The Berlin brain-computer interface: EEG-based communication without subject training
The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 14; no. 2; pp. 147 - 152 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarly accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems. |
---|---|
AbstractList | The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarly accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems. The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1 the use of well-established motor competences as control paradigms, 2 high-dimensional features from 128-channel electroencephalogram (EEG), and 3 advanced machine learning techniques. The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems.The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems. The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems. |
Author | Krauledat, M. Dornhege, G. Blankertz, B. Kunzmann, V. Muller, K.-R. Curio, G. Losch, F. |
Author_xml | – sequence: 1 givenname: B. surname: Blankertz fullname: Blankertz, B. email: benjamin.blankertz@first.fraunhofer.de organization: Fraunhofer FIRST (IDA), Berlin, Germany – sequence: 2 givenname: G. surname: Dornhege fullname: Dornhege, G. organization: Fraunhofer FIRST (IDA), Berlin, Germany – sequence: 3 givenname: M. surname: Krauledat fullname: Krauledat, M. organization: Fraunhofer FIRST (IDA), Berlin, Germany – sequence: 4 givenname: K.-R. surname: Muller fullname: Muller, K.-R. – sequence: 5 givenname: V. surname: Kunzmann fullname: Kunzmann, V. – sequence: 6 givenname: F. surname: Losch fullname: Losch, F. – sequence: 7 givenname: G. surname: Curio fullname: Curio, G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16792281$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LHTEUhoNY_Gp_QCmUwUVdzW2Syac7K1ctiIX2ug6ZTFJzmclckwzSf9-M11JxoZskkOc9nHOeQ7AbxmAB-IjgAiEov65ufv1cLjCEbCE4pZTvgANEqaghRnB3fjekJg2G--AwpTWEiDPK98A-YlxiLNABuF3d2eqbjb0PVRu1D7UZh82Ubax8KKfTxp5Wy-Vl3epku6r8DlPwRmc_hurB57txylWa2rU1ucpzBR9-vwfvnO6T_fB0H4Hbi-Xq_Kq-_nH5_fzsujaE01xTYoVpNdUUl3kgkYxiB7k0XRnJOKwRws4R3BkhteS6E6xjjrVOCAoZ1s0RONnW3cTxfrIpq8EnY_teBztOSQnZYNYQIQr55VWSCcoRIvhNsGwNQSxhAY9fgOtxiqGMqyTiBImGyAJ9foKmdrCd2kQ_6PhH_RNQALQFTBxTitb9R6CaJatHyWqWrLaSS4a_yBifH4XM--9fTX7aJr219lkzBHPKmr9_iLLO |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1152_jn_00121_2023 crossref_primary_10_1016_j_clinph_2010_03_011 crossref_primary_10_1109_TNSRE_2018_2808425 crossref_primary_10_1371_journal_pone_0081732 crossref_primary_10_1016_j_neuroimage_2011_03_061 crossref_primary_10_1016_j_cortex_2024_09_001 crossref_primary_10_3390_s140101474 crossref_primary_10_1007_s11571_010_9133_x crossref_primary_10_1088_1741_2560_13_3_036024 crossref_primary_10_9746_jcmsi_4_445 crossref_primary_10_1109_TBME_2008_2001139 crossref_primary_10_1088_1741_2560_13_1_016014 crossref_primary_10_1587_transinf_E94_D_2479 crossref_primary_10_3109_17483107_2014_961569 crossref_primary_10_1044_2017_AJSLP_16_0244 crossref_primary_10_1109_TNSRE_2014_2315717 crossref_primary_10_1186_1475_925X_12_77 crossref_primary_10_1088_1741_2560_8_4_046028 crossref_primary_10_1109_TCYB_2015_2479240 crossref_primary_10_3390_s17071552 crossref_primary_10_1186_1475_925X_11_18 crossref_primary_10_1109_TSP_2017_2752690 