868
10.1016/j.compbiomed.2022.106083
10.1177/0003319720910660
10.1109/TUFFC.2010.1522
10.1016/j.eswa.2015.03.014
10.3390/diagnostics12010166
10.1161/CIR.0000000000000659
10.1109/TITB.2002.804139
10.1016/j.ultras.2012.03.005
10.1016/j.cmpb.2017.01.009
10.1016/j.compbiomed.2016.11.011
10.1016/j.compbiomed.2022.106017
10.1007/s10916-017-0797-1
10.1161/CIRCULATIONAHA.114.008729
10.1109/IEMBS.2006.260132
10.1016/j.diabres.2018.07.028
10.1007/s10916-017-0745-0
10.1016/j.compbiomed.2017.08.014
10.1007/978-1-4614-7425-8
10.1016/j.ultrasmedbio.2021.05.023
10.18653/v1/D15-1166
10.3390/diagnostics11112025
10.1161/CIR.0000000000000558
10.1007/s11517-019-02099-3
10.1016/j.ihj.2018.01.024
10.1007/978-3-540-36675-1_5
10.1007/978-1-4419-7222-4
10.1080/03772063.2017.1331757
10.1016/j.compbiomed.2020.103960
10.4239/wjd.v12.i3.215
10.1109/JBHI.2021.3060163
10.1007/s11883-018-0736-8
10.3390/diagnostics12051283
10.1007/s11517-006-0119-0
10.4103/ijmr.IJMR_516_15
10.1109/4233.992158
10.1016/j.compbiomed.2021.105204
10.1016/j.compbiomed.2021.105131
10.1007/s00330-016-4296-4
10.1177/17474930211027834
10.1016/j.cmpb.2012.09.008
10.1016/j.compbiomed.2022.105571
10.1161/STR.0000000000000375
10.1016/j.procs.2018.08.006
10.1109/TIM.2011.2174901
10.1109/EUROCON.2013.6625268
10.1016/j.atherosclerosis.2022.06.1014
10.1016/j.cmpb.2016.02.004
10.3390/diagnostics11122257
10.1016/j.ultrasmedbio.2016.08.016
10.1016/j.compbiomed.2021.104803
10.1016/j.compbiomed.2022.105333
10.1016/j.compbiomed.2013.06.012
10.1161/CIR.0000000000000950
10.3390/diagnostics11081405
10.1007/s11517-016-1601-y
10.1161/STROKEAHA.121.035692
10.7863/jum.2012.31.7.1123
10.1201/b19253
10.1109/IEMBS.2011.6091275
10.1109/JBHI.2021.3103839
10.1055/s-0032-1330336
10.1109/TIM.2022.3174270
10.1016/j.cmpb.2012.05.008
10.7863/jum.2008.27.9.1353
10.1201/b22435
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jcdd9100326
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2308-3425
ExternalDocumentID oai_doaj_org_article_9bab9e1298594aa1a6b21e850552a347
PMC9604424
36286278
10_3390_jcdd9100326
Genre Journal Article
GeographicLocations United Kingdom--UK
Hong Kong
United States--US
Japan
GeographicLocations_xml – name: United Kingdom--UK
– name: United States--US
– name: Japan
– name: Hong Kong
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
CCPQU
CITATION
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c475t-6331ef652fb11367365acf98f130eda29b94e489fb021a5973645a254a4183b73
IEDL.DBID 7X7
ISSN 2308-3425
IngestDate Wed Aug 27 00:22:52 EDT 2025
Thu Aug 21 18:38:51 EDT 2025
Fri Jul 11 11:39:47 EDT 2025
Mon Jun 30 05:23:38 EDT 2025
Mon Jul 21 06:08:01 EDT 2025
Tue Jul 01 01:48:13 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords CCA
CVD
atherosclerosis
deep learning
ICA
Attention-UNet
plaque segmentation
stroke
UNet
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-6331ef652fb11367365acf98f130eda29b94e489fb021a5973645a254a4183b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4600-8513
0000-0003-1790-8640
OpenAccessLink https://www.proquest.com/docview/2728486634?pq-origsite=%requestingapplication%
PMID 36286278
PQID 2728486634
PQPubID 5046891
ParticipantIDs doaj_primary_oai_doaj_org_article_9bab9e1298594aa1a6b21e850552a347
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9604424
proquest_miscellaneous_2729025740
proquest_journals_2728486634
pubmed_primary_36286278
crossref_citationtrail_10_3390_jcdd9100326
crossref_primary_10_3390_jcdd9100326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220927
PublicationDateYYYYMMDD 2022-09-27
PublicationDate_xml – month: 9
  year: 2022
  text: 20220927
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of cardiovascular development and disease
PublicationTitleAlternate J Cardiovasc Dev Dis
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Meiburger (ref_51) 2022; 144
ref_94
ref_93
ref_90
Ikeda (ref_85) 2014; 16
ref_13
ref_12
Saba (ref_61) 2017; 41
ref_99
ref_96
Shrivastava (ref_55) 2015; 42
ref_95
Agarwal (ref_101) 2022; 146
ref_19
ref_18
Kumar (ref_24) 2018; 163
Das (ref_98) 2022; 143
Molinari (ref_29) 2012; 108
Kannathal (ref_87) 2006; 44
Suri (ref_97) 2022; 142
Molinari (ref_77) 2009; 9
Saba (ref_102) 2021; 9
ref_23
Jain (ref_74) 2022; 149
ref_22
ref_21
Saba (ref_86) 2013; 43
ref_20
Jain (ref_73) 2021; 41
Saba (ref_81) 2018; 70
ref_27
ref_26
Molinari (ref_42) 2012; 61
Chauhan (ref_1) 2015; 4
Ikeda (ref_49) 2017; 141
Kamalakannan (ref_5) 2017; 146
ref_72
Molinari (ref_39) 2010; 57
ref_70
Skandha (ref_71) 2022; 141
ref_79
ref_78
ref_76
Zhou (ref_66) 2021; 25
ref_75
Zahnd (ref_32) 2016; 43
Molinari (ref_36) 2012; 31
Rouco (ref_33) 2018; 126
Benjamin (ref_10) 2018; 137
Suri (ref_106) 2020; 124
Kuppili (ref_54) 2017; 41
Roy (ref_48) 2017; 63
Khanna (ref_105) 2019; 21
Virani (ref_9) 2021; 143
ref_80
Puvvula (ref_8) 2020; 71
Dorairaj (ref_3) 2016; 133
ref_89
(ref_63) 2015; 151
Faita (ref_30) 2008; 27
Saba (ref_59) 2019; 114
Saba (ref_25) 2019; 38
Lucatelli (ref_84) 2016; 26
Suri (ref_46) 2002; 6
Biswas (ref_53) 2021; 34
Kotsis (ref_17) 2018; 143
ref_52
Jain (ref_91) 2020; 58
Zhang (ref_88) 2005; 113
Viswanathan (ref_7) 2021; 12
Than (ref_82) 2017; 89
Araki (ref_56) 2016; 128
Boi (ref_58) 2018; 20
Ikeda (ref_104) 2015; 41
Suri (ref_38) 2002; 6
Acharya (ref_57) 2013; 110
Srivastava (ref_64) 2018; 42
Araki (ref_62) 2017; 80
Suri (ref_92) 2021; 25
Saba (ref_50) 2016; 75
Acharya (ref_100) 2012; 35
Kumar (ref_37) 2016; 55
Benjamin (ref_11) 2019; 139
Saba (ref_16) 2022; 53
Loizou (ref_34) 2007; 45
Meshram (ref_67) 2020; 42
Jena (ref_69) 2021; 137
Yang (ref_41) 2013; 2013
Araki (ref_40) 2015; 34
ref_103
Mainak (ref_60) 2019; 24
Saba (ref_83) 2016; 40
Molinari (ref_31) 2012; 21
Zhou (ref_65) 2021; 47
ref_47
Patel (ref_15) 2016; 18
ref_44
ref_43
Molinari (ref_28) 2011; 30
Molinari (ref_35) 2012; 52
Jones (ref_2) 2022; 17
Araki (ref_45) 2016; 40
ref_4
Jain (ref_68) 2021; 136
ref_6
Saba (ref_14) 2022; 354
References_xml – volume: 9
  start-page: 481
  year: 2009
  ident: ref_77
  article-title: AUTOMATIC COMPUTER-BASED TRACINGS (ACT) IN LONGITUDINAL 2-D ULTRASOUND IMAGES USING DIFFERENT SCANNERS
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519409003115
– volume: 45
  start-page: 35
  year: 2007
  ident: ref_34
  article-title: Snakes based segmentation of the common carotid artery intima media
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0140-3
– volume: 16
  start-page: 1
  year: 2014
  ident: ref_85
  article-title: Ankle–Brachial Index and Its Link to Automated Carotid Ultrasound Measurement of Intima–Media Thickness Variability in 500 Japanese Coronary Artery Disease Patients
  publication-title: Curr. Atheroscler. Rep.
  doi: 10.1007/s11883-013-0393-x
– volume: 21
  start-page: 7
  year: 2019
  ident: ref_105
  article-title: Rheumatoid Arthritis: Atherosclerosis Imaging and Cardiovascular Risk Assessment Using Machine and Deep Learning–Based Tissue Characterization
  publication-title: Curr. Atheroscler. Rep.
  doi: 10.1007/s11883-019-0766-x
– volume: 34
  start-page: 469
  year: 2015
  ident: ref_40
  article-title: Shape-Based Approach for Coronary Calcium Lesion Volume Measurement on Intravascular Ultrasound Imaging and Its Association With Carotid Intima-Media Thickness
  publication-title: J. Ultrasound Med.
  doi: 10.7863/ultra.34.3.469
– ident: ref_23
  doi: 10.1007/s11883-015-0529-2
– volume: 114
  start-page: 14
  year: 2019
  ident: ref_59
  article-title: The present and future of deep learning in radiology
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2019.02.038
– volume: 136
  start-page: 104721
  year: 2021
  ident: ref_68
  article-title: Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104721
– volume: 42
  start-page: 162
  year: 2018
  ident: ref_64
  article-title: Geometric total plaque area is an equally powerful phenotype compared with carotid intima-media thickness for stroke risk assessment: A deep learning approach
  publication-title: J. Vasc. Ultrasound
  doi: 10.1177/1544316718806421
– volume: 41
  start-page: 1247
  year: 2015
  ident: ref_104
  article-title: Improved correlation between carotid and coronary atherosclerosis SYNTAX score using automated ultrasound carotid bulb plaque IMT measurement
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2014.12.024
– volume: 21
  start-page: 1211
  year: 2012
  ident: ref_31
  article-title: Completely Automated Multiresolution Edge Snapper—A New Technique for an Accurate Carotid Ultrasound IMT Measurement: Clinical Validation and Benchmarking on a Multi-Institutional Database
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2169270
– volume: 34
  start-page: 581
  year: 2021
  ident: ref_53
  article-title: A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: Artificial intelligence framework
  publication-title: J. Digit. Imaging.
  doi: 10.1007/s10278-021-00461-2
– volume: 18
  start-page: 83
  year: 2016
  ident: ref_15
  article-title: A Review on Atherosclerotic Biology, Wall Stiffness, Physics of Elasticity, and Its Ultrasound-Based Measurement
  publication-title: Curr. Atheroscler. Rep.
  doi: 10.1007/s11883-016-0635-9
– volume: 151
  start-page: 161
  year: 2015
  ident: ref_63
  article-title: Fully automatic segmentation of ultrasound common carotid artery images based on machine learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.066
– ident: ref_95
  doi: 10.3390/diagnostics12030722
– volume: 40
  start-page: 1
  year: 2016
  ident: ref_83
  article-title: Inter-observer Variability Analysis of Automatic Lung Delineation in Normal and Disease Patients
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0504-7
– volume: 143
  start-page: 105273
  year: 2022
  ident: ref_98
  article-title: An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105273
– volume: 38
  start-page: 451
  year: 2019
  ident: ref_25
  article-title: Global perspective on carotid intima-media thickness and plaque: Should the current measurement guidelines be revisited?
  publication-title: Int. Angiol.
– ident: ref_20
  doi: 10.1007/978-1-4899-7618-5
– ident: ref_22
  doi: 10.1007/978-1-4614-1180-2
– ident: ref_27
  doi: 10.1007/978-1-4614-1180-2_6
– volume: 75
  start-page: 217
  year: 2016
  ident: ref_50
  article-title: Accurate cloud-based smart IMT measurement, its validation and stroke risk stratification in carotid ultrasound: A web-based point-of-care tool for multicenter clinical trial
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.06.010
– volume: 9
  start-page: 1206
  year: 2021
  ident: ref_102
  article-title: Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: A narrative review for stroke application
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-20-7676
– volume: 42
  start-page: 221
  year: 2020
  ident: ref_67
  article-title: Deep Learning for Carotid Plaque Segmentation using a Dilated U-Net Architecture
  publication-title: Ultrason. Imaging
  doi: 10.1177/0161734620951216
– ident: ref_103
  doi: 10.3390/diagnostics11112109
– ident: ref_72
  doi: 10.3390/diagnostics12061482
– volume: 163
  start-page: 155
  year: 2018
  ident: ref_24
  article-title: State-of-the-art review on automated lumen and adventitial border delineation and its measurements in carotid ultrasound
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.05.015
– ident: ref_4
  doi: 10.1007/978-1-4614-7425-8_17
– volume: 40
  start-page: 1
  year: 2016
  ident: ref_45
  article-title: Two automated techniques for carotid lumen diameter measurement: Regional versus boundary approaches
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0543-0
– ident: ref_18
  doi: 10.1201/b11868
– ident: ref_76
  doi: 10.1016/j.compbiomed.2022.106083
– volume: 71
  start-page: 520
  year: 2020
  ident: ref_8
  article-title: Morphological Carotid Plaque Area Is Associated With Glomerular Filtration Rate: A Study of South Asian Indian Patients With Diabetes and Chronic Kidney Disease
  publication-title: Angiology
  doi: 10.1177/0003319720910660
– volume: 57
  start-page: 1112
  year: 2010
  ident: ref_39
  article-title: Intima-media thickness: Setting a standard for a completely automated method of ultrasound measurement
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2010.1522
– volume: 42
  start-page: 6184
  year: 2015
  ident: ref_55
  article-title: Reliable and accurate psoriasis disease classification in dermatology images using comprehensive feature space in machine learning paradigm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.03.014
– ident: ref_96
  doi: 10.3390/diagnostics12010166
– volume: 139
  start-page: e56
  year: 2019
  ident: ref_11
  article-title: Heart disease and stroke statistics—2019 update: A report from the American heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000659
– volume: 6
  start-page: 324
  year: 2002
  ident: ref_38
  article-title: A review on MR vascular image processing algorithms: Acquisition and prefiltering: Part I
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2002.804139
– volume: 52
  start-page: 949
  year: 2012
  ident: ref_35
  article-title: Constrained snake vs. conventional snake for carotid ultrasound automated IMT measurements on multi-center data sets
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2012.03.005
– volume: 141
  start-page: 73
  year: 2017
  ident: ref_49
  article-title: Automated segmental-IMT measurement in thin/thick plaque with bulb presence in carotid ultrasound from multiple scanners: Stroke risk assessment
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.01.009
– volume: 80
  start-page: 77
  year: 2017
  ident: ref_62
  article-title: Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.11.011
– volume: 149
  start-page: 106017
  year: 2022
  ident: ref_74
  article-title: Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106017
– volume: 41
  start-page: 152
  year: 2017
  ident: ref_54
  article-title: Extreme Learning Machine Framework for Risk Stratification of Fatty Liver Disease Using Ultrasound Tissue Characterization
  publication-title: J. Med Syst.
  doi: 10.1007/s10916-017-0797-1
– ident: ref_44
– volume: 133
  start-page: 1605
  year: 2016
  ident: ref_3
  article-title: Cardiovascular Diseases in India: Current Epidemiology and Future Directions
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.008729
– ident: ref_47
  doi: 10.1109/IEMBS.2006.260132
– ident: ref_75
– volume: 143
  start-page: 322
  year: 2018
  ident: ref_17
  article-title: Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2018.07.028
– ident: ref_89
– volume: 41
  start-page: 98
  year: 2017
  ident: ref_61
  article-title: Plaque Tissue Morphology-Based Stroke Risk Stratification Using Carotid Ultrasound: A Polling-Based PCA Learning Paradigm
  publication-title: J. Med Syst.
  doi: 10.1007/s10916-017-0745-0
– volume: 89
  start-page: 197
  year: 2017
  ident: ref_82
  article-title: Lung disease stratification using amalgamation of Riesz and Gabor transforms in machine learning framework
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.014
– ident: ref_19
– ident: ref_13
  doi: 10.1007/978-1-4614-7425-8
– volume: 47
  start-page: 2723
  year: 2021
  ident: ref_65
  article-title: Deep Learning-Based Carotid Plaque Segmentation from B-Mode Ultrasound Images
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2021.05.023
– ident: ref_90
  doi: 10.18653/v1/D15-1166
– volume: 113
  start-page: 384
  year: 2005
  ident: ref_88
  article-title: Inter- and Intra-Observer Variability Assessment of in Vivo Carotid Plaque Burden Quantification Using Multi-Contrast Dark Blood MR Images
  publication-title: Stud. Heal. Technol. Inform.
– ident: ref_70
  doi: 10.3390/diagnostics11112025
– volume: 137
  start-page: e67
  year: 2018
  ident: ref_10
  article-title: Heart disease and stroke statistics—2018 update: A report from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000558
– volume: 58
  start-page: 471
  year: 2020
  ident: ref_91
  article-title: Localization of common carotid artery transverse section in B-mode ultrasound images using faster RCNN: A deep learning approach
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-019-02099-3
– volume: 70
  start-page: 649
  year: 2018
  ident: ref_81
  article-title: Intra- and inter-operator reproducibility of automated cloud-based carotid lumen diameter ultrasound measurement
  publication-title: Ind. Heart J.
  doi: 10.1016/j.ihj.2018.01.024
– ident: ref_94
  doi: 10.1007/978-3-540-36675-1_5
– ident: ref_12
  doi: 10.1007/978-1-4419-7222-4
– volume: 63
  start-page: 769
  year: 2017
  ident: ref_48
  article-title: An iterative implementation of level set for precise segmentation of brain tissues and abnormality detection from MR images
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2017.1331757
– volume: 41
  start-page: 9
  year: 2021
  ident: ref_73
  article-title: Automated deep learning-based paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: An asymptomatic Japanese cohort study
  publication-title: Int. Angiol.
– volume: 124
  start-page: 103960
  year: 2020
  ident: ref_106
  article-title: COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103960
– volume: 12
  start-page: 215
  year: 2021
  ident: ref_7
  article-title: Bidirectional link between diabetes mellitus and coronavirus disease 2019 leading to cardiovascular disease: A narrative review
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v12.i3.215
– volume: 25
  start-page: 2967
  year: 2021
  ident: ref_66
  article-title: Deep Learning-Based Measurement of Total Plaque Area in B-Mode Ultrasound Images
  publication-title: IEEE J. Biomed. Heal. Informatics
  doi: 10.1109/JBHI.2021.3060163
– volume: 20
  start-page: 1
  year: 2018
  ident: ref_58
  article-title: A survey on coronary atherosclerotic plaque tissue characterization in intravascular optical coherence tomography
  publication-title: Curr. Atheroscler. Rep.
  doi: 10.1007/s11883-018-0736-8
– ident: ref_79
  doi: 10.3390/diagnostics12051283
– volume: 44
  start-page: 1031
  year: 2006
  ident: ref_87
  article-title: Heart rate variability: A review
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0119-0
– volume: 146
  start-page: 175
  year: 2017
  ident: ref_5
  article-title: Incidence & prevalence of stroke in India: A systematic review
  publication-title: Ind. J. Med. Res.
  doi: 10.4103/ijmr.IJMR_516_15
– volume: 6
  start-page: 8
  year: 2002
  ident: ref_46
  article-title: Shape recovery algorithms using level sets in 2-D/3-D medical imagery: A state-of-the-art review
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/4233.992158
– volume: 142
  start-page: 105204
  year: 2022
  ident: ref_97
  article-title: Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105204
– volume: 141
  start-page: 105131
  year: 2022
  ident: ref_71
  article-title: A hybrid deep learning paradigm for carotid plaque tissue characterization and its validation in multicenter cohorts using a supercomputer framework
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105131
– volume: 26
  start-page: 4423
  year: 2016
  ident: ref_84
  article-title: Relationship between leukoaraiosis, carotid intima-media thickness and intima-media thickness variability: Preliminary results
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-016-4296-4
– volume: 17
  start-page: 132
  year: 2022
  ident: ref_2
  article-title: Stroke in India: A systematic review of the incidence, prevalence, and case fatality
  publication-title: Int. J. Stroke.
  doi: 10.1177/17474930211027834
– volume: 110
  start-page: 66
  year: 2013
  ident: ref_57
  article-title: Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2012.09.008
– volume: 146
  start-page: 105571
  year: 2022
  ident: ref_101
  article-title: Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105571
– ident: ref_6
  doi: 10.1161/STR.0000000000000375
– volume: 126
  start-page: 723
  year: 2018
  ident: ref_33
  article-title: A robust anisotropic edge detection method for carotid ultrasound image processing
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.08.006
– volume: 61
  start-page: 1054
  year: 2012
  ident: ref_42
  article-title: Hypothesis Validation of Far-Wall Brightness in Carotid-Artery Ultrasound for Feature-Based IMT Measurement Using a Combination of Level-Set Segmentation and Registration. IEEE Trans
  publication-title: Instrum. Meas.
  doi: 10.1109/TIM.2011.2174901
– ident: ref_52
  doi: 10.1109/EUROCON.2013.6625268
– volume: 354
  start-page: 23
  year: 2022
  ident: ref_14
  article-title: International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: From basic strategies to advanced approaches
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2022.06.1014
– volume: 24
  start-page: 380
  year: 2019
  ident: ref_60
  article-title: State-of-the-art review on deep learning in medical imaging
  publication-title: Front. Bioscience-Landmark
– volume: 128
  start-page: 137
  year: 2016
  ident: ref_56
  article-title: PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.02.004
– ident: ref_78
  doi: 10.3390/diagnostics11122257
– volume: 4
  start-page: 735
  year: 2015
  ident: ref_1
  article-title: The rising incidence of cardiovascular diseases in India: Assessing its economic impact
  publication-title: J. Prev. Cardiol.
– volume: 43
  start-page: 239
  year: 2016
  ident: ref_32
  article-title: A Fully-Automatic Method to Segment the Carotid Artery Layers in Ultrasound Imaging: Application to Quantify the Compression-Decompression Pattern of the Intima-Media Complex During the Cardiac Cycle
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2016.08.016
– volume: 137
  start-page: 104803
  year: 2021
  ident: ref_69
  article-title: Artificial intelligence-based hybrid deep learning models for image classification: The first narrative review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104803
– volume: 144
  start-page: 105333
  year: 2022
  ident: ref_51
  article-title: Carotid Ultrasound Boundary Study (CUBS): Technical considerations on an open multi-center analysis of computerized measurement systems for intima-media thickness measurement on common carotid artery longitudinal B-mode ultrasound scans
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105333
– ident: ref_21
– volume: 2013
  start-page: 1
  year: 2013
  ident: ref_41
  article-title: Ultrasound Common Carotid Artery Segmentation Based on Active Shape Model
  publication-title: Comput. Math. Methods Med.
– volume: 43
  start-page: 1261
  year: 2013
  ident: ref_86
  article-title: Inter- and intra-observer variability analysis of completely automated cIMT measurement software (AtheroEdge™) and its benchmarking against commercial ultrasound scanner and expert Readers
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.06.012
– volume: 143
  start-page: e254
  year: 2021
  ident: ref_9
  article-title: Heart Disease and Stroke Statistics-2021 Update
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000950
– ident: ref_80
  doi: 10.3390/diagnostics11081405
– volume: 55
  start-page: 1415
  year: 2016
  ident: ref_37
  article-title: Accurate lumen diameter measurement in curved vessels in carotid ultrasound: An iterative scale-space and spatial transformation approach
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-016-1601-y
– volume: 53
  start-page: 290
  year: 2022
  ident: ref_16
  article-title: Carotid Artery Plaque Calcifications: Lessons From Histopathology to Diagnostic Imaging
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.121.035692
– volume: 31
  start-page: 1123
  year: 2012
  ident: ref_36
  article-title: Fully Automated Dual-Snake Formulation for Carotid Intima-Media Thickness Measurement
  publication-title: J. Ultrasound Med.
  doi: 10.7863/jum.2012.31.7.1123
– ident: ref_99
  doi: 10.1201/b19253
– ident: ref_26
  doi: 10.1109/IEMBS.2011.6091275
– volume: 25
  start-page: 4128
  year: 2021
  ident: ref_92
  article-title: Systematic Review of Artificial Intelligence in Acute Respiratory Distress Syndrome for COVID-19 Lung Patients: A Biomedical Imaging Perspective
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3103839
– volume: 35
  start-page: 237
  year: 2012
  ident: ref_100
  article-title: Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification
  publication-title: Ultraschall Der Med. Eur. J. Ultrasound
  doi: 10.1055/s-0032-1330336
– ident: ref_93
  doi: 10.1109/TIM.2022.3174270
– volume: 30
  start-page: 227
  year: 2011
  ident: ref_28
  article-title: CALSFOAM-completed automated local statistics based first order absolute moment for carotid wall recognition, segmentation and IMT measurement: Validation and benchmarking on a 300 patient database
  publication-title: Int. J. Angiol.
– volume: 108
  start-page: 946
  year: 2012
  ident: ref_29
  article-title: Ultrasound IMT measurement on a multi-ethnic and multi-institutional database: Our review and experience using four fully automated and one semi-automated methods
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2012.05.008
– volume: 27
  start-page: 1353
  year: 2008
  ident: ref_30
  article-title: Real-time Measurement System for Evaluation of the Carotid Intima-Media Thickness With a Robust Edge Operator
  publication-title: J. Ultrasound Med.
  doi: 10.7863/jum.2008.27.9.1353
– ident: ref_43
  doi: 10.1201/b22435
SSID ssj0001342012
Score 2.3769875
Snippet Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 326
SubjectTerms Artificial intelligence
Atherosclerosis
Automation
Carotid arteries
CCA
CVD
Deep learning
Diabetes
Experiments
ICA
Patients
plaque segmentation
Stroke
Ultrasonic imaging
Veins & arteries
Womens health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlh9JLafrpJi0q9FQwsSXZsnLbJA1pISE0XcjNjCx562bjDbvOn8mv7YzsXbwl0Euv9hiPrZHfjGfmDWOfK-VMbWwSg5AQKwc2NpnVMUJRmmqbQqGp3_n8Ij-bqu_X2fVo1BfVhPX0wP2LOzAWrPGISkVmFEAKuRWpLxC4MwFShT5yxLxRMBX-rkiFyCb6hjyJcf3B78o5hMZEEo3CCIICU_9j7uXfVZIj2Dl9wZ4P_iKf9Hrusie-fcmeng8Z8VfsYdJ1fcVifISA5Pj0wnf8xPs7PlCnzjjNO5tz9E755Rzw9vzKz26HnqOWNy2nqo-uwWvnqMKKBi0F6atuubjx_EezuuGBxZbKisJFh3zSBp16_gn-bUTsyS9hCa6Z3b5m09OvP4_P4mHeQlwpnXVxLmXq6zwTtaVJL1rmGVS1KWrEOe9AGGuUV4WpLToGgJEIpTABI0xQ-GGwWr5hO-2i9e8YhzwBXVeFqVyqhE4gTVxicwyHbOLQI4jYl_USlNVARk4zMeYlBiW0XuVovSI0qbXwXc_B8bjYEa3lRoSIs8MBNKdyMKfyX-YUsf21JZTDbl6VQiOIF-ibod6fNqdxH1JyBVq_uA8ylLHVKonY295wNppI6v8VuoiY3jKpLVW3z7TNr8D1Tdw5Sqj3_-PZ9tgzQc0blFPT-2ynW977D-hSdfZj2D1_AOAwIAU
  priority: 102
  providerName: Directory of Open Access Journals
Title Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm
URI https://www.ncbi.nlm.nih.gov/pubmed/36286278
https://www.proquest.com/docview/2728486634
https://www.proquest.com/docview/2729025740
https://pubmed.ncbi.nlm.nih.gov/PMC9604424
https://doaj.org/article/9bab9e1298594aa1a6b21e850552a347
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELdgkxAviP8ERmUknpCiJY4Tx7ygFjYNpFXVRqW-RXbsdGFdUtrsy_BpuXPcrkUTr_FZOenOvjvf3e8I-VhyIyupo1CxRIXcKB3KVIsQTFEcCx2rXGC_8_k4O5vyH7N05h_c1r6scnMnuovatCW-kR8zARdpDvaRf1n-DnFqFGZX_QiNh-QQoctQq8VM3L2xJBzsG-vb8hKI7o9_lcaAgYwSBFPYMUQOr_8-J_PfWskd43P6lDzxXiMd9mJ-Rh7Y5jl5dO7z4i_In2HX9XWL4QjMkqHTse3oN2uX1AOozilOPVtQ8FHpZKHg9_TSzm9851FD64Zi7UdXw94FsLDGcUuO-rJbtdeWXtTra-qwbLG4yG36TIeN46lHoaDfd-A96UStlKnnNy_J9PTk59ez0E9dCEsu0i7MkiS2VZaySuO8F5FkqSormVdg7axRTGrJLc9lpcE9UBCPYCJTQZypOFwPWiSvyEHTNvYNoSqLlKjKXJYm5kxEKo5MpDMIinRkwC8IyKeNCIrSQ5LjZIxFAaEJyqvYkVcAirUhXvZIHPeTjVCWWxKEz3Yf2tW88KexkFppacHVyVPJlYpVpllsc_AGU6YSLgJytNGEwp_pdXGngQH5sF2G04gpFtXY9tbRYN5W8Cggr3vF2XKSYBcwE3lAxJ5K7bG6v9LUVw7xGxF0OONv_8_WO_KYYXMG5szEETnoVrf2PbhMnR64czEgh6OT8eRi4B4e_gIYihrY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxBtDgUWCC5JVe3ft9SIhlFKqhDZRRRupN3fXuw6hqRMSV4i_wo_gNzLjR5qgiluv9tgeaWbn4Zn5hpA3mbAqVybwNePaF1YbX0VG-uCKwlCaUCcS5537g7g7FF9OopMN8qedhcG2ytYmVobaTjP8R77NJBjSBPyj-Dj74ePWKKyutis0arXYd79-Qsq2-NDbBfm-ZWzv8_Gnrt9sFfAzIaPSjzkPXR5HLDe4z0TyONJZrpIcrLmzmimjhBOJyg24Pw3xNhbqNORRWoD6G8nhvTfITXC8ASZ78kRe_tPhAvwpq8cAOVfB9vfMWnDIAUfwhhXHV-0HuCqo_bc3c8XZ7d0jd5solXZqtbpPNlzxgNzqN3X4h-R3pyzrPkl_B9ygpcOBK-muczPaALaOKG5Zm1CIienhRMPn6ZEbnTeTTgUdFxR7TcoxPDsBFha43qmiPirn0zNHv44XZ7TCzsVmpuqh97RTVDzVqBe0twInSg_1XNvx6PwRGV6LPB6TzWJauKeE6jjQMs8SldlQMBnoMLCBiSEJM4GFOMQj71oRpFkDgY6bOCYppEIor3RFXh4ocks8q5E_ribbQVkuSRCuu7ownY_S5vSnymijHIRWSaSE1qGODQtdAtFnxDQX0iNbrSakjQ1ZpJca75HXy9tw-rGkows3vahosE4sReCRJ7XiLDnhOHXMZOIRuaZSa6yu3ynG3yqEcUTsEUw8-z9br8jt7nH_ID3oDfafkzsMB0OwXie3yGY5v3AvIFwrzcvqjFByet2H8i85w1MY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVKq4IN4YCiwSXJCs2LtrrxcJoYQ0aiiNopZIvZldex1CUyckrhB_hZ_Cr2PGjzRBFbde7bE90szOwzPzDSGvE5GqTBnP1YxrV6TauCow0gVX5PvS-DqSOO98PAwPx-LTWXC2Q_40szDYVtnYxNJQp_ME_5G3mQRDGoF_FO2sbosY9fofFj9c3CCFldZmnUalIkf2109I31bvBz2Q9RvG-gdfPh669YYBNxEyKNyQc99mYcAyg7tNJA8DnWQqysCy21QzZZSwIlKZAVeoIfbGop2GnEoLOApGcnjvLbIrMStqkd3uwXB0cvWHhwvwrqwaCuRcee3vSZqCe_Y4QjlsuMFyW8B1Ie6_nZobrq9_l9ypY1baqZTsHtmx-X2yd1xX5R-Q352iqLom3S44xZSOh7agPWsXtIZvnVDcuTajECHT0UzD5-mpnVzUc085neYUO0-KKTw7AxZWuOyppD4tlvNzS0-mq3NaIulia1P50DvayUueKgwMOtgAF6UjvdTpdHLxkIxvRCKPSCuf5_YJoTr0tMySSCWpL5j0tO-lngkhJTNeClGJQ942IoiTGhAd93LMYkiMUF7xhrwcUOuGeFHhgFxP1kVZrkkQvLu8MF9O4toWxMpooywEWlGghNa-Dg3zbQSxaMA0F9Ih-40mxLVFWcVX-u-QV-vbYAuwwKNzO78sabBqDOrokMeV4qw54TiDzGTkELmlUlusbt_Jp99KvHHE7xFMPP0_Wy_JHhzI-PNgePSM3GY4JYLFO7lPWsXy0j6H2K0wL-pDQsnXmz6XfwHARliz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Based+UNet+Deep+Learning+Model+for+Plaque+Segmentation+in+Carotid+Ultrasound+for+Stroke+Risk+Stratification%3A+An+Artificial+Intelligence+Paradigm&rft.jtitle=Journal+of+cardiovascular+development+and+disease&rft.au=Jain%2C+Pankaj+K&rft.au=Dubey%2C+Abhishek&rft.au=Saba%2C+Luca&rft.au=Khanna%2C+Narender+N&rft.date=2022-09-27&rft.issn=2308-3425&rft.eissn=2308-3425&rft.volume=9&rft.issue=10&rft_id=info:doi/10.3390%2Fjcdd9100326&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2308-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2308-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2308-3425&client=summon