Mapping epigenetic modifications by sequencing technologies
The “epigenetics” concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biolog...
Saved in:
Published in | Cell death and differentiation Vol. 32; no. 1; pp. 56 - 65 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2025
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The “epigenetics” concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [
1
], 17 [
2
], and 160 [
3
] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells. |
---|---|
AbstractList | The “epigenetics” concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [
1
], 17 [
2
], and 160 [
3
] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells. The “epigenetics” concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells. The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells. |
Author | Song, Chun-Xiao Chen, Xiufei Xu, Haiqi Shu, Xiao |
Author_xml | – sequence: 1 givenname: Xiufei orcidid: 0000-0001-6412-4385 surname: Chen fullname: Chen, Xiufei organization: Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford – sequence: 2 givenname: Haiqi surname: Xu fullname: Xu, Haiqi organization: Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford – sequence: 3 givenname: Xiao surname: Shu fullname: Shu, Xiao organization: Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford – sequence: 4 givenname: Chun-Xiao orcidid: 0000-0002-7781-6521 surname: Song fullname: Song, Chun-Xiao email: chunxiao.song@ludwig.ox.ac.uk organization: Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37658169$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUha0KVB7tH-iiGqmbbkLvtR3bEYsKob4kUDft2nKcm2CUsUOcQeLf18NAW1iw8us7R-f6HLG9mCIx9g7hBEGYT1miRFMBFxUgR1HhK3aIUquqliD2yl7UUDUg9QE7yvkaAJRu1Gt2ILSqDarmkJ1eumkKcVjRFAaKtAS_Wqcu9MG7JaSYV-3dKtPNhqLfYgv5q5jGNATKb9h-78ZMbx_WY_b765df59-ri5_ffpyfXVRe6nqpZOud8VIKLX3LZW-ka4zoyo1ry0lzjzX1hvfkoa01dHXjDSjTYwsdchLH7PPOd9q0a-o8xWV2o53msHbznU0u2KcvMVzZId1aRC25anRx-PjgMKcySl7sOmRP4-gipU223CiQIAtZ0A_P0Ou0mWOZzwqslWqMVlio9_9H-pvl8WMLYHaAn1POM_XWh-X-R0vCMFoEu-3Q7jq0pUN736HdevNn0kf3F0ViJ8oFjgPN_2K_oPoDu1qusA |
CitedBy_id | crossref_primary_10_3390_biomedinformatics4030096 crossref_primary_10_1093_plphys_kiae651 crossref_primary_10_3389_fimmu_2024_1467016 crossref_primary_10_1039_D4CS00799A crossref_primary_10_3389_pore_2024_1611676 crossref_primary_10_1080_15592324_2024_2365576 crossref_primary_10_3390_epigenomes8030034 crossref_primary_10_3389_fendo_2024_1424826 crossref_primary_10_1016_j_isci_2025_112092 crossref_primary_10_1186_s11658_024_00564_y crossref_primary_10_3389_fcell_2024_1403396 crossref_primary_10_1186_s12964_023_01411_x crossref_primary_10_1007_s12016_025_09039_0 crossref_primary_10_1186_s13045_024_01596_9 crossref_primary_10_1038_s41541_024_01053_1 crossref_primary_10_1021_acsami_4c11280 crossref_primary_10_3390_biology13080638 |
Cites_doi | 10.1038/s41586-022-05046-9 10.1186/s13059-019-1870-5 10.1016/j.semcdb.2021.11.009 10.1186/s12943-020-01194-6 10.1016/j.cell.2012.05.003 10.1038/s41467-017-01195-y 10.1038/s41592-021-01280-7 10.1073/pnas.71.10.3971 10.1038/nprot.2016.187 10.7554/eLife.21856 10.1038/sj.onc.1205600 10.1126/science.1212483 10.3389/fgene.2022.914404 10.1016/j.canlet.2017.03.029 10.1038/s41592-021-01242-z 10.1369/jhc.2008.951251 10.1038/s41587-019-0041-2 10.1038/nchem.1893 10.1038/nsmb.2470 10.1186/s12864-019-5754-6 10.1126/science.1170116 10.1371/journal.pone.0110799 10.1093/nar/gkx1030 10.1038/nbt.1685 10.1038/cr.2011.189 10.1016/j.gpb.2012.12.002 10.1126/sciadv.aay3335 10.1038/s41422-019-0230-z 10.1016/j.ygeno.2014.08.017 10.1101/gr.266551.120 10.1101/2022.02.23.481567 10.1021/acschembio.2c00746 10.1038/s41392-020-00450-x 10.1021/acschembio.2c00792 10.1038/nmeth.3453 10.1186/gb-2012-13-10-175 10.1056/NEJMoa1005143 10.1021/acschembio.2c00881 10.1007/s00441-014-1896-7 10.1038/s41467-019-11713-9 10.1016/j.cell.2007.05.009 10.1038/nprot.2013.115 10.3390/ijms232213851 10.1038/nchembio.687 10.1126/science.aaw1219 10.1186/1471-2164-10-143 10.1038/nmeth.4577 10.1101/gr.265306.120 10.1186/s13059-020-01969-6 10.1038/s41467-019-09982-5 10.1039/c0cc02864a 10.1093/nar/gks155 10.1096/fasebj.9.11.7649402 10.1007/s13238-020-00733-7 10.1016/j.cell.2019.06.013 10.1038/nchembio.2040 10.1186/s13059-021-02384-1 10.1016/j.biopha.2019.108613 10.1038/nprot.2016.069 10.1002/anie.202215704 10.1038/nprot.2012.137 10.1126/science.1063443 10.1038/nature10008 10.1038/nrg2905 10.1038/nmeth.4184 10.1093/nar/gks454 10.1101/cshperspect.a025064 10.1126/sciadv.abl5220 10.1016/j.cell.2007.02.005 10.18632/oncotarget.6922 10.1038/ng1598 10.1038/s41568-020-0253-2 10.1126/science.1220671 10.1038/s41587-022-01243-z 10.1038/cr.2014.3 10.1101/pdb.prot5505 10.1038/s41587-021-00949-w 10.1038/s41587-022-01587-6 10.1021/bi00572a004 10.1016/j.cell.2015.07.056 10.1073/pnas.89.5.1827 10.1038/ncomms13052 10.1038/s41586-020-1969-6 10.1038/nchembio.1848 10.1101/gad.947102 10.1016/j.stem.2011.08.007 10.1101/gr.136739.111 10.1016/j.cbpa.2012.10.002 10.1038/s41587-022-01652-0 10.1186/1477-3155-11-8 10.1016/bs.mie.2015.03.012 10.1093/nar/gkaa1186 10.1038/s41421-018-0019-0 10.1038/nbt.1678 10.1038/s41592-019-0570-0 10.1093/nar/gkz736 10.1038/s41587-021-00869-9 10.1016/j.celrep.2013.06.029 10.1002/anie.201810946 10.1016/j.tibs.2013.07.003 10.1021/jacs.9b08630 10.1073/pnas.1817334116 10.1038/s41592-022-01724-8 10.1016/j.celrep.2015.02.001 10.1038/nbt.3073 10.1038/nmeth.3569 10.1016/j.bmcl.2007.01.040 10.1126/science.1210944 10.1021/jacs.8b08297 10.1038/nmeth.3898 10.1038/nature16998 10.15252/embj.2020105977 10.1038/s41589-020-0525-x 10.1016/j.cell.2014.08.028 10.1002/wrna.1639 10.1038/s41587-022-01487-9 10.1038/npp.2012.112 10.1038/nrg2641 10.1016/j.cell.2013.04.001 10.1126/science.1169786 10.1038/nchembio.1836 10.1016/S0006-291X(83)80115-6 10.1016/S0092-8674(88)90469-2 10.1016/j.molcel.2016.01.012 10.1038/nmeth.4189 10.1038/nrg.2017.33 10.1056/NEJMoa1301689 10.1016/0926-6550(63)90480-8 10.1038/nchembio.1432 10.1021/jacs.3c01663 10.1126/sciadv.aax0250 10.1101/2022.10.25.513650 10.1073/pnas.1310240110 10.7554/eLife.49658 10.1038/s41589-020-0526-9 10.1038/nbt.1732 10.1186/s12864-022-08350-w 10.1016/j.molcel.2018.02.015 10.1038/nature12750 10.1016/j.cell.2012.11.022 10.1016/j.stem.2017.02.013 10.1038/nature24456 10.1093/nar/gkac612 10.1016/j.gpb.2015.08.002 10.3389/fphar.2022.984453 10.1038/nrg2005 10.1038/ncomms1240 10.1038/s41587-022-01505-w 10.1038/nature08514 10.1146/annurev.micro.62.081307.162750 10.1016/j.ydbio.2016.06.005 10.1038/nature13802 10.1016/j.molcel.2017.10.019 10.1038/s41587-021-00915-6 10.1038/s41375-018-0293-8 10.1002/stem.3279 10.1038/nature11112 10.1038/nbt.4204 10.1038/s41467-021-20920-2 10.1038/s41586-021-04217-4 10.7554/eLife.46314 10.3390/biom9120773 10.1016/j.molcel.2012.10.015 10.1016/j.cell.2012.04.027 10.1093/nar/gkab397 10.1038/nmeth.1459 10.1039/D1CB00022E |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). Copyright Nature Publishing Group Jan 2025 The Author(s) 2023 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: Copyright Nature Publishing Group Jan 2025 – notice: The Author(s) 2023 2023 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7TM 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
DOI | 10.1038/s41418-023-01213-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-5403 |
EndPage | 65 |
ExternalDocumentID | PMC11742697 37658169 10_1038_s41418_023_01213_1 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Ludwig Institute for Cancer Research (Ludwig Cancer Research) funderid: https://doi.org/10.13039/100009729 – fundername: China Scholarship Council (CSC) funderid: https://doi.org/10.13039/501100004543 – fundername: DH | National Institute for Health Research (NIHR) funderid: https://doi.org/10.13039/501100000272 – fundername: Cancer Research UK grantid: 26394 |
GroupedDBID | --- -Q- 0R~ 29B 2WC 36B 39C 3V. 4.4 406 53G 5GY 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AACDK AAHBH AANZL AASDW AASML AATNV AAYZH AAZLF ABAKF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZZP ACAOD ACGFS ACIWK ACKTT ACPRK ACRQY ACUHS ACZOJ ADBBV ADFRT ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AOIJS ASPBG AVWKF AXYYD AZFZN B0M BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A C6C CAG CCPQU COF CS3 DIK DNIVK DPUIP DU5 E3Z EAD EAP EBC EBD EBLON EBS EE. EIOEI EJD EMB EMK EMOBN EPL ESX F5P FDQFY FEDTE FERAY FIGPU FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HVGLF HYE HZ~ IWAJR JSO JZLTJ KQ8 L7B LK8 M0L M1P M7P NAO NQJWS OK1 P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT ROL RPM SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TR2 TSG TUS UKHRP ~8M AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QP 7QR 7T5 7TK 7TM 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c475t-4bca8c44374cb24f84a983dc44ab4f872c15ef82fec0b570d59c8068f1b0d12e3 |
IEDL.DBID | C6C |
ISSN | 1350-9047 1476-5403 |
IngestDate | Thu Aug 21 18:40:15 EDT 2025 Fri Jul 11 08:01:18 EDT 2025 Wed Jul 16 16:28:01 EDT 2025 Mon Jul 21 06:07:15 EDT 2025 Tue Jul 01 02:35:09 EDT 2025 Thu Apr 24 22:50:28 EDT 2025 Fri Feb 21 02:37:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-4bca8c44374cb24f84a983dc44ab4f872c15ef82fec0b570d59c8068f1b0d12e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7781-6521 0000-0001-6412-4385 |
OpenAccessLink | https://www.nature.com/articles/s41418-023-01213-1 |
PMID | 37658169 |
PQID | 3156698761 |
PQPubID | 44124 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11742697 proquest_miscellaneous_2860404973 proquest_journals_3156698761 pubmed_primary_37658169 crossref_citationtrail_10_1038_s41418_023_01213_1 crossref_primary_10_1038_s41418_023_01213_1 springer_journals_10_1038_s41418_023_01213_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Rome |
PublicationSubtitle | Official journal of the ADMC Associazione Differenziamento e Morte Cellulare |
PublicationTitle | Cell death and differentiation |
PublicationTitleAbbrev | Cell Death Differ |
PublicationTitleAlternate | Cell Death Differ |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | K Chen (1213_CR114) 2015; 560 L Hu (1213_CR7) 2022; 40 RM Kohli (1213_CR66) 2013; 502 CX Song (1213_CR86) 2013; 153 B Molinie (1213_CR116) 2016; 13 M Yu (1213_CR79) 2012; 149 Consortium ITP-CAoWG. (1213_CR21) 2020; 578 GP Pfeifer (1213_CR75) 2014; 356 ZK O’Brown (1213_CR95) 2019; 20 1213_CR10 AP Feinberg (1213_CR46) 1983; 111 P Boccaletto (1213_CR3) 2018; 46 1213_CR11 Z Zhao (1213_CR30) 2019; 20 M Weber (1213_CR53) 2005; 37 M Tahiliani (1213_CR62) 2009; 324 J Wen (1213_CR107) 2018; 69 Y Dai (1213_CR24) 2021; 2 1213_CR17 A Portela (1213_CR34) 2010; 28 D Roulois (1213_CR48) 2015; 162 M Esteller (1213_CR33) 2007; 8 M Yu (1213_CR78) 2012; 7 V Khoddami (1213_CR132) 2019; 116 T Kouzarides (1213_CR14) 2007; 128 1213_CR137 Z Zhang (1213_CR119) 2019; 5 Y Fu (1213_CR20) 2012; 16 Z Sun (1213_CR160) 2021; 31 CX Song (1213_CR77) 2011; 29 Y Liu (1213_CR61) 2021; 12 M Wossidlo (1213_CR72) 2011; 2 B Yao (1213_CR92) 2017; 8 1213_CR26 A Ruiz-Carrillo (1213_CR27) 1979; 18 M Safra (1213_CR136) 2017; 551 H Hashimoto (1213_CR65) 2012; 40 Y Liu (1213_CR5) 2019; 37 AF Lovejoy (1213_CR130) 2014; 9 DR Garalde (1213_CR151) 2018; 15 G Huang (1213_CR158) 2022; 127 X Wu (1213_CR85) 2017; 18 G Jia (1213_CR110) 2011; 7 SG Rodriques (1213_CR167) 2019; 363 H Schuster (1213_CR124) 1963; 68 H Liu (1213_CR152) 2019; 10 U Deichmann (1213_CR13) 2016; 416 R Vaisvila (1213_CR6) 2021; 31 VW Zhou (1213_CR29) 2011; 12 Y Yue (1213_CR109) 2018; 4 TM Carlile (1213_CR129) 2014; 515 A Rhoads (1213_CR25) 2015; 13 YF He (1213_CR63) 2011; 333 JT Simpson (1213_CR153) 2017; 14 Y Sakamoto (1213_CR161) 2021; 49 LD Moore (1213_CR16) 2013; 38 B Salehi (1213_CR51) 2019; 9 R Desrosiers (1213_CR98) 1974; 71 MJ Booth (1213_CR87) 2014; 6 B Linder (1213_CR115) 2015; 12 KD Meyer (1213_CR113) 2012; 149 AM Fleming (1213_CR131) 2019; 141 W Xiao (1213_CR108) 2016; 61 O Begik (1213_CR157) 2021; 39 SJ Clark (1213_CR57) 2017; 12 G Zheng (1213_CR111) 2013; 49 K Tanaka (1213_CR4) 2007; 17 W Li (1213_CR140) 2022; 23 1213_CR38 PJ Park (1213_CR37) 2009; 10 M Esteller (1213_CR45) 2002; 21 A Inoue (1213_CR71) 2011; 334 H Wu (1213_CR88) 2014; 32 PN Pratanwanich (1213_CR154) 2021; 39 LS Zhang (1213_CR144) 2022; 17 C Zhu (1213_CR91) 2017; 20 A Inoue (1213_CR70) 2011; 21 R Shapiro (1213_CR123) 1968; 7 B Xia (1213_CR90) 2015; 12 P Borst (1213_CR97) 2008; 62 Y Liu (1213_CR163) 2020; 21 TL Messier (1213_CR32) 2016; 7 LY Zhao (1213_CR19) 2020; 11 MJ Booth (1213_CR81) 2013; 8 CX Song (1213_CR42) 2013; 38 KD Meyer (1213_CR120) 2019; 16 MA Garcia-Campos (1213_CR118) 2019; 178 X Li (1213_CR135) 2017; 68 HS Kaya-Okur (1213_CR40) 2019; 10 L Cimmino (1213_CR73) 2011; 9 Q Feng (1213_CR102) 2022; 13 D Dierks (1213_CR117) 2021; 18 1213_CR127 E Bartova (1213_CR28) 2008; 56 1213_CR125 M Bachman (1213_CR69) 2015; 11 V Marchand (1213_CR142) 2018; 57 Y Liu (1213_CR60) 2022; 17 AC Rand (1213_CR149) 2017; 14 ID Vilfan (1213_CR159) 2013; 11 F Miura (1213_CR56) 2012; 40 H Li (1213_CR93) 2022; 13 S Schwartz (1213_CR128) 2014; 159 X Jiang (1213_CR100) 2021; 6 1213_CR59 Y Niu (1213_CR99) 2013; 11 JH Gommers-Ampt (1213_CR2) 1995; 9 1213_CR55 X Li (1213_CR126) 2015; 11 H Zeng (1213_CR83) 2018; 140 M Bartosovic (1213_CR41) 2021; 39 XL Ping (1213_CR106) 2014; 24 A Bird (1213_CR43) 2002; 16 PC He (1213_CR104) 2021; 40 C Enroth (1213_CR143) 2019; 47 MP Meers (1213_CR39) 2019; 8 H Xu (1213_CR84) 2023; 145 W Chen (1213_CR168) 2022; 608 D Dominissini (1213_CR112) 2012; 485 AH Laszlo (1213_CR148) 2013; 110 1213_CR101 J Liu (1213_CR105) 2014; 10 Z Zhang (1213_CR164) 2021; 18 MJ Solomon (1213_CR35) 1988; 53 JA Rosenfeld (1213_CR31) 2009; 10 D Dominissini (1213_CR134) 2016; 530 EE Schadt (1213_CR155) 2013; 23 TK Kelly (1213_CR50) 2010; 28 A Barski (1213_CR36) 2007; 129 BA Flusberg (1213_CR146) 2010; 7 1213_CR8 A Van Tongelen (1213_CR47) 2017; 396 MC Lucas (1213_CR12) 2023; 20 1213_CR76 MT Parker (1213_CR156) 2020; 9 M Frommer (1213_CR54) 1992; 89 Y Wang (1213_CR121) 2020; 16 Y Zhao (1213_CR1) 2015; 7 A Onodera (1213_CR64) 2021; 22 M Mellen (1213_CR68) 2012; 151 Y-L Xiao (1213_CR9) 2023; 41 H Wu (1213_CR89) 2016; 11 T Sun (1213_CR103) 2019; 112 L Malbec (1213_CR141) 2019; 29 GE Zentner (1213_CR15) 2013; 20 1213_CR82 S Kriaucionis (1213_CR67) 2009; 324 X Li (1213_CR133) 2016; 12 S Hussain (1213_CR139) 2013; 4 EV Wallace (1213_CR150) 2010; 46 I Barbieri (1213_CR18) 2020; 20 G Ficz (1213_CR74) 2014; 104 T Zhao (1213_CR166) 2022; 601 J Liu (1213_CR94) 2016; 7 TJ Ley (1213_CR22) 2010; 363 YS Chen (1213_CR138) 2021; 12 J Cui (1213_CR145) 2021; 49 X Shu (1213_CR122) 2020; 16 J Chen (1213_CR162) 2022; 50 MJ Booth (1213_CR80) 2012; 336 W Reik (1213_CR44) 2001; 293 1213_CR165 X Chen (1213_CR52) 2022; 8 N Blagitko-Dorfs (1213_CR49) 2019; 33 Y Saletore (1213_CR147) 2012; 13 M Farlik (1213_CR58) 2015; 10 TJ Ley (1213_CR23) 2013; 368 K Douvlataniotis (1213_CR96) 2020; 6 |
References_xml | – volume: 608 start-page: 733 year: 2022 ident: 1213_CR168 publication-title: Nature doi: 10.1038/s41586-022-05046-9 – volume: 20 year: 2019 ident: 1213_CR30 publication-title: Genome Biol doi: 10.1186/s13059-019-1870-5 – volume: 127 start-page: 155 year: 2022 ident: 1213_CR158 publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2021.11.009 – ident: 1213_CR125 doi: 10.1186/s12943-020-01194-6 – volume: 149 start-page: 1635 year: 2012 ident: 1213_CR113 publication-title: Cell. doi: 10.1016/j.cell.2012.05.003 – volume: 8 year: 2017 ident: 1213_CR92 publication-title: Nat Commun doi: 10.1038/s41467-017-01195-y – volume: 18 start-page: 1213 year: 2021 ident: 1213_CR164 publication-title: Nat Methods doi: 10.1038/s41592-021-01280-7 – volume: 71 start-page: 3971 year: 1974 ident: 1213_CR98 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.71.10.3971 – volume: 12 start-page: 534 year: 2017 ident: 1213_CR57 publication-title: Nat Protoc doi: 10.1038/nprot.2016.187 – ident: 1213_CR38 doi: 10.7554/eLife.21856 – volume: 21 start-page: 5427 year: 2002 ident: 1213_CR45 publication-title: Oncogene doi: 10.1038/sj.onc.1205600 – volume: 334 start-page: 194 year: 2011 ident: 1213_CR71 publication-title: Science doi: 10.1126/science.1212483 – volume: 13 start-page: 914404 year: 2022 ident: 1213_CR93 publication-title: Front Genet doi: 10.3389/fgene.2022.914404 – volume: 396 start-page: 130 year: 2017 ident: 1213_CR47 publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.03.029 – volume: 18 start-page: 1060 year: 2021 ident: 1213_CR117 publication-title: Nat Methods doi: 10.1038/s41592-021-01242-z – volume: 56 start-page: 711 year: 2008 ident: 1213_CR28 publication-title: J Histochem Cytochem doi: 10.1369/jhc.2008.951251 – volume: 37 start-page: 424 year: 2019 ident: 1213_CR5 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0041-2 – volume: 6 start-page: 435 year: 2014 ident: 1213_CR87 publication-title: Nat Chem doi: 10.1038/nchem.1893 – volume: 20 start-page: 259 year: 2013 ident: 1213_CR15 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2470 – volume: 20 year: 2019 ident: 1213_CR95 publication-title: BMC Genom doi: 10.1186/s12864-019-5754-6 – volume: 324 start-page: 930 year: 2009 ident: 1213_CR62 publication-title: Science doi: 10.1126/science.1170116 – volume: 9 start-page: e110799 year: 2014 ident: 1213_CR130 publication-title: PLoS One doi: 10.1371/journal.pone.0110799 – volume: 46 start-page: D303 year: 2018 ident: 1213_CR3 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1030 – volume: 28 start-page: 1057 year: 2010 ident: 1213_CR34 publication-title: Nat Biotechnol doi: 10.1038/nbt.1685 – volume: 21 start-page: 1670 year: 2011 ident: 1213_CR70 publication-title: Cell Res doi: 10.1038/cr.2011.189 – volume: 11 start-page: 8 year: 2013 ident: 1213_CR99 publication-title: Genom Proteom Bioinforma doi: 10.1016/j.gpb.2012.12.002 – volume: 6 start-page: eaay3335 year: 2020 ident: 1213_CR96 publication-title: Sci Adv doi: 10.1126/sciadv.aay3335 – volume: 29 start-page: 927 year: 2019 ident: 1213_CR141 publication-title: Cell Res doi: 10.1038/s41422-019-0230-z – volume: 104 start-page: 352 year: 2014 ident: 1213_CR74 publication-title: Genomics doi: 10.1016/j.ygeno.2014.08.017 – volume: 31 start-page: 1280 year: 2021 ident: 1213_CR6 publication-title: Genome Res doi: 10.1101/gr.266551.120 – ident: 1213_CR59 doi: 10.1101/2022.02.23.481567 – volume: 17 start-page: 2683 year: 2022 ident: 1213_CR60 publication-title: ACS Chem Biol doi: 10.1021/acschembio.2c00746 – volume: 6 start-page: 74 year: 2021 ident: 1213_CR100 publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-00450-x – volume: 17 start-page: 3306 year: 2022 ident: 1213_CR144 publication-title: ACS Chem Biol doi: 10.1021/acschembio.2c00792 – volume: 12 start-page: 767 year: 2015 ident: 1213_CR115 publication-title: Nat Methods doi: 10.1038/nmeth.3453 – volume: 13 year: 2012 ident: 1213_CR147 publication-title: Genome Biol doi: 10.1186/gb-2012-13-10-175 – volume: 363 start-page: 2424 year: 2010 ident: 1213_CR22 publication-title: N Engl J Med doi: 10.1056/NEJMoa1005143 – ident: 1213_CR127 doi: 10.1021/acschembio.2c00881 – volume: 356 start-page: 631 year: 2014 ident: 1213_CR75 publication-title: Cell Tissue Res doi: 10.1007/s00441-014-1896-7 – volume: 10 year: 2019 ident: 1213_CR152 publication-title: Nat Commun doi: 10.1038/s41467-019-11713-9 – volume: 129 start-page: 823 year: 2007 ident: 1213_CR36 publication-title: Cell doi: 10.1016/j.cell.2007.05.009 – volume: 8 start-page: 1841 year: 2013 ident: 1213_CR81 publication-title: Nat Protoc doi: 10.1038/nprot.2013.115 – ident: 1213_CR17 doi: 10.3390/ijms232213851 – volume: 7 start-page: 885 year: 2011 ident: 1213_CR110 publication-title: Nat Chem Biol doi: 10.1038/nchembio.687 – volume: 363 start-page: 1463 year: 2019 ident: 1213_CR167 publication-title: Science doi: 10.1126/science.aaw1219 – volume: 10 year: 2009 ident: 1213_CR31 publication-title: BMC Genom doi: 10.1186/1471-2164-10-143 – volume: 15 start-page: 201 year: 2018 ident: 1213_CR151 publication-title: Nat Methods doi: 10.1038/nmeth.4577 – volume: 31 start-page: 291 year: 2021 ident: 1213_CR160 publication-title: Genome Res doi: 10.1101/gr.265306.120 – volume: 21 year: 2020 ident: 1213_CR163 publication-title: Genome Biol doi: 10.1186/s13059-020-01969-6 – volume: 10 year: 2019 ident: 1213_CR40 publication-title: Nat Commun doi: 10.1038/s41467-019-09982-5 – volume: 46 start-page: 8195 year: 2010 ident: 1213_CR150 publication-title: Chem Commun (Camb) doi: 10.1039/c0cc02864a – volume: 40 start-page: 4841 year: 2012 ident: 1213_CR65 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks155 – volume: 9 start-page: 1034 year: 1995 ident: 1213_CR2 publication-title: FASEB J doi: 10.1096/fasebj.9.11.7649402 – volume: 11 start-page: 792 year: 2020 ident: 1213_CR19 publication-title: Protein Cell doi: 10.1007/s13238-020-00733-7 – volume: 178 start-page: 731 year: 2019 ident: 1213_CR118 publication-title: Cell doi: 10.1016/j.cell.2019.06.013 – volume: 12 start-page: 311 year: 2016 ident: 1213_CR133 publication-title: Nat Chem Biol doi: 10.1038/nchembio.2040 – volume: 22 year: 2021 ident: 1213_CR64 publication-title: Genome Biol doi: 10.1186/s13059-021-02384-1 – volume: 112 start-page: 108613 year: 2019 ident: 1213_CR103 publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2019.108613 – volume: 11 start-page: 1081 year: 2016 ident: 1213_CR89 publication-title: Nat Protoc doi: 10.1038/nprot.2016.069 – ident: 1213_CR26 doi: 10.1002/anie.202215704 – volume: 7 start-page: 2159 year: 2012 ident: 1213_CR78 publication-title: Nat Protoc doi: 10.1038/nprot.2012.137 – volume: 293 start-page: 1089 year: 2001 ident: 1213_CR44 publication-title: Science doi: 10.1126/science.1063443 – ident: 1213_CR76 doi: 10.1038/nature10008 – volume: 12 start-page: 7 year: 2011 ident: 1213_CR29 publication-title: Nat Rev Genet doi: 10.1038/nrg2905 – volume: 14 start-page: 407 year: 2017 ident: 1213_CR153 publication-title: Nat Methods doi: 10.1038/nmeth.4184 – volume: 40 start-page: e136 year: 2012 ident: 1213_CR56 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks454 – volume: 7 start-page: a025064 year: 2015 ident: 1213_CR1 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a025064 – volume: 8 start-page: eabl5220 year: 2022 ident: 1213_CR52 publication-title: Sci Adv doi: 10.1126/sciadv.abl5220 – volume: 128 start-page: 693 year: 2007 ident: 1213_CR14 publication-title: Cell doi: 10.1016/j.cell.2007.02.005 – volume: 7 start-page: 5094 year: 2016 ident: 1213_CR32 publication-title: Oncotarget doi: 10.18632/oncotarget.6922 – volume: 37 start-page: 853 year: 2005 ident: 1213_CR53 publication-title: Nat Genet doi: 10.1038/ng1598 – volume: 20 start-page: 303 year: 2020 ident: 1213_CR18 publication-title: Nat Rev Cancer doi: 10.1038/s41568-020-0253-2 – volume: 336 start-page: 934 year: 2012 ident: 1213_CR80 publication-title: Science. doi: 10.1126/science.1220671 – volume: 40 start-page: 1210 year: 2022 ident: 1213_CR7 publication-title: Nat Biotechnol doi: 10.1038/s41587-022-01243-z – volume: 24 start-page: 177 year: 2014 ident: 1213_CR106 publication-title: Cell Res doi: 10.1038/cr.2014.3 – ident: 1213_CR137 doi: 10.1101/pdb.prot5505 – volume: 39 start-page: 1394 year: 2021 ident: 1213_CR154 publication-title: Nat Biotechnol doi: 10.1038/s41587-021-00949-w – volume: 41 start-page: 993 year: 2023 ident: 1213_CR9 publication-title: Nat Biotechnol doi: 10.1038/s41587-022-01587-6 – volume: 18 start-page: 760 year: 1979 ident: 1213_CR27 publication-title: Biochemistry doi: 10.1021/bi00572a004 – volume: 162 start-page: 961 year: 2015 ident: 1213_CR48 publication-title: Cell doi: 10.1016/j.cell.2015.07.056 – volume: 89 start-page: 1827 year: 1992 ident: 1213_CR54 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.5.1827 – volume: 7 year: 2016 ident: 1213_CR94 publication-title: Nat Commun doi: 10.1038/ncomms13052 – volume: 578 start-page: 82 year: 2020 ident: 1213_CR21 publication-title: Nature doi: 10.1038/s41586-020-1969-6 – volume: 11 start-page: 555 year: 2015 ident: 1213_CR69 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1848 – volume: 16 start-page: 6 year: 2002 ident: 1213_CR43 publication-title: Genes Dev doi: 10.1101/gad.947102 – volume: 9 start-page: 193 year: 2011 ident: 1213_CR73 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.08.007 – volume: 23 start-page: 129 year: 2013 ident: 1213_CR155 publication-title: Genome Res doi: 10.1101/gr.136739.111 – volume: 16 start-page: 516 year: 2012 ident: 1213_CR20 publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2012.10.002 – ident: 1213_CR165 doi: 10.1038/s41587-022-01652-0 – volume: 11 year: 2013 ident: 1213_CR159 publication-title: J Nanobiotechnol doi: 10.1186/1477-3155-11-8 – volume: 560 start-page: 161 year: 2015 ident: 1213_CR114 publication-title: Methods Enzymol doi: 10.1016/bs.mie.2015.03.012 – volume: 49 start-page: e27 year: 2021 ident: 1213_CR145 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1186 – volume: 4 start-page: 10 year: 2018 ident: 1213_CR109 publication-title: Cell Discov doi: 10.1038/s41421-018-0019-0 – volume: 28 start-page: 1069 year: 2010 ident: 1213_CR50 publication-title: Nat Biotechnol doi: 10.1038/nbt.1678 – volume: 16 start-page: 1275 year: 2019 ident: 1213_CR120 publication-title: Nat Methods doi: 10.1038/s41592-019-0570-0 – volume: 47 start-page: e126 year: 2019 ident: 1213_CR143 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz736 – volume: 39 start-page: 825 year: 2021 ident: 1213_CR41 publication-title: Nat Biotechnol doi: 10.1038/s41587-021-00869-9 – volume: 4 start-page: 255 year: 2013 ident: 1213_CR139 publication-title: Cell Rep doi: 10.1016/j.celrep.2013.06.029 – volume: 57 start-page: 16785 year: 2018 ident: 1213_CR142 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201810946 – volume: 38 start-page: 480 year: 2013 ident: 1213_CR42 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2013.07.003 – volume: 141 start-page: 16450 year: 2019 ident: 1213_CR131 publication-title: J Am Chem Soc doi: 10.1021/jacs.9b08630 – volume: 116 start-page: 6784 year: 2019 ident: 1213_CR132 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1817334116 – volume: 20 start-page: 25 year: 2023 ident: 1213_CR12 publication-title: Nat Methods doi: 10.1038/s41592-022-01724-8 – volume: 10 start-page: 1386 year: 2015 ident: 1213_CR58 publication-title: Cell Rep doi: 10.1016/j.celrep.2015.02.001 – volume: 32 start-page: 1231 year: 2014 ident: 1213_CR88 publication-title: Nat Biotechnol doi: 10.1038/nbt.3073 – volume: 12 start-page: 1047 year: 2015 ident: 1213_CR90 publication-title: Nat Methods doi: 10.1038/nmeth.3569 – volume: 17 start-page: 1912 year: 2007 ident: 1213_CR4 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2007.01.040 – volume: 333 start-page: 1303 year: 2011 ident: 1213_CR63 publication-title: Science doi: 10.1126/science.1210944 – volume: 140 start-page: 13190 year: 2018 ident: 1213_CR83 publication-title: J Am Chem Soc doi: 10.1021/jacs.8b08297 – volume: 13 start-page: 692 year: 2016 ident: 1213_CR116 publication-title: Nat Methods doi: 10.1038/nmeth.3898 – volume: 530 start-page: 441 year: 2016 ident: 1213_CR134 publication-title: Nature. doi: 10.1038/nature16998 – volume: 40 start-page: e105977 year: 2021 ident: 1213_CR104 publication-title: EMBO J doi: 10.15252/embj.2020105977 – volume: 16 start-page: 896 year: 2020 ident: 1213_CR121 publication-title: Nat Chem Biol doi: 10.1038/s41589-020-0525-x – volume: 159 start-page: 148 year: 2014 ident: 1213_CR128 publication-title: Cell doi: 10.1016/j.cell.2014.08.028 – volume: 12 start-page: e1639 year: 2021 ident: 1213_CR138 publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.1639 – ident: 1213_CR8 doi: 10.1038/s41587-022-01487-9 – volume: 38 start-page: 23 year: 2013 ident: 1213_CR16 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2012.112 – volume: 10 start-page: 669 year: 2009 ident: 1213_CR37 publication-title: Nat Rev Genet doi: 10.1038/nrg2641 – volume: 153 start-page: 678 year: 2013 ident: 1213_CR86 publication-title: Cell doi: 10.1016/j.cell.2013.04.001 – volume: 324 start-page: 929 year: 2009 ident: 1213_CR67 publication-title: Science doi: 10.1126/science.1169786 – volume: 11 start-page: 592 year: 2015 ident: 1213_CR126 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1836 – volume: 111 start-page: 47 year: 1983 ident: 1213_CR46 publication-title: Biochem Biophys Res Commun doi: 10.1016/S0006-291X(83)80115-6 – volume: 53 start-page: 937 year: 1988 ident: 1213_CR35 publication-title: Cell doi: 10.1016/S0092-8674(88)90469-2 – volume: 61 start-page: 507 year: 2016 ident: 1213_CR108 publication-title: Mol Cell doi: 10.1016/j.molcel.2016.01.012 – volume: 14 start-page: 411 year: 2017 ident: 1213_CR149 publication-title: Nat Methods doi: 10.1038/nmeth.4189 – volume: 18 start-page: 517 year: 2017 ident: 1213_CR85 publication-title: Nat Rev Genet doi: 10.1038/nrg.2017.33 – volume: 368 start-page: 2059 year: 2013 ident: 1213_CR23 publication-title: N Engl J Med doi: 10.1056/NEJMoa1301689 – volume: 68 start-page: 554 year: 1963 ident: 1213_CR124 publication-title: Biochim Biophys Acta doi: 10.1016/0926-6550(63)90480-8 – volume: 10 start-page: 93 year: 2014 ident: 1213_CR105 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1432 – volume: 7 start-page: 448 year: 1968 ident: 1213_CR123 publication-title: Side- Products Kinet Biochem – volume: 145 start-page: 7095 year: 2023 ident: 1213_CR84 publication-title: J Am Chem Soc doi: 10.1021/jacs.3c01663 – volume: 5 start-page: eaax0250 year: 2019 ident: 1213_CR119 publication-title: Sci Adv doi: 10.1126/sciadv.aax0250 – ident: 1213_CR11 doi: 10.1101/2022.10.25.513650 – volume: 110 start-page: 18904 year: 2013 ident: 1213_CR148 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1310240110 – volume: 9 start-page: e49658 year: 2020 ident: 1213_CR156 publication-title: Elife doi: 10.7554/eLife.49658 – volume: 16 start-page: 887 year: 2020 ident: 1213_CR122 publication-title: Nat Chem Biol doi: 10.1038/s41589-020-0526-9 – volume: 29 start-page: 68 year: 2011 ident: 1213_CR77 publication-title: Nat Biotechnol doi: 10.1038/nbt.1732 – volume: 23 year: 2022 ident: 1213_CR140 publication-title: BMC Genom doi: 10.1186/s12864-022-08350-w – volume: 69 start-page: 1028 year: 2018 ident: 1213_CR107 publication-title: Mol Cell doi: 10.1016/j.molcel.2018.02.015 – volume: 502 start-page: 472 year: 2013 ident: 1213_CR66 publication-title: Nature doi: 10.1038/nature12750 – volume: 151 start-page: 1417 year: 2012 ident: 1213_CR68 publication-title: Cell doi: 10.1016/j.cell.2012.11.022 – volume: 20 start-page: 720 year: 2017 ident: 1213_CR91 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.02.013 – volume: 551 start-page: 251 year: 2017 ident: 1213_CR136 publication-title: Nature. doi: 10.1038/nature24456 – volume: 50 start-page: e104 year: 2022 ident: 1213_CR162 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac612 – volume: 13 start-page: 278 year: 2015 ident: 1213_CR25 publication-title: Genom Proteom Bioinforma doi: 10.1016/j.gpb.2015.08.002 – volume: 13 start-page: 984453 year: 2022 ident: 1213_CR102 publication-title: Front Pharm doi: 10.3389/fphar.2022.984453 – volume: 8 start-page: 286 year: 2007 ident: 1213_CR33 publication-title: Nat Rev Genet doi: 10.1038/nrg2005 – volume: 2 year: 2011 ident: 1213_CR72 publication-title: Nat Commun doi: 10.1038/ncomms1240 – ident: 1213_CR10 doi: 10.1038/s41587-022-01505-w – ident: 1213_CR55 doi: 10.1038/nature08514 – volume: 62 start-page: 235 year: 2008 ident: 1213_CR97 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.62.081307.162750 – volume: 416 start-page: 249 year: 2016 ident: 1213_CR13 publication-title: Dev Biol doi: 10.1016/j.ydbio.2016.06.005 – volume: 515 start-page: 143 year: 2014 ident: 1213_CR129 publication-title: Nature. doi: 10.1038/nature13802 – volume: 68 start-page: 993 year: 2017 ident: 1213_CR135 publication-title: Mol Cell doi: 10.1016/j.molcel.2017.10.019 – volume: 39 start-page: 1278 year: 2021 ident: 1213_CR157 publication-title: Nat Biotechnol doi: 10.1038/s41587-021-00915-6 – volume: 33 start-page: 945 year: 2019 ident: 1213_CR49 publication-title: Leukemia doi: 10.1038/s41375-018-0293-8 – ident: 1213_CR101 doi: 10.1002/stem.3279 – volume: 485 start-page: 201 year: 2012 ident: 1213_CR112 publication-title: Nature doi: 10.1038/nature11112 – ident: 1213_CR82 doi: 10.1038/nbt.4204 – volume: 12 year: 2021 ident: 1213_CR61 publication-title: Nat Commun doi: 10.1038/s41467-021-20920-2 – volume: 601 start-page: 85 year: 2022 ident: 1213_CR166 publication-title: Nature doi: 10.1038/s41586-021-04217-4 – volume: 8 start-page: e46314 year: 2019 ident: 1213_CR39 publication-title: Elife doi: 10.7554/eLife.46314 – volume: 9 start-page: 773 year: 2019 ident: 1213_CR51 publication-title: Biomolecules doi: 10.3390/biom9120773 – volume: 49 start-page: 18 year: 2013 ident: 1213_CR111 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 149 start-page: 1368 year: 2012 ident: 1213_CR79 publication-title: Cell doi: 10.1016/j.cell.2012.04.027 – volume: 49 start-page: e81 year: 2021 ident: 1213_CR161 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab397 – volume: 7 start-page: 461 year: 2010 ident: 1213_CR146 publication-title: Nat Methods doi: 10.1038/nmeth.1459 – volume: 2 start-page: 1096 year: 2021 ident: 1213_CR24 publication-title: RSC Chem Biol doi: 10.1039/D1CB00022E |
SSID | ssj0006796 |
Score | 2.5972874 |
SecondaryResourceType | review_article |
Snippet | The “epigenetics” concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building... The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 56 |
SubjectTerms | 631/208/176 631/92/93 Aldehydes Animals Antibodies Apoptosis Biochemistry Biomedical and Life Sciences Cancer Cell Biology Cell Cycle Analysis Cell death Deoxyribonucleic acid DNA DNA - genetics DNA - metabolism DNA methylation DNA sequencing Enzymes Epigenesis, Genetic Epigenetics Gene expression Gene regulation Genomes High-Throughput Nucleotide Sequencing - methods Histones Histones - genetics Histones - metabolism Humans Life Sciences Mammalian cells Medical research Phosphorylation Proteins Review Review Article Ribonucleic acid RNA RNA modification Stem Cells Transcriptomes |
Title | Mapping epigenetic modifications by sequencing technologies |
URI | https://link.springer.com/article/10.1038/s41418-023-01213-1 https://www.ncbi.nlm.nih.gov/pubmed/37658169 https://www.proquest.com/docview/3156698761 https://www.proquest.com/docview/2860404973 https://pubmed.ncbi.nlm.nih.gov/PMC11742697 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrUBcELQ8AqVKJW7Fws_YFqd21VWFtD21Um-W7diABNmK3R7677GdB1paKvWYeJI4M_bYM575BuCjIK2zFktESbQorXgN0jy2SLSeBRp5jDjnDi_Om7NL_vVKXG0BHXNhStB-gbQsanqMDvu84oQThdIKgwoKGUoWz06Gbs-jetbMJu2b_SLFyBIYaczlkCiDmbrnHZuL0Z0d5t1AyX9OS8siNH8Bz4fdY33c9_clbIVuF5709SRvd-HpYjgp34MvC5uRF77V4TrjbeZUxfrXss2BQb2Prna39RBHncnWo4s9Wc6v4HJ-ejE7Q0OhBOS5FGvEnbfKc84k947yqLjVirXpjnXpSlJPRIiKxuCxExK3QnuFGxWJwy2hgb2G7W7ZhbdQFzy7IKLLsPeMB6d1lLSxAZeUWFsBGTlm_IAinotZ_DTlNJsp03PZJC6bwmVDKjianrnuMTQepN4fBWGG-bQyLJuZOmnu1Hw4NaeZkI83bBeWNytDVZM0EteSVfCml9v0uaRGhSKNrkBtSHQiyCjbmy3dj-8FbZskm402WlbwaRT-3379_zfePY78PTyjubJwce7sw_b69034kLY7a3cAO8fzk5PzgzLO_wDx8PgO |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUAvCMqjgQJB4gYWtuOnekIrqgW6PbVSb5bt2FCpZCt2e-i_x3YeaFtA4ph4kjgzyYzHM_MNwFtOWmctloiSaFGyeAJpFlvEW98EGlmMONcOL47F_JR9OeNnW0DHWpiStF8gLYuaHrPDPqwYYUShZGFQQSFDyeO5k9baIqdxzcRs0r55X6Q4WRwjjZkcCmVwo_5wj01jdGuFeTtR8ka0tBihw4fwYFg91h_7-T6CrdDtwt2-n-T1LtxbDJHyx3CwsBl54VsdLjPeZi5VrH8s25wY1O_R1e66HvKoM9l63GJPnvMTOD38dDKbo6FRAvJM8jVizlvlGWsk846yqJjVqmnTGevSkaSe8BAVjcFjxyVuufYKCxWJwy2hoXkK292yC3tQFzy7wKPLsPcNC07rKKmwAZeSWFsBGTlm_IAinptZXJgSzW6U6blsEpdN4bIhFbybrrnsMTT-Sb0_CsIM_9PKNNnN1Elzp-E303D6E3J4w3ZhebUyVImkkZiWTQXPerlNj0tqlCsidAVqQ6ITQUbZ3hzpzr8XtG2SfDYqtKzg_Sj83_P6-2s8_z_y13B_frI4Mkefj7--gB2auwyXjZ592F7_vAov09Jn7V6Vb_0X9sL5gQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiouFZRXaIEgcQMLvx_qCS2symMrDlTqzbITuyBBtmK3h_57bOdRLQUkjokniTOTzHg8M98AvBCk9c5hhSiJDiWLJ5HhsUWibVigkceIc-3w4lgenfAPp-J0C-RYC1OS9gukZVHTY3bY6xUnnGiULAwqKGQoaZg23oCbab2Ns9M1k7NJA-e9keJoCYwM5moolsFM_-E-mwbp2irzerLkbxHTYojmd2B3WEHWb_o534Wt0O3Brb6n5OUe7CyGaPk9OFy4jL5wVofzjLmZyxXrH8s2Jwf1-3S1v6yHXOpMth632ZP3fB9O5u--zI7Q0CwBNVyJNeK-cbrhnCneeMqj5s5o1qYzzqcjRRsiQtQ0hgZ7oXArTKOx1JF43BIa2APY7pZdeAR1wbQLIvoMfc948MZERaULuJTFugrIyDHbDEjiuaHFd1si2kzbnss2cdkWLltSwcvpmvMeR-Of1AejIOzwT60sy66mSdo7DT-fhtPfkEMcrgvLi5WlWiatxI1iFTzs5TY9LqlSoYk0FegNiU4EGWl7c6T79rUgbpPkt1FpVAWvRuFfzevvr_H4_8ifwc7nt3P76f3xx324TXOj4bLXcwDb658X4Ula_az90_Kp_wKVP_qK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+epigenetic+modifications+by+sequencing+technologies&rft.jtitle=Cell+death+and+differentiation&rft.au=Chen%2C+Xiufei&rft.au=Xu%2C+Haiqi&rft.au=Shu%2C+Xiao&rft.au=Song%2C+Chun-Xiao&rft.date=2025-01-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1350-9047&rft.eissn=1476-5403&rft.volume=32&rft.issue=1&rft.spage=56&rft.epage=65&rft_id=info:doi/10.1038%2Fs41418-023-01213-1&rft.externalDocID=10_1038_s41418_023_01213_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-9047&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-9047&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-9047&client=summon |