From RNA sequence to its three-dimensional structure: geometrical structure, stability and dynamics of selected fragments of SARS-CoV-2 RNA
In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full elect...
Saved in:
Published in | NAR genomics and bioinformatics Vol. 6; no. 2; p. lqae062 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2631-9268 2631-9268 |
DOI | 10.1093/nargab/lqae062 |
Cover
Loading…
Abstract | In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K
+
and Na
+
) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na
+
counterions.
Graphical Abstract In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions. In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K and Na ) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na counterions. In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions. Graphical Abstract Graphical Abstract In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions.In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions. |
Author | Shyryna, Tetiana Voiteshenko, Ivan Zarudnaya, Margarita Hurmach, Vasyl Nyporko, Alex Roszak, Szczepan Gorb, Leonid Rasulev, Bakhtiyor Platonov, Maksym |
Author_xml | – sequence: 1 givenname: Leonid orcidid: 0000-0001-7932-9105 surname: Gorb fullname: Gorb, Leonid email: lgorb@icnanotox.org – sequence: 2 givenname: Ivan orcidid: 0000-0003-2434-9218 surname: Voiteshenko fullname: Voiteshenko, Ivan – sequence: 3 givenname: Vasyl orcidid: 0000-0002-0844-1586 surname: Hurmach fullname: Hurmach, Vasyl – sequence: 4 givenname: Margarita orcidid: 0000-0002-9601-3126 surname: Zarudnaya fullname: Zarudnaya, Margarita – sequence: 5 givenname: Alex orcidid: 0000-0003-1664-6837 surname: Nyporko fullname: Nyporko, Alex – sequence: 6 givenname: Tetiana orcidid: 0000-0003-3278-8384 surname: Shyryna fullname: Shyryna, Tetiana – sequence: 7 givenname: Maksym orcidid: 0000-0002-3205-3305 surname: Platonov fullname: Platonov, Maksym – sequence: 8 givenname: Szczepan orcidid: 0000-0002-3569-2321 surname: Roszak fullname: Roszak, Szczepan – sequence: 9 givenname: Bakhtiyor orcidid: 0000-0002-7845-4884 surname: Rasulev fullname: Rasulev, Bakhtiyor |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38835951$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhoNU7Ie99VIC3lhw2nxPxhtZFqtCUWjV2yGTObNNmUm2SUbY3-CfNnXXsnrjVQ7nPOfl5eQ9Rgc-eEDoBSXnlDT8wpu4Mt3FeG-AKPYEHTHFadUwpQ_26kN0mtIdIYRJIQWhz9Ah15rLRtIj9PMyhglff17gBPczeAs4B-xywvk2AlS9m8AnF7wZccpxtnmO8BavIEyQo7P77TelNJ0bXd5g43vcb7yZnE04DEV9BJuhx0M0qyKZf3dvFtc31TJ8r9iDhefo6WDGBKe79wR9u3z_dfmxuvry4dNycVVZUctcSW20IFbXIGtR98zIoR_qru9ry4EIxUVtSddIq1kjOwuNsnSgHBhwgE4qfoLebXXXczdBb4ubaMZ2Hd1k4qYNxrV_T7y7bVfhR0spFVopWRRe7xRiKFdLuZ1csjCOxkOYU8uJEg0TQvOCvvoHvQtzLOcsFFW61kooVqiX-5Yevfz5qAKcbwEbQ0oRhkeEkvYhDO02DO0uDGXhbLsQ5vX_2F9kvrlN |
Cites_doi | 10.1039/c3cp51584b 10.1093/nar/gkg595 10.3390/ijms22052614 10.1038/nature06684 10.1371/journal.pone.0000905 10.1016/j.ijbiomac.2022.09.152 10.1371/journal.pone.0250654 10.1016/j.bpc.2013.07.003 10.1002/chem.202104182 10.1016/j.bpj.2011.12.053 10.1073/pnas.0805327105 10.1038/s41467-022-29135-5 10.1021/ct049977a 10.1002/chem.201700236 10.1016/j.jmb.2017.05.017 10.1016/j.virusres.2023.199197 10.1016/j.jmb.2017.06.013 10.1016/j.tibs.2020.11.001 10.1063/1.1674902 10.1038/emboj.2011.316 10.1093/nar/gky712 10.1111/j.1742-4658.2010.07760.x 10.1021/acs.jpclett.1c03071 10.1093/nar/gks339 10.1002/prot.340170408 10.1016/j.softx.2015.06.001 10.1073/pnas.182256799 10.1016/j.ymeth.2012.05.003 10.3389/fgene.2022.959258 10.1002/jcc.23354 10.1002/jcc.21759 10.1093/nar/gkad1065 10.1002/anie.202011419 10.1038/nrc2733 10.1021/acs.jctc.2c00291 10.3389/fchem.2016.00038 10.1093/bib/bbaa114 10.7124/bc.000817 10.1016/S0009-2614(99)00821-0 10.3389/fmicb.2020.567317 10.1093/nar/gkaa1126 10.1016/j.biochi.2007.07.011 10.1021/cr9904009 10.1093/nar/gkz1097 10.1016/j.virusres.2022.198910 10.1016/S1574-1400(06)02013-5 10.3390/ijms222010984 10.1021/acs.jpcb.0c06154 10.1093/nar/gkab314 10.1038/s41421-022-00450-x 10.1016/S0009-2614(98)00036-0 10.1002/prot.21344 10.3389/fchem.2022.1014663 10.1146/annurev-biophys-060320-091827 10.1007/978-1-60327-429-6_1 10.1016/j.ins.2007.05.027 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1093/nargab/lqae062 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-9268 |
ExternalDocumentID | PMC11148665 38835951 10_1093_nargab_lqae062 10.1093/nargab/lqae062 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: #2021.01/0087 |
GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP ABEJV ABGNP ABPTD ABXVV AFPKN AFULF ALMA_UNASSIGNED_HOLDINGS AMNDL EBS EMOBN GROUPED_DOAJ IAO IGS IHR INH ITC KSI M~E ROX RPM TOX AAYXX AFKRA BBNVY BENPR BHPHI CCPQU CITATION HCIFZ M7P PHGZM PHGZT PIMPY NPM PQGLB 8FE 8FH ABUWG AZQEC COVID DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c475t-58a840c87e5747d2a5fdf7bdd7c3e046347c0b95c8295bce96c1f13e2e3eeb563 |
IEDL.DBID | BENPR |
ISSN | 2631-9268 |
IngestDate | Thu Aug 21 18:34:10 EDT 2025 Sun Aug 24 03:23:09 EDT 2025 Fri Jul 25 11:56:40 EDT 2025 Mon Jul 21 05:59:21 EDT 2025 Tue Jul 01 02:50:16 EDT 2025 Thu Jan 30 13:18:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-58a840c87e5747d2a5fdf7bdd7c3e046347c0b95c8295bce96c1f13e2e3eeb563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3569-2321 0000-0003-2434-9218 0000-0002-3205-3305 0000-0001-7932-9105 0000-0002-0844-1586 0000-0002-9601-3126 0000-0003-1664-6837 0000-0003-3278-8384 0000-0002-7845-4884 |
OpenAccessLink | https://www.proquest.com/docview/3168786462?pq-origsite=%requestingapplication% |
PMID | 38835951 |
PQID | 3168786462 |
PQPubID | 7097362 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11148665 proquest_miscellaneous_3064924483 proquest_journals_3168786462 pubmed_primary_38835951 crossref_primary_10_1093_nargab_lqae062 oup_primary_10_1093_nargab_lqae062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | NAR genomics and bioinformatics |
PublicationTitleAlternate | NAR Genom Bioinform |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Zarudnaya (2024060408522346000_B62) 2023; 336 Simonsson (2024060408522346000_B3) 1998; 26 Popenda (2024060408522346000_B33) 2012; 40 Lorenz (2024060408522346000_B22) 2012 Liu (2024060408522346000_B28) 2022; 13 Tomasi (2024060408522346000_B37) 2005; 105 Ugrina (2024060408522346000_B59) 2024; 52 Bezzi (2024060408522346000_B16) 2021; 22 Espinosa (2024060408522346000_B41) 1998; 285 Ruggiero (2024060408522346000_B14) 2021; 22 Grimme (2024060408522346000_B34) 2011; 32 Bansal (2024060408522346000_B54) 2022; 13 Ditchfield (2024060408522346000_B35) 1971; 54 Negrutska (2024060408522346000_B12) 2013; 29 Gu (2024060408522346000_B52) 1999; 311 Qin (2024060408522346000_B24) 2022; 8 Havrila (2024060408522346000_B60) 2018; 46 Huang (2024060408522346000_B43) 2013; 34 Adrian (2024060408522346000_B7) 2012; 57 Takano (2024060408522346000_B38) 2005; 1 Zubatiuk (2024060408522346000_B39) 2013; 15 Topno (2024060408522346000_B47) 2016; 5 Maisuradze (2024060408522346000_B48) 2007; 67 Todd A. Keith (2024060408522346000_B40) 2019 Puig Lombardi (2024060408522346000_B17) 2020; 48 Siddiqui-Jain (2024060408522346000_B4) 2002; 99 Brooks (2024060408522346000_B9) 2009; 9 Stein (2024060408522346000_B44) 2006; 2 Miclot (2024060408522346000_B31) 2021; 12 Cui (2024060408522346000_B23) 2020; 11 Zuker (2024060408522346000_B18) 2003; 31 Markham (2024060408522346000_B19) 2008; 453 Dumas (2024060408522346000_B10) 2021; 46 Rodríguez-vázquez (2024060408522346000_B58) 2016; 16 Schrödinger (2024060408522346000_B51) 2018 Zarudnaya (2024060408522346000_B61) 2022; 321 Vallur (2024060408522346000_B5) 2008; 105 Patro (2024060408522346000_B32) 2017; 429 Belmonte-Reche (2024060408522346000_B25) 2021; 16 Zhao (2024060408522346000_B29) 2021; 60 Kharel (2024060408522346000_B11) 2020; 48 Parisien (2024060408522346000_B21) 2008; 452 Ji (2024060408522346000_B27) 2021; 22 Fay (2024060408522346000_B13) 2017; 429 Zhai (2024060408522346000_B15) 2022; 221 Wu (2024060408522346000_B8) 2010; 277 Abraham (2024060408522346000_B42) 2015; 1–2 Castelli (2024060408522346000_B53) 2022; 18 Bhattacharyya (2024060408522346000_B57) 2016; 4 De Cian (2024060408522346000_B2) 2008; 90 Dawson (2024060408522346000_B20) 2007; 2 Sehnal (2024060408522346000_B50) 2021; 49 Gorb (2024060408522346000_B36) 2020; 124 Amadei (2024060408522346000_B45) 1993; 17 Yurenko (2024060408522346000_B56) 2017; 23 Lopes (2024060408522346000_B6) 2011; 30 Mukherjee (2024060408522346000_B30) 2022; 28 Kabbara (2024060408522346000_B26) 2022; 10 Ortiz de Luzuriaga (2024060408522346000_B1) 2021; 50 Korenius (2024060408522346000_B49) 2007; 177 Paladino (2024060408522346000_B55) 2013; 180–181 Burkoff (2024060408522346000_B46) 2012; 102 |
References_xml | – volume: 15 start-page: 18155 year: 2013 ident: 2024060408522346000_B39 article-title: B-DNA characteristics are preserved in double stranded d(A)3·d(T)3 and d(G)3·d(C)3 mini-helixes: conclusions from DFT/M06-2X study publication-title: Phy. Chem. Chem. Phys. doi: 10.1039/c3cp51584b – volume-title: AIMAll (Version 19.10.12) year: 2019 ident: 2024060408522346000_B40 – volume: 31 start-page: 3406 year: 2003 ident: 2024060408522346000_B18 article-title: Mfold web server for nucleic acid folding and hybridization prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg595 – volume: 22 start-page: 2614 year: 2021 ident: 2024060408522346000_B16 article-title: Cnbp binds and unfolds in vitro G-quadruplexes formed in the SARS-CoV-2 positive and negative genome strands publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22052614 – volume: 452 start-page: 51 year: 2008 ident: 2024060408522346000_B21 article-title: The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data publication-title: Nature doi: 10.1038/nature06684 – volume: 2 start-page: e905 year: 2007 ident: 2024060408522346000_B20 article-title: Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding publication-title: PLoS One doi: 10.1371/journal.pone.0000905 – volume: 221 start-page: 1476 year: 2022 ident: 2024060408522346000_B15 article-title: Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: a review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.09.152 – start-page: 49 volume-title: Advances in Bioinformatics and Computational Biology. BSB 2012. Lecture Notes in Computer Science year: 2012 ident: 2024060408522346000_B22 article-title: RNA folding algorithms with G-quadruplexes – volume: 16 start-page: e0250654 year: 2021 ident: 2024060408522346000_B25 article-title: Potential G-quadruplexes and i-Motifs in the SARS-CoV-2 publication-title: PLoS One doi: 10.1371/journal.pone.0250654 – volume: 180–181 start-page: 110 year: 2013 ident: 2024060408522346000_B55 article-title: Propensities for loop structures of RNA & DNA backbones publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2013.07.003 – volume: 28 start-page: e202104182 year: 2022 ident: 2024060408522346000_B30 article-title: Modulation of the conformational space of SARS-CoV-2 RNA quadruplex RG-1 by cellular components and the amyloidogenic peptides α-synuclein and hIAPP publication-title: Chemistry doi: 10.1002/chem.202104182 – volume: 102 start-page: 878 year: 2012 ident: 2024060408522346000_B46 article-title: Exploring the energy landscapes of protein folding simulations with Bayesian computation publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.12.053 – volume: 105 start-page: 16508 year: 2008 ident: 2024060408522346000_B5 article-title: Activities of human exonuclease 1 that promote cleavage of transcribed immunoglobulin switch regions publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0805327105 – volume: 13 start-page: 1444 year: 2022 ident: 2024060408522346000_B28 article-title: RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection publication-title: Nat. Commun. doi: 10.1038/s41467-022-29135-5 – volume: 1 start-page: 70 year: 2005 ident: 2024060408522346000_B38 article-title: Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules publication-title: J. Chem. Theory Comput. doi: 10.1021/ct049977a – volume: 23 start-page: 5573 year: 2017 ident: 2024060408522346000_B56 article-title: Weak supramolecular interactions governing parallel and antiparallel DNA quadruplexes: insights from large-scale quantum mechanics analysis of experimentally derived models publication-title: Chemistry doi: 10.1002/chem.201700236 – volume: 26 start-page: 1167 year: 1998 ident: 2024060408522346000_B3 article-title: DNA tetraplex formation in the control region of c-myc. Doktorsavhandlingar vid Chalmers Tek publication-title: Hogsk – volume: 429 start-page: 2127 year: 2017 ident: 2024060408522346000_B13 article-title: RNA G-quadruplexes in biology: principles and molecular mechanisms publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.05.017 – volume: 336 start-page: 199197 year: 2023 ident: 2024060408522346000_B62 article-title: Structural diversity of the region encompassing DIS, SD and Psi hairpins in HIV and SIV genomes publication-title: Virus Res. doi: 10.1016/j.virusres.2023.199197 – volume: 429 start-page: 2438 year: 2017 ident: 2024060408522346000_B32 article-title: 3D-NuS: a web server for automated modeling and visualization of non-canonical 3-dimensional nucleic acid structures publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.06.013 – volume: 16 start-page: vii year: 2016 ident: 2024060408522346000_B58 article-title: The alkali metal ions: their role for life publication-title: Met. Ions Life Sci. – volume: 46 start-page: 270 year: 2021 ident: 2024060408522346000_B10 article-title: G-quadruplexes in RNA biology: recent advances and future directions publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2020.11.001 – volume: 54 start-page: 720 year: 1971 ident: 2024060408522346000_B35 article-title: Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules publication-title: J. Chem. Phys. doi: 10.1063/1.1674902 – volume: 30 start-page: 4033 year: 2011 ident: 2024060408522346000_B6 article-title: G-quadruplex-induced instability during leading-strand replication publication-title: EMBO J. doi: 10.1038/emboj.2011.316 – volume: 46 start-page: 8754 year: 2018 ident: 2024060408522346000_B60 article-title: Structural dynamics of propeller loop: towards folding of RNA G-quadruplex publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky712 – volume: 277 start-page: 3470 year: 2010 ident: 2024060408522346000_B8 article-title: G-quadruplex nucleic acids and human disease publication-title: FEBS J. doi: 10.1111/j.1742-4658.2010.07760.x – volume: 12 start-page: 10277 year: 2021 ident: 2024060408522346000_B31 article-title: Structure and dynamics of RNA guanine quadruplexes in SARS-CoV-2 genome. Original strategies against emerging viruses publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03071 – volume: 40 start-page: e112 year: 2012 ident: 2024060408522346000_B33 article-title: Automated 3D structure composition for large RNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks339 – volume: 17 start-page: 412 year: 1993 ident: 2024060408522346000_B45 article-title: Essential dynamics of proteins publication-title: Proteins doi: 10.1002/prot.340170408 – volume: 1–2 start-page: 19 year: 2015 ident: 2024060408522346000_B42 article-title: Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 99 start-page: 11593 year: 2002 ident: 2024060408522346000_B4 article-title: Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.182256799 – volume: 57 start-page: 11 year: 2012 ident: 2024060408522346000_B7 article-title: NMR spectroscopy of G-quadruplexes publication-title: Methods doi: 10.1016/j.ymeth.2012.05.003 – volume: 13 start-page: 959258 year: 2022 ident: 2024060408522346000_B54 article-title: Non-canonical DNA structures: diversity and disease association publication-title: Front. Genet. doi: 10.3389/fgene.2022.959258 – volume: 34 start-page: 2135 year: 2013 ident: 2024060408522346000_B43 article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data publication-title: J. Comput. Chem. doi: 10.1002/jcc.23354 – volume: 32 start-page: 1456 year: 2011 ident: 2024060408522346000_B34 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comp. Chem. doi: 10.1002/jcc.21759 – volume: 52 start-page: 87 year: 2024 ident: 2024060408522346000_B59 article-title: RNA G-quadruplex folding is a multi-pathway process driven by conformational entropy publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad1065 – volume: 60 start-page: 432 year: 2021 ident: 2024060408522346000_B29 article-title: Targeting RNA G-quadruplex in SARS-CoV-2: a promising therapeutic target for COVID-19? publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202011419 – volume: 9 start-page: 849 year: 2009 ident: 2024060408522346000_B9 article-title: The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2733 – volume: 18 start-page: 4515 year: 2022 ident: 2024060408522346000_B53 article-title: Studying the dynamics of a complex G-quadruplex system: insights into the comparison of MD and NMR dData publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00291 – volume: 4 start-page: 38 year: 2016 ident: 2024060408522346000_B57 article-title: Metal cations in G-quadruplex folding and stability publication-title: Front. Chem. doi: 10.3389/fchem.2016.00038 – volume: 22 start-page: 1150 year: 2021 ident: 2024060408522346000_B27 article-title: Discovery of G-quadruplex-forming sequences in SARS-CoV-2 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa114 – volume: 29 start-page: 169 year: 2013 ident: 2024060408522346000_B12 article-title: Design and study of telomerase inhibitors based on G-quadruplex ligands publication-title: Biopolym. Cell doi: 10.7124/bc.000817 – volume: 311 start-page: 209 year: 1999 ident: 2024060408522346000_B52 article-title: A new insight into the structure and stability of Hoogsteen hydrogen-bonded G-tetrad: an ab initio SCF study publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)00821-0 – volume-title: PyMOL The PyMOL Molecular Graphics System year: 2018 ident: 2024060408522346000_B51 – volume: 11 start-page: 567317 year: 2020 ident: 2024060408522346000_B23 article-title: G-quadruplexes are present in human coronaviruses including SARS-CoV-2 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.567317 – volume: 48 start-page: 12534 year: 2020 ident: 2024060408522346000_B11 article-title: Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1126 – volume: 90 start-page: 131 year: 2008 ident: 2024060408522346000_B2 article-title: Targeting telomeres and telomerase publication-title: Biochimie doi: 10.1016/j.biochi.2007.07.011 – volume: 105 start-page: 2999 year: 2005 ident: 2024060408522346000_B37 article-title: Quantum mechanical continuum solvation models publication-title: Chem. Rev. doi: 10.1021/cr9904009 – volume: 48 start-page: 1 year: 2020 ident: 2024060408522346000_B17 article-title: A guide to computational methods for G-quadruplex prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz1097 – volume: 321 start-page: 198910 year: 2022 ident: 2024060408522346000_B61 article-title: Genome sequence analysis suggests coevolution of the DIS, SD, and Psi hairpins in HIV-1 genomes publication-title: Virus Res. doi: 10.1016/j.virusres.2022.198910 – volume: 2 start-page: 233 year: 2006 ident: 2024060408522346000_B44 article-title: Principal components analysis: a review of its application on molecular dynamics data publication-title: Annu. Rep. Comput. Chem. doi: 10.1016/S1574-1400(06)02013-5 – volume: 22 start-page: 10984 year: 2021 ident: 2024060408522346000_B14 article-title: G-quadruplex targeting in the fight against viruses: an update publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222010984 – volume: 124 start-page: 9343 year: 2020 ident: 2024060408522346000_B36 article-title: Effect of microenvironment on the geometrical structure of d(A)5 d(T)5 and d(G)5 d(C)5 DNA mini-helixes and the Dickerson dodecamer: a density functional theory study publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c06154 – volume: 49 start-page: W431 year: 2021 ident: 2024060408522346000_B50 article-title: Mol∗Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab314 – volume: 8 start-page: 86 year: 2022 ident: 2024060408522346000_B24 article-title: RNA G-quadruplex formed in SARS-CoV-2 used for COVID-19 treatment in animal models publication-title: Cell Discov. doi: 10.1038/s41421-022-00450-x – volume: 285 start-page: 170 year: 1998 ident: 2024060408522346000_B41 article-title: Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(98)00036-0 – volume: 67 start-page: 569 year: 2007 ident: 2024060408522346000_B48 article-title: Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima publication-title: Proteins Struct. Funct. Bioinform. doi: 10.1002/prot.21344 – volume: 10 start-page: 1014663 year: 2022 ident: 2024060408522346000_B26 article-title: RNA G-quadruplex forming regions from SARS-2, SARS-1 and MERS coronoviruses publication-title: Front. Chem. doi: 10.3389/fchem.2022.1014663 – volume: 50 start-page: 209 year: 2021 ident: 2024060408522346000_B1 article-title: Learning to model G-quadruplexes: current methods and perspectives publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-060320-091827 – volume: 453 start-page: 3 year: 2008 ident: 2024060408522346000_B19 article-title: UNAFold: software for nucleic acid folding and hybridization publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-429-6_1 – volume: 5 start-page: 180 year: 2016 ident: 2024060408522346000_B47 article-title: Interacting mechanism of ID3 HLH domain towards E2A/E12 transcription factor - An Insight through molecular dynamics and docking approach publication-title: Biochem. Biophys. Rep. – volume: 177 start-page: 4893 year: 2007 ident: 2024060408522346000_B49 article-title: On principal component analysis, cosine and Euclidean measures in information retrieval publication-title: Inform. Sci. doi: 10.1016/j.ins.2007.05.027 |
SSID | ssj0002545401 |
Score | 2.265085 |
Snippet | In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | lqae062 |
SubjectTerms | Computer applications Editor's Choice Hydrogen bonding Hydrogen bonds Molecular dynamics Nucleotide sequence Nucleotides Ribonucleic acid RNA Severe acute respiratory syndrome coronavirus 2 |
Title | From RNA sequence to its three-dimensional structure: geometrical structure, stability and dynamics of selected fragments of SARS-CoV-2 RNA |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38835951 https://www.proquest.com/docview/3168786462 https://www.proquest.com/docview/3064924483 https://pubmed.ncbi.nlm.nih.gov/PMC11148665 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBIF6BUhmExAVrN_EjDhe0VF1VSCxo26K9RX5MSiWatJv0wG_gTzOOs2GXA1yiyLaUx-fHzHj8fYS8ET4zmdeSWWMVE6l3rJCZYdYGqhgDuGIFR_HzQp2ci08ruRoCbu2QVrmZE_uJ2jcuxMgnQWAp10qo7MP1DQuqUWF3dZDQuEv2cQrW6HztfzxefF2OURZ0f9AkSUe2Rj6pg36snfy4MTBV2c5qtHPCbcvQ_DtfcmsBmj8g9wfLkc4i1A_JHagfkV_zdXNFl4sZ3eRE066hl11LOwQJmA_k_ZF4g0aq2Ns1vKcX0FwFKS23XfwObyNr909qak99FKtvaVPRtpfLAU-rtbnoT8WF0tPZ8pQdNd9YFl7hMTmfH58dnbBBX4E5kcuOSW3QvXM6B4lOBYImK1_l1vvccQhMYiJ3U1tIp7NCWgeFcmmVcsiAA1ip-BOyVzc1PCPUFLmxUCngeiqcACuUkl6jeSBEJSqdkLeb_1xeRxqNMm5_8zIiUg6IJOQ1wvDfRgcblMphzLXlnx6SkFdjNY6WsAViamhusQ1aYOhxCs0T8jSCOj6Kax1OKacJ0Ttwjw0CE_duTX35vWfkToNXiV_8_N_v9YLcy9AmiplmB2QP8YWXaNN09nDouId9TACvZ19WvwHbUv7t |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdG9wAvCMS_sAEGgXjBauPYiYOEUBmrOrZVqNvQ3jL_uWyVaLK1nVA_A9-Fz8i5aULLAzztLbKtxPGd7d_Zd78j5LVwXHOnJDPaxEyEzrJUcs2M8VQxGnDH8obi4SDun4gvp_J0g_yqY2G8W2W9Ji4Waldaf0be9gmWEhWLmH-8vGI-a5S_Xa1TaFRqsQ_zH2iyTT_sfUb5vuG8t3u802fLrALMikTOmFQajRqrEpAIpbGrMnd5YpxLbASeP0sktmNSaRVPpbGQxjbMwwg4RABGxhG-9xbZFBGaMi2y-Wl38HXYnOqguYUQKGzYIaN24fPVmvb3Kw2dmK_tfmsRdSvA9m__zJUNr3eP3F0iVdqtVOs-2YDiAfnZm5RjOhx0ae2DTWclHc2mdIZKAcz5ZAEV0QetqGmvJ_CenkM59qm77GrxO3ysWMLnVBeOunmhxyM7pWVOp4v0POBoPtHniyg8X3rUHR6xnfIb474LD8nJjYz8I9IqygKeEKrTRBvIY4hUR1gBRsSxdArhiBC5yFVA3tbjnF1WtB1Zdd0eZZVEsqVEAvIKxfDfRtu1lLLlHJ9mfzQyIC-bapyd_spFF1BeYxtEfGjhChUF5HEl1OZTkVI-KjoMiFoTd9PAM3-v1xSjiwUDeOitWPzjp__u1wtyu398eJAd7A32t8gdjnis8nLbJi2UNTxDPDUzz5dKTMnZTc-b3xu2OoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+RNA+sequence+to+its+three-dimensional+structure%3A+geometrical+structure%2C+stability+and+dynamics+of+selected+fragments+of+SARS-CoV-2+RNA&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Gorb%2C+Leonid&rft.au=Voiteshenko%2C+Ivan&rft.au=Hurmach%2C+Vasyl&rft.au=Zarudnaya%2C+Margarita&rft.date=2024-06-01&rft.eissn=2631-9268&rft.volume=6&rft.issue=2&rft.spage=lqae062&rft_id=info:doi/10.1093%2Fnargab%2Flqae062&rft_id=info%3Apmid%2F38835951&rft.externalDocID=38835951 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon |