Regulation of Yeast Cytokinesis by Calcium

The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell divis...

Full description

Saved in:
Bibliographic Details
Published inJournal of fungi (Basel) Vol. 11; no. 4; p. 278
Main Author Chen, Qian
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.04.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis.
AbstractList The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis.
The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis.
The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis.
The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis.The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis.
Audience Academic
Author Chen, Qian
AuthorAffiliation Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; qian.chen3@utoledo.edu
AuthorAffiliation_xml – name: Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; qian.chen3@utoledo.edu
Author_xml – sequence: 1
  givenname: Qian
  orcidid: 0000-0002-2768-6570
  surname: Chen
  fullname: Chen, Qian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40278099$$D View this record in MEDLINE/PubMed
BookMark eNpdkttrFDEUxoNU7MU--S4Dvkhla26Ty5OUxUuhIIiCPoUkc7JmnZnUZEbY_95sp5at5CHh5JfvfCfnnKKjMY2A0AuCLxnT-O02BUIwx1SqJ-iEMqxXAqvvRwfnY3ReyhZjTFoltGbP0PEdj7U-QRdfYDP3doppbFJofoAtU7PeTelXHKHE0rhds7a9j_PwHD0Nti9wfr-foW8f3n9df1rdfP54vb66WXku22nFW69BeapBYNt2VHpgQirpQmDEB-UD5a114JzzhBK990QdUzy4rpNBsjN0veh2yW7NbY6DzTuTbDR3gZQ3xuYp-h4Mc14o5iThHeWeOCs0hpZZZp0IEnzVerdo3c5ugM7DOGXbPxJ9fDPGn2aT_hhCMVWt5lXh9b1CTr9nKJMZYvHQ93aENBfDiOaiFVzujb_6D92mOY_1rxaKiFbRSl0u1MbWCuIYUk3s6-pgiL52N8Qav1JMKkWxZPXBy8MaHsz_a2IF3iyAz6mUDOEBIdjsp8QcTAn7Cx5drYU
Cites_doi 10.1093/nar/gku684
10.1073/pnas.0409021102
10.1091/mbc.01-10-0501
10.1038/nbt.1628
10.1016/j.ydbio.2008.01.027
10.1038/12058
10.1083/jcb.130.3.651
10.1073/pnas.88.16.7376
10.1038/nrm2834
10.1083/jcb.200111012
10.1046/j.1365-2958.1999.01400.x
10.1016/S1534-5807(03)00324-1
10.1146/annurev-biochem-062917-012530
10.3389/fmolb.2022.856030
10.1091/mbc.e16-07-0481
10.1091/mbc.E19-06-0314
10.1152/physiol.00011.2017
10.1242/jcs.106.2.523
10.1038/s41586-023-05828-9
10.1146/annurev.genet.35.102401.091302
10.1083/jcb.151.4.789
10.1247/csf.06027
10.1093/emboj/18.17.4733
10.1083/jcb.201511102
10.1126/science.abq7317
10.1242/jcs.112.14.2313
10.1038/nature04217
10.1038/ncomms2014
10.1111/j.1365-2818.2010.03426.x
10.1242/jcs.261415
10.1038/251626a0
10.1126/science.1203357
10.1101/cshperspect.a006023
10.1016/j.ceca.2015.05.004
10.1083/jcb.200111004
10.1083/jcb.137.1.169
10.1074/jbc.275.1.685
10.1242/jcs.260598
10.15252/embr.201440015
10.1073/pnas.141036198
10.1074/jbc.M414234200
10.1091/mbc.E18-04-0270
10.1016/j.jbc.2023.104647
10.1111/gtc.13069
10.1371/journal.pone.0022421
10.1038/nmeth.1398
10.1007/s004380000318
10.1091/mbc.e06-06-0526
10.1242/jcs.113.23.4157
10.1083/jcb.115.5.1259
10.1073/pnas.93.22.12321
10.1038/ng1076
10.1007/978-3-319-55858-5_15
10.1016/j.molcel.2006.01.016
10.1016/j.cub.2012.06.042
10.1080/09168451.2016.1246171
10.7554/eLife.33183
10.1083/jcb.201612068
10.1074/jbc.270.35.20643
10.1038/emboj.2009.331
10.1242/jcs.114.1.69
10.1083/jcb.200401040
10.1038/nature12354
10.1083/jcb.123.2.405
10.1083/jcb.124.3.351
10.1016/j.biocel.2003.12.016
10.1074/jbc.M200104200
10.1083/jcb.142.3.711
10.1266/ggs.83.373
10.1016/j.cell.2016.09.048
10.1091/mbc.E22-07-0248
10.1101/2024.10.20.619261
10.1387/ijdb.150209sw
10.1016/j.cellsig.2020.109630
10.1016/j.ceca.2014.12.003
10.1016/0092-8674(91)90547-C
10.1016/j.tcb.2010.09.011
10.1083/jcb.201103067
10.1073/pnas.84.11.3580
10.1146/annurev-pharmtox-010818-021757
10.1016/S0143-4160(98)90083-5
10.1002/cm.21044
10.1074/jbc.M311895200
10.1016/S0021-9258(17)37279-4
10.1074/jbc.M212900200
10.1074/jbc.M110.177451
10.1091/mbc.e02-10-0661
10.1242/jcs.110.15.1805
10.1042/BJ20041710
10.1006/dbio.1997.8724
10.1038/ncb3351
10.1016/j.tcb.2011.01.002
10.1083/jcb.131.6.1539
10.1074/jbc.M512812200
10.1007/s00232-009-9180-6
10.1242/jcs.107.7.1725
10.1242/jcs.259046
10.1016/S0021-9258(18)98968-4
10.1146/annurev-biochem-061609-165311
10.1016/j.yexcr.2006.06.028
10.1038/s41467-023-39482-6
10.1101/2024.01.15.575753
10.1086/BBLv183n2p371
10.1111/1567-1364.12181
10.1038/318558a0
10.1091/mbc.E20-09-0609
10.1007/s00018-010-0401-z
10.1128/EC.3.5.1124-1135.2004
10.1016/S0014-5793(97)01466-X
10.1126/science.aat9819
10.1083/jcb.201006173
10.1083/jcb.122.2.387
10.1016/j.cell.2007.11.028
10.1016/j.celrep.2018.09.062
10.1101/gad.11.24.3432
10.1007/BF00435457
10.3724/SP.J.1005.2013.01030
10.1083/jcb.137.6.1309
10.1128/MCB.17.11.6339
10.1091/mbc.e13-12-0708
10.1126/science.1113230
10.1242/jcs.112.10.1567
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the author. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the author. 2025
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jof11040278
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

PubMed
CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2309-608X
ExternalDocumentID oai_doaj_org_article_3bc683b714d24c1ba690e53a3ab6f7ec
PMC12028594
A837882073
40278099
10_3390_jof11040278
Genre Journal Article
Review
GrantInformation_xml – fundername: NIH HHS
  grantid: 1R01GM144652-22A1
– fundername: NIGMS NIH HHS
  grantid: R01 GM144652
– fundername: NIH
  grantid: R01GM144652
– fundername: NSF grant CAREER
  grantid: 2144701
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
OZF
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c475t-45c9e8c29e60a5d27ce36787bff31cf8cf245abebbbc121986992b384fbdd7f73
IEDL.DBID BENPR
ISSN 2309-608X
IngestDate Wed Aug 27 01:31:10 EDT 2025
Thu Aug 21 18:26:47 EDT 2025
Fri Jul 11 18:29:49 EDT 2025
Sun Jul 27 04:10:39 EDT 2025
Tue Jun 10 20:57:56 EDT 2025
Mon Jul 21 05:45:40 EDT 2025
Tue Jul 01 05:15:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Schizosaccharomyces pombe
calcium
fission yeast
Pkd2
cytokinesis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-45c9e8c29e60a5d27ce36787bff31cf8cf245abebbbc121986992b384fbdd7f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2768-6570
OpenAccessLink https://www.proquest.com/docview/3194616582?pq-origsite=%requestingapplication%
PMID 40278099
PQID 3194616582
PQPubID 2059559
ParticipantIDs doaj_primary_oai_doaj_org_article_3bc683b714d24c1ba690e53a3ab6f7ec
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12028594
proquest_miscellaneous_3194656477
proquest_journals_3194616582
gale_infotracacademiconefile_A837882073
pubmed_primary_40278099
crossref_primary_10_3390_jof11040278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-02
PublicationDateYYYYMMDD 2025-04-02
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of fungi (Basel)
PublicationTitleAlternate J Fungi (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Vavylonis (ref_54) 2006; 21
Rasmussen (ref_79) 2000; 275
Proctor (ref_15) 2012; 22
Tian (ref_33) 2009; 6
Paidhungat (ref_24) 1997; 17
Luo (ref_105) 2004; 165
Pollard (ref_9) 2019; 88
Molchanova (ref_75) 2004; 279
Daga (ref_11) 2005; 102
Nakayama (ref_47) 2012; 3
ref_126
Dunn (ref_20) 1994; 269
Yoshida (ref_67) 1994; 107
Aydar (ref_42) 2009; 229
Itadani (ref_65) 2006; 31
Stevens (ref_104) 1998; 142
ref_124
Chen (ref_14) 2011; 195
ref_123
Smith (ref_118) 1996; 93
Shen (ref_125) 2016; 167
ref_26
Cerutti (ref_36) 1999; 112
Chircop (ref_116) 2010; 67
Rigamonti (ref_83) 2015; 57
Iida (ref_90) 1994; 14
Cunningham (ref_99) 1994; 124
McCollum (ref_73) 1995; 130
Martin (ref_95) 2011; 286
Jaffe (ref_107) 1998; 24
Yu (ref_115) 2004; 36
Levin (ref_127) 2014; 25
ref_76
Snow (ref_3) 1993; 122
Tang (ref_64) 2016; 214
Kito (ref_80) 2014; 42
Posas (ref_81) 2002; 277
Moser (ref_58) 1995; 270
Webb (ref_5) 2017; 981
Arribas (ref_68) 2018; 25
Li (ref_120) 2006; 312
Li (ref_66) 2011; 21
Mangione (ref_69) 2019; 30
Facanha (ref_28) 2002; 157
Sio (ref_102) 2005; 280
Fan (ref_117) 2013; 35
Moser (ref_59) 1997; 110
Cyert (ref_56) 2001; 35
Nauli (ref_112) 2003; 33
Fischer (ref_89) 1997; 419
Liu (ref_106) 2011; 241
Cortes (ref_27) 2004; 3
Carnero (ref_25) 2000; 264
Win (ref_63) 2001; 114
Liu (ref_91) 2023; 14
Kim (ref_55) 2010; 28
Chen (ref_32) 2013; 499
Flory (ref_60) 2002; 13
Geiser (ref_84) 1993; 13
Webb (ref_114) 1997; 192
Djenoune (ref_113) 2023; 379
ref_50
Ohya (ref_78) 1991; 266
Spang (ref_103) 1993; 123
Zhang (ref_34) 2023; 615
Ohya (ref_100) 1989; 15
Duffus (ref_30) 1974; 251
Benaud (ref_119) 2015; 16
Fong (ref_61) 2010; 29
Wu (ref_53) 2005; 310
Hirayama (ref_70) 2003; 278
Li (ref_122) 2008; 316
Fujiwara (ref_8) 2005; 437
ref_52
Matsuo (ref_71) 2017; 81
Geiser (ref_86) 1991; 65
Coun (ref_92) 2015; 58
Trebak (ref_109) 2017; 32
Lee (ref_62) 2000; 151
Cyert (ref_101) 1991; 88
Poddar (ref_35) 2021; 32
Nakayama (ref_48) 2014; 14
Suzuki (ref_98) 1999; 32
Takeda (ref_57) 1987; 84
Miller (ref_6) 1993; 106
Courtemanche (ref_18) 2016; 18
Williams (ref_31) 1985; 318
Carrasco (ref_110) 2011; 80
Noguchi (ref_7) 2002; 13
Chan (ref_108) 2015; 59
Chang (ref_4) 1995; 131
Palmer (ref_87) 2001; 98
Chapin (ref_40) 2010; 191
Motegi (ref_74) 2000; 113
Clapham (ref_22) 2007; 131
Arnold (ref_2) 1975; 11
Furune (ref_29) 2008; 83
Chang (ref_13) 1997; 137
Koyano (ref_43) 2023; 28
Johnson (ref_16) 2012; 69
Deng (ref_96) 2006; 17
Denis (ref_88) 2002; 156
Stathopoulos (ref_85) 1997; 11
Pollard (ref_19) 2017; 216
ref_39
Wu (ref_17) 2003; 5
Hendricks (ref_77) 1999; 1
Collins (ref_111) 2011; 21
Protchenko (ref_97) 2006; 281
Strayle (ref_21) 1999; 18
Fluck (ref_51) 1992; 183
Paoletti (ref_72) 2003; 14
Carbo (ref_93) 2017; 28
Palmer (ref_38) 2005; 387
Catterall (ref_23) 2020; 60
Fluck (ref_1) 1991; 115
ref_46
ref_45
ref_44
Pollard (ref_10) 2010; 11
Lee (ref_37) 2003; 47
Rhind (ref_82) 2011; 332
Li (ref_121) 1999; 112
ref_49
Kitayama (ref_12) 1997; 137
Morris (ref_41) 2019; 30
References_xml – volume: 42
  start-page: 9573
  year: 2014
  ident: ref_80
  article-title: Negative feedback regulation of calcineurin-dependent Prz1 transcription factor by the CaMKK-CaMK1 axis in fission yeast
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku684
– volume: 102
  start-page: 8228
  year: 2005
  ident: ref_11
  article-title: Dynamic positioning of the fission yeast cell division plane
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0409021102
– volume: 13
  start-page: 1263
  year: 2002
  ident: ref_7
  article-title: Localized calcium signals along the cleavage furrow of the Xenopus egg are not involved in cytokinesis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.01-10-0501
– volume: 28
  start-page: 617
  year: 2010
  ident: ref_55
  article-title: Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1628
– volume: 316
  start-page: 228
  year: 2008
  ident: ref_122
  article-title: Multiple roles of the furrow deepening Ca2+ transient during cytokinesis in zebrafish embryos
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2008.01.027
– volume: 1
  start-page: 234
  year: 1999
  ident: ref_77
  article-title: Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase
  publication-title: Nat. Cell Biol.
  doi: 10.1038/12058
– volume: 130
  start-page: 651
  year: 1995
  ident: ref_73
  article-title: Schizosaccharomyces pombe cdc4+ gene encodes a novel EF-hand protein essential for cytokinesis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.130.3.651
– volume: 88
  start-page: 7376
  year: 1991
  ident: ref_101
  article-title: Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.88.16.7376
– volume: 11
  start-page: 149
  year: 2010
  ident: ref_10
  article-title: Understanding cytokinesis: Lessons from fission yeast
  publication-title: Nat. Rev.
  doi: 10.1038/nrm2834
– volume: 157
  start-page: 1029
  year: 2002
  ident: ref_28
  article-title: The endoplasmic reticulum cation P-type ATPase Cta4p is required for control of cell shape and microtubule dynamics
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200111012
– volume: 32
  start-page: 813
  year: 1999
  ident: ref_98
  article-title: P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1999.01400.x
– volume: 5
  start-page: 723
  year: 2003
  ident: ref_17
  article-title: Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(03)00324-1
– volume: 88
  start-page: 661
  year: 2019
  ident: ref_9
  article-title: Molecular Mechanism of Cytokinesis
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-062917-012530
– ident: ref_94
  doi: 10.3389/fmolb.2022.856030
– volume: 28
  start-page: 501
  year: 2017
  ident: ref_93
  article-title: Sexual pheromone modulates the frequency of cytosolic Ca2+ bursts in Saccharomyces cerevisiae
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e16-07-0481
– volume: 30
  start-page: 2790
  year: 2019
  ident: ref_69
  article-title: The intrinsically disordered region of the cytokinetic F-BAR protein Cdc15 performs a unique essential function in maintenance of cytokinetic ring integrity
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E19-06-0314
– volume: 32
  start-page: 332
  year: 2017
  ident: ref_109
  article-title: ORAI Calcium Channels
  publication-title: Physiology
  doi: 10.1152/physiol.00011.2017
– volume: 106
  start-page: 523
  year: 1993
  ident: ref_6
  article-title: Calcium buffer injections inhibit cytokinesis in Xenopus eggs
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.106.2.523
– volume: 615
  start-page: 884
  year: 2023
  ident: ref_34
  article-title: Fast and sensitive GCaMP calcium indicators for imaging neural populations
  publication-title: Nature
  doi: 10.1038/s41586-023-05828-9
– volume: 35
  start-page: 647
  year: 2001
  ident: ref_56
  article-title: Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.35.102401.091302
– volume: 151
  start-page: 789
  year: 2000
  ident: ref_62
  article-title: Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.151.4.789
– volume: 31
  start-page: 181
  year: 2006
  ident: ref_65
  article-title: Localization of type I myosin and F-actin to the leading edge region of the forespore membrane in Schizosaccharomyces pombe
  publication-title: Cell Struct. Funct.
  doi: 10.1247/csf.06027
– volume: 18
  start-page: 4733
  year: 1999
  ident: ref_21
  article-title: Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 microM and is mainly controlled by the secretory pathway pump pmr1
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.17.4733
– volume: 214
  start-page: 167
  year: 2016
  ident: ref_64
  article-title: A single-headed fission yeast myosin V transports actin in a tropomyosin-dependent manner
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201511102
– volume: 379
  start-page: 71
  year: 2023
  ident: ref_113
  article-title: Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry
  publication-title: Science
  doi: 10.1126/science.abq7317
– volume: 112
  start-page: 2313
  year: 1999
  ident: ref_36
  article-title: Asymmetry of the spindle pole bodies and spg1p GAP segregation during mitosis in fission yeast
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.14.2313
– volume: 437
  start-page: 1043
  year: 2005
  ident: ref_8
  article-title: Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells
  publication-title: Nature
  doi: 10.1038/nature04217
– volume: 3
  start-page: 1020
  year: 2012
  ident: ref_47
  article-title: Organellar mechanosensitive channels in fission yeast regulate the hypo-osmotic shock response
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2014
– volume: 11
  start-page: 1
  year: 1975
  ident: ref_2
  article-title: Effect of calcium in cytokinesis as demonstrated with ionophore A231ß7
  publication-title: Cytobiologie
– volume: 241
  start-page: 212
  year: 2011
  ident: ref_106
  article-title: Two-photon fluorescence real-time imaging on the development of early mouse embryo by stages
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2010.03426.x
– ident: ref_76
  doi: 10.1242/jcs.261415
– volume: 251
  start-page: 626
  year: 1974
  ident: ref_30
  article-title: Control of cell division in yeast using the ionophore, A23187 with calcium and magnesium
  publication-title: Nature
  doi: 10.1038/251626a0
– volume: 332
  start-page: 930
  year: 2011
  ident: ref_82
  article-title: Comparative functional genomics of the fission yeasts
  publication-title: Science
  doi: 10.1126/science.1203357
– ident: ref_52
  doi: 10.1101/cshperspect.a006023
– volume: 58
  start-page: 226
  year: 2015
  ident: ref_92
  article-title: Ca2+ homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca2+ storage
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2015.05.004
– volume: 156
  start-page: 29
  year: 2002
  ident: ref_88
  article-title: Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200111004
– volume: 137
  start-page: 169
  year: 1997
  ident: ref_13
  article-title: cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.137.1.169
– volume: 275
  start-page: 685
  year: 2000
  ident: ref_79
  article-title: Cloning of a calmodulin kinase I homologue from Schizosaccharomyces pombe
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.1.685
– ident: ref_44
  doi: 10.1242/jcs.260598
– volume: 16
  start-page: 481
  year: 2015
  ident: ref_119
  article-title: Annexin A2 is required for the early steps of cytokinesis
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201440015
– volume: 98
  start-page: 7801
  year: 2001
  ident: ref_87
  article-title: A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.141036198
– volume: 280
  start-page: 12231
  year: 2005
  ident: ref_102
  article-title: The role of the regulatory subunit of fission yeast calcineurin for in vivo activity and its relevance to FK506 sensitivity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M414234200
– volume: 30
  start-page: 1791
  year: 2019
  ident: ref_41
  article-title: Fission yeast TRP channel Pkd2p localizes to the cleavage furrow and regulates cell separation during cytokinesis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E18-04-0270
– ident: ref_26
  doi: 10.1016/j.jbc.2023.104647
– volume: 47
  start-page: 411
  year: 2003
  ident: ref_37
  article-title: Ca2+ released via IP3 receptors is required for furrow deepening during cytokinesis in zebrafish embryos
  publication-title: Int. J. Dev. Biol.
– volume: 28
  start-page: 811
  year: 2023
  ident: ref_43
  article-title: Pkd2, mutations linking to autosomal dominant polycystic kidney disease, localizes to the endoplasmic reticulum and regulates calcium signaling in fission yeast
  publication-title: Genes Cells
  doi: 10.1111/gtc.13069
– ident: ref_50
  doi: 10.1371/journal.pone.0022421
– volume: 6
  start-page: 875
  year: 2009
  ident: ref_33
  article-title: Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1398
– volume: 264
  start-page: 173
  year: 2000
  ident: ref_25
  article-title: Schizosaccharomyces pombe ehs1p is involved in maintaining cell wall integrity and in calcium uptake
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/s004380000318
– volume: 17
  start-page: 4790
  year: 2006
  ident: ref_96
  article-title: Real-time monitoring of calcineurin activity in living cells: Evidence for two distinct Ca2+-dependent pathways in fission yeast
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-06-0526
– volume: 113
  start-page: 4157
  year: 2000
  ident: ref_74
  article-title: The S. pombe rlc1 gene encodes a putative myosin regulatory light chain that binds the type II myosins myo3p and myo2p
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.113.23.4157
– volume: 115
  start-page: 1259
  year: 1991
  ident: ref_1
  article-title: Slow calcium waves accompany cytokinesis in medaka fish eggs
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.115.5.1259
– volume: 93
  start-page: 12321
  year: 1996
  ident: ref_118
  article-title: Myosin light chain kinase (MLCK) gene disruption in Dictyostelium: A role for MLCK-A in cytokinesis and evidence for multiple MLCKs
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.22.12321
– volume: 33
  start-page: 129
  year: 2003
  ident: ref_112
  article-title: Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng1076
– volume: 981
  start-page: 389
  year: 2017
  ident: ref_5
  article-title: Ca2+ Signalling and Membrane Dynamics During Cytokinesis in Animal Cells
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-55858-5_15
– volume: 21
  start-page: 455
  year: 2006
  ident: ref_54
  article-title: Model of formin-associated actin filament elongation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.01.016
– volume: 22
  start-page: 1601
  year: 2012
  ident: ref_15
  article-title: Contributions of turgor pressure, the contractile ring, and septum assembly to forces in cytokinesis in fission yeast
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.06.042
– volume: 81
  start-page: 231
  year: 2017
  ident: ref_71
  article-title: cAMP-dependent protein kinase involves calcium tolerance through the regulation of Prz1 in Schizosaccharomyces pombe
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2016.1246171
– ident: ref_123
  doi: 10.7554/eLife.33183
– volume: 216
  start-page: 3007
  year: 2017
  ident: ref_19
  article-title: Nine unanswered questions about cytokinesis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201612068
– volume: 270
  start-page: 20643
  year: 1995
  ident: ref_58
  article-title: Ca2+ binding to calmodulin and its role in Schizosaccharomyces pombe as revealed by mutagenesis and NMR spectroscopy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.35.20643
– volume: 29
  start-page: 120
  year: 2010
  ident: ref_61
  article-title: Fission yeast Pcp1 links polo kinase-mediated mitotic entry to gamma-tubulin-dependent spindle formation
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.331
– volume: 114
  start-page: 69
  year: 2001
  ident: ref_63
  article-title: Two type V myosins with non-overlapping functions in the fission yeast Schizosaccharomyces pombe: Myo52 is concerned with growth polarity and cytokinesis, Myo51 is a component of the cytokinetic actin ring
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.114.1.69
– volume: 165
  start-page: 843
  year: 2004
  ident: ref_105
  article-title: Identification and functional analysis of the essential and regulatory light chains of the only type II myosin Myo1p in Saccharomyces cerevisiae
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200401040
– volume: 499
  start-page: 295
  year: 2013
  ident: ref_32
  article-title: Ultrasensitive fluorescent proteins for imaging neuronal activity
  publication-title: Nature
  doi: 10.1038/nature12354
– volume: 123
  start-page: 405
  year: 1993
  ident: ref_103
  article-title: The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.123.2.405
– volume: 124
  start-page: 351
  year: 1994
  ident: ref_99
  article-title: Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.124.3.351
– volume: 36
  start-page: 1562
  year: 2004
  ident: ref_115
  article-title: The association of calmodulin with central spindle regulates the initiation of cytokinesis in HeLa cells
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2003.12.016
– volume: 277
  start-page: 17722
  year: 2002
  ident: ref_81
  article-title: The serine/threonine kinase Cmk2 is required for oxidative stress response in fission yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M200104200
– volume: 142
  start-page: 711
  year: 1998
  ident: ref_104
  article-title: Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.142.3.711
– volume: 13
  start-page: 7913
  year: 1993
  ident: ref_84
  article-title: The essential mitotic target of calmodulin is the 110-kilodalton component of the spindle pole body in Saccharomyces cerevisiae
  publication-title: Mol. Cell Biol.
– volume: 83
  start-page: 373
  year: 2008
  ident: ref_29
  article-title: Characterization of a fission yeast P(5)-type ATPase homologue that is essential for Ca2+/Mn2+ homeostasis in the absence of P(2)-type ATPases
  publication-title: Genes. Genet. Syst.
  doi: 10.1266/ggs.83.373
– volume: 167
  start-page: 763
  year: 2016
  ident: ref_125
  article-title: The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.048
– ident: ref_46
  doi: 10.1091/mbc.E22-07-0248
– ident: ref_49
  doi: 10.1101/2024.10.20.619261
– volume: 59
  start-page: 289
  year: 2015
  ident: ref_108
  article-title: Inhibition of SOCE disrupts cytokinesis in zebrafish embryos via inhibition of cleavage furrow deepening
  publication-title: Int. J. Dev. Biol.
  doi: 10.1387/ijdb.150209sw
– ident: ref_39
  doi: 10.1016/j.cellsig.2020.109630
– volume: 57
  start-page: 57
  year: 2015
  ident: ref_83
  article-title: Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2014.12.003
– volume: 65
  start-page: 949
  year: 1991
  ident: ref_86
  article-title: Can calmodulin function without binding calcium?
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90547-C
– volume: 13
  start-page: 47
  year: 2002
  ident: ref_60
  article-title: Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe
  publication-title: Cell Growth Differ.
– volume: 21
  start-page: 91
  year: 2011
  ident: ref_66
  article-title: Interaction of calcineurin with substrates and targeting proteins
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2010.09.011
– volume: 195
  start-page: 485
  year: 2011
  ident: ref_14
  article-title: Actin filament severing by cofilin is more important for assembly than constriction of the cytokinetic contractile ring
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201103067
– volume: 84
  start-page: 3580
  year: 1987
  ident: ref_57
  article-title: Analysis and in vivo disruption of the gene coding for calmodulin in Schizosaccharomyces pombe
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.84.11.3580
– volume: 60
  start-page: 133
  year: 2020
  ident: ref_23
  article-title: Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-010818-021757
– volume: 24
  start-page: 1
  year: 1998
  ident: ref_107
  article-title: On the conservation of calcium wave speeds
  publication-title: Cell Calcium
  doi: 10.1016/S0143-4160(98)90083-5
– volume: 69
  start-page: 686
  year: 2012
  ident: ref_16
  article-title: Polar opposites: Fine-tuning cytokinesis through SIN asymmetry
  publication-title: Cytoskeleton
  doi: 10.1002/cm.21044
– volume: 279
  start-page: 12744
  year: 2004
  ident: ref_75
  article-title: Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311895200
– volume: 269
  start-page: 7273
  year: 1994
  ident: ref_20
  article-title: Regulation of cellular Ca2+ by yeast vacuoles
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)37279-4
– volume: 278
  start-page: 18078
  year: 2003
  ident: ref_70
  article-title: Zinc finger protein Prz1 regulates Ca2+ but not Cl- homeostasis in fission yeast. Identification of distinct branches of calcineurin signaling pathway in fission yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M212900200
– volume: 286
  start-page: 10744
  year: 2011
  ident: ref_95
  article-title: New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.177451
– volume: 14
  start-page: 2793
  year: 2003
  ident: ref_72
  article-title: Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e02-10-0661
– volume: 110
  start-page: 1805
  year: 1997
  ident: ref_59
  article-title: Calmodulin localizes to the spindle pole body of Schizosaccharomyces pombe and performs an essential function in chromosome segregation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.110.15.1805
– volume: 387
  start-page: 211
  year: 2005
  ident: ref_38
  article-title: A microbial TRP-like polycystic-kidney-disease-related ion channel gene
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041710
– volume: 192
  start-page: 78
  year: 1997
  ident: ref_114
  article-title: Localized calcium transients accompany furrow positioning, propagation, and deepening during the early cleavage period of zebrafish embryos
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1997.8724
– volume: 18
  start-page: 676
  year: 2016
  ident: ref_18
  article-title: Avoiding artefacts when counting polymerized actin in live cells with LifeAct fused to fluorescent proteins
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3351
– volume: 21
  start-page: 202
  year: 2011
  ident: ref_111
  article-title: Evolutionary origins of STIM1 and STIM2 within ancient Ca2+ signaling systems
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2011.01.002
– volume: 131
  start-page: 1539
  year: 1995
  ident: ref_4
  article-title: A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish embryo
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.131.6.1539
– volume: 281
  start-page: 21445
  year: 2006
  ident: ref_97
  article-title: A screen for genes of heme uptake identifies the FLC family required for import of FAD into the endoplasmic reticulum
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M512812200
– volume: 229
  start-page: 141
  year: 2009
  ident: ref_42
  article-title: Polycystic kidney disease channel and synaptotagmin homologues play roles in schizosaccharomyces pombe cell wall synthesis/repair and membrane protein trafficking
  publication-title: J. Membr. Biol.
  doi: 10.1007/s00232-009-9180-6
– volume: 107
  start-page: 1725
  year: 1994
  ident: ref_67
  article-title: A calcineurin-like gene ppb1+ in fission yeast: Mutant defects in cytokinesis, cell polarity, mating and spindle pole body positioning
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.107.7.1725
– ident: ref_45
  doi: 10.1242/jcs.259046
– volume: 266
  start-page: 12784
  year: 1991
  ident: ref_78
  article-title: Two yeast genes encoding calmodulin-dependent protein kinases. Isolation, sequencing and bacterial expressions of CMK1 and CMK2
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)98968-4
– volume: 80
  start-page: 973
  year: 2011
  ident: ref_110
  article-title: STIM proteins and the endoplasmic reticulum-plasma membrane junctions
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061609-165311
– volume: 312
  start-page: 3260
  year: 2006
  ident: ref_120
  article-title: Recruitment and SNARE-mediated fusion of vesicles in furrow membrane remodeling during cytokinesis in zebrafish embryos
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2006.06.028
– volume: 14
  start-page: 3725
  year: 2023
  ident: ref_91
  article-title: The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39482-6
– ident: ref_126
  doi: 10.1101/2024.01.15.575753
– volume: 183
  start-page: 371
  year: 1992
  ident: ref_51
  article-title: Calcium Buffer Injections Block Ooplasmic Segregation in Oryzias latipes (Medaka) Eggs
  publication-title: Biol. Bull.
  doi: 10.1086/BBLv183n2p371
– volume: 14
  start-page: 992
  year: 2014
  ident: ref_48
  article-title: Mechanosensitive channels Msy1 and Msy2 are required for maintaining organelle integrity upon hypoosmotic shock in Schizosaccharomyces pombe
  publication-title: FEMS Yeast Res.
  doi: 10.1111/1567-1364.12181
– volume: 318
  start-page: 558
  year: 1985
  ident: ref_31
  article-title: Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2
  publication-title: Nature
  doi: 10.1038/318558a0
– volume: 14
  start-page: 8259
  year: 1994
  ident: ref_90
  article-title: MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating
  publication-title: Mol. Cell Biol.
– volume: 32
  start-page: 15
  year: 2021
  ident: ref_35
  article-title: Calcium spikes accompany cleavage furrow ingression and cell separation during fission yeast cytokinesis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E20-09-0609
– volume: 67
  start-page: 3725
  year: 2010
  ident: ref_116
  article-title: Calcineurin activity is required for the completion of cytokinesis
  publication-title: Cell. Mol. Life Sci. CMLS
  doi: 10.1007/s00018-010-0401-z
– volume: 3
  start-page: 1124
  year: 2004
  ident: ref_27
  article-title: Schizosaccharomyces pombe Pmr1p is essential for cell wall integrity and is required for polarized cell growth and cytokinesis
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.3.5.1124-1135.2004
– volume: 419
  start-page: 259
  year: 1997
  ident: ref_89
  article-title: The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(97)01466-X
– ident: ref_124
  doi: 10.1126/science.aat9819
– volume: 191
  start-page: 701
  year: 2010
  ident: ref_40
  article-title: The cell biology of polycystic kidney disease
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201006173
– volume: 122
  start-page: 387
  year: 1993
  ident: ref_3
  article-title: Calcium buffer injections delay cleavage in Xenopus laevis blastomeres
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.122.2.387
– volume: 131
  start-page: 1047
  year: 2007
  ident: ref_22
  article-title: Calcium signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.028
– volume: 25
  start-page: 772
  year: 2018
  ident: ref_68
  article-title: Paxillin-Mediated Recruitment of Calcineurin to the Contractile Ring Is Required for the Correct Progression of Cytokinesis in Fission Yeast
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.09.062
– volume: 11
  start-page: 3432
  year: 1997
  ident: ref_85
  article-title: Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast
  publication-title: Genes Dev.
  doi: 10.1101/gad.11.24.3432
– volume: 15
  start-page: 113
  year: 1989
  ident: ref_100
  article-title: A galactose-dependent cmd1 mutant of Saccharomyces cerevisiae: Involvement of calmodulin in nuclear division
  publication-title: Curr. Genet.
  doi: 10.1007/BF00435457
– volume: 35
  start-page: 1030
  year: 2013
  ident: ref_117
  article-title: Cnb1 involved in cytokinesis in Schizosaccharomyces pombe
  publication-title: Yi Chuan Hered.
  doi: 10.3724/SP.J.1005.2013.01030
– volume: 137
  start-page: 1309
  year: 1997
  ident: ref_12
  article-title: Type II myosin heavy chain encoded by the myo2 gene composes the contractile ring during cytokinesis in Schizosaccharomyces pombe
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.137.6.1309
– volume: 17
  start-page: 6339
  year: 1997
  ident: ref_24
  article-title: A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.17.11.6339
– volume: 25
  start-page: 3835
  year: 2014
  ident: ref_127
  article-title: Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e13-12-0708
– volume: 310
  start-page: 310
  year: 2005
  ident: ref_53
  article-title: Counting cytokinesis proteins globally and locally in fission yeast
  publication-title: Science
  doi: 10.1126/science.1113230
– volume: 112
  start-page: 1567
  year: 1999
  ident: ref_121
  article-title: Dynamic redistribution of calmodulin in HeLa cells during cell division as revealed by a GFP-calmodulin fusion protein technique
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.10.1567
SSID ssj0001586993
Score 2.2876318
SecondaryResourceType review_article
Snippet The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 278
SubjectTerms calcium
Calcium (intracellular)
Calcium homeostasis
Calcium signalling
Cell cycle
Cell division
Cells
Cytokinesis
Cytoplasm
fission yeast
Homeostasis
Intracellular
Kinases
Molecular modelling
Organisms
Pkd2
Proteins
Review
Schizosaccharomyces pombe
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5k8eBFfFtdpYIgCMVtkr6O6-Iigh5EQU8hSRNcH624u4f99860dWnx4MVrE0LyTTMPMvMNwKlFq5M6I4I8FzoQNld45zIbsMyg98DNwCkqTr69i68fxc1T9NRq9UU5YTU9cA3cBdcmTrlOQpEzYUKtMJyzEVdc6dgl1pD2RZvXCqbq-uA0RstbF-RxjOsvXkuHlk7QQ1vHBFVM_b_1ccsgdZMlW9ZnvAHrjdvoD-vtbsKKLbZg9bJE126xDef3dUd5xNgvnf9M_Xj80WJWvlFS-2Tq64U_Uu9mMv_Ygcfx1cPoOmiaIARGJNEsEJHJbGpYZuOBinKWGMvRwCTaOR4alxrHRKS01VqbENUPnZtpngqn8zxxCd-FXlEWdh_83DpcIYxVrEOhMLDTHJeyuFYmIqe4B6c_uMjPmutCYoxA8MkWfB5cEmbLKURQXX1AsclGbPIvsXlwRohLukYIq1FNNQDulAip5LAiumeogDzo_whFNvdrKlFxiDhE74l5cLIcxptBzx2qsOW8mRNRoa0He7UMl3uuDoLOsQdpR7qdQ3VHislLxb4dsgGR_omD_4DhENYYNRSmVCDWh97sa26P0MuZ6ePqh_4GONP7_g
  priority: 102
  providerName: Directory of Open Access Journals
Title Regulation of Yeast Cytokinesis by Calcium
URI https://www.ncbi.nlm.nih.gov/pubmed/40278099
https://www.proquest.com/docview/3194616582
https://www.proquest.com/docview/3194656477
https://pubmed.ncbi.nlm.nih.gov/PMC12028594
https://doaj.org/article/3bc683b714d24c1ba690e53a3ab6f7ec
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxNBcNDGB1-K357WcEJBEI7m9uM-niQXG4pgkWKhPi27e7satXe1SR7y752526Q5BF9vj2V3vmd2PgCOHWqdwluR1LUwiXC1Rp4rXcJKi9YDtxOvqTj583l2dik-XcmrEHBbhrTKrUzsBHXdWoqRnyCpiCxFfck-3PxJaGoUva6GERr3YYQiuEDna1Sdnn-5uIuyyCJDDdwX5nH0709-th41nqAHt4Eq6jr2_yuX9xTTMGlyTwvNH8FhMB_jaY_vx3DPNU_gQdWiibd5Cu8v-snyCOu49fE3mssTzzar9hclty-WsdnEM_3bLtbXz-Byfvp1dpaEYQiJFblcJULa0hWWlS6baFmz3DqOiiY33vPU-sJ6JqQ2zhhjUxRDdG9meCG8qevc5_w5HDRt415CXDuPO6SZzkwqNDp4huNWDvcqhfSaR3C8hYu66XteKPQVCHxqD3wRVASz3S_UqLr70N5-V4HuFTc2K7jJU1EzYVOj0Rt3kmuuTeZzZyN4RxBXxE4IVqtDVQCelBpTqWnX8J6hIIrgaIsUFfhsqe6oIoK3u2XkEHr20I1r1-EfSQW3Ebzocbg7c3cRNJIjKAbYHVxquNIsfnRduFM2oeZ_4tX_z_UaHjIaGUzJPuwIDla3a_cG7ZiVGcNoWn2s5uNAtOMuHvAXuNj2kA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bahQx9FC3gr6Id0erjlARhKE7Seb2INJdW7a2XaS0UJ_SJJPYrTpTu7vI_pTf6Dlz2e4g-NbXSTgk534m5wKwadHqpM6IIM-FDoTNFcpcZgOWGfQeuOk7RcXJh-N4dCI-n0ana_CnrYWhtMpWJ1aKOi8N_SPfQlYRcYj2kn28_BXQ1Ch6XW1HaNRssW8XvzFkm37Y-4T0fcvY7s7xcBQ0UwUCI5JoFojIZDY1LLNxX0U5S4zlqLET7RwPjUuNYyJS2mqtTYjynMZZxjRPhdN5nriEI9xbsC44hjI9WB_sjL8cXf_ViWg7rwsBOc_6WxelQwsr6IGvY_qqCQH_2oEVQ9hN0lyxerv34V7jrvrbNX89gDVbPITbgxJdysUjeH9UT7JH2vql87_SHCB_uJiV3ymZfjL19cIfqh9mMv_5GE5uBE1PoFeUhX0Gfm4dQghjFetQKAwoNUdQFmFlInKKe7DZ4kVe1j02JMYmhD65gj4PBoSz5RZqjF19KK--yUbOJNcmTrlOQpEzYUKtMPq3EVdc6dgl1njwjjAuSXwRrUY1VQh4UmqEJberBvsMFZ8HGy1RZCPXU3nNhR68WS6jRNIziypsOW_2RFTg68HTmobLM1cXQafcg7RD3c6luivF5Lzq-h2yPjUbFM__f67XcGd0fHggD_bG-y_gLqNxxZRoxDagN7ua25foQ830q4ZxfTi7aVn5C8vwMps
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbhMxcFRShHhB3CwUWKQiJKRVdm3v9YBQkzZqKURVRaXyZGyv3YZjtzSJUH6Nr2NmjzQREm99XVsje-5ZzwGwbdHqZM6IoCiEDoQtFMpcbgOWG_QeuAmdouLkT-Nk_0R8OI1PN-BPVwtDaZWdTqwVdVEZ-kfeR1YRSYT2kvVdmxZxtDt6f_EroAlS9NLajdNoWOTQLn5j-DZ9d7CLtH7N2Gjv83A_aCcMBEak8SwQscltZlhuk1DFBUuN5ai9U-0cj4zLjGMiVtpqrU2Esp0lec40z4TTRZG6lCPcG7CZYlQU9mBzsDc-Or76wxPTdt4UBXKeh_1vlUNrK-ixb80M1tMC_rUJK0ZxPWFzxQKO7sKd1nX1dxpeuwcbtrwPNwcVupeLB_D2uJlqj3T2K-d_oZlA_nAxq75TYv1k6uuFP1Q_zGT-8yGcXAuaHkGvrEr7BPzCOoQQJSrRkVAYXGqOoCzCykXsFPdgu8OLvGj6bUiMUwh9cgV9HgwIZ8st1CS7_lBdnslW5iTXJsm4TiNRMGEirZI8tDFXXOnEpdZ48IYwLkmUEa1GtRUJeFJqiiV36mb7DJWgB1sdUWQr41N5xZEevFouo3TSk4sqbTVv98RU7OvB44aGyzPXF0EH3YNsjbprl1pfKSfndQfwiIXUeFA8_f-5XsItlBH58WB8-AxuM5pcTDlHbAt6s8u5fY7u1Ey_aPnWh6_XLSp_Ac0TNtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Yeast+Cytokinesis+by+Calcium&rft.jtitle=Journal+of+fungi+%28Basel%29&rft.au=Chen%2C+Qian&rft.date=2025-04-02&rft.issn=2309-608X&rft.eissn=2309-608X&rft.volume=11&rft.issue=4&rft_id=info:doi/10.3390%2Fjof11040278&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-608X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-608X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-608X&client=summon