The Berlin brain-computer interface: EEG-based communication without subject training

The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 14; no. 2; pp. 147 - 152
Main Authors Blankertz, B., Dornhege, G., Krauledat, M., Muller, K.-R., Kunzmann, V., Losch, F., Curio, G.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarly accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems.
AbstractList The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarly accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems.
The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1 the use of well-established motor competences as control paradigms, 2 high-dimensional features from 128-channel electroencephalogram (EEG), and 3 advanced machine learning techniques.
The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems.The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems.
The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems.
Author Krauledat, M.
Dornhege, G.
Blankertz, B.
Kunzmann, V.
Muller, K.-R.
Curio, G.
Losch, F.
Author_xml – sequence: 1
  givenname: B.
  surname: Blankertz
  fullname: Blankertz, B.
  email: benjamin.blankertz@first.fraunhofer.de
  organization: Fraunhofer FIRST (IDA), Berlin, Germany
– sequence: 2
  givenname: G.
  surname: Dornhege
  fullname: Dornhege, G.
  organization: Fraunhofer FIRST (IDA), Berlin, Germany
– sequence: 3
  givenname: M.
  surname: Krauledat
  fullname: Krauledat, M.
  organization: Fraunhofer FIRST (IDA), Berlin, Germany
– sequence: 4
  givenname: K.-R.
  surname: Muller
  fullname: Muller, K.-R.
– sequence: 5
  givenname: V.
  surname: Kunzmann
  fullname: Kunzmann, V.
– sequence: 6
  givenname: F.
  surname: Losch
  fullname: Losch, F.
– sequence: 7
  givenname: G.
  surname: Curio
  fullname: Curio, G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16792281$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LHTEUhoNY_Gp_QCmUwUVdzW2Syac7K1ctiIX2ug6ZTFJzmclckwzSf9-M11JxoZskkOc9nHOeQ7AbxmAB-IjgAiEov65ufv1cLjCEbCE4pZTvgANEqaghRnB3fjekJg2G--AwpTWEiDPK98A-YlxiLNABuF3d2eqbjb0PVRu1D7UZh82Ubax8KKfTxp5Wy-Vl3epku6r8DlPwRmc_hurB57txylWa2rU1ucpzBR9-vwfvnO6T_fB0H4Hbi-Xq_Kq-_nH5_fzsujaE01xTYoVpNdUUl3kgkYxiB7k0XRnJOKwRws4R3BkhteS6E6xjjrVOCAoZ1s0RONnW3cTxfrIpq8EnY_teBztOSQnZYNYQIQr55VWSCcoRIvhNsGwNQSxhAY9fgOtxiqGMqyTiBImGyAJ9foKmdrCd2kQ_6PhH_RNQALQFTBxTitb9R6CaJatHyWqWrLaSS4a_yBifH4XM--9fTX7aJr219lkzBHPKmr9_iLLO
CODEN ITNSB3
CitedBy_id crossref_primary_10_1152_jn_00121_2023
crossref_primary_10_1016_j_clinph_2010_03_011
crossref_primary_10_1109_TNSRE_2018_2808425
crossref_primary_10_1371_journal_pone_0081732
crossref_primary_10_1016_j_neuroimage_2011_03_061
crossref_primary_10_1016_j_cortex_2024_09_001
crossref_primary_10_3390_s140101474
crossref_primary_10_1007_s11571_010_9133_x
crossref_primary_10_1088_1741_2560_13_3_036024
crossref_primary_10_9746_jcmsi_4_445
crossref_primary_10_1109_TBME_2008_2001139
crossref_primary_10_1088_1741_2560_13_1_016014
crossref_primary_10_1587_transinf_E94_D_2479
crossref_primary_10_3109_17483107_2014_961569
crossref_primary_10_1044_2017_AJSLP_16_0244
crossref_primary_10_1109_TNSRE_2014_2315717
crossref_primary_10_1186_1475_925X_12_77
crossref_primary_10_1088_1741_2560_8_4_046028
crossref_primary_10_1109_TCYB_2015_2479240
crossref_primary_10_3390_s17071552
crossref_primary_10_1186_1475_925X_11_18
crossref_primary_10_1109_TSP_2017_2752690
crossref_primary_10_1109_ACCESS_2023_3326720
crossref_primary_10_1016_j_neucom_2016_10_055
crossref_primary_10_1088_1741_2560_6_6_066001
crossref_primary_10_1109_TBME_2015_2465866
crossref_primary_10_1155_2007_84386
crossref_primary_10_1109_TBME_2007_912653
crossref_primary_10_1007_s11055_011_9527_1
crossref_primary_10_1007_s12193_008_0003_3
crossref_primary_10_17341_gazimmfd_978895
crossref_primary_10_3389_fnhum_2023_1286895
crossref_primary_10_1088_1741_2552_aa8065
crossref_primary_10_1088_1741_2560_13_6_066012
crossref_primary_10_3390_s110707110
crossref_primary_10_1016_j_conb_2009_10_008
crossref_primary_10_1371_journal_pone_0072085
crossref_primary_10_1007_s11517_011_0858_4
crossref_primary_10_1016_j_yebeh_2008_03_014
crossref_primary_10_1109_JETCAS_2012_2183430
crossref_primary_10_1016_j_clinph_2007_10_015
crossref_primary_10_1109_TBME_2007_903709
crossref_primary_10_3390_electronics12030604
crossref_primary_10_1016_j_eswa_2016_07_042
crossref_primary_10_1080_17483107_2018_1428369
crossref_primary_10_1586_17434440_4_4_463
crossref_primary_10_1109_TNSRE_2017_2736600
crossref_primary_10_1371_journal_pone_0002967
crossref_primary_10_1016_j_entcom_2009_09_007
crossref_primary_10_1088_1741_2560_11_3_035014
crossref_primary_10_1088_1741_2560_9_1_016009
crossref_primary_10_1007_s11760_017_1193_5
crossref_primary_10_1016_j_specom_2009_08_002
crossref_primary_10_1016_j_bspc_2013_08_012
crossref_primary_10_1371_journal_pone_0086733
crossref_primary_10_1080_10400435_2018_1512175
crossref_primary_10_1523_JNEUROSCI_3879_08_2008
crossref_primary_10_1097_AJP_0b013e318261c9f9
crossref_primary_10_1007_s12559_015_9379_z
crossref_primary_10_1007_s13246_021_01057_4
crossref_primary_10_1016_j_neuroimage_2015_05_009
crossref_primary_10_1186_s12984_019_0493_0
crossref_primary_10_1088_1741_2560_12_6_066024
crossref_primary_10_1109_TNSRE_2016_2646763
crossref_primary_10_1109_TVCG_2024_3456147
crossref_primary_10_1016_j_concog_2015_01_011
crossref_primary_10_1044_2018_AJSLP_17_0135
crossref_primary_10_1109_MSP_2008_4408441
crossref_primary_10_1109_TNSRE_2013_2273177
crossref_primary_10_1088_1741_2552_abca17
crossref_primary_10_1109_TBME_2018_2865941
crossref_primary_10_1016_j_ijpsycho_2013_08_007
crossref_primary_10_1016_j_eswa_2021_116443
crossref_primary_10_1007_s11517_008_0345_8
crossref_primary_10_1371_journal_pone_0085100
crossref_primary_10_3389_fnins_2017_00683
crossref_primary_10_1016_j_jneumeth_2007_09_022
crossref_primary_10_3389_fnhum_2017_00389
crossref_primary_10_4236_eng_2013_510B059
crossref_primary_10_1371_journal_pone_0037665
crossref_primary_10_1109_JPROC_2015_2413993
crossref_primary_10_3233_AIC_160703
crossref_primary_10_3389_fnhum_2014_00285
crossref_primary_10_1145_2381876_2381877
crossref_primary_10_1109_TBME_2006_889206
crossref_primary_10_1016_j_clinph_2007_08_025
crossref_primary_10_3390_s20236730
crossref_primary_10_11154_pain_23_27
crossref_primary_10_1080_2326263X_2019_1651570
crossref_primary_10_1109_TNNLS_2015_2496330
crossref_primary_10_1142_S0129065715500148
crossref_primary_10_1523_JNEUROSCI_1368_19_2020
crossref_primary_10_1155_2007_54925
crossref_primary_10_1371_journal_pone_0085192
crossref_primary_10_1109_TBME_2009_2021529
crossref_primary_10_5772_55665
