Mapping epigenetic modifications by sequencing technologies

The “epigenetics” concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biolog...

Full description

Saved in:
Bibliographic Details
Published inCell death and differentiation Vol. 32; no. 1; pp. 56 - 65
Main Authors Chen, Xiufei, Xu, Haiqi, Shu, Xiao, Song, Chun-Xiao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2025
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The “epigenetics” concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [ 1 ], 17 [ 2 ], and 160 [ 3 ] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
AbstractList The “epigenetics” concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [ 1 ], 17 [ 2 ], and 160 [ 3 ] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
The “epigenetics” concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
Author Song, Chun-Xiao
Chen, Xiufei
Xu, Haiqi
Shu, Xiao
Author_xml – sequence: 1
  givenname: Xiufei
  orcidid: 0000-0001-6412-4385
  surname: Chen
  fullname: Chen, Xiufei
  organization: Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford
– sequence: 2
  givenname: Haiqi
  surname: Xu
  fullname: Xu, Haiqi
  organization: Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford
– sequence: 3
  givenname: Xiao
  surname: Shu
  fullname: Shu, Xiao
  organization: Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford
– sequence: 4
  givenname: Chun-Xiao
  orcidid: 0000-0002-7781-6521
  surname: Song
  fullname: Song, Chun-Xiao
  email: chunxiao.song@ludwig.ox.ac.uk
  organization: Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37658169$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUha0KVB7tH-iiGqmbbkLvtR3bEYsKob4kUDft2nKcm2CUsUOcQeLf18NAW1iw8us7R-f6HLG9mCIx9g7hBEGYT1miRFMBFxUgR1HhK3aIUquqliD2yl7UUDUg9QE7yvkaAJRu1Gt2ILSqDarmkJ1eumkKcVjRFAaKtAS_Wqcu9MG7JaSYV-3dKtPNhqLfYgv5q5jGNATKb9h-78ZMbx_WY_b765df59-ri5_ffpyfXVRe6nqpZOud8VIKLX3LZW-ka4zoyo1ry0lzjzX1hvfkoa01dHXjDSjTYwsdchLH7PPOd9q0a-o8xWV2o53msHbznU0u2KcvMVzZId1aRC25anRx-PjgMKcySl7sOmRP4-gipU223CiQIAtZ0A_P0Ou0mWOZzwqslWqMVlio9_9H-pvl8WMLYHaAn1POM_XWh-X-R0vCMFoEu-3Q7jq0pUN736HdevNn0kf3F0ViJ8oFjgPN_2K_oPoDu1qusA
CitedBy_id crossref_primary_10_3390_biomedinformatics4030096
crossref_primary_10_1093_plphys_kiae651
crossref_primary_10_3389_fimmu_2024_1467016
crossref_primary_10_1039_D4CS00799A
crossref_primary_10_3389_pore_2024_1611676
crossref_primary_10_1080_15592324_2024_2365576
crossref_primary_10_3390_epigenomes8030034
crossref_primary_10_3389_fendo_2024_1424826
crossref_primary_10_1016_j_isci_2025_112092
crossref_primary_10_1186_s11658_024_00564_y
crossref_primary_10_3389_fcell_2024_1403396
crossref_primary_10_1186_s12964_023_01411_x
crossref_primary_10_1007_s12016_025_09039_0
crossref_primary_10_1186_s13045_024_01596_9
crossref_primary_10_1038_s41541_024_01053_1
crossref_primary_10_1021_acsami_4c11280
crossref_primary_10_3390_biology13080638
Cites_doi 10.1038/s41586-022-05046-9
10.1186/s13059-019-1870-5
10.1016/j.semcdb.2021.11.009
10.1186/s12943-020-01194-6
10.1016/j.cell.2012.05.003
10.1038/s41467-017-01195-y
10.1038/s41592-021-01280-7
10.1073/pnas.71.10.3971
10.1038/nprot.2016.187
10.7554/eLife.21856
10.1038/sj.onc.1205600
10.1126/science.1212483
10.3389/fgene.2022.914404
10.1016/j.canlet.2017.03.029
10.1038/s41592-021-01242-z
10.1369/jhc.2008.951251
10.1038/s41587-019-0041-2
10.1038/nchem.1893
10.1038/nsmb.2470
10.1186/s12864-019-5754-6
10.1126/science.1170116
10.1371/journal.pone.0110799
10.1093/nar/gkx1030
10.1038/nbt.1685
10.1038/cr.2011.189
10.1016/j.gpb.2012.12.002
10.1126/sciadv.aay3335
10.1038/s41422-019-0230-z
10.1016/j.ygeno.2014.08.017
10.1101/gr.266551.120
10.1101/2022.02.23.481567
10.1021/acschembio.2c00746
10.1038/s41392-020-00450-x
10.1021/acschembio.2c00792
10.1038/nmeth.3453
10.1186/gb-2012-13-10-175
10.1056/NEJMoa1005143
10.1021/acschembio.2c00881
10.1007/s00441-014-1896-7
10.1038/s41467-019-11713-9
10.1016/j.cell.2007.05.009
10.1038/nprot.2013.115
10.3390/ijms232213851
10.1038/nchembio.687
10.1126/science.aaw1219
10.1186/1471-2164-10-143
10.1038/nmeth.4577
10.1101/gr.265306.120
10.1186/s13059-020-01969-6
10.1038/s41467-019-09982-5
10.1039/c0cc02864a
10.1093/nar/gks155
10.1096/fasebj.9.11.7649402
10.1007/s13238-020-00733-7
10.1016/j.cell.2019.06.013
10.1038/nchembio.2040
10.1186/s13059-021-02384-1
10.1016/j.biopha.2019.108613
10.1038/nprot.2016.069
10.1002/anie.202215704
10.1038/nprot.2012.137
10.1126/science.1063443
10.1038/nature10008
10.1038/nrg2905
10.1038/nmeth.4184
10.1093/nar/gks454
10.1101/cshperspect.a025064
10.1126/sciadv.abl5220
10.1016/j.cell.2007.02.005
10.18632/oncotarget.6922
10.1038/ng1598
10.1038/s41568-020-0253-2
10.1126/science.1220671
10.1038/s41587-022-01243-z
10.1038/cr.2014.3
10.1101/pdb.prot5505
10.1038/s41587-021-00949-w
10.1038/s41587-022-01587-6
10.1021/bi00572a004
10.1016/j.cell.2015.07.056
10.1073/pnas.89.5.1827
10.1038/ncomms13052
10.1038/s41586-020-1969-6
10.1038/nchembio.1848
10.1101/gad.947102
10.1016/j.stem.2011.08.007
10.1101/gr.136739.111
10.1016/j.cbpa.2012.10.002
10.1038/s41587-022-01652-0
10.1186/1477-3155-11-8
10.1016/bs.mie.2015.03.012
10.1093/nar/gkaa1186
10.1038/s41421-018-0019-0
10.1038/nbt.1678
10.1038/s41592-019-0570-0
10.1093/nar/gkz736
10.1038/s41587-021-00869-9
10.1016/j.celrep.2013.06.029
10.1002/anie.201810946
10.1016/j.tibs.2013.07.003
10.1021/jacs.9b08630
10.1073/pnas.1817334116
10.1038/s41592-022-01724-8
10.1016/j.celrep.2015.02.001
10.1038/nbt.3073
10.1038/nmeth.3569
10.1016/j.bmcl.2007.01.040
10.1126/science.1210944
10.1021/jacs.8b08297
10.1038/nmeth.3898
10.1038/nature16998
10.15252/embj.2020105977
10.1038/s41589-020-0525-x
10.1016/j.cell.2014.08.028
10.1002/wrna.1639
10.1038/s41587-022-01487-9
10.1038/npp.2012.112
10.1038/nrg2641
10.1016/j.cell.2013.04.001
10.1126/science.1169786
10.1038/nchembio.1836
10.1016/S0006-291X(83)80115-6
10.1016/S0092-8674(88)90469-2
10.1016/j.molcel.2016.01.012
10.1038/nmeth.4189
10.1038/nrg.2017.33
10.1056/NEJMoa1301689
10.1016/0926-6550(63)90480-8
10.1038/nchembio.1432
10.1021/jacs.3c01663
10.1126/sciadv.aax0250
10.1101/2022.10.25.513650
10.1073/pnas.1310240110
10.7554/eLife.49658
10.1038/s41589-020-0526-9
10.1038/nbt.1732
10.1186/s12864-022-08350-w
10.1016/j.molcel.2018.02.015
10.1038/nature12750
10.1016/j.cell.2012.11.022
10.1016/j.stem.2017.02.013
10.1038/nature24456
10.1093/nar/gkac612
10.1016/j.gpb.2015.08.002
10.3389/fphar.2022.984453
10.1038/nrg2005
10.1038/ncomms1240
10.1038/s41587-022-01505-w
10.1038/nature08514
10.1146/annurev.micro.62.081307.162750
10.1016/j.ydbio.2016.06.005
10.1038/nature13802
10.1016/j.molcel.2017.10.019
10.1038/s41587-021-00915-6
10.1038/s41375-018-0293-8
10.1002/stem.3279
10.1038/nature11112
10.1038/nbt.4204
10.1038/s41467-021-20920-2
10.1038/s41586-021-04217-4
10.7554/eLife.46314
10.3390/biom9120773
10.1016/j.molcel.2012.10.015
10.1016/j.cell.2012.04.027
10.1093/nar/gkab397
10.1038/nmeth.1459
10.1039/D1CB00022E
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
Copyright Nature Publishing Group Jan 2025
The Author(s) 2023 2023
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: Copyright Nature Publishing Group Jan 2025
– notice: The Author(s) 2023 2023
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
DOI 10.1038/s41418-023-01213-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1476-5403
EndPage 65
ExternalDocumentID PMC11742697
37658169
10_1038_s41418_023_01213_1
Genre Journal Article
Review
GrantInformation_xml – fundername: Ludwig Institute for Cancer Research (Ludwig Cancer Research)
  funderid: https://doi.org/10.13039/100009729
– fundername: China Scholarship Council (CSC)
  funderid: https://doi.org/10.13039/501100004543
– fundername: DH | National Institute for Health Research (NIHR)
  funderid: https://doi.org/10.13039/501100000272
– fundername: Cancer Research UK
  grantid: 26394
GroupedDBID ---
-Q-
0R~
29B
2WC
36B
39C
3V.
4.4
406
53G
5GY
70F
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AACDK
AAHBH
AANZL
AASDW
AASML
AATNV
AAYZH
AAZLF
ABAKF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZZP
ACAOD
ACGFS
ACIWK
ACKTT
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AOIJS
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
DIK
DNIVK
DPUIP
DU5
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FDQFY
FEDTE
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IWAJR
JSO
JZLTJ
KQ8
L7B
LK8
M0L
M1P
M7P
NAO
NQJWS
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
ROL
RPM
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TR2
TSG
TUS
UKHRP
~8M
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QP
7QR
7T5
7TK
7TM
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c475t-4bca8c44374cb24f84a983dc44ab4f872c15ef82fec0b570d59c8068f1b0d12e3
IEDL.DBID C6C
ISSN 1350-9047
1476-5403
IngestDate Thu Aug 21 18:40:15 EDT 2025
Fri Jul 11 08:01:18 EDT 2025
Wed Jul 16 16:28:01 EDT 2025
Mon Jul 21 06:07:15 EDT 2025
Tue Jul 01 02:35:09 EDT 2025
Thu Apr 24 22:50:28 EDT 2025
Fri Feb 21 02:37:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-4bca8c44374cb24f84a983dc44ab4f872c15ef82fec0b570d59c8068f1b0d12e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7781-6521
0000-0001-6412-4385
OpenAccessLink https://www.nature.com/articles/s41418-023-01213-1
PMID 37658169
PQID 3156698761
PQPubID 44124
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11742697
proquest_miscellaneous_2860404973
proquest_journals_3156698761
pubmed_primary_37658169
crossref_citationtrail_10_1038_s41418_023_01213_1
crossref_primary_10_1038_s41418_023_01213_1
springer_journals_10_1038_s41418_023_01213_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Rome
PublicationSubtitle Official journal of the ADMC Associazione Differenziamento e Morte Cellulare
PublicationTitle Cell death and differentiation
PublicationTitleAbbrev Cell Death Differ
PublicationTitleAlternate Cell Death Differ
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References K Chen (1213_CR114) 2015; 560
L Hu (1213_CR7) 2022; 40
RM Kohli (1213_CR66) 2013; 502
CX Song (1213_CR86) 2013; 153
B Molinie (1213_CR116) 2016; 13
M Yu (1213_CR79) 2012; 149
Consortium ITP-CAoWG. (1213_CR21) 2020; 578
GP Pfeifer (1213_CR75) 2014; 356
ZK O’Brown (1213_CR95) 2019; 20
1213_CR10
AP Feinberg (1213_CR46) 1983; 111
P Boccaletto (1213_CR3) 2018; 46
1213_CR11
Z Zhao (1213_CR30) 2019; 20
M Weber (1213_CR53) 2005; 37
M Tahiliani (1213_CR62) 2009; 324
J Wen (1213_CR107) 2018; 69
Y Dai (1213_CR24) 2021; 2
1213_CR17
A Portela (1213_CR34) 2010; 28
D Roulois (1213_CR48) 2015; 162
M Esteller (1213_CR33) 2007; 8
M Yu (1213_CR78) 2012; 7
V Khoddami (1213_CR132) 2019; 116
T Kouzarides (1213_CR14) 2007; 128
1213_CR137
Z Zhang (1213_CR119) 2019; 5
Y Fu (1213_CR20) 2012; 16
Z Sun (1213_CR160) 2021; 31
CX Song (1213_CR77) 2011; 29
Y Liu (1213_CR61) 2021; 12
M Wossidlo (1213_CR72) 2011; 2
B Yao (1213_CR92) 2017; 8
1213_CR26
A Ruiz-Carrillo (1213_CR27) 1979; 18
M Safra (1213_CR136) 2017; 551
H Hashimoto (1213_CR65) 2012; 40
Y Liu (1213_CR5) 2019; 37
AF Lovejoy (1213_CR130) 2014; 9
DR Garalde (1213_CR151) 2018; 15
G Huang (1213_CR158) 2022; 127
X Wu (1213_CR85) 2017; 18
G Jia (1213_CR110) 2011; 7
SG Rodriques (1213_CR167) 2019; 363
H Schuster (1213_CR124) 1963; 68
H Liu (1213_CR152) 2019; 10
U Deichmann (1213_CR13) 2016; 416
R Vaisvila (1213_CR6) 2021; 31
VW Zhou (1213_CR29) 2011; 12
Y Yue (1213_CR109) 2018; 4
TM Carlile (1213_CR129) 2014; 515
A Rhoads (1213_CR25) 2015; 13
YF He (1213_CR63) 2011; 333
JT Simpson (1213_CR153) 2017; 14
Y Sakamoto (1213_CR161) 2021; 49
LD Moore (1213_CR16) 2013; 38
B Salehi (1213_CR51) 2019; 9
R Desrosiers (1213_CR98) 1974; 71
MJ Booth (1213_CR87) 2014; 6
B Linder (1213_CR115) 2015; 12
KD Meyer (1213_CR113) 2012; 149
AM Fleming (1213_CR131) 2019; 141
W Xiao (1213_CR108) 2016; 61
O Begik (1213_CR157) 2021; 39
SJ Clark (1213_CR57) 2017; 12
G Zheng (1213_CR111) 2013; 49
K Tanaka (1213_CR4) 2007; 17
W Li (1213_CR140) 2022; 23
1213_CR38
PJ Park (1213_CR37) 2009; 10
M Esteller (1213_CR45) 2002; 21
A Inoue (1213_CR71) 2011; 334
H Wu (1213_CR88) 2014; 32
PN Pratanwanich (1213_CR154) 2021; 39
LS Zhang (1213_CR144) 2022; 17
C Zhu (1213_CR91) 2017; 20
A Inoue (1213_CR70) 2011; 21
R Shapiro (1213_CR123) 1968; 7
B Xia (1213_CR90) 2015; 12
P Borst (1213_CR97) 2008; 62
Y Liu (1213_CR163) 2020; 21
TL Messier (1213_CR32) 2016; 7
LY Zhao (1213_CR19) 2020; 11
MJ Booth (1213_CR81) 2013; 8
CX Song (1213_CR42) 2013; 38
KD Meyer (1213_CR120) 2019; 16
MA Garcia-Campos (1213_CR118) 2019; 178
X Li (1213_CR135) 2017; 68
HS Kaya-Okur (1213_CR40) 2019; 10
L Cimmino (1213_CR73) 2011; 9
Q Feng (1213_CR102) 2022; 13
D Dierks (1213_CR117) 2021; 18
1213_CR127
E Bartova (1213_CR28) 2008; 56
1213_CR125
M Bachman (1213_CR69) 2015; 11
V Marchand (1213_CR142) 2018; 57
Y Liu (1213_CR60) 2022; 17
AC Rand (1213_CR149) 2017; 14
ID Vilfan (1213_CR159) 2013; 11
F Miura (1213_CR56) 2012; 40
H Li (1213_CR93) 2022; 13
S Schwartz (1213_CR128) 2014; 159
X Jiang (1213_CR100) 2021; 6
1213_CR59
Y Niu (1213_CR99) 2013; 11
JH Gommers-Ampt (1213_CR2) 1995; 9
1213_CR55
X Li (1213_CR126) 2015; 11
H Zeng (1213_CR83) 2018; 140
M Bartosovic (1213_CR41) 2021; 39
XL Ping (1213_CR106) 2014; 24
A Bird (1213_CR43) 2002; 16
PC He (1213_CR104) 2021; 40
C Enroth (1213_CR143) 2019; 47
MP Meers (1213_CR39) 2019; 8
H Xu (1213_CR84) 2023; 145
W Chen (1213_CR168) 2022; 608
D Dominissini (1213_CR112) 2012; 485
AH Laszlo (1213_CR148) 2013; 110
1213_CR101
J Liu (1213_CR105) 2014; 10
Z Zhang (1213_CR164) 2021; 18
MJ Solomon (1213_CR35) 1988; 53
JA Rosenfeld (1213_CR31) 2009; 10
D Dominissini (1213_CR134) 2016; 530
EE Schadt (1213_CR155) 2013; 23
TK Kelly (1213_CR50) 2010; 28
A Barski (1213_CR36) 2007; 129
BA Flusberg (1213_CR146) 2010; 7
1213_CR8
A Van Tongelen (1213_CR47) 2017; 396
MC Lucas (1213_CR12) 2023; 20
1213_CR76
MT Parker (1213_CR156) 2020; 9
M Frommer (1213_CR54) 1992; 89
Y Wang (1213_CR121) 2020; 16
Y Zhao (1213_CR1) 2015; 7
A Onodera (1213_CR64) 2021; 22
M Mellen (1213_CR68) 2012; 151
Y-L Xiao (1213_CR9) 2023; 41
H Wu (1213_CR89) 2016; 11
T Sun (1213_CR103) 2019; 112
L Malbec (1213_CR141) 2019; 29
GE Zentner (1213_CR15) 2013; 20
1213_CR82
S Kriaucionis (1213_CR67) 2009; 324
X Li (1213_CR133) 2016; 12
S Hussain (1213_CR139) 2013; 4
EV Wallace (1213_CR150) 2010; 46
I Barbieri (1213_CR18) 2020; 20
G Ficz (1213_CR74) 2014; 104
T Zhao (1213_CR166) 2022; 601
J Liu (1213_CR94) 2016; 7
TJ Ley (1213_CR22) 2010; 363
YS Chen (1213_CR138) 2021; 12
J Cui (1213_CR145) 2021; 49
X Shu (1213_CR122) 2020; 16
J Chen (1213_CR162) 2022; 50
MJ Booth (1213_CR80) 2012; 336
W Reik (1213_CR44) 2001; 293
1213_CR165
X Chen (1213_CR52) 2022; 8
N Blagitko-Dorfs (1213_CR49) 2019; 33
Y Saletore (1213_CR147) 2012; 13
M Farlik (1213_CR58) 2015; 10
TJ Ley (1213_CR23) 2013; 368
K Douvlataniotis (1213_CR96) 2020; 6
References_xml – volume: 608
  start-page: 733
  year: 2022
  ident: 1213_CR168
  publication-title: Nature
  doi: 10.1038/s41586-022-05046-9
– volume: 20
  year: 2019
  ident: 1213_CR30
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1870-5
– volume: 127
  start-page: 155
  year: 2022
  ident: 1213_CR158
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2021.11.009
– ident: 1213_CR125
  doi: 10.1186/s12943-020-01194-6
– volume: 149
  start-page: 1635
  year: 2012
  ident: 1213_CR113
  publication-title: Cell.
  doi: 10.1016/j.cell.2012.05.003
– volume: 8
  year: 2017
  ident: 1213_CR92
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01195-y
– volume: 18
  start-page: 1213
  year: 2021
  ident: 1213_CR164
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01280-7
– volume: 71
  start-page: 3971
  year: 1974
  ident: 1213_CR98
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.71.10.3971
– volume: 12
  start-page: 534
  year: 2017
  ident: 1213_CR57
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2016.187
– ident: 1213_CR38
  doi: 10.7554/eLife.21856
– volume: 21
  start-page: 5427
  year: 2002
  ident: 1213_CR45
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1205600
– volume: 334
  start-page: 194
  year: 2011
  ident: 1213_CR71
  publication-title: Science
  doi: 10.1126/science.1212483
– volume: 13
  start-page: 914404
  year: 2022
  ident: 1213_CR93
  publication-title: Front Genet
  doi: 10.3389/fgene.2022.914404
– volume: 396
  start-page: 130
  year: 2017
  ident: 1213_CR47
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.03.029
– volume: 18
  start-page: 1060
  year: 2021
  ident: 1213_CR117
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01242-z
– volume: 56
  start-page: 711
  year: 2008
  ident: 1213_CR28
  publication-title: J Histochem Cytochem
  doi: 10.1369/jhc.2008.951251
– volume: 37
  start-page: 424
  year: 2019
  ident: 1213_CR5
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0041-2
– volume: 6
  start-page: 435
  year: 2014
  ident: 1213_CR87
  publication-title: Nat Chem
  doi: 10.1038/nchem.1893
– volume: 20
  start-page: 259
  year: 2013
  ident: 1213_CR15
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2470
– volume: 20
  year: 2019
  ident: 1213_CR95
  publication-title: BMC Genom
  doi: 10.1186/s12864-019-5754-6
– volume: 324
  start-page: 930
  year: 2009
  ident: 1213_CR62
  publication-title: Science
  doi: 10.1126/science.1170116
– volume: 9
  start-page: e110799
  year: 2014
  ident: 1213_CR130
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0110799
– volume: 46
  start-page: D303
  year: 2018
  ident: 1213_CR3
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1030
– volume: 28
  start-page: 1057
  year: 2010
  ident: 1213_CR34
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1685
– volume: 21
  start-page: 1670
  year: 2011
  ident: 1213_CR70
  publication-title: Cell Res
  doi: 10.1038/cr.2011.189
– volume: 11
  start-page: 8
  year: 2013
  ident: 1213_CR99
  publication-title: Genom Proteom Bioinforma
  doi: 10.1016/j.gpb.2012.12.002
– volume: 6
  start-page: eaay3335
  year: 2020
  ident: 1213_CR96
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aay3335
– volume: 29
  start-page: 927
  year: 2019
  ident: 1213_CR141
  publication-title: Cell Res
  doi: 10.1038/s41422-019-0230-z
– volume: 104
  start-page: 352
  year: 2014
  ident: 1213_CR74
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2014.08.017
– volume: 31
  start-page: 1280
  year: 2021
  ident: 1213_CR6
  publication-title: Genome Res
  doi: 10.1101/gr.266551.120
– ident: 1213_CR59
  doi: 10.1101/2022.02.23.481567
– volume: 17
  start-page: 2683
  year: 2022
  ident: 1213_CR60
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.2c00746
– volume: 6
  start-page: 74
  year: 2021
  ident: 1213_CR100
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-020-00450-x
– volume: 17
  start-page: 3306
  year: 2022
  ident: 1213_CR144
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.2c00792
– volume: 12
  start-page: 767
  year: 2015
  ident: 1213_CR115
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3453
– volume: 13
  year: 2012
  ident: 1213_CR147
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-10-175
– volume: 363
  start-page: 2424
  year: 2010
  ident: 1213_CR22
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1005143
– ident: 1213_CR127
  doi: 10.1021/acschembio.2c00881
– volume: 356
  start-page: 631
  year: 2014
  ident: 1213_CR75
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-014-1896-7
– volume: 10
  year: 2019
  ident: 1213_CR152
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11713-9
– volume: 129
  start-page: 823
  year: 2007
  ident: 1213_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.009
– volume: 8
  start-page: 1841
  year: 2013
  ident: 1213_CR81
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2013.115
– ident: 1213_CR17
  doi: 10.3390/ijms232213851
– volume: 7
  start-page: 885
  year: 2011
  ident: 1213_CR110
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.687
– volume: 363
  start-page: 1463
  year: 2019
  ident: 1213_CR167
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 10
  year: 2009
  ident: 1213_CR31
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-10-143
– volume: 15
  start-page: 201
  year: 2018
  ident: 1213_CR151
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4577
– volume: 31
  start-page: 291
  year: 2021
  ident: 1213_CR160
  publication-title: Genome Res
  doi: 10.1101/gr.265306.120
– volume: 21
  year: 2020
  ident: 1213_CR163
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-01969-6
– volume: 10
  year: 2019
  ident: 1213_CR40
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09982-5
– volume: 46
  start-page: 8195
  year: 2010
  ident: 1213_CR150
  publication-title: Chem Commun (Camb)
  doi: 10.1039/c0cc02864a
– volume: 40
  start-page: 4841
  year: 2012
  ident: 1213_CR65
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks155
– volume: 9
  start-page: 1034
  year: 1995
  ident: 1213_CR2
  publication-title: FASEB J
  doi: 10.1096/fasebj.9.11.7649402
– volume: 11
  start-page: 792
  year: 2020
  ident: 1213_CR19
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00733-7
– volume: 178
  start-page: 731
  year: 2019
  ident: 1213_CR118
  publication-title: Cell
  doi: 10.1016/j.cell.2019.06.013
– volume: 12
  start-page: 311
  year: 2016
  ident: 1213_CR133
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2040
– volume: 22
  year: 2021
  ident: 1213_CR64
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02384-1
– volume: 112
  start-page: 108613
  year: 2019
  ident: 1213_CR103
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2019.108613
– volume: 11
  start-page: 1081
  year: 2016
  ident: 1213_CR89
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2016.069
– ident: 1213_CR26
  doi: 10.1002/anie.202215704
– volume: 7
  start-page: 2159
  year: 2012
  ident: 1213_CR78
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.137
– volume: 293
  start-page: 1089
  year: 2001
  ident: 1213_CR44
  publication-title: Science
  doi: 10.1126/science.1063443
– ident: 1213_CR76
  doi: 10.1038/nature10008
– volume: 12
  start-page: 7
  year: 2011
  ident: 1213_CR29
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2905
– volume: 14
  start-page: 407
  year: 2017
  ident: 1213_CR153
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4184
– volume: 40
  start-page: e136
  year: 2012
  ident: 1213_CR56
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks454
– volume: 7
  start-page: a025064
  year: 2015
  ident: 1213_CR1
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a025064
– volume: 8
  start-page: eabl5220
  year: 2022
  ident: 1213_CR52
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abl5220
– volume: 128
  start-page: 693
  year: 2007
  ident: 1213_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.005
– volume: 7
  start-page: 5094
  year: 2016
  ident: 1213_CR32
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6922
– volume: 37
  start-page: 853
  year: 2005
  ident: 1213_CR53
  publication-title: Nat Genet
  doi: 10.1038/ng1598
– volume: 20
  start-page: 303
  year: 2020
  ident: 1213_CR18
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-020-0253-2
– volume: 336
  start-page: 934
  year: 2012
  ident: 1213_CR80
  publication-title: Science.
  doi: 10.1126/science.1220671
– volume: 40
  start-page: 1210
  year: 2022
  ident: 1213_CR7
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-022-01243-z
– volume: 24
  start-page: 177
  year: 2014
  ident: 1213_CR106
  publication-title: Cell Res
  doi: 10.1038/cr.2014.3
– ident: 1213_CR137
  doi: 10.1101/pdb.prot5505
– volume: 39
  start-page: 1394
  year: 2021
  ident: 1213_CR154
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-00949-w
– volume: 41
  start-page: 993
  year: 2023
  ident: 1213_CR9
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-022-01587-6
– volume: 18
  start-page: 760
  year: 1979
  ident: 1213_CR27
  publication-title: Biochemistry
  doi: 10.1021/bi00572a004
– volume: 162
  start-page: 961
  year: 2015
  ident: 1213_CR48
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.056
– volume: 89
  start-page: 1827
  year: 1992
  ident: 1213_CR54
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.5.1827
– volume: 7
  year: 2016
  ident: 1213_CR94
  publication-title: Nat Commun
  doi: 10.1038/ncomms13052
– volume: 578
  start-page: 82
  year: 2020
  ident: 1213_CR21
  publication-title: Nature
  doi: 10.1038/s41586-020-1969-6
– volume: 11
  start-page: 555
  year: 2015
  ident: 1213_CR69
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1848
– volume: 16
  start-page: 6
  year: 2002
  ident: 1213_CR43
  publication-title: Genes Dev
  doi: 10.1101/gad.947102
– volume: 9
  start-page: 193
  year: 2011
  ident: 1213_CR73
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.08.007
– volume: 23
  start-page: 129
  year: 2013
  ident: 1213_CR155
  publication-title: Genome Res
  doi: 10.1101/gr.136739.111
– volume: 16
  start-page: 516
  year: 2012
  ident: 1213_CR20
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2012.10.002
– ident: 1213_CR165
  doi: 10.1038/s41587-022-01652-0
– volume: 11
  year: 2013
  ident: 1213_CR159
  publication-title: J Nanobiotechnol
  doi: 10.1186/1477-3155-11-8
– volume: 560
  start-page: 161
  year: 2015
  ident: 1213_CR114
  publication-title: Methods Enzymol
  doi: 10.1016/bs.mie.2015.03.012
– volume: 49
  start-page: e27
  year: 2021
  ident: 1213_CR145
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1186
– volume: 4
  start-page: 10
  year: 2018
  ident: 1213_CR109
  publication-title: Cell Discov
  doi: 10.1038/s41421-018-0019-0
– volume: 28
  start-page: 1069
  year: 2010
  ident: 1213_CR50
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1678
– volume: 16
  start-page: 1275
  year: 2019
  ident: 1213_CR120
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0570-0
– volume: 47
  start-page: e126
  year: 2019
  ident: 1213_CR143
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz736
– volume: 39
  start-page: 825
  year: 2021
  ident: 1213_CR41
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-00869-9
– volume: 4
  start-page: 255
  year: 2013
  ident: 1213_CR139
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.06.029
– volume: 57
  start-page: 16785
  year: 2018
  ident: 1213_CR142
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201810946
– volume: 38
  start-page: 480
  year: 2013
  ident: 1213_CR42
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2013.07.003
– volume: 141
  start-page: 16450
  year: 2019
  ident: 1213_CR131
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b08630
– volume: 116
  start-page: 6784
  year: 2019
  ident: 1213_CR132
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1817334116
– volume: 20
  start-page: 25
  year: 2023
  ident: 1213_CR12
  publication-title: Nat Methods
  doi: 10.1038/s41592-022-01724-8
– volume: 10
  start-page: 1386
  year: 2015
  ident: 1213_CR58
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.02.001
– volume: 32
  start-page: 1231
  year: 2014
  ident: 1213_CR88
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3073
– volume: 12
  start-page: 1047
  year: 2015
  ident: 1213_CR90
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3569
– volume: 17
  start-page: 1912
  year: 2007
  ident: 1213_CR4
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2007.01.040
– volume: 333
  start-page: 1303
  year: 2011
  ident: 1213_CR63
  publication-title: Science
  doi: 10.1126/science.1210944
– volume: 140
  start-page: 13190
  year: 2018
  ident: 1213_CR83
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b08297
– volume: 13
  start-page: 692
  year: 2016
  ident: 1213_CR116
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3898
– volume: 530
  start-page: 441
  year: 2016
  ident: 1213_CR134
  publication-title: Nature.
  doi: 10.1038/nature16998
– volume: 40
  start-page: e105977
  year: 2021
  ident: 1213_CR104
  publication-title: EMBO J
  doi: 10.15252/embj.2020105977
– volume: 16
  start-page: 896
  year: 2020
  ident: 1213_CR121
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-020-0525-x
– volume: 159
  start-page: 148
  year: 2014
  ident: 1213_CR128
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.028
– volume: 12
  start-page: e1639
  year: 2021
  ident: 1213_CR138
  publication-title: Wiley Interdiscip Rev RNA
  doi: 10.1002/wrna.1639
– ident: 1213_CR8
  doi: 10.1038/s41587-022-01487-9
– volume: 38
  start-page: 23
  year: 2013
  ident: 1213_CR16
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2012.112
– volume: 10
  start-page: 669
  year: 2009
  ident: 1213_CR37
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2641
– volume: 153
  start-page: 678
  year: 2013
  ident: 1213_CR86
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.001
– volume: 324
  start-page: 929
  year: 2009
  ident: 1213_CR67
  publication-title: Science
  doi: 10.1126/science.1169786
– volume: 11
  start-page: 592
  year: 2015
  ident: 1213_CR126
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1836
– volume: 111
  start-page: 47
  year: 1983
  ident: 1213_CR46
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/S0006-291X(83)80115-6
– volume: 53
  start-page: 937
  year: 1988
  ident: 1213_CR35
  publication-title: Cell
  doi: 10.1016/S0092-8674(88)90469-2
– volume: 61
  start-page: 507
  year: 2016
  ident: 1213_CR108
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.01.012
– volume: 14
  start-page: 411
  year: 2017
  ident: 1213_CR149
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4189
– volume: 18
  start-page: 517
  year: 2017
  ident: 1213_CR85
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2017.33
– volume: 368
  start-page: 2059
  year: 2013
  ident: 1213_CR23
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1301689
– volume: 68
  start-page: 554
  year: 1963
  ident: 1213_CR124
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0926-6550(63)90480-8
– volume: 10
  start-page: 93
  year: 2014
  ident: 1213_CR105
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1432
– volume: 7
  start-page: 448
  year: 1968
  ident: 1213_CR123
  publication-title: Side- Products Kinet Biochem
– volume: 145
  start-page: 7095
  year: 2023
  ident: 1213_CR84
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.3c01663
– volume: 5
  start-page: eaax0250
  year: 2019
  ident: 1213_CR119
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aax0250
– ident: 1213_CR11
  doi: 10.1101/2022.10.25.513650
– volume: 110
  start-page: 18904
  year: 2013
  ident: 1213_CR148
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1310240110
– volume: 9
  start-page: e49658
  year: 2020
  ident: 1213_CR156
  publication-title: Elife
  doi: 10.7554/eLife.49658
– volume: 16
  start-page: 887
  year: 2020
  ident: 1213_CR122
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-020-0526-9
– volume: 29
  start-page: 68
  year: 2011
  ident: 1213_CR77
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1732
– volume: 23
  year: 2022
  ident: 1213_CR140
  publication-title: BMC Genom
  doi: 10.1186/s12864-022-08350-w
– volume: 69
  start-page: 1028
  year: 2018
  ident: 1213_CR107
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.02.015
– volume: 502
  start-page: 472
  year: 2013
  ident: 1213_CR66
  publication-title: Nature
  doi: 10.1038/nature12750
– volume: 151
  start-page: 1417
  year: 2012
  ident: 1213_CR68
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.022
– volume: 20
  start-page: 720
  year: 2017
  ident: 1213_CR91
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.02.013
– volume: 551
  start-page: 251
  year: 2017
  ident: 1213_CR136
  publication-title: Nature.
  doi: 10.1038/nature24456
– volume: 50
  start-page: e104
  year: 2022
  ident: 1213_CR162
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac612
– volume: 13
  start-page: 278
  year: 2015
  ident: 1213_CR25
  publication-title: Genom Proteom Bioinforma
  doi: 10.1016/j.gpb.2015.08.002
– volume: 13
  start-page: 984453
  year: 2022
  ident: 1213_CR102
  publication-title: Front Pharm
  doi: 10.3389/fphar.2022.984453
– volume: 8
  start-page: 286
  year: 2007
  ident: 1213_CR33
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2005
– volume: 2
  year: 2011
  ident: 1213_CR72
  publication-title: Nat Commun
  doi: 10.1038/ncomms1240
– ident: 1213_CR10
  doi: 10.1038/s41587-022-01505-w
– ident: 1213_CR55
  doi: 10.1038/nature08514
– volume: 62
  start-page: 235
  year: 2008
  ident: 1213_CR97
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.62.081307.162750
– volume: 416
  start-page: 249
  year: 2016
  ident: 1213_CR13
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2016.06.005
– volume: 515
  start-page: 143
  year: 2014
  ident: 1213_CR129
  publication-title: Nature.
  doi: 10.1038/nature13802
– volume: 68
  start-page: 993
  year: 2017
  ident: 1213_CR135
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.10.019
– volume: 39
  start-page: 1278
  year: 2021
  ident: 1213_CR157
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-00915-6
– volume: 33
  start-page: 945
  year: 2019
  ident: 1213_CR49
  publication-title: Leukemia
  doi: 10.1038/s41375-018-0293-8
– ident: 1213_CR101
  doi: 10.1002/stem.3279
– volume: 485
  start-page: 201
  year: 2012
  ident: 1213_CR112
  publication-title: Nature
  doi: 10.1038/nature11112
– ident: 1213_CR82
  doi: 10.1038/nbt.4204
– volume: 12
  year: 2021
  ident: 1213_CR61
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-20920-2
– volume: 601
  start-page: 85
  year: 2022
  ident: 1213_CR166
  publication-title: Nature
  doi: 10.1038/s41586-021-04217-4
– volume: 8
  start-page: e46314
  year: 2019
  ident: 1213_CR39
  publication-title: Elife
  doi: 10.7554/eLife.46314
– volume: 9
  start-page: 773
  year: 2019
  ident: 1213_CR51
  publication-title: Biomolecules
  doi: 10.3390/biom9120773
– volume: 49
  start-page: 18
  year: 2013
  ident: 1213_CR111
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.10.015
– volume: 149
  start-page: 1368
  year: 2012
  ident: 1213_CR79
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.027
– volume: 49
  start-page: e81
  year: 2021
  ident: 1213_CR161
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab397
– volume: 7
  start-page: 461
  year: 2010
  ident: 1213_CR146
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1459
– volume: 2
  start-page: 1096
  year: 2021
  ident: 1213_CR24
  publication-title: RSC Chem Biol
  doi: 10.1039/D1CB00022E
SSID ssj0006796
Score 2.5972874
SecondaryResourceType review_article
Snippet The “epigenetics” concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building...
The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56
SubjectTerms 631/208/176
631/92/93
Aldehydes
Animals
Antibodies
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cancer
Cell Biology
Cell Cycle Analysis
Cell death
Deoxyribonucleic acid
DNA
DNA - genetics
DNA - metabolism
DNA methylation
DNA sequencing
Enzymes
Epigenesis, Genetic
Epigenetics
Gene expression
Gene regulation
Genomes
High-Throughput Nucleotide Sequencing - methods
Histones
Histones - genetics
Histones - metabolism
Humans
Life Sciences
Mammalian cells
Medical research
Phosphorylation
Proteins
Review
Review Article
Ribonucleic acid
RNA
RNA modification
Stem Cells
Transcriptomes
Title Mapping epigenetic modifications by sequencing technologies
URI https://link.springer.com/article/10.1038/s41418-023-01213-1
https://www.ncbi.nlm.nih.gov/pubmed/37658169
https://www.proquest.com/docview/3156698761
https://www.proquest.com/docview/2860404973
https://pubmed.ncbi.nlm.nih.gov/PMC11742697
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrUBcELQ8AqVKJW7Fws_YFqd21VWFtD21Um-W7diABNmK3R7677GdB1paKvWYeJI4M_bYM575BuCjIK2zFktESbQorXgN0jy2SLSeBRp5jDjnDi_Om7NL_vVKXG0BHXNhStB-gbQsanqMDvu84oQThdIKgwoKGUoWz06Gbs-jetbMJu2b_SLFyBIYaczlkCiDmbrnHZuL0Z0d5t1AyX9OS8siNH8Bz4fdY33c9_clbIVuF5709SRvd-HpYjgp34MvC5uRF77V4TrjbeZUxfrXss2BQb2Prna39RBHncnWo4s9Wc6v4HJ-ejE7Q0OhBOS5FGvEnbfKc84k947yqLjVirXpjnXpSlJPRIiKxuCxExK3QnuFGxWJwy2hgb2G7W7ZhbdQFzy7IKLLsPeMB6d1lLSxAZeUWFsBGTlm_IAinotZ_DTlNJsp03PZJC6bwmVDKjianrnuMTQepN4fBWGG-bQyLJuZOmnu1Hw4NaeZkI83bBeWNytDVZM0EteSVfCml9v0uaRGhSKNrkBtSHQiyCjbmy3dj-8FbZskm402WlbwaRT-3379_zfePY78PTyjubJwce7sw_b69034kLY7a3cAO8fzk5PzgzLO_wDx8PgO
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUAvCMqjgQJB4gYWtuOnekIrqgW6PbVSb5bt2FCpZCt2e-i_x3YeaFtA4ph4kjgzyYzHM_MNwFtOWmctloiSaFGyeAJpFlvEW98EGlmMONcOL47F_JR9OeNnW0DHWpiStF8gLYuaHrPDPqwYYUShZGFQQSFDyeO5k9baIqdxzcRs0r55X6Q4WRwjjZkcCmVwo_5wj01jdGuFeTtR8ka0tBihw4fwYFg91h_7-T6CrdDtwt2-n-T1LtxbDJHyx3CwsBl54VsdLjPeZi5VrH8s25wY1O_R1e66HvKoM9l63GJPnvMTOD38dDKbo6FRAvJM8jVizlvlGWsk846yqJjVqmnTGevSkaSe8BAVjcFjxyVuufYKCxWJwy2hoXkK292yC3tQFzy7wKPLsPcNC07rKKmwAZeSWFsBGTlm_IAinptZXJgSzW6U6blsEpdN4bIhFbybrrnsMTT-Sb0_CsIM_9PKNNnN1Elzp-E303D6E3J4w3ZhebUyVImkkZiWTQXPerlNj0tqlCsidAVqQ6ITQUbZ3hzpzr8XtG2SfDYqtKzg_Sj83_P6-2s8_z_y13B_frI4Mkefj7--gB2auwyXjZ592F7_vAov09Jn7V6Vb_0X9sL5gQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiouFZRXaIEgcQMLvx_qCS2symMrDlTqzbITuyBBtmK3h_57bOdRLQUkjokniTOTzHg8M98AvBCk9c5hhSiJDiWLJ5HhsUWibVigkceIc-3w4lgenfAPp-J0C-RYC1OS9gukZVHTY3bY6xUnnGiULAwqKGQoaZg23oCbab2Ns9M1k7NJA-e9keJoCYwM5moolsFM_-E-mwbp2irzerLkbxHTYojmd2B3WEHWb_o534Wt0O3Brb6n5OUe7CyGaPk9OFy4jL5wVofzjLmZyxXrH8s2Jwf1-3S1v6yHXOpMth632ZP3fB9O5u--zI7Q0CwBNVyJNeK-cbrhnCneeMqj5s5o1qYzzqcjRRsiQtQ0hgZ7oXArTKOx1JF43BIa2APY7pZdeAR1wbQLIvoMfc948MZERaULuJTFugrIyDHbDEjiuaHFd1si2kzbnss2cdkWLltSwcvpmvMeR-Of1AejIOzwT60sy66mSdo7DT-fhtPfkEMcrgvLi5WlWiatxI1iFTzs5TY9LqlSoYk0FegNiU4EGWl7c6T79rUgbpPkt1FpVAWvRuFfzevvr_H4_8ifwc7nt3P76f3xx324TXOj4bLXcwDb658X4Ula_az90_Kp_wKVP_qK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+epigenetic+modifications+by+sequencing+technologies&rft.jtitle=Cell+death+and+differentiation&rft.au=Chen%2C+Xiufei&rft.au=Xu%2C+Haiqi&rft.au=Shu%2C+Xiao&rft.au=Song%2C+Chun-Xiao&rft.date=2025-01-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1350-9047&rft.eissn=1476-5403&rft.volume=32&rft.issue=1&rft.spage=56&rft.epage=65&rft_id=info:doi/10.1038%2Fs41418-023-01213-1&rft.externalDocID=10_1038_s41418_023_01213_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-9047&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-9047&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-9047&client=summon