crossref_primary_10_1109_ACCESS_2023_3326720 crossref_primary_10_1016_j_neucom_2016_10_055 crossref_primary_10_1088_1741_2560_6_6_066001 crossref_primary_10_1109_TBME_2015_2465866 crossref_primary_10_1155_2007_84386 crossref_primary_10_1109_TBME_2007_912653 crossref_primary_10_1007_s11055_011_9527_1 crossref_primary_10_1007_s12193_008_0003_3 crossref_primary_10_17341_gazimmfd_978895 crossref_primary_10_3389_fnhum_2023_1286895 crossref_primary_10_1088_1741_2552_aa8065 crossref_primary_10_1088_1741_2560_13_6_066012 crossref_primary_10_3390_s110707110 crossref_primary_10_1016_j_conb_2009_10_008 crossref_primary_10_1371_journal_pone_0072085 crossref_primary_10_1007_s11517_011_0858_4 crossref_primary_10_1016_j_yebeh_2008_03_014 crossref_primary_10_1109_JETCAS_2012_2183430 crossref_primary_10_1016_j_clinph_2007_10_015 crossref_primary_10_1109_TBME_2007_903709 crossref_primary_10_3390_electronics12030604 crossref_primary_10_1016_j_eswa_2016_07_042 crossref_primary_10_1080_17483107_2018_1428369 crossref_primary_10_1586_17434440_4_4_463 crossref_primary_10_1109_TNSRE_2017_2736600 crossref_primary_10_1371_journal_pone_0002967 crossref_primary_10_1016_j_entcom_2009_09_007 crossref_primary_10_1088_1741_2560_11_3_035014 crossref_primary_10_1088_1741_2560_9_1_016009 crossref_primary_10_1007_s11760_017_1193_5 crossref_primary_10_1016_j_specom_2009_08_002 crossref_primary_10_1016_j_bspc_2013_08_012 crossref_primary_10_1371_journal_pone_0086733 crossref_primary_10_1080_10400435_2018_1512175 crossref_primary_10_1523_JNEUROSCI_3879_08_2008 crossref_primary_10_1097_AJP_0b013e318261c9f9 crossref_primary_10_1007_s12559_015_9379_z crossref_primary_10_1007_s13246_021_01057_4 crossref_primary_10_1016_j_neuroimage_2015_05_009 crossref_primary_10_1186_s12984_019_0493_0 crossref_primary_10_1088_1741_2560_12_6_066024 crossref_primary_10_1109_TNSRE_2016_2646763 crossref_primary_10_1109_TVCG_2024_3456147 crossref_primary_10_1016_j_concog_2015_01_011 crossref_primary_10_1044_2018_AJSLP_17_0135 crossref_primary_10_1109_MSP_2008_4408441 crossref_primary_10_1109_TNSRE_2013_2273177 crossref_primary_10_1088_1741_2552_abca17 crossref_primary_10_1109_TBME_2018_2865941 crossref_primary_10_1016_j_ijpsycho_2013_08_007 crossref_primary_10_1016_j_eswa_2021_116443 crossref_primary_10_1007_s11517_008_0345_8 crossref_primary_10_1371_journal_pone_0085100 crossref_primary_10_3389_fnins_2017_00683 crossref_primary_10_1016_j_jneumeth_2007_09_022 crossref_primary_10_3389_fnhum_2017_00389 crossref_primary_10_4236_eng_2013_510B059 crossref_primary_10_1371_journal_pone_0037665 crossref_primary_10_1109_JPROC_2015_2413993 crossref_primary_10_3233_AIC_160703 crossref_primary_10_3389_fnhum_2014_00285 crossref_primary_10_1145_2381876_2381877 crossref_primary_10_1109_TBME_2006_889206 crossref_primary_10_1016_j_clinph_2007_08_025 crossref_primary_10_3390_s20236730 crossref_primary_10_11154_pain_23_27 crossref_primary_10_1080_2326263X_2019_1651570 crossref_primary_10_1109_TNNLS_2015_2496330 crossref_primary_10_1142_S0129065715500148 crossref_primary_10_1523_JNEUROSCI_1368_19_2020 crossref_primary_10_1155_2007_54925 crossref_primary_10_1371_journal_pone_0085192 crossref_primary_10_1109_TBME_2009_2021529 crossref_primary_10_5772_55665 crossref_primary_10_1016_j_patrec_2011_02_022 crossref_primary_10_1109_ACCESS_2018_2849358 crossref_primary_10_1109_TPAMI_2010_125 crossref_primary_10_3171_2009_4_FOCUS0979 crossref_primary_10_1016_j_procs_2020_04_026 crossref_primary_10_1016_j_neunet_2009_08_006 crossref_primary_10_1109_TNSRE_2013_2292995 crossref_primary_10_1080_27706710_2024_2366193 crossref_primary_10_1109_TBME_2017_2742541 crossref_primary_10_1080_02533839_2020_1838950 crossref_primary_10_1186_1743_0003_4_40 crossref_primary_10_1016_j_neuroimage_2007_01_051 crossref_primary_10_1016_j_neuroimage_2009_07_045 crossref_primary_10_3171_2009_4_FOCUS0981 crossref_primary_10_1016_j_bspc_2010_12_004 crossref_primary_10_1016_j_clinph_2013_05_006 crossref_primary_10_3389_fneng_2014_00038 crossref_primary_10_1177_1550059413500960 crossref_primary_10_1007_s10439_019_02228_x crossref_primary_10_3389_fnrgo_2024_1355534 crossref_primary_10_1016_j_ifacol_2015_10_181 crossref_primary_10_1016_j_neuropsychologia_2007_10_008 crossref_primary_10_1142_S0218001408006600 crossref_primary_10_1016_j_tibtech_2010_08_002 crossref_primary_10_1162_pres_19_1_35 crossref_primary_10_1088_1741_2560_8_2_025021 crossref_primary_10_1155_2018_9476432 crossref_primary_10_1038_s41598_019_49166_1 crossref_primary_10_1109_TNSRE_2019_2895029 crossref_primary_10_3109_08990220_2012_687419 crossref_primary_10_3389_fninf_2023_1306277 crossref_primary_10_1016_j_clinph_2014_07_007 crossref_primary_10_1088_1741_2560_8_1_016001 crossref_primary_10_1016_j_neunet_2009_06_003 crossref_primary_10_1016_j_jneumeth_2007_10_001 crossref_primary_10_1109_TBME_2007_903528 crossref_primary_10_3389_fnhum_2017_00254 crossref_primary_10_1016_j_dsp_2011_09_002 crossref_primary_10_1016_j_patcog_2011_04_018 crossref_primary_10_3390_app132111787 crossref_primary_10_1371_journal_pone_0000637 |
Cites_doi | 10.1109/TNSRE.2003.814456 10.1006/nimg.1998.0388 10.1109/TBME.2002.803536 10.1016/0168-5597(94)90126-0 10.1109/TNSRE.2003.814446 10.1016/S1388-2457(02)00057-3 10.1016/S0301-0511(03)00073-5 10.1016/S0278-2626(03)00036-8 10.1016/S1388-2457(00)00457-0 10.1016/S0013-4694(98)00107-2 10.1109/TBME.2005.851521 10.1109/72.914517 10.1109/TNSRE.2003.814484 10.1016/S1388-2457(99)00141-8 10.1007/BF00248283 10.1109/TBME.2004.827088 10.1006/nimg.1999.0504 10.1037/0033-2909.127.3.358 10.1109/TRE.2000.847807 10.1007/s00221-002-1220-8 10.1023/A:1024637331493 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2006.875557 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database Materials Research Database MEDLINE - Academic MEDLINE Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 152 |
ExternalDocumentID | 2568809931 16792281 10_1109_TNSRE_2006_875557 1642756 |
Genre | orig-research Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c475t-54e8cba5a52110049652f079cd006cf2a112ff42dc89a97ad86d6f6bf885062a3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 |
IngestDate | Fri Jul 11 05:33:25 EDT 2025 Thu Jul 10 18:20:41 EDT 2025 Fri Jul 11 09:13:49 EDT 2025 Fri Jul 25 03:11:58 EDT 2025 Wed Feb 19 01:46:10 EST 2025 Thu Apr 24 23:05:31 EDT 2025 Tue Jul 01 00:43:07 EDT 2025 Wed Aug 27 02:51:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-54e8cba5a52110049652f079cd006cf2a112ff42dc89a97ad86d6f6bf885062a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 16792281 |
PQID | 917418349 |
PQPubID | 85423 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1109_TNSRE_2006_875557 proquest_miscellaneous_68571142 pubmed_primary_16792281 ieee_primary_1642756 proquest_miscellaneous_893263488 proquest_miscellaneous_28110290 proquest_journals_917418349 crossref_citationtrail_10_1109_TNSRE_2006_875557 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-06-01 |
PublicationDateYYYYMMDD | 2006-06-01 |
PublicationDate_xml | – month: 06 year: 2006 text: 2006-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2006 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref11 dornhege (ref23) 2003; 15 schalk (ref25) 2000; 111 ref2 blankertz (ref17) 2005; 1 ref19 ref18 kornhuber (ref10) 1965; 284 ref24 ref26 haykin (ref9) 1995 ref20 ref22 ref21 jankelowitz (ref14) 2002; 147 dornhege (ref16) 2006 ref8 ref7 pfurtscheller (ref13) 1999; 110 ref4 ref3 ref6 ref5 ferrez (ref27) 2005 wolpaw (ref1) 2002; 113 |
References_xml | – ident: ref6 doi: 10.1109/TNSRE.2003.814456 – ident: ref12 doi: 10.1006/nimg.1998.0388 – ident: ref5 doi: 10.1109/TBME.2002.803536 – ident: ref22 doi: 10.1016/0168-5597(94)90126-0 – volume: 284 start-page: 1 year: 1965 ident: ref10 article-title: Hirnpotentialänderungen bei willkürbewegungen und passiven bewegungen des menschen: Bereitschaftspotential und reafferente potentiale publication-title: Pflügers Arch – ident: ref26 doi: 10.1109/TNSRE.2003.814446 – volume: 113 start-page: 767 year: 2002 ident: ref1 article-title: Brain-computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – ident: ref18 doi: 10.1016/S0301-0511(03)00073-5 – ident: ref4 doi: 10.1016/S0278-2626(03)00036-8 – volume: 111 start-page: 2138 year: 2000 ident: ref25 article-title: EEG-based communication: Presence of an error potential publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(00)00457-0 – ident: ref20 doi: 10.1016/S0013-4694(98)00107-2 – volume: 1 year: 2005 ident: ref17 article-title: The Berlin brain-computer interface: Report from the feedback sessions Fraunhofer FIRST publication-title: Tech Rep – ident: ref24 doi: 10.1109/TBME.2005.851521 – year: 2006 ident: ref16 article-title: Increasing information transfer rates for brain-computer interfacing – ident: ref7 doi: 10.1109/72.914517 – start-page: 1413 year: 2005 ident: ref27 article-title: You are wrong!-Automatic detection of interaction errors from brain waves publication-title: Proc 19th Int Joint Conf Artif Intell – ident: ref8 doi: 10.1109/TNSRE.2003.814484 – volume: 15 start-page: 1115 year: 2003 ident: ref23 article-title: Combining features for BCI publication-title: Proc Advances in Neural Inf Proc Systems (NIPS 02) – volume: 110 start-page: 1842 year: 1999 ident: ref13 article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00141-8 – ident: ref11 doi: 10.1007/BF00248283 – ident: ref15 doi: 10.1109/TBME.2004.827088 – ident: ref21 doi: 10.1006/nimg.1999.0504 – ident: ref3 doi: 10.1037/0033-2909.127.3.358 – ident: ref2 doi: 10.1109/TRE.2000.847807 – year: 1995 ident: ref9 publication-title: Adaptive Filter Theory – volume: 147 start-page: 98 year: 2002 ident: ref14 article-title: Movement-related potentials associated with self-paced, cued and imagined movements publication-title: Exp Brain Res doi: 10.1007/s00221-002-1220-8 – ident: ref19 doi: 10.1023/A:1024637331493 |
SSID | ssj0017657 |
Score | 2.3202326 |
Snippet | The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as... The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1 the use of well-established motor competences as... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 147 |
SubjectTerms | Algorithms Brain computer interfaces Brain-computer interface (BCI) classification common spatial patterns Communication Aids for Disabled Communication system control Computer User Training - methods Control systems electroencephalogram (EEG) Electroencephalography Electroencephalography - methods event-related desynchronization (ERD) Evoked Potentials - physiology Foot Germany Humans Imagination - physiology Imaging phantoms Information analysis information transfer rate Learning - physiology Machine learning Man-Machine Systems Movement - physiology Nervous system Neuromuscular Diseases - rehabilitation Pattern analysis Psychomotor Performance - physiology readiness potential (RP) single-trial analysis Studies |
Title | The Berlin brain-computer interface: EEG-based communication without subject training |
URI | https://ieeexplore.ieee.org/document/1642756 https://www.ncbi.nlm.nih.gov/pubmed/16792281 https://www.proquest.com/docview/917418349 https://www.proquest.com/docview/28110290 https://www.proquest.com/docview/68571142 https://www.proquest.com/docview/893263488 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEB2vII5eEDcEBkm3X85IbQlgqpPZRdqbcofl1Au6ibXPj1eOxku0Us6i2SnWiS8WS-mbG_AXjLldExDNAlDz4GKIjhVGVcKWvpHZtSM7WYGri4FOcL9u2aX-_Bx81ZGO992nzmJ3iZavluZXtMlZ1GaI9s5fuwHwO3fFZrUzGQIrF6RgNmJavpWMGcVvp0fvn9apbrDhGdc54a7wmpKVXTO-4o9VfZDTWTyzl7BBejsHmnyY9J35mJ_f0Xj-N93-YxPBywJ_mcF8sh7PnlEbzb5hkm80wyQN6TqzsU3sewiEMkk2MRg30lSjs0hCBIOXETWus_kdnsa4mO0RG7ffKEYLp31Xdk3RtM_JCxM8UTWJzN5l_Oy6EnQ2mZ5F3JmVfWtLzlNJHNacFpqKS2Ln5eG2gb8VsIjDqrdKtl65RwIggTFFLj0bZ-CgfL1dI_B2J19JTB0MDqEJ_qFdPWUu24RFK1wAuoRtU0dnhblO5nkwKXSjdJsdhIUzRZsQV82NzyK7N1_G_yMSrldmLWRwEno_6bwZ7XTQxqWfz5MV3Am81oNESsrrRLv-rXTVxMEazpavcMobjEo8sFkB0zFKLpOlpMAc_yytuSLi_YF_-W-gQe5OQQ5odewkF30_tXES515nWykz-FsA88 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tywEuvJZHWGB9AA6IdFPHdmxuCHUpsO1haaW9RfHrAmrRNrnw6_HYSekiirhF8iSaZDyZzzP2NwAvudQqLANUzr0LCxTEcLLQNq_Kylk2pnpsMDUwm4vpkn2-5JcH8HZ7FsY5FzefuRFexlq-XZsOU2WnAdojW_kNuBniPqfptNa2ZlCJyOsZXJjlrKRDDXNcqNPF_OvFJFUeAj7nPLbeE5WiVI6vBaTYYWU_2IxB5-wuzAZ1016Tb6Ou1SPz8w8mx_99n3twp0ef5H2aLvfhwK0ewKtdpmGySDQD5DW5uEbifQTLMEQSPRbR2FkiN31LCIKkE1e-Me4dmUw-5hgaLTG7Z08IJnzXXUs2ncbUDxl6UzyE5dlk8WGa910ZcsMq3uacOWl0wxtOI92cEpz6olLGhs9rPG0CgvOeUWukalTVWCms8EJ7ieR4tCkfweFqvXJPgBgVYqXX1LPSh6c6yZQxVFleIa2a5xkUg2lq078tave9jkuXQtXRsNhKU9TJsBm82d7yI_F1_Ev4CI3yWzDZI4Pjwf5179GbOixrWfj9MZXByXY0uCLWV5qVW3ebOkymANdUsV9CSF7h4eUMyB4JiXi6DD6TweM083a0SxP26d-1PoFb08XsvD7_NP9yDLdTqgizRc_gsL3q3PMAnlr9IvrML8vxEoY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Berlin+brain-computer+interface%3A+EEG-based+communication+without+subject+training&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Blankertz%2C+B&rft.au=Dornhege%2C+G&rft.au=Krauledat%2C+M&rft.au=Muller%2C+K-R&rft.date=2006-06-01&rft.issn=1534-4320&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1109%2FTNSRE.2006.875557&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |