Regulation of Yeast Cytokinesis by Calcium
The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell divis...
Saved in:
Published in | Journal of fungi (Basel) Vol. 11; no. 4; p. 278 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
02.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis. |
---|---|
AbstractList | The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast
Schizosaccharomyces pombe
has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis. The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis. The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis. The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis.The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis. |
Audience | Academic |
Author | Chen, Qian |
AuthorAffiliation | Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; qian.chen3@utoledo.edu |
AuthorAffiliation_xml | – name: Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; qian.chen3@utoledo.edu |
Author_xml | – sequence: 1 givenname: Qian orcidid: 0000-0002-2768-6570 surname: Chen fullname: Chen, Qian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40278099$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkttrFDEUxoNU7MU--S4Dvkhla26Ty5OUxUuhIIiCPoUkc7JmnZnUZEbY_95sp5at5CHh5JfvfCfnnKKjMY2A0AuCLxnT-O02BUIwx1SqJ-iEMqxXAqvvRwfnY3ReyhZjTFoltGbP0PEdj7U-QRdfYDP3doppbFJofoAtU7PeTelXHKHE0rhds7a9j_PwHD0Nti9wfr-foW8f3n9df1rdfP54vb66WXku22nFW69BeapBYNt2VHpgQirpQmDEB-UD5a114JzzhBK990QdUzy4rpNBsjN0veh2yW7NbY6DzTuTbDR3gZQ3xuYp-h4Mc14o5iThHeWeOCs0hpZZZp0IEnzVerdo3c5ugM7DOGXbPxJ9fDPGn2aT_hhCMVWt5lXh9b1CTr9nKJMZYvHQ93aENBfDiOaiFVzujb_6D92mOY_1rxaKiFbRSl0u1MbWCuIYUk3s6-pgiL52N8Qav1JMKkWxZPXBy8MaHsz_a2IF3iyAz6mUDOEBIdjsp8QcTAn7Cx5drYU |
Cites_doi | 10.1093/nar/gku684 10.1073/pnas.0409021102 10.1091/mbc.01-10-0501 10.1038/nbt.1628 10.1016/j.ydbio.2008.01.027 10.1038/12058 10.1083/jcb.130.3.651 10.1073/pnas.88.16.7376 10.1038/nrm2834 10.1083/jcb.200111012 10.1046/j.1365-2958.1999.01400.x 10.1016/S1534-5807(03)00324-1 10.1146/annurev-biochem-062917-012530 10.3389/fmolb.2022.856030 10.1091/mbc.e16-07-0481 10.1091/mbc.E19-06-0314 10.1152/physiol.00011.2017 10.1242/jcs.106.2.523 10.1038/s41586-023-05828-9 10.1146/annurev.genet.35.102401.091302 10.1083/jcb.151.4.789 10.1247/csf.06027 10.1093/emboj/18.17.4733 10.1083/jcb.201511102 10.1126/science.abq7317 10.1242/jcs.112.14.2313 10.1038/nature04217 10.1038/ncomms2014 10.1111/j.1365-2818.2010.03426.x 10.1242/jcs.261415 10.1038/251626a0 10.1126/science.1203357 10.1101/cshperspect.a006023 10.1016/j.ceca.2015.05.004 10.1083/jcb.200111004 10.1083/jcb.137.1.169 10.1074/jbc.275.1.685 10.1242/jcs.260598 10.15252/embr.201440015 10.1073/pnas.141036198 10.1074/jbc.M414234200 10.1091/mbc.E18-04-0270 10.1016/j.jbc.2023.104647 10.1111/gtc.13069 10.1371/journal.pone.0022421 10.1038/nmeth.1398 10.1007/s004380000318 10.1091/mbc.e06-06-0526 10.1242/jcs.113.23.4157 10.1083/jcb.115.5.1259 10.1073/pnas.93.22.12321 10.1038/ng1076 10.1007/978-3-319-55858-5_15 10.1016/j.molcel.2006.01.016 10.1016/j.cub.2012.06.042 10.1080/09168451.2016.1246171 10.7554/eLife.33183 10.1083/jcb.201612068 10.1074/jbc.270.35.20643 10.1038/emboj.2009.331 10.1242/jcs.114.1.69 10.1083/jcb.200401040 10.1038/nature12354 10.1083/jcb.123.2.405 10.1083/jcb.124.3.351 10.1016/j.biocel.2003.12.016 10.1074/jbc.M200104200 10.1083/jcb.142.3.711 10.1266/ggs.83.373 10.1016/j.cell.2016.09.048 10.1091/mbc.E22-07-0248 10.1101/2024.10.20.619261 10.1387/ijdb.150209sw 10.1016/j.cellsig.2020.109630 10.1016/j.ceca.2014.12.003 10.1016/0092-8674(91)90547-C 10.1016/j.tcb.2010.09.011 10.1083/jcb.201103067 10.1073/pnas.84.11.3580 10.1146/annurev-pharmtox-010818-021757 10.1016/S0143-4160(98)90083-5 10.1002/cm.21044 10.1074/jbc.M311895200 10.1016/S0021-9258(17)37279-4 10.1074/jbc.M212900200 10.1074/jbc.M110.177451 10.1091/mbc.e02-10-0661 10.1242/jcs.110.15.1805 10.1042/BJ20041710 10.1006/dbio.1997.8724 10.1038/ncb3351 10.1016/j.tcb.2011.01.002 10.1083/jcb.131.6.1539 10.1074/jbc.M512812200 10.1007/s00232-009-9180-6 10.1242/jcs.107.7.1725 10.1242/jcs.259046 10.1016/S0021-9258(18)98968-4 10.1146/annurev-biochem-061609-165311 10.1016/j.yexcr.2006.06.028 10.1038/s41467-023-39482-6 10.1101/2024.01.15.575753 10.1086/BBLv183n2p371 10.1111/1567-1364.12181 10.1038/318558a0 10.1091/mbc.E20-09-0609 10.1007/s00018-010-0401-z 10.1128/EC.3.5.1124-1135.2004 10.1016/S0014-5793(97)01466-X 10.1126/science.aat9819 10.1083/jcb.201006173 10.1083/jcb.122.2.387 10.1016/j.cell.2007.11.028 10.1016/j.celrep.2018.09.062 10.1101/gad.11.24.3432 10.1007/BF00435457 10.3724/SP.J.1005.2013.01030 10.1083/jcb.137.6.1309 10.1128/MCB.17.11.6339 10.1091/mbc.e13-12-0708 10.1126/science.1113230 10.1242/jcs.112.10.1567 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the author. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the author. 2025 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jof11040278 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2309-608X |
ExternalDocumentID | oai_doaj_org_article_3bc683b714d24c1ba690e53a3ab6f7ec PMC12028594 A837882073 40278099 10_3390_jof11040278 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIH HHS grantid: 1R01GM144652-22A1 – fundername: NIGMS NIH HHS grantid: R01 GM144652 – fundername: NIH grantid: R01GM144652 – fundername: NSF grant CAREER grantid: 2144701 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 LK8 M7P MODMG M~E OK1 OZF PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c475t-45c9e8c29e60a5d27ce36787bff31cf8cf245abebbbc121986992b384fbdd7f73 |
IEDL.DBID | BENPR |
ISSN | 2309-608X |
IngestDate | Wed Aug 27 01:31:10 EDT 2025 Thu Aug 21 18:26:47 EDT 2025 Fri Jul 11 18:29:49 EDT 2025 Sun Jul 27 04:10:39 EDT 2025 Tue Jun 10 20:57:56 EDT 2025 Mon Jul 21 05:45:40 EDT 2025 Tue Jul 01 05:15:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Schizosaccharomyces pombe calcium fission yeast Pkd2 cytokinesis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-45c9e8c29e60a5d27ce36787bff31cf8cf245abebbbc121986992b384fbdd7f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2768-6570 |
OpenAccessLink | https://www.proquest.com/docview/3194616582?pq-origsite=%requestingapplication% |
PMID | 40278099 |
PQID | 3194616582 |
PQPubID | 2059559 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3bc683b714d24c1ba690e53a3ab6f7ec pubmedcentral_primary_oai_pubmedcentral_nih_gov_12028594 proquest_miscellaneous_3194656477 proquest_journals_3194616582 gale_infotracacademiconefile_A837882073 pubmed_primary_40278099 crossref_primary_10_3390_jof11040278 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-02 |
PublicationDateYYYYMMDD | 2025-04-02 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of fungi (Basel) |
PublicationTitleAlternate | J Fungi (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 Vavylonis (ref_54) 2006; 21 Rasmussen (ref_79) 2000; 275 Proctor (ref_15) 2012; 22 Tian (ref_33) 2009; 6 Paidhungat (ref_24) 1997; 17 Luo (ref_105) 2004; 165 Pollard (ref_9) 2019; 88 Molchanova (ref_75) 2004; 279 Daga (ref_11) 2005; 102 Nakayama (ref_47) 2012; 3 ref_126 Dunn (ref_20) 1994; 269 Yoshida (ref_67) 1994; 107 Aydar (ref_42) 2009; 229 Itadani (ref_65) 2006; 31 Stevens (ref_104) 1998; 142 ref_124 Chen (ref_14) 2011; 195 ref_123 Smith (ref_118) 1996; 93 Shen (ref_125) 2016; 167 ref_26 Cerutti (ref_36) 1999; 112 Chircop (ref_116) 2010; 67 Rigamonti (ref_83) 2015; 57 Iida (ref_90) 1994; 14 Cunningham (ref_99) 1994; 124 McCollum (ref_73) 1995; 130 Martin (ref_95) 2011; 286 Jaffe (ref_107) 1998; 24 Yu (ref_115) 2004; 36 Levin (ref_127) 2014; 25 ref_76 Snow (ref_3) 1993; 122 Tang (ref_64) 2016; 214 Kito (ref_80) 2014; 42 Posas (ref_81) 2002; 277 Moser (ref_58) 1995; 270 Webb (ref_5) 2017; 981 Arribas (ref_68) 2018; 25 Li (ref_120) 2006; 312 Li (ref_66) 2011; 21 Mangione (ref_69) 2019; 30 Facanha (ref_28) 2002; 157 Sio (ref_102) 2005; 280 Fan (ref_117) 2013; 35 Moser (ref_59) 1997; 110 Cyert (ref_56) 2001; 35 Nauli (ref_112) 2003; 33 Fischer (ref_89) 1997; 419 Liu (ref_106) 2011; 241 Cortes (ref_27) 2004; 3 Carnero (ref_25) 2000; 264 Win (ref_63) 2001; 114 Liu (ref_91) 2023; 14 Kim (ref_55) 2010; 28 Chen (ref_32) 2013; 499 Flory (ref_60) 2002; 13 Geiser (ref_84) 1993; 13 Webb (ref_114) 1997; 192 Djenoune (ref_113) 2023; 379 ref_50 Ohya (ref_78) 1991; 266 Spang (ref_103) 1993; 123 Zhang (ref_34) 2023; 615 Ohya (ref_100) 1989; 15 Duffus (ref_30) 1974; 251 Benaud (ref_119) 2015; 16 Fong (ref_61) 2010; 29 Wu (ref_53) 2005; 310 Hirayama (ref_70) 2003; 278 Li (ref_122) 2008; 316 Fujiwara (ref_8) 2005; 437 ref_52 Matsuo (ref_71) 2017; 81 Geiser (ref_86) 1991; 65 Coun (ref_92) 2015; 58 Trebak (ref_109) 2017; 32 Lee (ref_62) 2000; 151 Cyert (ref_101) 1991; 88 Poddar (ref_35) 2021; 32 Nakayama (ref_48) 2014; 14 Suzuki (ref_98) 1999; 32 Takeda (ref_57) 1987; 84 Miller (ref_6) 1993; 106 Courtemanche (ref_18) 2016; 18 Williams (ref_31) 1985; 318 Carrasco (ref_110) 2011; 80 Noguchi (ref_7) 2002; 13 Chan (ref_108) 2015; 59 Chang (ref_4) 1995; 131 Palmer (ref_87) 2001; 98 Chapin (ref_40) 2010; 191 Motegi (ref_74) 2000; 113 Clapham (ref_22) 2007; 131 Arnold (ref_2) 1975; 11 Furune (ref_29) 2008; 83 Chang (ref_13) 1997; 137 Koyano (ref_43) 2023; 28 Johnson (ref_16) 2012; 69 Deng (ref_96) 2006; 17 Denis (ref_88) 2002; 156 Stathopoulos (ref_85) 1997; 11 Pollard (ref_19) 2017; 216 ref_39 Wu (ref_17) 2003; 5 Hendricks (ref_77) 1999; 1 Collins (ref_111) 2011; 21 Protchenko (ref_97) 2006; 281 Strayle (ref_21) 1999; 18 Fluck (ref_51) 1992; 183 Paoletti (ref_72) 2003; 14 Carbo (ref_93) 2017; 28 Palmer (ref_38) 2005; 387 Catterall (ref_23) 2020; 60 Fluck (ref_1) 1991; 115 ref_46 ref_45 ref_44 Pollard (ref_10) 2010; 11 Lee (ref_37) 2003; 47 Rhind (ref_82) 2011; 332 Li (ref_121) 1999; 112 ref_49 Kitayama (ref_12) 1997; 137 Morris (ref_41) 2019; 30 |
References_xml | – volume: 42 start-page: 9573 year: 2014 ident: ref_80 article-title: Negative feedback regulation of calcineurin-dependent Prz1 transcription factor by the CaMKK-CaMK1 axis in fission yeast publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku684 – volume: 102 start-page: 8228 year: 2005 ident: ref_11 article-title: Dynamic positioning of the fission yeast cell division plane publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409021102 – volume: 13 start-page: 1263 year: 2002 ident: ref_7 article-title: Localized calcium signals along the cleavage furrow of the Xenopus egg are not involved in cytokinesis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.01-10-0501 – volume: 28 start-page: 617 year: 2010 ident: ref_55 article-title: Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1628 – volume: 316 start-page: 228 year: 2008 ident: ref_122 article-title: Multiple roles of the furrow deepening Ca2+ transient during cytokinesis in zebrafish embryos publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2008.01.027 – volume: 1 start-page: 234 year: 1999 ident: ref_77 article-title: Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase publication-title: Nat. Cell Biol. doi: 10.1038/12058 – volume: 130 start-page: 651 year: 1995 ident: ref_73 article-title: Schizosaccharomyces pombe cdc4+ gene encodes a novel EF-hand protein essential for cytokinesis publication-title: J. Cell Biol. doi: 10.1083/jcb.130.3.651 – volume: 88 start-page: 7376 year: 1991 ident: ref_101 article-title: Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.16.7376 – volume: 11 start-page: 149 year: 2010 ident: ref_10 article-title: Understanding cytokinesis: Lessons from fission yeast publication-title: Nat. Rev. doi: 10.1038/nrm2834 – volume: 157 start-page: 1029 year: 2002 ident: ref_28 article-title: The endoplasmic reticulum cation P-type ATPase Cta4p is required for control of cell shape and microtubule dynamics publication-title: J. Cell Biol. doi: 10.1083/jcb.200111012 – volume: 32 start-page: 813 year: 1999 ident: ref_98 article-title: P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1999.01400.x – volume: 5 start-page: 723 year: 2003 ident: ref_17 article-title: Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis publication-title: Dev. Cell doi: 10.1016/S1534-5807(03)00324-1 – volume: 88 start-page: 661 year: 2019 ident: ref_9 article-title: Molecular Mechanism of Cytokinesis publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-012530 – ident: ref_94 doi: 10.3389/fmolb.2022.856030 – volume: 28 start-page: 501 year: 2017 ident: ref_93 article-title: Sexual pheromone modulates the frequency of cytosolic Ca2+ bursts in Saccharomyces cerevisiae publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e16-07-0481 – volume: 30 start-page: 2790 year: 2019 ident: ref_69 article-title: The intrinsically disordered region of the cytokinetic F-BAR protein Cdc15 performs a unique essential function in maintenance of cytokinetic ring integrity publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E19-06-0314 – volume: 32 start-page: 332 year: 2017 ident: ref_109 article-title: ORAI Calcium Channels publication-title: Physiology doi: 10.1152/physiol.00011.2017 – volume: 106 start-page: 523 year: 1993 ident: ref_6 article-title: Calcium buffer injections inhibit cytokinesis in Xenopus eggs publication-title: J. Cell Sci. doi: 10.1242/jcs.106.2.523 – volume: 615 start-page: 884 year: 2023 ident: ref_34 article-title: Fast and sensitive GCaMP calcium indicators for imaging neural populations publication-title: Nature doi: 10.1038/s41586-023-05828-9 – volume: 35 start-page: 647 year: 2001 ident: ref_56 article-title: Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.35.102401.091302 – volume: 151 start-page: 789 year: 2000 ident: ref_62 article-title: Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp publication-title: J. Cell Biol. doi: 10.1083/jcb.151.4.789 – volume: 31 start-page: 181 year: 2006 ident: ref_65 article-title: Localization of type I myosin and F-actin to the leading edge region of the forespore membrane in Schizosaccharomyces pombe publication-title: Cell Struct. Funct. doi: 10.1247/csf.06027 – volume: 18 start-page: 4733 year: 1999 ident: ref_21 article-title: Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 microM and is mainly controlled by the secretory pathway pump pmr1 publication-title: EMBO J. doi: 10.1093/emboj/18.17.4733 – volume: 214 start-page: 167 year: 2016 ident: ref_64 article-title: A single-headed fission yeast myosin V transports actin in a tropomyosin-dependent manner publication-title: J. Cell Biol. doi: 10.1083/jcb.201511102 – volume: 379 start-page: 71 year: 2023 ident: ref_113 article-title: Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry publication-title: Science doi: 10.1126/science.abq7317 – volume: 112 start-page: 2313 year: 1999 ident: ref_36 article-title: Asymmetry of the spindle pole bodies and spg1p GAP segregation during mitosis in fission yeast publication-title: J. Cell Sci. doi: 10.1242/jcs.112.14.2313 – volume: 437 start-page: 1043 year: 2005 ident: ref_8 article-title: Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells publication-title: Nature doi: 10.1038/nature04217 – volume: 3 start-page: 1020 year: 2012 ident: ref_47 article-title: Organellar mechanosensitive channels in fission yeast regulate the hypo-osmotic shock response publication-title: Nat. Commun. doi: 10.1038/ncomms2014 – volume: 11 start-page: 1 year: 1975 ident: ref_2 article-title: Effect of calcium in cytokinesis as demonstrated with ionophore A231ß7 publication-title: Cytobiologie – volume: 241 start-page: 212 year: 2011 ident: ref_106 article-title: Two-photon fluorescence real-time imaging on the development of early mouse embryo by stages publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2010.03426.x – ident: ref_76 doi: 10.1242/jcs.261415 – volume: 251 start-page: 626 year: 1974 ident: ref_30 article-title: Control of cell division in yeast using the ionophore, A23187 with calcium and magnesium publication-title: Nature doi: 10.1038/251626a0 – volume: 332 start-page: 930 year: 2011 ident: ref_82 article-title: Comparative functional genomics of the fission yeasts publication-title: Science doi: 10.1126/science.1203357 – ident: ref_52 doi: 10.1101/cshperspect.a006023 – volume: 58 start-page: 226 year: 2015 ident: ref_92 article-title: Ca2+ homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca2+ storage publication-title: Cell Calcium doi: 10.1016/j.ceca.2015.05.004 – volume: 156 start-page: 29 year: 2002 ident: ref_88 article-title: Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue publication-title: J. Cell Biol. doi: 10.1083/jcb.200111004 – volume: 137 start-page: 169 year: 1997 ident: ref_13 article-title: cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin publication-title: J. Cell Biol. doi: 10.1083/jcb.137.1.169 – volume: 275 start-page: 685 year: 2000 ident: ref_79 article-title: Cloning of a calmodulin kinase I homologue from Schizosaccharomyces pombe publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.1.685 – ident: ref_44 doi: 10.1242/jcs.260598 – volume: 16 start-page: 481 year: 2015 ident: ref_119 article-title: Annexin A2 is required for the early steps of cytokinesis publication-title: EMBO Rep. doi: 10.15252/embr.201440015 – volume: 98 start-page: 7801 year: 2001 ident: ref_87 article-title: A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.141036198 – volume: 280 start-page: 12231 year: 2005 ident: ref_102 article-title: The role of the regulatory subunit of fission yeast calcineurin for in vivo activity and its relevance to FK506 sensitivity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M414234200 – volume: 30 start-page: 1791 year: 2019 ident: ref_41 article-title: Fission yeast TRP channel Pkd2p localizes to the cleavage furrow and regulates cell separation during cytokinesis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E18-04-0270 – ident: ref_26 doi: 10.1016/j.jbc.2023.104647 – volume: 47 start-page: 411 year: 2003 ident: ref_37 article-title: Ca2+ released via IP3 receptors is required for furrow deepening during cytokinesis in zebrafish embryos publication-title: Int. J. Dev. Biol. – volume: 28 start-page: 811 year: 2023 ident: ref_43 article-title: Pkd2, mutations linking to autosomal dominant polycystic kidney disease, localizes to the endoplasmic reticulum and regulates calcium signaling in fission yeast publication-title: Genes Cells doi: 10.1111/gtc.13069 – ident: ref_50 doi: 10.1371/journal.pone.0022421 – volume: 6 start-page: 875 year: 2009 ident: ref_33 article-title: Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators publication-title: Nat. Methods doi: 10.1038/nmeth.1398 – volume: 264 start-page: 173 year: 2000 ident: ref_25 article-title: Schizosaccharomyces pombe ehs1p is involved in maintaining cell wall integrity and in calcium uptake publication-title: Mol. Gen. Genet. doi: 10.1007/s004380000318 – volume: 17 start-page: 4790 year: 2006 ident: ref_96 article-title: Real-time monitoring of calcineurin activity in living cells: Evidence for two distinct Ca2+-dependent pathways in fission yeast publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-06-0526 – volume: 113 start-page: 4157 year: 2000 ident: ref_74 article-title: The S. pombe rlc1 gene encodes a putative myosin regulatory light chain that binds the type II myosins myo3p and myo2p publication-title: J. Cell Sci. doi: 10.1242/jcs.113.23.4157 – volume: 115 start-page: 1259 year: 1991 ident: ref_1 article-title: Slow calcium waves accompany cytokinesis in medaka fish eggs publication-title: J. Cell Biol. doi: 10.1083/jcb.115.5.1259 – volume: 93 start-page: 12321 year: 1996 ident: ref_118 article-title: Myosin light chain kinase (MLCK) gene disruption in Dictyostelium: A role for MLCK-A in cytokinesis and evidence for multiple MLCKs publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.22.12321 – volume: 33 start-page: 129 year: 2003 ident: ref_112 article-title: Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells publication-title: Nat. Genet. doi: 10.1038/ng1076 – volume: 981 start-page: 389 year: 2017 ident: ref_5 article-title: Ca2+ Signalling and Membrane Dynamics During Cytokinesis in Animal Cells publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-55858-5_15 – volume: 21 start-page: 455 year: 2006 ident: ref_54 article-title: Model of formin-associated actin filament elongation publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.01.016 – volume: 22 start-page: 1601 year: 2012 ident: ref_15 article-title: Contributions of turgor pressure, the contractile ring, and septum assembly to forces in cytokinesis in fission yeast publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.06.042 – volume: 81 start-page: 231 year: 2017 ident: ref_71 article-title: cAMP-dependent protein kinase involves calcium tolerance through the regulation of Prz1 in Schizosaccharomyces pombe publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2016.1246171 – ident: ref_123 doi: 10.7554/eLife.33183 – volume: 216 start-page: 3007 year: 2017 ident: ref_19 article-title: Nine unanswered questions about cytokinesis publication-title: J. Cell Biol. doi: 10.1083/jcb.201612068 – volume: 270 start-page: 20643 year: 1995 ident: ref_58 article-title: Ca2+ binding to calmodulin and its role in Schizosaccharomyces pombe as revealed by mutagenesis and NMR spectroscopy publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.35.20643 – volume: 29 start-page: 120 year: 2010 ident: ref_61 article-title: Fission yeast Pcp1 links polo kinase-mediated mitotic entry to gamma-tubulin-dependent spindle formation publication-title: EMBO J. doi: 10.1038/emboj.2009.331 – volume: 114 start-page: 69 year: 2001 ident: ref_63 article-title: Two type V myosins with non-overlapping functions in the fission yeast Schizosaccharomyces pombe: Myo52 is concerned with growth polarity and cytokinesis, Myo51 is a component of the cytokinetic actin ring publication-title: J. Cell Sci. doi: 10.1242/jcs.114.1.69 – volume: 165 start-page: 843 year: 2004 ident: ref_105 article-title: Identification and functional analysis of the essential and regulatory light chains of the only type II myosin Myo1p in Saccharomyces cerevisiae publication-title: J. Cell Biol. doi: 10.1083/jcb.200401040 – volume: 499 start-page: 295 year: 2013 ident: ref_32 article-title: Ultrasensitive fluorescent proteins for imaging neuronal activity publication-title: Nature doi: 10.1038/nature12354 – volume: 123 start-page: 405 year: 1993 ident: ref_103 article-title: The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body publication-title: J. Cell Biol. doi: 10.1083/jcb.123.2.405 – volume: 124 start-page: 351 year: 1994 ident: ref_99 article-title: Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases publication-title: J. Cell Biol. doi: 10.1083/jcb.124.3.351 – volume: 36 start-page: 1562 year: 2004 ident: ref_115 article-title: The association of calmodulin with central spindle regulates the initiation of cytokinesis in HeLa cells publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2003.12.016 – volume: 277 start-page: 17722 year: 2002 ident: ref_81 article-title: The serine/threonine kinase Cmk2 is required for oxidative stress response in fission yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200104200 – volume: 142 start-page: 711 year: 1998 ident: ref_104 article-title: Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae publication-title: J. Cell Biol. doi: 10.1083/jcb.142.3.711 – volume: 13 start-page: 7913 year: 1993 ident: ref_84 article-title: The essential mitotic target of calmodulin is the 110-kilodalton component of the spindle pole body in Saccharomyces cerevisiae publication-title: Mol. Cell Biol. – volume: 83 start-page: 373 year: 2008 ident: ref_29 article-title: Characterization of a fission yeast P(5)-type ATPase homologue that is essential for Ca2+/Mn2+ homeostasis in the absence of P(2)-type ATPases publication-title: Genes. Genet. Syst. doi: 10.1266/ggs.83.373 – volume: 167 start-page: 763 year: 2016 ident: ref_125 article-title: The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs publication-title: Cell doi: 10.1016/j.cell.2016.09.048 – ident: ref_46 doi: 10.1091/mbc.E22-07-0248 – ident: ref_49 doi: 10.1101/2024.10.20.619261 – volume: 59 start-page: 289 year: 2015 ident: ref_108 article-title: Inhibition of SOCE disrupts cytokinesis in zebrafish embryos via inhibition of cleavage furrow deepening publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.150209sw – ident: ref_39 doi: 10.1016/j.cellsig.2020.109630 – volume: 57 start-page: 57 year: 2015 ident: ref_83 article-title: Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane publication-title: Cell Calcium doi: 10.1016/j.ceca.2014.12.003 – volume: 65 start-page: 949 year: 1991 ident: ref_86 article-title: Can calmodulin function without binding calcium? publication-title: Cell doi: 10.1016/0092-8674(91)90547-C – volume: 13 start-page: 47 year: 2002 ident: ref_60 article-title: Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe publication-title: Cell Growth Differ. – volume: 21 start-page: 91 year: 2011 ident: ref_66 article-title: Interaction of calcineurin with substrates and targeting proteins publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2010.09.011 – volume: 195 start-page: 485 year: 2011 ident: ref_14 article-title: Actin filament severing by cofilin is more important for assembly than constriction of the cytokinetic contractile ring publication-title: J. Cell Biol. doi: 10.1083/jcb.201103067 – volume: 84 start-page: 3580 year: 1987 ident: ref_57 article-title: Analysis and in vivo disruption of the gene coding for calmodulin in Schizosaccharomyces pombe publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.84.11.3580 – volume: 60 start-page: 133 year: 2020 ident: ref_23 article-title: Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010818-021757 – volume: 24 start-page: 1 year: 1998 ident: ref_107 article-title: On the conservation of calcium wave speeds publication-title: Cell Calcium doi: 10.1016/S0143-4160(98)90083-5 – volume: 69 start-page: 686 year: 2012 ident: ref_16 article-title: Polar opposites: Fine-tuning cytokinesis through SIN asymmetry publication-title: Cytoskeleton doi: 10.1002/cm.21044 – volume: 279 start-page: 12744 year: 2004 ident: ref_75 article-title: Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311895200 – volume: 269 start-page: 7273 year: 1994 ident: ref_20 article-title: Regulation of cellular Ca2+ by yeast vacuoles publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)37279-4 – volume: 278 start-page: 18078 year: 2003 ident: ref_70 article-title: Zinc finger protein Prz1 regulates Ca2+ but not Cl- homeostasis in fission yeast. Identification of distinct branches of calcineurin signaling pathway in fission yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M212900200 – volume: 286 start-page: 10744 year: 2011 ident: ref_95 article-title: New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.177451 – volume: 14 start-page: 2793 year: 2003 ident: ref_72 article-title: Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-10-0661 – volume: 110 start-page: 1805 year: 1997 ident: ref_59 article-title: Calmodulin localizes to the spindle pole body of Schizosaccharomyces pombe and performs an essential function in chromosome segregation publication-title: J. Cell Sci. doi: 10.1242/jcs.110.15.1805 – volume: 387 start-page: 211 year: 2005 ident: ref_38 article-title: A microbial TRP-like polycystic-kidney-disease-related ion channel gene publication-title: Biochem. J. doi: 10.1042/BJ20041710 – volume: 192 start-page: 78 year: 1997 ident: ref_114 article-title: Localized calcium transients accompany furrow positioning, propagation, and deepening during the early cleavage period of zebrafish embryos publication-title: Dev. Biol. doi: 10.1006/dbio.1997.8724 – volume: 18 start-page: 676 year: 2016 ident: ref_18 article-title: Avoiding artefacts when counting polymerized actin in live cells with LifeAct fused to fluorescent proteins publication-title: Nat. Cell Biol. doi: 10.1038/ncb3351 – volume: 21 start-page: 202 year: 2011 ident: ref_111 article-title: Evolutionary origins of STIM1 and STIM2 within ancient Ca2+ signaling systems publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2011.01.002 – volume: 131 start-page: 1539 year: 1995 ident: ref_4 article-title: A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish embryo publication-title: J. Cell Biol. doi: 10.1083/jcb.131.6.1539 – volume: 281 start-page: 21445 year: 2006 ident: ref_97 article-title: A screen for genes of heme uptake identifies the FLC family required for import of FAD into the endoplasmic reticulum publication-title: J. Biol. Chem. doi: 10.1074/jbc.M512812200 – volume: 229 start-page: 141 year: 2009 ident: ref_42 article-title: Polycystic kidney disease channel and synaptotagmin homologues play roles in schizosaccharomyces pombe cell wall synthesis/repair and membrane protein trafficking publication-title: J. Membr. Biol. doi: 10.1007/s00232-009-9180-6 – volume: 107 start-page: 1725 year: 1994 ident: ref_67 article-title: A calcineurin-like gene ppb1+ in fission yeast: Mutant defects in cytokinesis, cell polarity, mating and spindle pole body positioning publication-title: J. Cell Sci. doi: 10.1242/jcs.107.7.1725 – ident: ref_45 doi: 10.1242/jcs.259046 – volume: 266 start-page: 12784 year: 1991 ident: ref_78 article-title: Two yeast genes encoding calmodulin-dependent protein kinases. Isolation, sequencing and bacterial expressions of CMK1 and CMK2 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)98968-4 – volume: 80 start-page: 973 year: 2011 ident: ref_110 article-title: STIM proteins and the endoplasmic reticulum-plasma membrane junctions publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061609-165311 – volume: 312 start-page: 3260 year: 2006 ident: ref_120 article-title: Recruitment and SNARE-mediated fusion of vesicles in furrow membrane remodeling during cytokinesis in zebrafish embryos publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2006.06.028 – volume: 14 start-page: 3725 year: 2023 ident: ref_91 article-title: The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy publication-title: Nat. Commun. doi: 10.1038/s41467-023-39482-6 – ident: ref_126 doi: 10.1101/2024.01.15.575753 – volume: 183 start-page: 371 year: 1992 ident: ref_51 article-title: Calcium Buffer Injections Block Ooplasmic Segregation in Oryzias latipes (Medaka) Eggs publication-title: Biol. Bull. doi: 10.1086/BBLv183n2p371 – volume: 14 start-page: 992 year: 2014 ident: ref_48 article-title: Mechanosensitive channels Msy1 and Msy2 are required for maintaining organelle integrity upon hypoosmotic shock in Schizosaccharomyces pombe publication-title: FEMS Yeast Res. doi: 10.1111/1567-1364.12181 – volume: 318 start-page: 558 year: 1985 ident: ref_31 article-title: Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2 publication-title: Nature doi: 10.1038/318558a0 – volume: 14 start-page: 8259 year: 1994 ident: ref_90 article-title: MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating publication-title: Mol. Cell Biol. – volume: 32 start-page: 15 year: 2021 ident: ref_35 article-title: Calcium spikes accompany cleavage furrow ingression and cell separation during fission yeast cytokinesis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E20-09-0609 – volume: 67 start-page: 3725 year: 2010 ident: ref_116 article-title: Calcineurin activity is required for the completion of cytokinesis publication-title: Cell. Mol. Life Sci. CMLS doi: 10.1007/s00018-010-0401-z – volume: 3 start-page: 1124 year: 2004 ident: ref_27 article-title: Schizosaccharomyces pombe Pmr1p is essential for cell wall integrity and is required for polarized cell growth and cytokinesis publication-title: Eukaryot. Cell doi: 10.1128/EC.3.5.1124-1135.2004 – volume: 419 start-page: 259 year: 1997 ident: ref_89 article-title: The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating publication-title: FEBS Lett. doi: 10.1016/S0014-5793(97)01466-X – ident: ref_124 doi: 10.1126/science.aat9819 – volume: 191 start-page: 701 year: 2010 ident: ref_40 article-title: The cell biology of polycystic kidney disease publication-title: J. Cell Biol. doi: 10.1083/jcb.201006173 – volume: 122 start-page: 387 year: 1993 ident: ref_3 article-title: Calcium buffer injections delay cleavage in Xenopus laevis blastomeres publication-title: J. Cell Biol. doi: 10.1083/jcb.122.2.387 – volume: 131 start-page: 1047 year: 2007 ident: ref_22 article-title: Calcium signaling publication-title: Cell doi: 10.1016/j.cell.2007.11.028 – volume: 25 start-page: 772 year: 2018 ident: ref_68 article-title: Paxillin-Mediated Recruitment of Calcineurin to the Contractile Ring Is Required for the Correct Progression of Cytokinesis in Fission Yeast publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.09.062 – volume: 11 start-page: 3432 year: 1997 ident: ref_85 article-title: Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast publication-title: Genes Dev. doi: 10.1101/gad.11.24.3432 – volume: 15 start-page: 113 year: 1989 ident: ref_100 article-title: A galactose-dependent cmd1 mutant of Saccharomyces cerevisiae: Involvement of calmodulin in nuclear division publication-title: Curr. Genet. doi: 10.1007/BF00435457 – volume: 35 start-page: 1030 year: 2013 ident: ref_117 article-title: Cnb1 involved in cytokinesis in Schizosaccharomyces pombe publication-title: Yi Chuan Hered. doi: 10.3724/SP.J.1005.2013.01030 – volume: 137 start-page: 1309 year: 1997 ident: ref_12 article-title: Type II myosin heavy chain encoded by the myo2 gene composes the contractile ring during cytokinesis in Schizosaccharomyces pombe publication-title: J. Cell Biol. doi: 10.1083/jcb.137.6.1309 – volume: 17 start-page: 6339 year: 1997 ident: ref_24 article-title: A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect publication-title: Mol. Cell Biol. doi: 10.1128/MCB.17.11.6339 – volume: 25 start-page: 3835 year: 2014 ident: ref_127 article-title: Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e13-12-0708 – volume: 310 start-page: 310 year: 2005 ident: ref_53 article-title: Counting cytokinesis proteins globally and locally in fission yeast publication-title: Science doi: 10.1126/science.1113230 – volume: 112 start-page: 1567 year: 1999 ident: ref_121 article-title: Dynamic redistribution of calmodulin in HeLa cells during cell division as revealed by a GFP-calmodulin fusion protein technique publication-title: J. Cell Sci. doi: 10.1242/jcs.112.10.1567 |
SSID | ssj0001586993 |
Score | 2.2876318 |
SecondaryResourceType | review_article |
Snippet | The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 278 |
SubjectTerms | calcium Calcium (intracellular) Calcium homeostasis Calcium signalling Cell cycle Cell division Cells Cytokinesis Cytoplasm fission yeast Homeostasis Intracellular Kinases Molecular modelling Organisms Pkd2 Proteins Review Schizosaccharomyces pombe Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5k8eBFfFtdpYIgCMVtkr6O6-Iigh5EQU8hSRNcH624u4f99860dWnx4MVrE0LyTTMPMvMNwKlFq5M6I4I8FzoQNld45zIbsMyg98DNwCkqTr69i68fxc1T9NRq9UU5YTU9cA3cBdcmTrlOQpEzYUKtMJyzEVdc6dgl1pD2RZvXCqbq-uA0RstbF-RxjOsvXkuHlk7QQ1vHBFVM_b_1ccsgdZMlW9ZnvAHrjdvoD-vtbsKKLbZg9bJE126xDef3dUd5xNgvnf9M_Xj80WJWvlFS-2Tq64U_Uu9mMv_Ygcfx1cPoOmiaIARGJNEsEJHJbGpYZuOBinKWGMvRwCTaOR4alxrHRKS01VqbENUPnZtpngqn8zxxCd-FXlEWdh_83DpcIYxVrEOhMLDTHJeyuFYmIqe4B6c_uMjPmutCYoxA8MkWfB5cEmbLKURQXX1AsclGbPIvsXlwRohLukYIq1FNNQDulAip5LAiumeogDzo_whFNvdrKlFxiDhE74l5cLIcxptBzx2qsOW8mRNRoa0He7UMl3uuDoLOsQdpR7qdQ3VHislLxb4dsgGR_omD_4DhENYYNRSmVCDWh97sa26P0MuZ6ePqh_4GONP7_g priority: 102 providerName: Directory of Open Access Journals |
Title | Regulation of Yeast Cytokinesis by Calcium |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40278099 https://www.proquest.com/docview/3194616582 https://www.proquest.com/docview/3194656477 https://pubmed.ncbi.nlm.nih.gov/PMC12028594 https://doaj.org/article/3bc683b714d24c1ba690e53a3ab6f7ec |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxNBcNDGB1-K357WcEJBEI7m9uM-niQXG4pgkWKhPi27e7satXe1SR7y752526Q5BF9vj2V3vmd2PgCOHWqdwluR1LUwiXC1Rp4rXcJKi9YDtxOvqTj583l2dik-XcmrEHBbhrTKrUzsBHXdWoqRnyCpiCxFfck-3PxJaGoUva6GERr3YYQiuEDna1Sdnn-5uIuyyCJDDdwX5nH0709-th41nqAHt4Eq6jr2_yuX9xTTMGlyTwvNH8FhMB_jaY_vx3DPNU_gQdWiibd5Cu8v-snyCOu49fE3mssTzzar9hclty-WsdnEM_3bLtbXz-Byfvp1dpaEYQiJFblcJULa0hWWlS6baFmz3DqOiiY33vPU-sJ6JqQ2zhhjUxRDdG9meCG8qevc5_w5HDRt415CXDuPO6SZzkwqNDp4huNWDvcqhfSaR3C8hYu66XteKPQVCHxqD3wRVASz3S_UqLr70N5-V4HuFTc2K7jJU1EzYVOj0Rt3kmuuTeZzZyN4RxBXxE4IVqtDVQCelBpTqWnX8J6hIIrgaIsUFfhsqe6oIoK3u2XkEHr20I1r1-EfSQW3Ebzocbg7c3cRNJIjKAbYHVxquNIsfnRduFM2oeZ_4tX_z_UaHjIaGUzJPuwIDla3a_cG7ZiVGcNoWn2s5uNAtOMuHvAXuNj2kA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bahQx9FC3gr6Id0erjlARhKE7Seb2INJdW7a2XaS0UJ_SJJPYrTpTu7vI_pTf6Dlz2e4g-NbXSTgk534m5wKwadHqpM6IIM-FDoTNFcpcZgOWGfQeuOk7RcXJh-N4dCI-n0ana_CnrYWhtMpWJ1aKOi8N_SPfQlYRcYj2kn28_BXQ1Ch6XW1HaNRssW8XvzFkm37Y-4T0fcvY7s7xcBQ0UwUCI5JoFojIZDY1LLNxX0U5S4zlqLET7RwPjUuNYyJS2mqtTYjynMZZxjRPhdN5nriEI9xbsC44hjI9WB_sjL8cXf_ViWg7rwsBOc_6WxelQwsr6IGvY_qqCQH_2oEVQ9hN0lyxerv34V7jrvrbNX89gDVbPITbgxJdysUjeH9UT7JH2vql87_SHCB_uJiV3ymZfjL19cIfqh9mMv_5GE5uBE1PoFeUhX0Gfm4dQghjFetQKAwoNUdQFmFlInKKe7DZ4kVe1j02JMYmhD65gj4PBoSz5RZqjF19KK--yUbOJNcmTrlOQpEzYUKtMPq3EVdc6dgl1njwjjAuSXwRrUY1VQh4UmqEJberBvsMFZ8HGy1RZCPXU3nNhR68WS6jRNIziypsOW_2RFTg68HTmobLM1cXQafcg7RD3c6luivF5Lzq-h2yPjUbFM__f67XcGd0fHggD_bG-y_gLqNxxZRoxDagN7ua25foQ830q4ZxfTi7aVn5C8vwMps |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbhMxcFRShHhB3CwUWKQiJKRVdm3v9YBQkzZqKURVRaXyZGyv3YZjtzSJUH6Nr2NmjzQREm99XVsje-5ZzwGwbdHqZM6IoCiEDoQtFMpcbgOWG_QeuAmdouLkT-Nk_0R8OI1PN-BPVwtDaZWdTqwVdVEZ-kfeR1YRSYT2kvVdmxZxtDt6f_EroAlS9NLajdNoWOTQLn5j-DZ9d7CLtH7N2Gjv83A_aCcMBEak8SwQscltZlhuk1DFBUuN5ai9U-0cj4zLjGMiVtpqrU2Esp0lec40z4TTRZG6lCPcG7CZYlQU9mBzsDc-Or76wxPTdt4UBXKeh_1vlUNrK-ixb80M1tMC_rUJK0ZxPWFzxQKO7sKd1nX1dxpeuwcbtrwPNwcVupeLB_D2uJlqj3T2K-d_oZlA_nAxq75TYv1k6uuFP1Q_zGT-8yGcXAuaHkGvrEr7BPzCOoQQJSrRkVAYXGqOoCzCykXsFPdgu8OLvGj6bUiMUwh9cgV9HgwIZ8st1CS7_lBdnslW5iTXJsm4TiNRMGEirZI8tDFXXOnEpdZ48IYwLkmUEa1GtRUJeFJqiiV36mb7DJWgB1sdUWQr41N5xZEevFouo3TSk4sqbTVv98RU7OvB44aGyzPXF0EH3YNsjbprl1pfKSfndQfwiIXUeFA8_f-5XsItlBH58WB8-AxuM5pcTDlHbAt6s8u5fY7u1Ey_aPnWh6_XLSp_Ac0TNtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Yeast+Cytokinesis+by+Calcium&rft.jtitle=Journal+of+fungi+%28Basel%29&rft.au=Chen%2C+Qian&rft.date=2025-04-02&rft.issn=2309-608X&rft.eissn=2309-608X&rft.volume=11&rft.issue=4&rft_id=info:doi/10.3390%2Fjof11040278&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-608X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-608X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-608X&client=summon |