crossref_primary_10_1016_j_patrec_2011_02_022
crossref_primary_10_1109_ACCESS_2018_2849358
crossref_primary_10_1109_TPAMI_2010_125
crossref_primary_10_3171_2009_4_FOCUS0979
crossref_primary_10_1016_j_procs_2020_04_026
crossref_primary_10_1016_j_neunet_2009_08_006
crossref_primary_10_1109_TNSRE_2013_2292995
crossref_primary_10_1080_27706710_2024_2366193
crossref_primary_10_1109_TBME_2017_2742541
crossref_primary_10_1080_02533839_2020_1838950
crossref_primary_10_1186_1743_0003_4_40
crossref_primary_10_1016_j_neuroimage_2007_01_051
crossref_primary_10_1016_j_neuroimage_2009_07_045
crossref_primary_10_3171_2009_4_FOCUS0981
crossref_primary_10_1016_j_bspc_2010_12_004
crossref_primary_10_1016_j_clinph_2013_05_006
crossref_primary_10_3389_fneng_2014_00038
crossref_primary_10_1177_1550059413500960
crossref_primary_10_1007_s10439_019_02228_x
crossref_primary_10_3389_fnrgo_2024_1355534
crossref_primary_10_1016_j_ifacol_2015_10_181
crossref_primary_10_1016_j_neuropsychologia_2007_10_008
crossref_primary_10_1142_S0218001408006600
crossref_primary_10_1016_j_tibtech_2010_08_002
crossref_primary_10_1162_pres_19_1_35
crossref_primary_10_1088_1741_2560_8_2_025021
crossref_primary_10_1155_2018_9476432
crossref_primary_10_1038_s41598_019_49166_1
crossref_primary_10_1109_TNSRE_2019_2895029
crossref_primary_10_3109_08990220_2012_687419
crossref_primary_10_3389_fninf_2023_1306277
crossref_primary_10_1016_j_clinph_2014_07_007
crossref_primary_10_1088_1741_2560_8_1_016001
crossref_primary_10_1016_j_neunet_2009_06_003
crossref_primary_10_1016_j_jneumeth_2007_10_001
crossref_primary_10_1109_TBME_2007_903528
crossref_primary_10_3389_fnhum_2017_00254
crossref_primary_10_1016_j_dsp_2011_09_002
crossref_primary_10_1016_j_patcog_2011_04_018
crossref_primary_10_3390_app132111787
crossref_primary_10_1371_journal_pone_0000637
Cites_doi 10.1109/TNSRE.2003.814456
10.1006/nimg.1998.0388
10.1109/TBME.2002.803536
10.1016/0168-5597(94)90126-0
10.1109/TNSRE.2003.814446
10.1016/S1388-2457(02)00057-3
10.1016/S0301-0511(03)00073-5
10.1016/S0278-2626(03)00036-8
10.1016/S1388-2457(00)00457-0
10.1016/S0013-4694(98)00107-2
10.1109/TBME.2005.851521
10.1109/72.914517
10.1109/TNSRE.2003.814484
10.1016/S1388-2457(99)00141-8
10.1007/BF00248283
10.1109/TBME.2004.827088
10.1006/nimg.1999.0504
10.1037/0033-2909.127.3.358
10.1109/TRE.2000.847807
10.1007/s00221-002-1220-8
10.1023/A:1024637331493
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2006.875557
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database

Materials Research Database
MEDLINE - Academic
MEDLINE
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 152
ExternalDocumentID 2568809931
16792281
10_1109_TNSRE_2006_875557
1642756
Genre orig-research
Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c475t-54e8cba5a52110049652f079cd006cf2a112ff42dc89a97ad86d6f6bf885062a3
IEDL.DBID RIE
ISSN 1534-4320
IngestDate Fri Jul 11 05:33:25 EDT 2025
Thu Jul 10 18:20:41 EDT 2025
Fri Jul 11 09:13:49 EDT 2025
Fri Jul 25 03:11:58 EDT 2025
Wed Feb 19 01:46:10 EST 2025
Thu Apr 24 23:05:31 EDT 2025
Tue Jul 01 00:43:07 EDT 2025
Wed Aug 27 02:51:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-54e8cba5a52110049652f079cd006cf2a112ff42dc89a97ad86d6f6bf885062a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 16792281
PQID 917418349
PQPubID 85423
PageCount 6
ParticipantIDs crossref_primary_10_1109_TNSRE_2006_875557
proquest_miscellaneous_68571142
pubmed_primary_16792281
ieee_primary_1642756
proquest_miscellaneous_893263488
proquest_miscellaneous_28110290
proquest_journals_917418349
crossref_citationtrail_10_1109_TNSRE_2006_875557
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-06-01
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2006
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref11
dornhege (ref23) 2003; 15
schalk (ref25) 2000; 111
ref2
blankertz (ref17) 2005; 1
ref19
ref18
kornhuber (ref10) 1965; 284
ref24
ref26
haykin (ref9) 1995
ref20
ref22
ref21
jankelowitz (ref14) 2002; 147
dornhege (ref16) 2006
ref8
ref7
pfurtscheller (ref13) 1999; 110
ref4
ref3
ref6
ref5
ferrez (ref27) 2005
wolpaw (ref1) 2002; 113
References_xml – ident: ref6
  doi: 10.1109/TNSRE.2003.814456
– ident: ref12
  doi: 10.1006/nimg.1998.0388
– ident: ref5
  doi: 10.1109/TBME.2002.803536
– ident: ref22
  doi: 10.1016/0168-5597(94)90126-0
– volume: 284
  start-page: 1
  year: 1965
  ident: ref10
  article-title: Hirnpotentialänderungen bei willkürbewegungen und passiven bewegungen des menschen: Bereitschaftspotential und reafferente potentiale
  publication-title: Pflügers Arch
– ident: ref26
  doi: 10.1109/TNSRE.2003.814446
– volume: 113
  start-page: 767
  year: 2002
  ident: ref1
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref18
  doi: 10.1016/S0301-0511(03)00073-5
– ident: ref4
  doi: 10.1016/S0278-2626(03)00036-8
– volume: 111
  start-page: 2138
  year: 2000
  ident: ref25
  article-title: EEG-based communication: Presence of an error potential
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(00)00457-0
– ident: ref20
  doi: 10.1016/S0013-4694(98)00107-2
– volume: 1
  year: 2005
  ident: ref17
  article-title: The Berlin brain-computer interface: Report from the feedback sessions Fraunhofer FIRST
  publication-title: Tech Rep
– ident: ref24
  doi: 10.1109/TBME.2005.851521
– year: 2006
  ident: ref16
  article-title: Increasing information transfer rates for brain-computer interfacing
– ident: ref7
  doi: 10.1109/72.914517
– start-page: 1413
  year: 2005
  ident: ref27
  article-title: You are wrong!-Automatic detection of interaction errors from brain waves
  publication-title: Proc 19th Int Joint Conf Artif Intell
– ident: ref8
  doi: 10.1109/TNSRE.2003.814484
– volume: 15
  start-page: 1115
  year: 2003
  ident: ref23
  article-title: Combining features for BCI
  publication-title: Proc Advances in Neural Inf Proc Systems (NIPS 02)
– volume: 110
  start-page: 1842
  year: 1999
  ident: ref13
  article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref11
  doi: 10.1007/BF00248283
– ident: ref15
  doi: 10.1109/TBME.2004.827088
– ident: ref21
  doi: 10.1006/nimg.1999.0504
– ident: ref3
  doi: 10.1037/0033-2909.127.3.358
– ident: ref2
  doi: 10.1109/TRE.2000.847807
– year: 1995
  ident: ref9
  publication-title: Adaptive Filter Theory
– volume: 147
  start-page: 98
  year: 2002
  ident: ref14
  article-title: Movement-related potentials associated with self-paced, cued and imagined movements
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1220-8
– ident: ref19
  doi: 10.1023/A:1024637331493
SSID ssj0017657
Score 2.3202326
Snippet The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as...
The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1 the use of well-established motor competences as...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 147
SubjectTerms Algorithms
Brain computer interfaces
Brain-computer interface (BCI)
classification
common spatial patterns
Communication Aids for Disabled
Communication system control
Computer User Training - methods
Control systems
electroencephalogram (EEG)
Electroencephalography
Electroencephalography - methods
event-related desynchronization (ERD)
Evoked Potentials - physiology
Foot
Germany
Humans
Imagination - physiology
Imaging phantoms
Information analysis
information transfer rate
Learning - physiology
Machine learning
Man-Machine Systems
Movement - physiology
Nervous system
Neuromuscular Diseases - rehabilitation
Pattern analysis
Psychomotor Performance - physiology
readiness potential (RP)
single-trial analysis
Studies
Title The Berlin brain-computer interface: EEG-based communication without subject training
URI https://ieeexplore.ieee.org/document/1642756
https://www.ncbi.nlm.nih.gov/pubmed/16792281
https://www.proquest.com/docview/917418349
https://www.proquest.com/docview/28110290
https://www.proquest.com/docview/68571142
https://www.proquest.com/docview/893263488
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEB2vII5eEDcEBkm3X85IbQlgqpPZRdqbcofl1Au6ibXPj1eOxku0Us6i2SnWiS8WS-mbG_AXjLldExDNAlDz4GKIjhVGVcKWvpHZtSM7WYGri4FOcL9u2aX-_Bx81ZGO992nzmJ3iZavluZXtMlZ1GaI9s5fuwHwO3fFZrUzGQIrF6RgNmJavpWMGcVvp0fvn9apbrDhGdc54a7wmpKVXTO-4o9VfZDTWTyzl7BBejsHmnyY9J35mJ_f0Xj-N93-YxPBywJ_mcF8sh7PnlEbzb5hkm80wyQN6TqzsU3sewiEMkk2MRg30lSjs0hCBIOXETWus_kdnsa4mO0RG7ffKEYLp31Xdk3RtM_JCxM8UTWJzN5l_Oy6EnQ2mZ5F3JmVfWtLzlNJHNacFpqKS2Ln5eG2gb8VsIjDqrdKtl65RwIggTFFLj0bZ-CgfL1dI_B2J19JTB0MDqEJ_qFdPWUu24RFK1wAuoRtU0dnhblO5nkwKXSjdJsdhIUzRZsQV82NzyK7N1_G_yMSrldmLWRwEno_6bwZ7XTQxqWfz5MV3Am81oNESsrrRLv-rXTVxMEazpavcMobjEo8sFkB0zFKLpOlpMAc_yytuSLi_YF_-W-gQe5OQQ5odewkF30_tXES515nWykz-FsA88
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tywEuvJZHWGB9AA6IdFPHdmxuCHUpsO1haaW9RfHrAmrRNrnw6_HYSekiirhF8iSaZDyZzzP2NwAvudQqLANUzr0LCxTEcLLQNq_Kylk2pnpsMDUwm4vpkn2-5JcH8HZ7FsY5FzefuRFexlq-XZsOU2WnAdojW_kNuBniPqfptNa2ZlCJyOsZXJjlrKRDDXNcqNPF_OvFJFUeAj7nPLbeE5WiVI6vBaTYYWU_2IxB5-wuzAZ1016Tb6Ou1SPz8w8mx_99n3twp0ef5H2aLvfhwK0ewKtdpmGySDQD5DW5uEbifQTLMEQSPRbR2FkiN31LCIKkE1e-Me4dmUw-5hgaLTG7Z08IJnzXXUs2ncbUDxl6UzyE5dlk8WGa910ZcsMq3uacOWl0wxtOI92cEpz6olLGhs9rPG0CgvOeUWukalTVWCms8EJ7ieR4tCkfweFqvXJPgBgVYqXX1LPSh6c6yZQxVFleIa2a5xkUg2lq078tave9jkuXQtXRsNhKU9TJsBm82d7yI_F1_Ev4CI3yWzDZI4Pjwf5179GbOixrWfj9MZXByXY0uCLWV5qVW3ebOkymANdUsV9CSF7h4eUMyB4JiXi6DD6TweM083a0SxP26d-1PoFb08XsvD7_NP9yDLdTqgizRc_gsL3q3PMAnlr9IvrML8vxEoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Berlin+brain-computer+interface%3A+EEG-based+communication+without+subject+training&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Blankertz%2C+B&rft.au=Dornhege%2C+G&rft.au=Krauledat%2C+M&rft.au=Muller%2C+K-R&rft.date=2006-06-01&rft.issn=1534-4320&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1109%2FTNSRE.2006.875557&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon