A nomadic multi-agent based privacy metrics for e-health care: a deep learning approach
In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 3; pp. 7249 - 7272 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-023-15363-4 |
Cover
Loading…
Abstract | In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes. |
---|---|
AbstractList | In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes. In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes.In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes. |
Author | Dhasarathan, Chandramohan Shanmugam, M. Tripathi, Diwakar Khapre, Shailesh Shankar, Achyut Kumar, Manish |
Author_xml | – sequence: 1 givenname: Chandramohan surname: Dhasarathan fullname: Dhasarathan, Chandramohan organization: Computer Science and Engineering Department, Thapar Institute of Engineering and Technology – sequence: 2 givenname: M. surname: Shanmugam fullname: Shanmugam, M. organization: Department of Computer Science, School of Engineering and Technology, Pondicherry University – sequence: 3 givenname: Manish surname: Kumar fullname: Kumar, Manish organization: Computer Science and Engineering Department, Thapar Institute of Engineering and Technology – sequence: 4 givenname: Diwakar surname: Tripathi fullname: Tripathi, Diwakar organization: Computer Science and Engineering Department, Indian Institute of Information Technology – sequence: 5 givenname: Shailesh surname: Khapre fullname: Khapre, Shailesh organization: Department of Data Science & Artificial Intelligence, Dr. S. P. Mukherjee IIIT – sequence: 6 givenname: Achyut orcidid: 0000-0003-3165-3293 surname: Shankar fullname: Shankar, Achyut email: ashankar2711@gmail.com organization: WMG, University of Warwick, Department of Computer Science and Engineering, Graphic Era Deemed to be University, School of Computer Science Engineering, Lovely Professional University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37362729$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctvFSEUxompsQ_9B1wYEjduUB4DzHVjmsZX0sSNxiVh4HAvzQyMMNOk_3253lq1i654_b7Dd853io5SToDQS0bfMkr1u8oY7TihXBAmhRKke4JOmNSCaM3ZUduLnhItKTtGp7VeUcqU5N0zdCy0UFzzzQn6eY5TnqyPDk_ruERit5AWPNgKHs8lXlt3gydYSnQVh1wwkB3YcdlhZwu8xxZ7gBmPYEuKaYvtPJds3e45ehrsWOHF3XqGfnz6-P3iC7n89vnrxfklcZ2WCxEb31vBZC90LyHIQUG7H3zgIIYwyAFCP4RO-aC6dvYhDEpr5XtpGfAGnaEPh7rzOkzgXTNf7Gia88mWG5NtNP-_pLgz23xtGOUdU4y3Cm_uKpT8a4W6mClWB-NoE-S1Gt4LytmGM9HQ1w_Qq7yW1PozfMPacKlWe-rVv5buvfwZegP4AXAl11og3COMmn2y5pCsacma38maron6ByIXF7vEvG8rjo9LxUFa2z9pC-Wv7UdUt8FPuE8 |
CitedBy_id | crossref_primary_10_1080_23742917_2024_2371053 crossref_primary_10_1186_s13677_024_00602_2 crossref_primary_10_1109_ACCESS_2024_3371151 crossref_primary_10_1038_s41598_024_66603_y crossref_primary_10_1007_s11042_024_18814_8 crossref_primary_10_1002_ett_70098 crossref_primary_10_1108_IJICC_04_2024_0189 crossref_primary_10_1109_JSYST_2024_3424259 crossref_primary_10_1007_s10723_025_09796_4 crossref_primary_10_1007_s10586_024_04507_2 crossref_primary_10_4015_S1016237224500066 crossref_primary_10_1007_s12083_024_01823_7 crossref_primary_10_1186_s12880_024_01235_2 crossref_primary_10_1007_s11042_024_19378_3 crossref_primary_10_1109_ACCESS_2024_3522560 crossref_primary_10_1109_ACCESS_2024_3410035 crossref_primary_10_1177_01423312241291288 crossref_primary_10_1007_s11082_023_05854_x crossref_primary_10_1109_ACCESS_2023_3322429 |
Cites_doi | 10.1016/j.cose.2019.03.008 10.1016/j.cose.2019.03.020 10.1016/j.cosrev.2019.02.001 10.1016/j.cose.2019.06.017 10.1016/j.is.2019.01.001 10.1109/TSC.2013.2295811 10.1016/j.ins.2018.10.021 10.1109/TNET.2011.2159735 10.1109/TCAD.2012.2223467 10.1109/TMC.2012.86 10.1109/TCOMM.2013.043013.120517 10.1016/j.ins.2019.05.025 10.1016/j.future.2018.08.043 10.1016/j.jisa.2019.03.009 10.1109/LCOMM.2011.092011.111200 10.1002/spy2.32 10.1016/j.ins.2019.03.035 10.1016/j.ins.2019.07.078 10.1016/j.ins.2019.04.036 10.1109/TC.2013.55 10.1142/S1793962313500165 10.1080/17445760.2013.831415 10.1016/j.jii.2019.07.002 10.1145/1795194.1795211 10.1016/j.ins.2018.12.016 10.1109/JBHI.2013.2262659 10.1016/j.comcom.2022.12.004 10.1016/j.sigpro.2019.06.024 10.1016/j.icte.2018.03.003 10.1016/j.future.2018.08.006 10.1016/j.comnet.2019.106866 10.1016/j.cose.2019.101570 10.1016/j.knosys.2019.05.022 10.1016/j.jisa.2019.04.011 10.1016/j.ipm.2019.02.009 10.1007/s11227-021-03720-9 10.1109/MPRV.2011.74 10.1016/j.future.2019.07.023 10.1109/JSAC.2014.140309 10.1016/j.eij.2015.02.002 10.1109/JSAC.2013.SUP.0513033 10.1016/j.sysarc.2019.01.005 10.1016/j.neucom.2019.07.039 10.1109/TNET.2012.2204407 10.1080/10798587.2013.771438 10.48550/arXiv.2107.04191 10.1016/j.future.2018.07.036 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jan 2024 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jan 2024 |
DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s11042-023-15363-4 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ABI/INFORM Global (Corporate) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 7272 |
ExternalDocumentID | PMC10241612 37362729 10_1007_s11042_023_15363_4 |
Genre | Journal Article |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM -4Z -59 -5G -BR -EM ADINQ GQ6 GROUPED_ABI_INFORM_COMPLETE NPM Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D M0N MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c475t-39d8a31583785ef5b6e475bdf2e3bfb5bef8bf46df64bfbdffb6776d85a1e22e3 |
IEDL.DBID | 8FG |
ISSN | 1380-7501 |
IngestDate | Thu Aug 21 18:38:09 EDT 2025 Tue Aug 05 10:36:04 EDT 2025 Fri Jul 25 20:52:52 EDT 2025 Wed Feb 19 02:23:30 EST 2025 Tue Jul 01 05:12:52 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Thu Apr 10 07:12:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Security Knowledgebase Privacy Preserving Deep learning system Multi-Agent |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-39d8a31583785ef5b6e475bdf2e3bfb5bef8bf46df64bfbdffb6776d85a1e22e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3165-3293 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10241612 |
PMID | 37362729 |
PQID | 2911650763 |
PQPubID | 54626 |
PageCount | 24 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10241612 proquest_miscellaneous_2830219213 proquest_journals_2911650763 pubmed_primary_37362729 crossref_primary_10_1007_s11042_023_15363_4 crossref_citationtrail_10_1007_s11042_023_15363_4 springer_journals_10_1007_s11042_023_15363_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationTitleAlternate | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | A Yargic (15363_CR46) 2019; 56 15363_CR47 S Wang (15363_CR42) 2013; 31 15363_CR45 15363_CR43 M Bewong (15363_CR6) 2019; 82 X Zheng (15363_CR49) 2019; 493 Z Ma (15363_CR30) 2019; 496 MS Rahman (15363_CR34) 2019; 180 F Lopes (15363_CR29) 2014; 29 Issue.2 V Puri (15363_CR33) 2019; 32 15363_CR50 15363_CR16 15363_CR15 15363_CR14 P Gupta (15363_CR21) 2013; 32 A Clementi (15363_CR13) 2013; 21 15363_CR12 15363_CR11 H Sajjad (15363_CR36) 2019; 86 15363_CR18 S Guo (15363_CR20) 2019; 164 D Li (15363_CR27) 2019; 47 D Chandramohan (15363_CR10) 2015; 16 15363_CR7 M Xiao (15363_CR44) 2014; 63 15363_CR26 15363_CR25 15363_CR8 15363_CR24 15363_CR3 15363_CR23 15363_CR2 15363_CR22 15363_CR4 Y Zhou (15363_CR51) 2019; 47 S Rashidibajgan (15363_CR35) 2019; 84 15363_CR28 A Benharref (15363_CR5) 2014; 18 C Dhasarathan (15363_CR17) 2023; 199 15363_CR1 15363_CR38 15363_CR37 D Chandramohan (15363_CR9) 2014; 5 C Groba (15363_CR19) 2014; 7 15363_CR32 NB Mehta (15363_CR31) 2013; 61 15363_CR39 Q Zhang (15363_CR48) 2019; 480 15363_CR41 15363_CR40 |
References_xml | – ident: 15363_CR25 doi: 10.1016/j.cose.2019.03.008 – volume: 84 start-page: 244 year: 2019 ident: 15363_CR35 publication-title: Comput Secur doi: 10.1016/j.cose.2019.03.020 – volume: 32 start-page: 45 year: 2019 ident: 15363_CR33 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2019.02.001 – volume: 86 start-page: 358 year: 2019 ident: 15363_CR36 publication-title: Comput Secur doi: 10.1016/j.cose.2019.06.017 – volume: 82 start-page: 53 year: 2019 ident: 15363_CR6 publication-title: Inf Syst doi: 10.1016/j.is.2019.01.001 – volume: 7 start-page: 642 issue: 4 year: 2014 ident: 15363_CR19 publication-title: Service Comput IEEE Trans doi: 10.1109/TSC.2013.2295811 – ident: 15363_CR50 doi: 10.1016/j.ins.2018.10.021 – ident: 15363_CR1 – ident: 15363_CR38 doi: 10.1109/TNET.2011.2159735 – volume: 32 start-page: 8 issue: 1 year: 2013 ident: 15363_CR21 publication-title: Comput-Aid Des Integrate Circ Syst IEEE Trans doi: 10.1109/TCAD.2012.2223467 – ident: 15363_CR39 doi: 10.1109/TMC.2012.86 – volume: 61 start-page: 2735 issue: 7 year: 2013 ident: 15363_CR31 publication-title: Commun IEEE Trans doi: 10.1109/TCOMM.2013.043013.120517 – volume: 496 start-page: 225 year: 2019 ident: 15363_CR30 publication-title: Inf Sci doi: 10.1016/j.ins.2019.05.025 – ident: 15363_CR40 doi: 10.1016/j.future.2018.08.043 – ident: 15363_CR43 doi: 10.1016/j.jisa.2019.03.009 – ident: 15363_CR47 doi: 10.1109/LCOMM.2011.092011.111200 – ident: 15363_CR11 doi: 10.1002/spy2.32 – volume: 47 start-page: 59 year: 2019 ident: 15363_CR27 publication-title: J Inf Secur Appl – ident: 15363_CR18 doi: 10.1016/j.ins.2019.03.035 – ident: 15363_CR45 doi: 10.1016/j.ins.2019.07.078 – volume: 493 start-page: 91 year: 2019 ident: 15363_CR49 publication-title: Inf Sci doi: 10.1016/j.ins.2019.04.036 – volume: 63 start-page: 1682 issue: 7 year: 2014 ident: 15363_CR44 publication-title: Comput IEEE Trans doi: 10.1109/TC.2013.55 – volume: 5 start-page: 1350016 issue: 1 year: 2014 ident: 15363_CR9 publication-title: Int J Model Simul Sci Comput (World Scientific) doi: 10.1142/S1793962313500165 – volume: 29 Issue.2 start-page: 178 year: 2014 ident: 15363_CR29 publication-title: Taylor Francis-Int J Parallel, Emerg Distribut Syst doi: 10.1080/17445760.2013.831415 – ident: 15363_CR3 doi: 10.1016/j.jii.2019.07.002 – ident: 15363_CR22 doi: 10.1145/1795194.1795211 – volume: 480 start-page: 1 year: 2019 ident: 15363_CR48 publication-title: Inf Sci doi: 10.1016/j.ins.2018.12.016 – volume: 18 start-page: 46 issue: 1 year: 2014 ident: 15363_CR5 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2013.2262659 – volume: 199 start-page: 87 year: 2023 ident: 15363_CR17 publication-title: Comput Commun doi: 10.1016/j.comcom.2022.12.004 – volume: 164 start-page: 320 year: 2019 ident: 15363_CR20 publication-title: Signal Process doi: 10.1016/j.sigpro.2019.06.024 – ident: 15363_CR4 doi: 10.1016/j.icte.2018.03.003 – ident: 15363_CR28 doi: 10.1016/j.future.2018.08.006 – ident: 15363_CR7 doi: 10.1016/j.comnet.2019.106866 – volume: 47 start-page: 295 year: 2019 ident: 15363_CR51 publication-title: J Inf Secur Appl – ident: 15363_CR8 doi: 10.1016/j.cose.2019.101570 – volume: 180 start-page: 104 year: 2019 ident: 15363_CR34 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.05.022 – ident: 15363_CR15 doi: 10.1016/j.jisa.2019.04.011 – ident: 15363_CR32 – volume: 56 start-page: 994 year: 2019 ident: 15363_CR46 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2019.02.009 – ident: 15363_CR16 doi: 10.1007/s11227-021-03720-9 – ident: 15363_CR41 doi: 10.1109/MPRV.2011.74 – ident: 15363_CR24 doi: 10.1016/j.future.2019.07.023 – ident: 15363_CR2 doi: 10.1109/JSAC.2014.140309 – volume: 16 start-page: 151 year: 2015 ident: 15363_CR10 publication-title: Egypt Inf J (Elsevier) doi: 10.1016/j.eij.2015.02.002 – volume: 31 start-page: 369 issue: 9 year: 2013 ident: 15363_CR42 publication-title: IEEE J Select Areas Communications/Supplement doi: 10.1109/JSAC.2013.SUP.0513033 – ident: 15363_CR37 doi: 10.1016/j.sysarc.2019.01.005 – ident: 15363_CR26 doi: 10.1016/j.neucom.2019.07.039 – volume: 21 start-page: 610 issue: 2 year: 2013 ident: 15363_CR13 publication-title: IEEE/ACM Trans Netw doi: 10.1109/TNET.2012.2204407 – ident: 15363_CR23 doi: 10.1080/10798587.2013.771438 – ident: 15363_CR12 doi: 10.48550/arXiv.2107.04191 – ident: 15363_CR14 doi: 10.1016/j.future.2018.07.036 |
SSID | ssj0016524 |
Score | 2.4858844 |
Snippet | In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7249 |
SubjectTerms | Access control Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Diagnosis Health care Health services Medical diagnosis Medical electronics Multiagent systems Multimedia Information Systems Patients Privacy Reagents Real time Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8N9gIPjPGZwSYj8QaWmsR2zN4qNFRN2p5WwVvkT0CiaUVbJP57zomTrnQg7THxJU7y8_nO8d3vAE6LzKdam5QKJjVlinuqleaUI8TSSWd9nUj767cYDNnPG34Tk8KmbbR7uyVZz9SLZLc0pJKgjaGopSKnbA0-cly7h3E9zPrd3oHgsZSt7FG0h2lMlfn3PZbN0YqPuRoq-Wq_tDZDV9uwFf1H0m8A_wwfXLUDn9raDCSq6g5s_kU0uAvXfVKNR8reG1JHEFIVMqpIMGGWYE9PyjyTUSiuZaYE3VjiaJMgSUJk2HeiiHVuQmKJiVvSMpHvwfDqx5_LAY0lFahhBZ_R_MJKlac80Mhz57kWDs9r6zOXa6-5dl5qz4T1guGx9V6LohBWcpW6DIX2Yb0aV-4QiDG2V2QW_SPPmM-ETEONCYX2XprCMJdA2n7Z0kS-8VD24qFcMCUHNEpEo6zRKFkCZ901k4Zt413p4xawMmretMwuAqFQD6fNBE66ZtSZsBGiKjeeo0wgPQtEcChz0ODbdZcXaNJxxZGAXEK-Ewh83Mst1f1dzcuNvlpYLmYJnLeDZPFcb7_Gl_8TP4INHPSs-Q10DOuzx7n7io7RTH-r9eAFL3QESw priority: 102 providerName: Springer Nature |
Title | A nomadic multi-agent based privacy metrics for e-health care: a deep learning approach |
URI | https://link.springer.com/article/10.1007/s11042-023-15363-4 https://www.ncbi.nlm.nih.gov/pubmed/37362729 https://www.proquest.com/docview/2911650763 https://www.proquest.com/docview/2830219213 https://pubmed.ncbi.nlm.nih.gov/PMC10241612 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4EDj_IKLZWRuIFFk9iOy6Va0G4rEBVCrCinyE-oRLMLu63Uf89M4mRZKnqKYk_iOGN7xo_5PoAXVRFza13OldCWCyMjt8ZKLlHFOujgYxtI-_FYHU3F-xN5khbcFulYZT8mtgO1nzlaI39d7BNQDM66y4P5L06sUbS7mig0bsJmjpaGWrieHA67CEomUlu9x9Ey5ilopgudyykwBS0Wxz6vSi7WDdMVb_Pqocl_dk5bgzS5B3eSJ8lGnervw43QbMHdnqWBpU67Bbf_ghx8AF9HrJmdGX_qWHuWkBuKrWJkzDzDki6Mu2RnRLPlFgwdWhZ4FyrJ6IzYG2aYD2HOEtnEd9Zjkj-E6WT85d0RT-QK3IlKLnm577Upc0mA8jJEaVXAdOtjEUobrbQhahuF8lEJvPcxWlVVymtp8lCg0CPYaGZNeALMOb9XFR49pShELJTOiW3CoOXXrnIiZJD3f7Z2CXmcCDB-1ivMZNJGjdqoW23UIoOXwzPzDnfjWumdXmF16oOLetViMng-ZGPvoS0R04TZOcoQ_BlBwqHM406_Q3FlhcYd5x4Z6DXNDwKEzL2e05z-aBG60WujiWORwau-kay-6__VeHp9NbbhVoEv7haAdmBj-fs8PEOXaGl323a_C5ujw28fxnh9Oz7-9BlTp8XoD1OBC4c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOPMorUMBIcAKLxrETLxJCFbBs6ePUit5SP9tKNLuwW1D_FL-RmbyWpaK3HpNM4thje8b2zPcBvChETK11Kc-ltlwaFbk1VnGFKtZBBx_rRNrtnXy0J7_sq_0l-N3lwlBYZTcn1hO1HzvaI38jBgQUg6vu7P3kOyfWKDpd7Sg0mm6xGc5-4ZJt-m7jI-r3pRDDT7sfRrxlFeBOFmrGs4HXJksVIamrEJXNA963PoqQ2WiVDVHbKHMfc4nXPkabF0XutTJpECiE370CV2WWDSiEUA8_96cWuWpJdPUaR0uctkk6TapeSokwaCE5zjF5xuWiITzn3Z4P0vznpLY2gMPbcLP1XNl609XuwFKoVuBWxwrB2kliBW78BXF4F76us2p8YvyxY3XsIjeUy8XIeHqGJf007oydEK2XmzJ0oFngTWomo5i0t8wwH8KEteQWh6zDQL8He5fS7PdhuRpX4SEw5_xaITx6ZlHKKHKdEruFQU9Du8LJkEDatWzpWqRzItz4Vs4xmkkbJWqjrLVRygRe9e9MGpyPC6VXO4WV7ZiflvMemsDz_jGOVjqCMVUYn6IMwa0RBB3KPGj02xeXFehM4FonAb2g-V6AkMAXn1THRzUiOHqJtFAVCbzuOsn8v_5fjUcXV-MZXBvtbm-VWxs7m4_husBCms2nVVie_TgNT9Adm9mn9RhgcHDZg-4P1zpHBA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48CivQAEjwQmsbhzbcZEQqihLS6HiQEVvqZ9QiWYXdgvqX-PXMZPHLktFbz0mmcRJxuMZ2zPfB_CkFCl3zudcS-O4tCpxZ53iClVsookhNYW0H3b11p58t6_2l-B3XwtDaZX9mNgM1GHkaY18TawTUAzOuou11KVFfNwcvhp_58QgRTutPZ1G20V24skvnL5NXm5voq6fCjF88-n1Fu8YBriXpZryYj0YW-SKUNVVTMrpiOddSCIWLjnlYjIuSR2SlngcUnK6LHUwyuZRoBA-9wJcLAszIPYEM3w728HQqiPUNQOOXjnvCnbasr2cimLQW3Icb3TB5aJTPBXpnk7Y_GfXtnGGw-twtYti2Ubb7W7AUqxX4FrPEMG6AWMFrvwFd3gTPm-wenRkw6FnTR4jt1TXxciRBoYt_bT-hB0RxZefMAymWeRtmSaj_LQXzLIQ45h1RBdfWI-Hfgv2zuW334blelTHu8C8D4NSBIzSkpRJaJMT04XFqMP40suYQd7_2cp3qOdEvvGtmuM1kzYq1EbVaKOSGTyb3TNuMT_OlF7tFVZ19j-p5r01g8ezy2i5tB1j6zg6RhmCXiM4OpS50-p31lxRYmCB854MzILmZwKECr54pT782qCDY8RIk1aRwfO-k8zf6_-fce_sz3gEl9Dcqvfbuzv34bLANtp1qFVYnv44jg8wMpu6h40JMDg4b5v7A_TySzE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nomadic+multi-agent+based+privacy+metrics+for+e-health+care%3A+a+deep+learning+approach&rft.jtitle=Multimedia+tools+and+applications&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=3&rft.spage=7249&rft.epage=7272&rft_id=info:doi/10.1007%2Fs11042-023-15363-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |