Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm
Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detect...
Saved in:
Published in | Journal of cardiovascular development and disease Vol. 9; no. 10; p. 326 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.09.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment. |
---|---|
AbstractList | Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment. Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment. |
Author | Saba, Luca Dubey, Abhishek Nicolaides, Andrew Fouda, Mostafa M. Jain, Pankaj K. Laird, John R. Sharma, Neeraj Khanna, Narender N. Suri, Jasjit S. |
AuthorAffiliation | 1 School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India 2 Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India 4 Department of Cardiology, Indraprastha APOLLO Hospital, New Delhi 110076, India 7 Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA 6 Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2409, Cyprus 8 Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA 5 Heart and Vascular Institute, Adventist Heath St. Helena, St. Helena, CA 94574, USA 3 Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy |
AuthorAffiliation_xml | – name: 3 Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy – name: 4 Department of Cardiology, Indraprastha APOLLO Hospital, New Delhi 110076, India – name: 8 Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA – name: 1 School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India – name: 6 Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2409, Cyprus – name: 5 Heart and Vascular Institute, Adventist Heath St. Helena, St. Helena, CA 94574, USA – name: 7 Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA – name: 2 Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India |
Author_xml | – sequence: 1 givenname: Pankaj K. orcidid: 0000-0002-4600-8513 surname: Jain fullname: Jain, Pankaj K. – sequence: 2 givenname: Abhishek surname: Dubey fullname: Dubey, Abhishek – sequence: 3 givenname: Luca surname: Saba fullname: Saba, Luca – sequence: 4 givenname: Narender N. surname: Khanna fullname: Khanna, Narender N. – sequence: 5 givenname: John R. surname: Laird fullname: Laird, John R. – sequence: 6 givenname: Andrew surname: Nicolaides fullname: Nicolaides, Andrew – sequence: 7 givenname: Mostafa M. orcidid: 0000-0003-1790-8640 surname: Fouda fullname: Fouda, Mostafa M. – sequence: 8 givenname: Jasjit S. surname: Suri fullname: Suri, Jasjit S. – sequence: 9 givenname: Neeraj surname: Sharma fullname: Sharma, Neeraj |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36286278$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNUREvpiTuyxAUJLfg7MYdKy_K10gIVpWdrkkyCt4m9OFkk_gq_Fme3RduKk8fj5331ajyPsyMfPGbZU0ZfCWHo63VV14ZRKrh-kJ1wQYuZkFwdHdTH2dkwrCmlLN0o44-yY6F5oXlenGR_5uOIfnTBz97CgDW5-oIjeYe4ISuE6J1vyedQY0eaEMlFBz-3SC6x7ZMIJhlxniwghtElbTdGGMLW1zv6cozhGsk3N1xPdcIbV-1Eb8jck3ncNRx0ZOlH7DrXoq-QXECE2rX9k-xhA92AZzfnaXb14f33xafZ6uvH5WK-mlUyV-NMC8Gw0Yo3JWNC50IrqBpTNExQrIGb0kiUhWlKyhkokwCpgCsJkhWizMVpttz71gHWdhNdD_G3DeDsrhFiayFFrTq0poTSIOOmUEYCMNAlZ1goqhQHISev873XZlv2WFdpShG6O6Z3X7z7YdvwyxpNpeQyGby4MYghjXoYbe-GKg0HPIbtYHnODeUqlzShz--h67CNPo1qogpZaC0mw2eHif5FuV2BBLA9UMUwDBEbW7n916aArrOM2mnT7MGmJc3Le5pb2__RfwFzK9SF |
CitedBy_id | crossref_primary_10_1007_s11831_024_10098_3 crossref_primary_10_1007_s11042_023_17243_3 crossref_primary_10_3390_jcdd10120485 crossref_primary_10_1016_j_conbuildmat_2023_132766 crossref_primary_10_3389_fcvm_2022_949454 crossref_primary_10_3390_biomedicines11102617 crossref_primary_10_1177_00033197251324630 crossref_primary_10_3389_frai_2024_1304483 crossref_primary_10_12677_mos_2024_132149 crossref_primary_10_3390_diagnostics13122092 crossref_primary_10_3389_fpls_2023_1175027 crossref_primary_10_31083_j_rcm2512454 crossref_primary_10_37015_AUDT_2023_230018 crossref_primary_10_3233_THC_231306 |
Cites_doi | 10.1142/S0219519409003115 10.1007/s11517-006-0140-3 10.1007/s11883-013-0393-x 10.1007/s11883-019-0766-x 10.7863/ultra.34.3.469 10.1007/s11883-015-0529-2 10.1016/j.ejrad.2019.02.038 10.1016/j.compbiomed.2021.104721 10.1177/1544316718806421 10.1016/j.ultrasmedbio.2014.12.024 10.1109/TIP.2011.2169270 10.1007/s10278-021-00461-2 10.1007/s11883-016-0635-9 10.1016/j.neucom.2014.09.066 10.3390/diagnostics12030722 10.1007/s10916-016-0504-7 10.1016/j.compbiomed.2022.105273 10.1007/978-1-4899-7618-5 10.1007/978-1-4614-1180-2 10.1007/978-1-4614-1180-2_6 10.1016/j.compbiomed.2016.06.010 10.21037/atm-20-7676 10.1177/0161734620951216 10.3390/diagnostics11112109 10.3390/diagnostics12061482 10.1016/j.cmpb.2018.05.015 10.1007/978-1-4614-7425-8_17 10.1007/s10916-016-0543-0 10.1201/b11868 10.1016/j.compbiomed.2022.106083 10.1177/0003319720910660 10.1109/TUFFC.2010.1522 10.1016/j.eswa.2015.03.014 10.3390/diagnostics12010166 10.1161/CIR.0000000000000659 10.1109/TITB.2002.804139 10.1016/j.ultras.2012.03.005 10.1016/j.cmpb.2017.01.009 10.1016/j.compbiomed.2016.11.011 10.1016/j.compbiomed.2022.106017 10.1007/s10916-017-0797-1 10.1161/CIRCULATIONAHA.114.008729 10.1109/IEMBS.2006.260132 10.1016/j.diabres.2018.07.028 10.1007/s10916-017-0745-0 10.1016/j.compbiomed.2017.08.014 10.1007/978-1-4614-7425-8 10.1016/j.ultrasmedbio.2021.05.023 10.18653/v1/D15-1166 10.3390/diagnostics11112025 10.1161/CIR.0000000000000558 10.1007/s11517-019-02099-3 10.1016/j.ihj.2018.01.024 10.1007/978-3-540-36675-1_5 10.1007/978-1-4419-7222-4 10.1080/03772063.2017.1331757 10.1016/j.compbiomed.2020.103960 10.4239/wjd.v12.i3.215 10.1109/JBHI.2021.3060163 10.1007/s11883-018-0736-8 10.3390/diagnostics12051283 10.1007/s11517-006-0119-0 10.4103/ijmr.IJMR_516_15 10.1109/4233.992158 10.1016/j.compbiomed.2021.105204 10.1016/j.compbiomed.2021.105131 10.1007/s00330-016-4296-4 10.1177/17474930211027834 10.1016/j.cmpb.2012.09.008 10.1016/j.compbiomed.2022.105571 10.1161/STR.0000000000000375 10.1016/j.procs.2018.08.006 10.1109/TIM.2011.2174901 10.1109/EUROCON.2013.6625268 10.1016/j.atherosclerosis.2022.06.1014 10.1016/j.cmpb.2016.02.004 10.3390/diagnostics11122257 10.1016/j.ultrasmedbio.2016.08.016 10.1016/j.compbiomed.2021.104803 10.1016/j.compbiomed.2022.105333 10.1016/j.compbiomed.2013.06.012 10.1161/CIR.0000000000000950 10.3390/diagnostics11081405 10.1007/s11517-016-1601-y 10.1161/STROKEAHA.121.035692 10.7863/jum.2012.31.7.1123 10.1201/b19253 10.1109/IEMBS.2011.6091275 10.1109/JBHI.2021.3103839 10.1055/s-0032-1330336 10.1109/TIM.2022.3174270 10.1016/j.cmpb.2012.05.008 10.7863/jum.2008.27.9.1353 10.1201/b22435 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jcdd9100326 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2308-3425 |
ExternalDocumentID | oai_doaj_org_article_9bab9e1298594aa1a6b21e850552a347 PMC9604424 36286278 10_3390_jcdd9100326 |
Genre | Journal Article |
GeographicLocations | United Kingdom--UK Hong Kong United States--US Japan |
GeographicLocations_xml | – name: United Kingdom--UK – name: United States--US – name: Japan – name: Hong Kong |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AADQD AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR CCPQU CITATION EMOBN FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR ITC KQ8 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c475t-6331ef652fb11367365acf98f130eda29b94e489fb021a5973645a254a4183b73 |
IEDL.DBID | 7X7 |
ISSN | 2308-3425 |
IngestDate | Wed Aug 27 00:22:52 EDT 2025 Thu Aug 21 18:38:51 EDT 2025 Fri Jul 11 11:39:47 EDT 2025 Mon Jun 30 05:23:38 EDT 2025 Mon Jul 21 06:08:01 EDT 2025 Tue Jul 01 01:48:13 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | CCA CVD atherosclerosis deep learning ICA Attention-UNet plaque segmentation stroke UNet |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-6331ef652fb11367365acf98f130eda29b94e489fb021a5973645a254a4183b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4600-8513 0000-0003-1790-8640 |
OpenAccessLink | https://www.proquest.com/docview/2728486634?pq-origsite=%requestingapplication% |
PMID | 36286278 |
PQID | 2728486634 |
PQPubID | 5046891 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9bab9e1298594aa1a6b21e850552a347 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9604424 proquest_miscellaneous_2729025740 proquest_journals_2728486634 pubmed_primary_36286278 crossref_citationtrail_10_3390_jcdd9100326 crossref_primary_10_3390_jcdd9100326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220927 |
PublicationDateYYYYMMDD | 2022-09-27 |
PublicationDate_xml | – month: 9 year: 2022 text: 20220927 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of cardiovascular development and disease |
PublicationTitleAlternate | J Cardiovasc Dev Dis |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Meiburger (ref_51) 2022; 144 ref_94 ref_93 ref_90 Ikeda (ref_85) 2014; 16 ref_13 ref_12 Saba (ref_61) 2017; 41 ref_99 ref_96 Shrivastava (ref_55) 2015; 42 ref_95 Agarwal (ref_101) 2022; 146 ref_19 ref_18 Kumar (ref_24) 2018; 163 Das (ref_98) 2022; 143 Molinari (ref_29) 2012; 108 Kannathal (ref_87) 2006; 44 Suri (ref_97) 2022; 142 Molinari (ref_77) 2009; 9 Saba (ref_102) 2021; 9 ref_23 Jain (ref_74) 2022; 149 ref_22 ref_21 Saba (ref_86) 2013; 43 ref_20 Jain (ref_73) 2021; 41 Saba (ref_81) 2018; 70 ref_27 ref_26 Molinari (ref_42) 2012; 61 Chauhan (ref_1) 2015; 4 Ikeda (ref_49) 2017; 141 Kamalakannan (ref_5) 2017; 146 ref_72 Molinari (ref_39) 2010; 57 ref_70 Skandha (ref_71) 2022; 141 ref_79 ref_78 ref_76 Zhou (ref_66) 2021; 25 ref_75 Zahnd (ref_32) 2016; 43 Molinari (ref_36) 2012; 31 Rouco (ref_33) 2018; 126 Benjamin (ref_10) 2018; 137 Suri (ref_106) 2020; 124 Kuppili (ref_54) 2017; 41 Roy (ref_48) 2017; 63 Khanna (ref_105) 2019; 21 Virani (ref_9) 2021; 143 ref_80 Puvvula (ref_8) 2020; 71 Dorairaj (ref_3) 2016; 133 ref_89 (ref_63) 2015; 151 Faita (ref_30) 2008; 27 Saba (ref_59) 2019; 114 Saba (ref_25) 2019; 38 Lucatelli (ref_84) 2016; 26 Suri (ref_46) 2002; 6 Biswas (ref_53) 2021; 34 Kotsis (ref_17) 2018; 143 ref_52 Jain (ref_91) 2020; 58 Zhang (ref_88) 2005; 113 Viswanathan (ref_7) 2021; 12 Than (ref_82) 2017; 89 Araki (ref_56) 2016; 128 Boi (ref_58) 2018; 20 Ikeda (ref_104) 2015; 41 Suri (ref_38) 2002; 6 Acharya (ref_57) 2013; 110 Srivastava (ref_64) 2018; 42 Araki (ref_62) 2017; 80 Suri (ref_92) 2021; 25 Saba (ref_50) 2016; 75 Acharya (ref_100) 2012; 35 Kumar (ref_37) 2016; 55 Benjamin (ref_11) 2019; 139 Saba (ref_16) 2022; 53 Loizou (ref_34) 2007; 45 Meshram (ref_67) 2020; 42 Jena (ref_69) 2021; 137 Yang (ref_41) 2013; 2013 Araki (ref_40) 2015; 34 ref_103 Mainak (ref_60) 2019; 24 Saba (ref_83) 2016; 40 Molinari (ref_31) 2012; 21 Zhou (ref_65) 2021; 47 ref_47 Patel (ref_15) 2016; 18 ref_44 ref_43 Molinari (ref_28) 2011; 30 Molinari (ref_35) 2012; 52 Jones (ref_2) 2022; 17 Araki (ref_45) 2016; 40 ref_4 Jain (ref_68) 2021; 136 ref_6 Saba (ref_14) 2022; 354 |
References_xml | – volume: 9 start-page: 481 year: 2009 ident: ref_77 article-title: AUTOMATIC COMPUTER-BASED TRACINGS (ACT) IN LONGITUDINAL 2-D ULTRASOUND IMAGES USING DIFFERENT SCANNERS publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519409003115 – volume: 45 start-page: 35 year: 2007 ident: ref_34 article-title: Snakes based segmentation of the common carotid artery intima media publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-006-0140-3 – volume: 16 start-page: 1 year: 2014 ident: ref_85 article-title: Ankle–Brachial Index and Its Link to Automated Carotid Ultrasound Measurement of Intima–Media Thickness Variability in 500 Japanese Coronary Artery Disease Patients publication-title: Curr. Atheroscler. Rep. doi: 10.1007/s11883-013-0393-x – volume: 21 start-page: 7 year: 2019 ident: ref_105 article-title: Rheumatoid Arthritis: Atherosclerosis Imaging and Cardiovascular Risk Assessment Using Machine and Deep Learning–Based Tissue Characterization publication-title: Curr. Atheroscler. Rep. doi: 10.1007/s11883-019-0766-x – volume: 34 start-page: 469 year: 2015 ident: ref_40 article-title: Shape-Based Approach for Coronary Calcium Lesion Volume Measurement on Intravascular Ultrasound Imaging and Its Association With Carotid Intima-Media Thickness publication-title: J. Ultrasound Med. doi: 10.7863/ultra.34.3.469 – ident: ref_23 doi: 10.1007/s11883-015-0529-2 – volume: 114 start-page: 14 year: 2019 ident: ref_59 article-title: The present and future of deep learning in radiology publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2019.02.038 – volume: 136 start-page: 104721 year: 2021 ident: ref_68 article-title: Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104721 – volume: 42 start-page: 162 year: 2018 ident: ref_64 article-title: Geometric total plaque area is an equally powerful phenotype compared with carotid intima-media thickness for stroke risk assessment: A deep learning approach publication-title: J. Vasc. Ultrasound doi: 10.1177/1544316718806421 – volume: 41 start-page: 1247 year: 2015 ident: ref_104 article-title: Improved correlation between carotid and coronary atherosclerosis SYNTAX score using automated ultrasound carotid bulb plaque IMT measurement publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2014.12.024 – volume: 21 start-page: 1211 year: 2012 ident: ref_31 article-title: Completely Automated Multiresolution Edge Snapper—A New Technique for an Accurate Carotid Ultrasound IMT Measurement: Clinical Validation and Benchmarking on a Multi-Institutional Database publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2169270 – volume: 34 start-page: 581 year: 2021 ident: ref_53 article-title: A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: Artificial intelligence framework publication-title: J. Digit. Imaging. doi: 10.1007/s10278-021-00461-2 – volume: 18 start-page: 83 year: 2016 ident: ref_15 article-title: A Review on Atherosclerotic Biology, Wall Stiffness, Physics of Elasticity, and Its Ultrasound-Based Measurement publication-title: Curr. Atheroscler. Rep. doi: 10.1007/s11883-016-0635-9 – volume: 151 start-page: 161 year: 2015 ident: ref_63 article-title: Fully automatic segmentation of ultrasound common carotid artery images based on machine learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.066 – ident: ref_95 doi: 10.3390/diagnostics12030722 – volume: 40 start-page: 1 year: 2016 ident: ref_83 article-title: Inter-observer Variability Analysis of Automatic Lung Delineation in Normal and Disease Patients publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0504-7 – volume: 143 start-page: 105273 year: 2022 ident: ref_98 article-title: An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105273 – volume: 38 start-page: 451 year: 2019 ident: ref_25 article-title: Global perspective on carotid intima-media thickness and plaque: Should the current measurement guidelines be revisited? publication-title: Int. Angiol. – ident: ref_20 doi: 10.1007/978-1-4899-7618-5 – ident: ref_22 doi: 10.1007/978-1-4614-1180-2 – ident: ref_27 doi: 10.1007/978-1-4614-1180-2_6 – volume: 75 start-page: 217 year: 2016 ident: ref_50 article-title: Accurate cloud-based smart IMT measurement, its validation and stroke risk stratification in carotid ultrasound: A web-based point-of-care tool for multicenter clinical trial publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.06.010 – volume: 9 start-page: 1206 year: 2021 ident: ref_102 article-title: Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: A narrative review for stroke application publication-title: Ann. Transl. Med. doi: 10.21037/atm-20-7676 – volume: 42 start-page: 221 year: 2020 ident: ref_67 article-title: Deep Learning for Carotid Plaque Segmentation using a Dilated U-Net Architecture publication-title: Ultrason. Imaging doi: 10.1177/0161734620951216 – ident: ref_103 doi: 10.3390/diagnostics11112109 – ident: ref_72 doi: 10.3390/diagnostics12061482 – volume: 163 start-page: 155 year: 2018 ident: ref_24 article-title: State-of-the-art review on automated lumen and adventitial border delineation and its measurements in carotid ultrasound publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.05.015 – ident: ref_4 doi: 10.1007/978-1-4614-7425-8_17 – volume: 40 start-page: 1 year: 2016 ident: ref_45 article-title: Two automated techniques for carotid lumen diameter measurement: Regional versus boundary approaches publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0543-0 – ident: ref_18 doi: 10.1201/b11868 – ident: ref_76 doi: 10.1016/j.compbiomed.2022.106083 – volume: 71 start-page: 520 year: 2020 ident: ref_8 article-title: Morphological Carotid Plaque Area Is Associated With Glomerular Filtration Rate: A Study of South Asian Indian Patients With Diabetes and Chronic Kidney Disease publication-title: Angiology doi: 10.1177/0003319720910660 – volume: 57 start-page: 1112 year: 2010 ident: ref_39 article-title: Intima-media thickness: Setting a standard for a completely automated method of ultrasound measurement publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2010.1522 – volume: 42 start-page: 6184 year: 2015 ident: ref_55 article-title: Reliable and accurate psoriasis disease classification in dermatology images using comprehensive feature space in machine learning paradigm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.03.014 – ident: ref_96 doi: 10.3390/diagnostics12010166 – volume: 139 start-page: e56 year: 2019 ident: ref_11 article-title: Heart disease and stroke statistics—2019 update: A report from the American heart association publication-title: Circulation doi: 10.1161/CIR.0000000000000659 – volume: 6 start-page: 324 year: 2002 ident: ref_38 article-title: A review on MR vascular image processing algorithms: Acquisition and prefiltering: Part I publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2002.804139 – volume: 52 start-page: 949 year: 2012 ident: ref_35 article-title: Constrained snake vs. conventional snake for carotid ultrasound automated IMT measurements on multi-center data sets publication-title: Ultrasonics doi: 10.1016/j.ultras.2012.03.005 – volume: 141 start-page: 73 year: 2017 ident: ref_49 article-title: Automated segmental-IMT measurement in thin/thick plaque with bulb presence in carotid ultrasound from multiple scanners: Stroke risk assessment publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.01.009 – volume: 80 start-page: 77 year: 2017 ident: ref_62 article-title: Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.11.011 – volume: 149 start-page: 106017 year: 2022 ident: ref_74 article-title: Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106017 – volume: 41 start-page: 152 year: 2017 ident: ref_54 article-title: Extreme Learning Machine Framework for Risk Stratification of Fatty Liver Disease Using Ultrasound Tissue Characterization publication-title: J. Med Syst. doi: 10.1007/s10916-017-0797-1 – ident: ref_44 – volume: 133 start-page: 1605 year: 2016 ident: ref_3 article-title: Cardiovascular Diseases in India: Current Epidemiology and Future Directions publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.114.008729 – ident: ref_47 doi: 10.1109/IEMBS.2006.260132 – ident: ref_75 – volume: 143 start-page: 322 year: 2018 ident: ref_17 article-title: Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2018.07.028 – ident: ref_89 – volume: 41 start-page: 98 year: 2017 ident: ref_61 article-title: Plaque Tissue Morphology-Based Stroke Risk Stratification Using Carotid Ultrasound: A Polling-Based PCA Learning Paradigm publication-title: J. Med Syst. doi: 10.1007/s10916-017-0745-0 – volume: 89 start-page: 197 year: 2017 ident: ref_82 article-title: Lung disease stratification using amalgamation of Riesz and Gabor transforms in machine learning framework publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.014 – ident: ref_19 – ident: ref_13 doi: 10.1007/978-1-4614-7425-8 – volume: 47 start-page: 2723 year: 2021 ident: ref_65 article-title: Deep Learning-Based Carotid Plaque Segmentation from B-Mode Ultrasound Images publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2021.05.023 – ident: ref_90 doi: 10.18653/v1/D15-1166 – volume: 113 start-page: 384 year: 2005 ident: ref_88 article-title: Inter- and Intra-Observer Variability Assessment of in Vivo Carotid Plaque Burden Quantification Using Multi-Contrast Dark Blood MR Images publication-title: Stud. Heal. Technol. Inform. – ident: ref_70 doi: 10.3390/diagnostics11112025 – volume: 137 start-page: e67 year: 2018 ident: ref_10 article-title: Heart disease and stroke statistics—2018 update: A report from the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0000000000000558 – volume: 58 start-page: 471 year: 2020 ident: ref_91 article-title: Localization of common carotid artery transverse section in B-mode ultrasound images using faster RCNN: A deep learning approach publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-019-02099-3 – volume: 70 start-page: 649 year: 2018 ident: ref_81 article-title: Intra- and inter-operator reproducibility of automated cloud-based carotid lumen diameter ultrasound measurement publication-title: Ind. Heart J. doi: 10.1016/j.ihj.2018.01.024 – ident: ref_94 doi: 10.1007/978-3-540-36675-1_5 – ident: ref_12 doi: 10.1007/978-1-4419-7222-4 – volume: 63 start-page: 769 year: 2017 ident: ref_48 article-title: An iterative implementation of level set for precise segmentation of brain tissues and abnormality detection from MR images publication-title: IETE J. Res. doi: 10.1080/03772063.2017.1331757 – volume: 41 start-page: 9 year: 2021 ident: ref_73 article-title: Automated deep learning-based paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: An asymptomatic Japanese cohort study publication-title: Int. Angiol. – volume: 124 start-page: 103960 year: 2020 ident: ref_106 article-title: COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103960 – volume: 12 start-page: 215 year: 2021 ident: ref_7 article-title: Bidirectional link between diabetes mellitus and coronavirus disease 2019 leading to cardiovascular disease: A narrative review publication-title: World J. Diabetes doi: 10.4239/wjd.v12.i3.215 – volume: 25 start-page: 2967 year: 2021 ident: ref_66 article-title: Deep Learning-Based Measurement of Total Plaque Area in B-Mode Ultrasound Images publication-title: IEEE J. Biomed. Heal. Informatics doi: 10.1109/JBHI.2021.3060163 – volume: 20 start-page: 1 year: 2018 ident: ref_58 article-title: A survey on coronary atherosclerotic plaque tissue characterization in intravascular optical coherence tomography publication-title: Curr. Atheroscler. Rep. doi: 10.1007/s11883-018-0736-8 – ident: ref_79 doi: 10.3390/diagnostics12051283 – volume: 44 start-page: 1031 year: 2006 ident: ref_87 article-title: Heart rate variability: A review publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-006-0119-0 – volume: 146 start-page: 175 year: 2017 ident: ref_5 article-title: Incidence & prevalence of stroke in India: A systematic review publication-title: Ind. J. Med. Res. doi: 10.4103/ijmr.IJMR_516_15 – volume: 6 start-page: 8 year: 2002 ident: ref_46 article-title: Shape recovery algorithms using level sets in 2-D/3-D medical imagery: A state-of-the-art review publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/4233.992158 – volume: 142 start-page: 105204 year: 2022 ident: ref_97 article-title: Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105204 – volume: 141 start-page: 105131 year: 2022 ident: ref_71 article-title: A hybrid deep learning paradigm for carotid plaque tissue characterization and its validation in multicenter cohorts using a supercomputer framework publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105131 – volume: 26 start-page: 4423 year: 2016 ident: ref_84 article-title: Relationship between leukoaraiosis, carotid intima-media thickness and intima-media thickness variability: Preliminary results publication-title: Eur. Radiol. doi: 10.1007/s00330-016-4296-4 – volume: 17 start-page: 132 year: 2022 ident: ref_2 article-title: Stroke in India: A systematic review of the incidence, prevalence, and case fatality publication-title: Int. J. Stroke. doi: 10.1177/17474930211027834 – volume: 110 start-page: 66 year: 2013 ident: ref_57 article-title: Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2012.09.008 – volume: 146 start-page: 105571 year: 2022 ident: ref_101 article-title: Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105571 – ident: ref_6 doi: 10.1161/STR.0000000000000375 – volume: 126 start-page: 723 year: 2018 ident: ref_33 article-title: A robust anisotropic edge detection method for carotid ultrasound image processing publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.08.006 – volume: 61 start-page: 1054 year: 2012 ident: ref_42 article-title: Hypothesis Validation of Far-Wall Brightness in Carotid-Artery Ultrasound for Feature-Based IMT Measurement Using a Combination of Level-Set Segmentation and Registration. IEEE Trans publication-title: Instrum. Meas. doi: 10.1109/TIM.2011.2174901 – ident: ref_52 doi: 10.1109/EUROCON.2013.6625268 – volume: 354 start-page: 23 year: 2022 ident: ref_14 article-title: International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: From basic strategies to advanced approaches publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2022.06.1014 – volume: 24 start-page: 380 year: 2019 ident: ref_60 article-title: State-of-the-art review on deep learning in medical imaging publication-title: Front. Bioscience-Landmark – volume: 128 start-page: 137 year: 2016 ident: ref_56 article-title: PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.02.004 – ident: ref_78 doi: 10.3390/diagnostics11122257 – volume: 4 start-page: 735 year: 2015 ident: ref_1 article-title: The rising incidence of cardiovascular diseases in India: Assessing its economic impact publication-title: J. Prev. Cardiol. – volume: 43 start-page: 239 year: 2016 ident: ref_32 article-title: A Fully-Automatic Method to Segment the Carotid Artery Layers in Ultrasound Imaging: Application to Quantify the Compression-Decompression Pattern of the Intima-Media Complex During the Cardiac Cycle publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2016.08.016 – volume: 137 start-page: 104803 year: 2021 ident: ref_69 article-title: Artificial intelligence-based hybrid deep learning models for image classification: The first narrative review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104803 – volume: 144 start-page: 105333 year: 2022 ident: ref_51 article-title: Carotid Ultrasound Boundary Study (CUBS): Technical considerations on an open multi-center analysis of computerized measurement systems for intima-media thickness measurement on common carotid artery longitudinal B-mode ultrasound scans publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105333 – ident: ref_21 – volume: 2013 start-page: 1 year: 2013 ident: ref_41 article-title: Ultrasound Common Carotid Artery Segmentation Based on Active Shape Model publication-title: Comput. Math. Methods Med. – volume: 43 start-page: 1261 year: 2013 ident: ref_86 article-title: Inter- and intra-observer variability analysis of completely automated cIMT measurement software (AtheroEdge™) and its benchmarking against commercial ultrasound scanner and expert Readers publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.06.012 – volume: 143 start-page: e254 year: 2021 ident: ref_9 article-title: Heart Disease and Stroke Statistics-2021 Update publication-title: Circulation doi: 10.1161/CIR.0000000000000950 – ident: ref_80 doi: 10.3390/diagnostics11081405 – volume: 55 start-page: 1415 year: 2016 ident: ref_37 article-title: Accurate lumen diameter measurement in curved vessels in carotid ultrasound: An iterative scale-space and spatial transformation approach publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-016-1601-y – volume: 53 start-page: 290 year: 2022 ident: ref_16 article-title: Carotid Artery Plaque Calcifications: Lessons From Histopathology to Diagnostic Imaging publication-title: Stroke doi: 10.1161/STROKEAHA.121.035692 – volume: 31 start-page: 1123 year: 2012 ident: ref_36 article-title: Fully Automated Dual-Snake Formulation for Carotid Intima-Media Thickness Measurement publication-title: J. Ultrasound Med. doi: 10.7863/jum.2012.31.7.1123 – ident: ref_99 doi: 10.1201/b19253 – ident: ref_26 doi: 10.1109/IEMBS.2011.6091275 – volume: 25 start-page: 4128 year: 2021 ident: ref_92 article-title: Systematic Review of Artificial Intelligence in Acute Respiratory Distress Syndrome for COVID-19 Lung Patients: A Biomedical Imaging Perspective publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3103839 – volume: 35 start-page: 237 year: 2012 ident: ref_100 article-title: Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification publication-title: Ultraschall Der Med. Eur. J. Ultrasound doi: 10.1055/s-0032-1330336 – ident: ref_93 doi: 10.1109/TIM.2022.3174270 – volume: 30 start-page: 227 year: 2011 ident: ref_28 article-title: CALSFOAM-completed automated local statistics based first order absolute moment for carotid wall recognition, segmentation and IMT measurement: Validation and benchmarking on a 300 patient database publication-title: Int. J. Angiol. – volume: 108 start-page: 946 year: 2012 ident: ref_29 article-title: Ultrasound IMT measurement on a multi-ethnic and multi-institutional database: Our review and experience using four fully automated and one semi-automated methods publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2012.05.008 – volume: 27 start-page: 1353 year: 2008 ident: ref_30 article-title: Real-time Measurement System for Evaluation of the Carotid Intima-Media Thickness With a Robust Edge Operator publication-title: J. Ultrasound Med. doi: 10.7863/jum.2008.27.9.1353 – ident: ref_43 doi: 10.1201/b22435 |
SSID | ssj0001342012 |
Score | 2.3769875 |
Snippet | Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 326 |
SubjectTerms | Artificial intelligence Atherosclerosis Automation Carotid arteries CCA CVD Deep learning Diabetes Experiments ICA Patients plaque segmentation Stroke Ultrasonic imaging Veins & arteries Womens health |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlh9JLafrpJi0q9FQwsSXZsnLbJA1pISE0XcjNjCx562bjDbvOn8mv7YzsXbwl0Euv9hiPrZHfjGfmDWOfK-VMbWwSg5AQKwc2NpnVMUJRmmqbQqGp3_n8Ij-bqu_X2fVo1BfVhPX0wP2LOzAWrPGISkVmFEAKuRWpLxC4MwFShT5yxLxRMBX-rkiFyCb6hjyJcf3B78o5hMZEEo3CCIICU_9j7uXfVZIj2Dl9wZ4P_iKf9Hrusie-fcmeng8Z8VfsYdJ1fcVifISA5Pj0wnf8xPs7PlCnzjjNO5tz9E755Rzw9vzKz26HnqOWNy2nqo-uwWvnqMKKBi0F6atuubjx_EezuuGBxZbKisJFh3zSBp16_gn-bUTsyS9hCa6Z3b5m09OvP4_P4mHeQlwpnXVxLmXq6zwTtaVJL1rmGVS1KWrEOe9AGGuUV4WpLToGgJEIpTABI0xQ-GGwWr5hO-2i9e8YhzwBXVeFqVyqhE4gTVxicwyHbOLQI4jYl_USlNVARk4zMeYlBiW0XuVovSI0qbXwXc_B8bjYEa3lRoSIs8MBNKdyMKfyX-YUsf21JZTDbl6VQiOIF-ibod6fNqdxH1JyBVq_uA8ylLHVKonY295wNppI6v8VuoiY3jKpLVW3z7TNr8D1Tdw5Sqj3_-PZ9tgzQc0blFPT-2ynW977D-hSdfZj2D1_AOAwIAU priority: 102 providerName: Directory of Open Access Journals |
Title | Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36286278 https://www.proquest.com/docview/2728486634 https://www.proquest.com/docview/2729025740 https://pubmed.ncbi.nlm.nih.gov/PMC9604424 https://doaj.org/article/9bab9e1298594aa1a6b21e850552a347 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELdgkxAviP8ERmUknpCiJY4Tx7ygFjYNpFXVRqW-RXbsdGFdUtrsy_BpuXPcrkUTr_FZOenOvjvf3e8I-VhyIyupo1CxRIXcKB3KVIsQTFEcCx2rXGC_8_k4O5vyH7N05h_c1r6scnMnuovatCW-kR8zARdpDvaRf1n-DnFqFGZX_QiNh-QQoctQq8VM3L2xJBzsG-vb8hKI7o9_lcaAgYwSBFPYMUQOr_8-J_PfWskd43P6lDzxXiMd9mJ-Rh7Y5jl5dO7z4i_In2HX9XWL4QjMkqHTse3oN2uX1AOozilOPVtQ8FHpZKHg9_TSzm9851FD64Zi7UdXw94FsLDGcUuO-rJbtdeWXtTra-qwbLG4yG36TIeN46lHoaDfd-A96UStlKnnNy_J9PTk59ez0E9dCEsu0i7MkiS2VZaySuO8F5FkqSormVdg7axRTGrJLc9lpcE9UBCPYCJTQZypOFwPWiSvyEHTNvYNoSqLlKjKXJYm5kxEKo5MpDMIinRkwC8IyKeNCIrSQ5LjZIxFAaEJyqvYkVcAirUhXvZIHPeTjVCWWxKEz3Yf2tW88KexkFppacHVyVPJlYpVpllsc_AGU6YSLgJytNGEwp_pdXGngQH5sF2G04gpFtXY9tbRYN5W8Cggr3vF2XKSYBcwE3lAxJ5K7bG6v9LUVw7xGxF0OONv_8_WO_KYYXMG5szEETnoVrf2PbhMnR64czEgh6OT8eRi4B4e_gIYihrY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxBtDgUWCC5JVe3ft9SIhlFKqhDZRRRupN3fXuw6hqRMSV4i_wo_gNzLjR5qgiluv9tgeaWbn4Zn5hpA3mbAqVybwNePaF1YbX0VG-uCKwlCaUCcS5537g7g7FF9OopMN8qedhcG2ytYmVobaTjP8R77NJBjSBPyj-Dj74ePWKKyutis0arXYd79-Qsq2-NDbBfm-ZWzv8_Gnrt9sFfAzIaPSjzkPXR5HLDe4z0TyONJZrpIcrLmzmimjhBOJyg24Pw3xNhbqNORRWoD6G8nhvTfITXC8ASZ78kRe_tPhAvwpq8cAOVfB9vfMWnDIAUfwhhXHV-0HuCqo_bc3c8XZ7d0jd5solXZqtbpPNlzxgNzqN3X4h-R3pyzrPkl_B9ygpcOBK-muczPaALaOKG5Zm1CIienhRMPn6ZEbnTeTTgUdFxR7TcoxPDsBFha43qmiPirn0zNHv44XZ7TCzsVmpuqh97RTVDzVqBe0twInSg_1XNvx6PwRGV6LPB6TzWJauKeE6jjQMs8SldlQMBnoMLCBiSEJM4GFOMQj71oRpFkDgY6bOCYppEIor3RFXh4ocks8q5E_ribbQVkuSRCuu7ownY_S5vSnymijHIRWSaSE1qGODQtdAtFnxDQX0iNbrSakjQ1ZpJca75HXy9tw-rGkows3vahosE4sReCRJ7XiLDnhOHXMZOIRuaZSa6yu3ynG3yqEcUTsEUw8-z9br8jt7nH_ID3oDfafkzsMB0OwXie3yGY5v3AvIFwrzcvqjFByet2H8i85w1MY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVKq4IN4YCiwSXJCs2LtrrxcJoYQ0aiiNopZIvZldex1CUyckrhB_hZ_Cr2PGjzRBFbde7bE90szOwzPzDSGvE5GqTBnP1YxrV6TauCow0gVX5PvS-DqSOO98PAwPx-LTWXC2Q_40szDYVtnYxNJQp_ME_5G3mQRDGoF_FO2sbosY9fofFj9c3CCFldZmnUalIkf2109I31bvBz2Q9RvG-gdfPh669YYBNxEyKNyQc99mYcAyg7tNJA8DnWQqysCy21QzZZSwIlKZAVeoIfbGop2GnEoLOApGcnjvLbIrMStqkd3uwXB0cvWHhwvwrqwaCuRcee3vSZqCe_Y4QjlsuMFyW8B1Ie6_nZobrq9_l9ypY1baqZTsHtmx-X2yd1xX5R-Q352iqLom3S44xZSOh7agPWsXtIZvnVDcuTajECHT0UzD5-mpnVzUc085neYUO0-KKTw7AxZWuOyppD4tlvNzS0-mq3NaIulia1P50DvayUueKgwMOtgAF6UjvdTpdHLxkIxvRCKPSCuf5_YJoTr0tMySSCWpL5j0tO-lngkhJTNeClGJQ942IoiTGhAd93LMYkiMUF7xhrwcUOuGeFHhgFxP1kVZrkkQvLu8MF9O4toWxMpooywEWlGghNa-Dg3zbQSxaMA0F9Ih-40mxLVFWcVX-u-QV-vbYAuwwKNzO78sabBqDOrokMeV4qw54TiDzGTkELmlUlusbt_Jp99KvHHE7xFMPP0_Wy_JHhzI-PNgePSM3GY4JYLFO7lPWsXy0j6H2K0wL-pDQsnXmz6XfwHARliz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Based+UNet+Deep+Learning+Model+for+Plaque+Segmentation+in+Carotid+Ultrasound+for+Stroke+Risk+Stratification%3A+An+Artificial+Intelligence+Paradigm&rft.jtitle=Journal+of+cardiovascular+development+and+disease&rft.au=Jain%2C+Pankaj+K&rft.au=Dubey%2C+Abhishek&rft.au=Saba%2C+Luca&rft.au=Khanna%2C+Narender+N&rft.date=2022-09-27&rft.issn=2308-3425&rft.eissn=2308-3425&rft.volume=9&rft.issue=10&rft_id=info:doi/10.3390%2Fjcdd9100326&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2308-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2308-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2308-3425&client=summon |