From RNA sequence to its three-dimensional structure: geometrical structure, stability and dynamics of selected fragments of SARS-CoV-2 RNA

In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full elect...

Full description

Saved in:
Bibliographic Details
Published inNAR genomics and bioinformatics Vol. 6; no. 2; p. lqae062
Main Authors Gorb, Leonid, Voiteshenko, Ivan, Hurmach, Vasyl, Zarudnaya, Margarita, Nyporko, Alex, Shyryna, Tetiana, Platonov, Maksym, Roszak, Szczepan, Rasulev, Bakhtiyor
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.06.2024
Subjects
Online AccessGet full text
ISSN2631-9268
2631-9268
DOI10.1093/nargab/lqae062

Cover

Loading…
Abstract In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions. Graphical Abstract Graphical Abstract
AbstractList In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K + and Na + ) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na + counterions. Graphical Abstract
In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions.
In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K and Na ) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na counterions.
In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions. Graphical Abstract Graphical Abstract
In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions.In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions.
Author Shyryna, Tetiana
Voiteshenko, Ivan
Zarudnaya, Margarita
Hurmach, Vasyl
Nyporko, Alex
Roszak, Szczepan
Gorb, Leonid
Rasulev, Bakhtiyor
Platonov, Maksym
Author_xml – sequence: 1
  givenname: Leonid
  orcidid: 0000-0001-7932-9105
  surname: Gorb
  fullname: Gorb, Leonid
  email: lgorb@icnanotox.org
– sequence: 2
  givenname: Ivan
  orcidid: 0000-0003-2434-9218
  surname: Voiteshenko
  fullname: Voiteshenko, Ivan
– sequence: 3
  givenname: Vasyl
  orcidid: 0000-0002-0844-1586
  surname: Hurmach
  fullname: Hurmach, Vasyl
– sequence: 4
  givenname: Margarita
  orcidid: 0000-0002-9601-3126
  surname: Zarudnaya
  fullname: Zarudnaya, Margarita
– sequence: 5
  givenname: Alex
  orcidid: 0000-0003-1664-6837
  surname: Nyporko
  fullname: Nyporko, Alex
– sequence: 6
  givenname: Tetiana
  orcidid: 0000-0003-3278-8384
  surname: Shyryna
  fullname: Shyryna, Tetiana
– sequence: 7
  givenname: Maksym
  orcidid: 0000-0002-3205-3305
  surname: Platonov
  fullname: Platonov, Maksym
– sequence: 8
  givenname: Szczepan
  orcidid: 0000-0002-3569-2321
  surname: Roszak
  fullname: Roszak, Szczepan
– sequence: 9
  givenname: Bakhtiyor
  orcidid: 0000-0002-7845-4884
  surname: Rasulev
  fullname: Rasulev, Bakhtiyor
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38835951$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoNU7Ie99VIC3lhw2nxPxhtZFqtCUWjV2yGTObNNmUm2SUbY3-CfNnXXsnrjVQ7nPOfl5eQ9Rgc-eEDoBSXnlDT8wpu4Mt3FeG-AKPYEHTHFadUwpQ_26kN0mtIdIYRJIQWhz9Ah15rLRtIj9PMyhglff17gBPczeAs4B-xywvk2AlS9m8AnF7wZccpxtnmO8BavIEyQo7P77TelNJ0bXd5g43vcb7yZnE04DEV9BJuhx0M0qyKZf3dvFtc31TJ8r9iDhefo6WDGBKe79wR9u3z_dfmxuvry4dNycVVZUctcSW20IFbXIGtR98zIoR_qru9ry4EIxUVtSddIq1kjOwuNsnSgHBhwgE4qfoLebXXXczdBb4ubaMZ2Hd1k4qYNxrV_T7y7bVfhR0spFVopWRRe7xRiKFdLuZ1csjCOxkOYU8uJEg0TQvOCvvoHvQtzLOcsFFW61kooVqiX-5Yevfz5qAKcbwEbQ0oRhkeEkvYhDO02DO0uDGXhbLsQ5vX_2F9kvrlN
Cites_doi 10.1039/c3cp51584b
10.1093/nar/gkg595
10.3390/ijms22052614
10.1038/nature06684
10.1371/journal.pone.0000905
10.1016/j.ijbiomac.2022.09.152
10.1371/journal.pone.0250654
10.1016/j.bpc.2013.07.003
10.1002/chem.202104182
10.1016/j.bpj.2011.12.053
10.1073/pnas.0805327105
10.1038/s41467-022-29135-5
10.1021/ct049977a
10.1002/chem.201700236
10.1016/j.jmb.2017.05.017
10.1016/j.virusres.2023.199197
10.1016/j.jmb.2017.06.013
10.1016/j.tibs.2020.11.001
10.1063/1.1674902
10.1038/emboj.2011.316
10.1093/nar/gky712
10.1111/j.1742-4658.2010.07760.x
10.1021/acs.jpclett.1c03071
10.1093/nar/gks339
10.1002/prot.340170408
10.1016/j.softx.2015.06.001
10.1073/pnas.182256799
10.1016/j.ymeth.2012.05.003
10.3389/fgene.2022.959258
10.1002/jcc.23354
10.1002/jcc.21759
10.1093/nar/gkad1065
10.1002/anie.202011419
10.1038/nrc2733
10.1021/acs.jctc.2c00291
10.3389/fchem.2016.00038
10.1093/bib/bbaa114
10.7124/bc.000817
10.1016/S0009-2614(99)00821-0
10.3389/fmicb.2020.567317
10.1093/nar/gkaa1126
10.1016/j.biochi.2007.07.011
10.1021/cr9904009
10.1093/nar/gkz1097
10.1016/j.virusres.2022.198910
10.1016/S1574-1400(06)02013-5
10.3390/ijms222010984
10.1021/acs.jpcb.0c06154
10.1093/nar/gkab314
10.1038/s41421-022-00450-x
10.1016/S0009-2614(98)00036-0
10.1002/prot.21344
10.3389/fchem.2022.1014663
10.1146/annurev-biophys-060320-091827
10.1007/978-1-60327-429-6_1
10.1016/j.ins.2007.05.027
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1093/nargab/lqae062
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2631-9268
ExternalDocumentID PMC11148665
38835951
10_1093_nargab_lqae062
10.1093/nargab/lqae062
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: #2021.01/0087
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
AFPKN
AFULF
ALMA_UNASSIGNED_HOLDINGS
AMNDL
EBS
EMOBN
GROUPED_DOAJ
IAO
IGS
IHR
INH
ITC
KSI
M~E
ROX
RPM
TOX
AAYXX
AFKRA
BBNVY
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M7P
PHGZM
PHGZT
PIMPY
NPM
PQGLB
8FE
8FH
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c475t-58a840c87e5747d2a5fdf7bdd7c3e046347c0b95c8295bce96c1f13e2e3eeb563
IEDL.DBID BENPR
ISSN 2631-9268
IngestDate Thu Aug 21 18:34:10 EDT 2025
Sun Aug 24 03:23:09 EDT 2025
Fri Jul 25 11:56:40 EDT 2025
Mon Jul 21 05:59:21 EDT 2025
Tue Jul 01 02:50:16 EDT 2025
Thu Jan 30 13:18:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-58a840c87e5747d2a5fdf7bdd7c3e046347c0b95c8295bce96c1f13e2e3eeb563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3569-2321
0000-0003-2434-9218
0000-0002-3205-3305
0000-0001-7932-9105
0000-0002-0844-1586
0000-0002-9601-3126
0000-0003-1664-6837
0000-0003-3278-8384
0000-0002-7845-4884
OpenAccessLink https://www.proquest.com/docview/3168786462?pq-origsite=%requestingapplication%
PMID 38835951
PQID 3168786462
PQPubID 7097362
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11148665
proquest_miscellaneous_3064924483
proquest_journals_3168786462
pubmed_primary_38835951
crossref_primary_10_1093_nargab_lqae062
oup_primary_10_1093_nargab_lqae062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NAR genomics and bioinformatics
PublicationTitleAlternate NAR Genom Bioinform
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Zarudnaya (2024060408522346000_B62) 2023; 336
Simonsson (2024060408522346000_B3) 1998; 26
Popenda (2024060408522346000_B33) 2012; 40
Lorenz (2024060408522346000_B22) 2012
Liu (2024060408522346000_B28) 2022; 13
Tomasi (2024060408522346000_B37) 2005; 105
Ugrina (2024060408522346000_B59) 2024; 52
Bezzi (2024060408522346000_B16) 2021; 22
Espinosa (2024060408522346000_B41) 1998; 285
Ruggiero (2024060408522346000_B14) 2021; 22
Grimme (2024060408522346000_B34) 2011; 32
Bansal (2024060408522346000_B54) 2022; 13
Ditchfield (2024060408522346000_B35) 1971; 54
Negrutska (2024060408522346000_B12) 2013; 29
Gu (2024060408522346000_B52) 1999; 311
Qin (2024060408522346000_B24) 2022; 8
Havrila (2024060408522346000_B60) 2018; 46
Huang (2024060408522346000_B43) 2013; 34
Adrian (2024060408522346000_B7) 2012; 57
Takano (2024060408522346000_B38) 2005; 1
Zubatiuk (2024060408522346000_B39) 2013; 15
Topno (2024060408522346000_B47) 2016; 5
Maisuradze (2024060408522346000_B48) 2007; 67
Todd A. Keith (2024060408522346000_B40) 2019
Puig Lombardi (2024060408522346000_B17) 2020; 48
Siddiqui-Jain (2024060408522346000_B4) 2002; 99
Brooks (2024060408522346000_B9) 2009; 9
Stein (2024060408522346000_B44) 2006; 2
Miclot (2024060408522346000_B31) 2021; 12
Cui (2024060408522346000_B23) 2020; 11
Zuker (2024060408522346000_B18) 2003; 31
Markham (2024060408522346000_B19) 2008; 453
Dumas (2024060408522346000_B10) 2021; 46
Rodríguez-vázquez (2024060408522346000_B58) 2016; 16
Schrödinger (2024060408522346000_B51) 2018
Zarudnaya (2024060408522346000_B61) 2022; 321
Vallur (2024060408522346000_B5) 2008; 105
Patro (2024060408522346000_B32) 2017; 429
Belmonte-Reche (2024060408522346000_B25) 2021; 16
Zhao (2024060408522346000_B29) 2021; 60
Kharel (2024060408522346000_B11) 2020; 48
Parisien (2024060408522346000_B21) 2008; 452
Ji (2024060408522346000_B27) 2021; 22
Fay (2024060408522346000_B13) 2017; 429
Zhai (2024060408522346000_B15) 2022; 221
Wu (2024060408522346000_B8) 2010; 277
Abraham (2024060408522346000_B42) 2015; 1–2
Castelli (2024060408522346000_B53) 2022; 18
Bhattacharyya (2024060408522346000_B57) 2016; 4
De Cian (2024060408522346000_B2) 2008; 90
Dawson (2024060408522346000_B20) 2007; 2
Sehnal (2024060408522346000_B50) 2021; 49
Gorb (2024060408522346000_B36) 2020; 124
Amadei (2024060408522346000_B45) 1993; 17
Yurenko (2024060408522346000_B56) 2017; 23
Lopes (2024060408522346000_B6) 2011; 30
Mukherjee (2024060408522346000_B30) 2022; 28
Kabbara (2024060408522346000_B26) 2022; 10
Ortiz de Luzuriaga (2024060408522346000_B1) 2021; 50
Korenius (2024060408522346000_B49) 2007; 177
Paladino (2024060408522346000_B55) 2013; 180–181
Burkoff (2024060408522346000_B46) 2012; 102
References_xml – volume: 15
  start-page: 18155
  year: 2013
  ident: 2024060408522346000_B39
  article-title: B-DNA characteristics are preserved in double stranded d(A)3·d(T)3 and d(G)3·d(C)3 mini-helixes: conclusions from DFT/M06-2X study
  publication-title: Phy. Chem. Chem. Phys.
  doi: 10.1039/c3cp51584b
– volume-title: AIMAll (Version 19.10.12)
  year: 2019
  ident: 2024060408522346000_B40
– volume: 31
  start-page: 3406
  year: 2003
  ident: 2024060408522346000_B18
  article-title: Mfold web server for nucleic acid folding and hybridization prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg595
– volume: 22
  start-page: 2614
  year: 2021
  ident: 2024060408522346000_B16
  article-title: Cnbp binds and unfolds in vitro G-quadruplexes formed in the SARS-CoV-2 positive and negative genome strands
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22052614
– volume: 452
  start-page: 51
  year: 2008
  ident: 2024060408522346000_B21
  article-title: The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data
  publication-title: Nature
  doi: 10.1038/nature06684
– volume: 2
  start-page: e905
  year: 2007
  ident: 2024060408522346000_B20
  article-title: Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000905
– volume: 221
  start-page: 1476
  year: 2022
  ident: 2024060408522346000_B15
  article-title: Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: a review
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.09.152
– start-page: 49
  volume-title: Advances in Bioinformatics and Computational Biology. BSB 2012. Lecture Notes in Computer Science
  year: 2012
  ident: 2024060408522346000_B22
  article-title: RNA folding algorithms with G-quadruplexes
– volume: 16
  start-page: e0250654
  year: 2021
  ident: 2024060408522346000_B25
  article-title: Potential G-quadruplexes and i-Motifs in the SARS-CoV-2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0250654
– volume: 180–181
  start-page: 110
  year: 2013
  ident: 2024060408522346000_B55
  article-title: Propensities for loop structures of RNA & DNA backbones
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2013.07.003
– volume: 28
  start-page: e202104182
  year: 2022
  ident: 2024060408522346000_B30
  article-title: Modulation of the conformational space of SARS-CoV-2 RNA quadruplex RG-1 by cellular components and the amyloidogenic peptides α-synuclein and hIAPP
  publication-title: Chemistry
  doi: 10.1002/chem.202104182
– volume: 102
  start-page: 878
  year: 2012
  ident: 2024060408522346000_B46
  article-title: Exploring the energy landscapes of protein folding simulations with Bayesian computation
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.12.053
– volume: 105
  start-page: 16508
  year: 2008
  ident: 2024060408522346000_B5
  article-title: Activities of human exonuclease 1 that promote cleavage of transcribed immunoglobulin switch regions
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0805327105
– volume: 13
  start-page: 1444
  year: 2022
  ident: 2024060408522346000_B28
  article-title: RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29135-5
– volume: 1
  start-page: 70
  year: 2005
  ident: 2024060408522346000_B38
  article-title: Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct049977a
– volume: 23
  start-page: 5573
  year: 2017
  ident: 2024060408522346000_B56
  article-title: Weak supramolecular interactions governing parallel and antiparallel DNA quadruplexes: insights from large-scale quantum mechanics analysis of experimentally derived models
  publication-title: Chemistry
  doi: 10.1002/chem.201700236
– volume: 26
  start-page: 1167
  year: 1998
  ident: 2024060408522346000_B3
  article-title: DNA tetraplex formation in the control region of c-myc. Doktorsavhandlingar vid Chalmers Tek
  publication-title: Hogsk
– volume: 429
  start-page: 2127
  year: 2017
  ident: 2024060408522346000_B13
  article-title: RNA G-quadruplexes in biology: principles and molecular mechanisms
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.05.017
– volume: 336
  start-page: 199197
  year: 2023
  ident: 2024060408522346000_B62
  article-title: Structural diversity of the region encompassing DIS, SD and Psi hairpins in HIV and SIV genomes
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2023.199197
– volume: 429
  start-page: 2438
  year: 2017
  ident: 2024060408522346000_B32
  article-title: 3D-NuS: a web server for automated modeling and visualization of non-canonical 3-dimensional nucleic acid structures
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.06.013
– volume: 16
  start-page: vii
  year: 2016
  ident: 2024060408522346000_B58
  article-title: The alkali metal ions: their role for life
  publication-title: Met. Ions Life Sci.
– volume: 46
  start-page: 270
  year: 2021
  ident: 2024060408522346000_B10
  article-title: G-quadruplexes in RNA biology: recent advances and future directions
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2020.11.001
– volume: 54
  start-page: 720
  year: 1971
  ident: 2024060408522346000_B35
  article-title: Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674902
– volume: 30
  start-page: 4033
  year: 2011
  ident: 2024060408522346000_B6
  article-title: G-quadruplex-induced instability during leading-strand replication
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.316
– volume: 46
  start-page: 8754
  year: 2018
  ident: 2024060408522346000_B60
  article-title: Structural dynamics of propeller loop: towards folding of RNA G-quadruplex
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky712
– volume: 277
  start-page: 3470
  year: 2010
  ident: 2024060408522346000_B8
  article-title: G-quadruplex nucleic acids and human disease
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2010.07760.x
– volume: 12
  start-page: 10277
  year: 2021
  ident: 2024060408522346000_B31
  article-title: Structure and dynamics of RNA guanine quadruplexes in SARS-CoV-2 genome. Original strategies against emerging viruses
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c03071
– volume: 40
  start-page: e112
  year: 2012
  ident: 2024060408522346000_B33
  article-title: Automated 3D structure composition for large RNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks339
– volume: 17
  start-page: 412
  year: 1993
  ident: 2024060408522346000_B45
  article-title: Essential dynamics of proteins
  publication-title: Proteins
  doi: 10.1002/prot.340170408
– volume: 1–2
  start-page: 19
  year: 2015
  ident: 2024060408522346000_B42
  article-title: Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 99
  start-page: 11593
  year: 2002
  ident: 2024060408522346000_B4
  article-title: Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.182256799
– volume: 57
  start-page: 11
  year: 2012
  ident: 2024060408522346000_B7
  article-title: NMR spectroscopy of G-quadruplexes
  publication-title: Methods
  doi: 10.1016/j.ymeth.2012.05.003
– volume: 13
  start-page: 959258
  year: 2022
  ident: 2024060408522346000_B54
  article-title: Non-canonical DNA structures: diversity and disease association
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.959258
– volume: 34
  start-page: 2135
  year: 2013
  ident: 2024060408522346000_B43
  article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23354
– volume: 32
  start-page: 1456
  year: 2011
  ident: 2024060408522346000_B34
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comp. Chem.
  doi: 10.1002/jcc.21759
– volume: 52
  start-page: 87
  year: 2024
  ident: 2024060408522346000_B59
  article-title: RNA G-quadruplex folding is a multi-pathway process driven by conformational entropy
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad1065
– volume: 60
  start-page: 432
  year: 2021
  ident: 2024060408522346000_B29
  article-title: Targeting RNA G-quadruplex in SARS-CoV-2: a promising therapeutic target for COVID-19?
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202011419
– volume: 9
  start-page: 849
  year: 2009
  ident: 2024060408522346000_B9
  article-title: The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2733
– volume: 18
  start-page: 4515
  year: 2022
  ident: 2024060408522346000_B53
  article-title: Studying the dynamics of a complex G-quadruplex system: insights into the comparison of MD and NMR dData
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00291
– volume: 4
  start-page: 38
  year: 2016
  ident: 2024060408522346000_B57
  article-title: Metal cations in G-quadruplex folding and stability
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2016.00038
– volume: 22
  start-page: 1150
  year: 2021
  ident: 2024060408522346000_B27
  article-title: Discovery of G-quadruplex-forming sequences in SARS-CoV-2
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa114
– volume: 29
  start-page: 169
  year: 2013
  ident: 2024060408522346000_B12
  article-title: Design and study of telomerase inhibitors based on G-quadruplex ligands
  publication-title: Biopolym. Cell
  doi: 10.7124/bc.000817
– volume: 311
  start-page: 209
  year: 1999
  ident: 2024060408522346000_B52
  article-title: A new insight into the structure and stability of Hoogsteen hydrogen-bonded G-tetrad: an ab initio SCF study
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)00821-0
– volume-title: PyMOL The PyMOL Molecular Graphics System
  year: 2018
  ident: 2024060408522346000_B51
– volume: 11
  start-page: 567317
  year: 2020
  ident: 2024060408522346000_B23
  article-title: G-quadruplexes are present in human coronaviruses including SARS-CoV-2
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.567317
– volume: 48
  start-page: 12534
  year: 2020
  ident: 2024060408522346000_B11
  article-title: Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1126
– volume: 90
  start-page: 131
  year: 2008
  ident: 2024060408522346000_B2
  article-title: Targeting telomeres and telomerase
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2007.07.011
– volume: 105
  start-page: 2999
  year: 2005
  ident: 2024060408522346000_B37
  article-title: Quantum mechanical continuum solvation models
  publication-title: Chem. Rev.
  doi: 10.1021/cr9904009
– volume: 48
  start-page: 1
  year: 2020
  ident: 2024060408522346000_B17
  article-title: A guide to computational methods for G-quadruplex prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz1097
– volume: 321
  start-page: 198910
  year: 2022
  ident: 2024060408522346000_B61
  article-title: Genome sequence analysis suggests coevolution of the DIS, SD, and Psi hairpins in HIV-1 genomes
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2022.198910
– volume: 2
  start-page: 233
  year: 2006
  ident: 2024060408522346000_B44
  article-title: Principal components analysis: a review of its application on molecular dynamics data
  publication-title: Annu. Rep. Comput. Chem.
  doi: 10.1016/S1574-1400(06)02013-5
– volume: 22
  start-page: 10984
  year: 2021
  ident: 2024060408522346000_B14
  article-title: G-quadruplex targeting in the fight against viruses: an update
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222010984
– volume: 124
  start-page: 9343
  year: 2020
  ident: 2024060408522346000_B36
  article-title: Effect of microenvironment on the geometrical structure of d(A)5 d(T)5 and d(G)5 d(C)5 DNA mini-helixes and the Dickerson dodecamer: a density functional theory study
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c06154
– volume: 49
  start-page: W431
  year: 2021
  ident: 2024060408522346000_B50
  article-title: Mol∗Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab314
– volume: 8
  start-page: 86
  year: 2022
  ident: 2024060408522346000_B24
  article-title: RNA G-quadruplex formed in SARS-CoV-2 used for COVID-19 treatment in animal models
  publication-title: Cell Discov.
  doi: 10.1038/s41421-022-00450-x
– volume: 285
  start-page: 170
  year: 1998
  ident: 2024060408522346000_B41
  article-title: Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)00036-0
– volume: 67
  start-page: 569
  year: 2007
  ident: 2024060408522346000_B48
  article-title: Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima
  publication-title: Proteins Struct. Funct. Bioinform.
  doi: 10.1002/prot.21344
– volume: 10
  start-page: 1014663
  year: 2022
  ident: 2024060408522346000_B26
  article-title: RNA G-quadruplex forming regions from SARS-2, SARS-1 and MERS coronoviruses
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2022.1014663
– volume: 50
  start-page: 209
  year: 2021
  ident: 2024060408522346000_B1
  article-title: Learning to model G-quadruplexes: current methods and perspectives
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-060320-091827
– volume: 453
  start-page: 3
  year: 2008
  ident: 2024060408522346000_B19
  article-title: UNAFold: software for nucleic acid folding and hybridization
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-429-6_1
– volume: 5
  start-page: 180
  year: 2016
  ident: 2024060408522346000_B47
  article-title: Interacting mechanism of ID3 HLH domain towards E2A/E12 transcription factor - An Insight through molecular dynamics and docking approach
  publication-title: Biochem. Biophys. Rep.
– volume: 177
  start-page: 4893
  year: 2007
  ident: 2024060408522346000_B49
  article-title: On principal component analysis, cosine and Euclidean measures in information retrieval
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2007.05.027
SSID ssj0002545401
Score 2.265085
Snippet In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage lqae062
SubjectTerms Computer applications
Editor's Choice
Hydrogen bonding
Hydrogen bonds
Molecular dynamics
Nucleotide sequence
Nucleotides
Ribonucleic acid
RNA
Severe acute respiratory syndrome coronavirus 2
Title From RNA sequence to its three-dimensional structure: geometrical structure, stability and dynamics of selected fragments of SARS-CoV-2 RNA
URI https://www.ncbi.nlm.nih.gov/pubmed/38835951
https://www.proquest.com/docview/3168786462
https://www.proquest.com/docview/3064924483
https://pubmed.ncbi.nlm.nih.gov/PMC11148665
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBIF6BUhmExAVrN_EjDhe0VF1VSCxo26K9RX5MSiWatJv0wG_gTzOOs2GXA1yiyLaUx-fHzHj8fYS8ET4zmdeSWWMVE6l3rJCZYdYGqhgDuGIFR_HzQp2ci08ruRoCbu2QVrmZE_uJ2jcuxMgnQWAp10qo7MP1DQuqUWF3dZDQuEv2cQrW6HztfzxefF2OURZ0f9AkSUe2Rj6pg36snfy4MTBV2c5qtHPCbcvQ_DtfcmsBmj8g9wfLkc4i1A_JHagfkV_zdXNFl4sZ3eRE066hl11LOwQJmA_k_ZF4g0aq2Ns1vKcX0FwFKS23XfwObyNr909qak99FKtvaVPRtpfLAU-rtbnoT8WF0tPZ8pQdNd9YFl7hMTmfH58dnbBBX4E5kcuOSW3QvXM6B4lOBYImK1_l1vvccQhMYiJ3U1tIp7NCWgeFcmmVcsiAA1ip-BOyVzc1PCPUFLmxUCngeiqcACuUkl6jeSBEJSqdkLeb_1xeRxqNMm5_8zIiUg6IJOQ1wvDfRgcblMphzLXlnx6SkFdjNY6WsAViamhusQ1aYOhxCs0T8jSCOj6Kax1OKacJ0Ttwjw0CE_duTX35vWfkToNXiV_8_N_v9YLcy9AmiplmB2QP8YWXaNN09nDouId9TACvZ19WvwHbUv7t
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdG9wAvCMS_sAEGgXjBauPYiYOEUBmrOrZVqNvQ3jL_uWyVaLK1nVA_A9-Fz8i5aULLAzztLbKtxPGd7d_Zd78j5LVwXHOnJDPaxEyEzrJUcs2M8VQxGnDH8obi4SDun4gvp_J0g_yqY2G8W2W9Ji4Waldaf0be9gmWEhWLmH-8vGI-a5S_Xa1TaFRqsQ_zH2iyTT_sfUb5vuG8t3u802fLrALMikTOmFQajRqrEpAIpbGrMnd5YpxLbASeP0sktmNSaRVPpbGQxjbMwwg4RABGxhG-9xbZFBGaMi2y-Wl38HXYnOqguYUQKGzYIaN24fPVmvb3Kw2dmK_tfmsRdSvA9m__zJUNr3eP3F0iVdqtVOs-2YDiAfnZm5RjOhx0ae2DTWclHc2mdIZKAcz5ZAEV0QetqGmvJ_CenkM59qm77GrxO3ysWMLnVBeOunmhxyM7pWVOp4v0POBoPtHniyg8X3rUHR6xnfIb474LD8nJjYz8I9IqygKeEKrTRBvIY4hUR1gBRsSxdArhiBC5yFVA3tbjnF1WtB1Zdd0eZZVEsqVEAvIKxfDfRtu1lLLlHJ9mfzQyIC-bapyd_spFF1BeYxtEfGjhChUF5HEl1OZTkVI-KjoMiFoTd9PAM3-v1xSjiwUDeOitWPzjp__u1wtyu398eJAd7A32t8gdjnis8nLbJi2UNTxDPDUzz5dKTMnZTc-b3xu2OoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+RNA+sequence+to+its+three-dimensional+structure%3A+geometrical+structure%2C+stability+and+dynamics+of+selected+fragments+of+SARS-CoV-2+RNA&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Gorb%2C+Leonid&rft.au=Voiteshenko%2C+Ivan&rft.au=Hurmach%2C+Vasyl&rft.au=Zarudnaya%2C+Margarita&rft.date=2024-06-01&rft.eissn=2631-9268&rft.volume=6&rft.issue=2&rft.spage=lqae062&rft_id=info:doi/10.1093%2Fnargab%2Flqae062&rft_id=info%3Apmid%2F38835951&rft.externalDocID=38835951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon