A nomadic multi-agent based privacy metrics for e-health care: a deep learning approach

In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 3; pp. 7249 - 7272
Main Authors Dhasarathan, Chandramohan, Shanmugam, M., Kumar, Manish, Tripathi, Diwakar, Khapre, Shailesh, Shankar, Achyut
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-023-15363-4

Cover

Loading…
Abstract In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes.
AbstractList In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes.
In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes.In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes.
Author Dhasarathan, Chandramohan
Shanmugam, M.
Tripathi, Diwakar
Khapre, Shailesh
Shankar, Achyut
Kumar, Manish
Author_xml – sequence: 1
  givenname: Chandramohan
  surname: Dhasarathan
  fullname: Dhasarathan, Chandramohan
  organization: Computer Science and Engineering Department, Thapar Institute of Engineering and Technology
– sequence: 2
  givenname: M.
  surname: Shanmugam
  fullname: Shanmugam, M.
  organization: Department of Computer Science, School of Engineering and Technology, Pondicherry University
– sequence: 3
  givenname: Manish
  surname: Kumar
  fullname: Kumar, Manish
  organization: Computer Science and Engineering Department, Thapar Institute of Engineering and Technology
– sequence: 4
  givenname: Diwakar
  surname: Tripathi
  fullname: Tripathi, Diwakar
  organization: Computer Science and Engineering Department, Indian Institute of Information Technology
– sequence: 5
  givenname: Shailesh
  surname: Khapre
  fullname: Khapre, Shailesh
  organization: Department of Data Science & Artificial Intelligence, Dr. S. P. Mukherjee IIIT
– sequence: 6
  givenname: Achyut
  orcidid: 0000-0003-3165-3293
  surname: Shankar
  fullname: Shankar, Achyut
  email: ashankar2711@gmail.com
  organization: WMG, University of Warwick, Department of Computer Science and Engineering, Graphic Era Deemed to be University, School of Computer Science Engineering, Lovely Professional University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37362729$$D View this record in MEDLINE/PubMed
BookMark eNp9kctvFSEUxompsQ_9B1wYEjduUB4DzHVjmsZX0sSNxiVh4HAvzQyMMNOk_3253lq1i654_b7Dd853io5SToDQS0bfMkr1u8oY7TihXBAmhRKke4JOmNSCaM3ZUduLnhItKTtGp7VeUcqU5N0zdCy0UFzzzQn6eY5TnqyPDk_ruERit5AWPNgKHs8lXlt3gydYSnQVh1wwkB3YcdlhZwu8xxZ7gBmPYEuKaYvtPJds3e45ehrsWOHF3XqGfnz6-P3iC7n89vnrxfklcZ2WCxEb31vBZC90LyHIQUG7H3zgIIYwyAFCP4RO-aC6dvYhDEpr5XtpGfAGnaEPh7rzOkzgXTNf7Gia88mWG5NtNP-_pLgz23xtGOUdU4y3Cm_uKpT8a4W6mClWB-NoE-S1Gt4LytmGM9HQ1w_Qq7yW1PozfMPacKlWe-rVv5buvfwZegP4AXAl11og3COMmn2y5pCsacma38maron6ByIXF7vEvG8rjo9LxUFa2z9pC-Wv7UdUt8FPuE8
CitedBy_id crossref_primary_10_1080_23742917_2024_2371053
crossref_primary_10_1186_s13677_024_00602_2
crossref_primary_10_1109_ACCESS_2024_3371151
crossref_primary_10_1038_s41598_024_66603_y
crossref_primary_10_1007_s11042_024_18814_8
crossref_primary_10_1002_ett_70098
crossref_primary_10_1108_IJICC_04_2024_0189
crossref_primary_10_1109_JSYST_2024_3424259
crossref_primary_10_1007_s10723_025_09796_4
crossref_primary_10_1007_s10586_024_04507_2
crossref_primary_10_4015_S1016237224500066
crossref_primary_10_1007_s12083_024_01823_7
crossref_primary_10_1186_s12880_024_01235_2
crossref_primary_10_1007_s11042_024_19378_3
crossref_primary_10_1109_ACCESS_2024_3522560
crossref_primary_10_1109_ACCESS_2024_3410035
crossref_primary_10_1177_01423312241291288
crossref_primary_10_1007_s11082_023_05854_x
crossref_primary_10_1109_ACCESS_2023_3322429
Cites_doi 10.1016/j.cose.2019.03.008
10.1016/j.cose.2019.03.020
10.1016/j.cosrev.2019.02.001
10.1016/j.cose.2019.06.017
10.1016/j.is.2019.01.001
10.1109/TSC.2013.2295811
10.1016/j.ins.2018.10.021
10.1109/TNET.2011.2159735
10.1109/TCAD.2012.2223467
10.1109/TMC.2012.86
10.1109/TCOMM.2013.043013.120517
10.1016/j.ins.2019.05.025
10.1016/j.future.2018.08.043
10.1016/j.jisa.2019.03.009
10.1109/LCOMM.2011.092011.111200
10.1002/spy2.32
10.1016/j.ins.2019.03.035
10.1016/j.ins.2019.07.078
10.1016/j.ins.2019.04.036
10.1109/TC.2013.55
10.1142/S1793962313500165
10.1080/17445760.2013.831415
10.1016/j.jii.2019.07.002
10.1145/1795194.1795211
10.1016/j.ins.2018.12.016
10.1109/JBHI.2013.2262659
10.1016/j.comcom.2022.12.004
10.1016/j.sigpro.2019.06.024
10.1016/j.icte.2018.03.003
10.1016/j.future.2018.08.006
10.1016/j.comnet.2019.106866
10.1016/j.cose.2019.101570
10.1016/j.knosys.2019.05.022
10.1016/j.jisa.2019.04.011
10.1016/j.ipm.2019.02.009
10.1007/s11227-021-03720-9
10.1109/MPRV.2011.74
10.1016/j.future.2019.07.023
10.1109/JSAC.2014.140309
10.1016/j.eij.2015.02.002
10.1109/JSAC.2013.SUP.0513033
10.1016/j.sysarc.2019.01.005
10.1016/j.neucom.2019.07.039
10.1109/TNET.2012.2204407
10.1080/10798587.2013.771438
10.48550/arXiv.2107.04191
10.1016/j.future.2018.07.036
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jan 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jan 2024
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s11042-023-15363-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ABI/INFORM Global (Corporate)
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 7272
ExternalDocumentID PMC10241612
37362729
10_1007_s11042_023_15363_4
Genre Journal Article
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
-4Z
-59
-5G
-BR
-EM
ADINQ
GQ6
GROUPED_ABI_INFORM_COMPLETE
NPM
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c475t-39d8a31583785ef5b6e475bdf2e3bfb5bef8bf46df64bfbdffb6776d85a1e22e3
IEDL.DBID 8FG
ISSN 1380-7501
IngestDate Thu Aug 21 18:38:09 EDT 2025
Tue Aug 05 10:36:04 EDT 2025
Fri Jul 25 20:52:52 EDT 2025
Wed Feb 19 02:23:30 EST 2025
Tue Jul 01 05:12:52 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Thu Apr 10 07:12:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Security
Knowledgebase
Privacy Preserving
Deep learning system
Multi-Agent
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-39d8a31583785ef5b6e475bdf2e3bfb5bef8bf46df64bfbdffb6776d85a1e22e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3165-3293
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10241612
PMID 37362729
PQID 2911650763
PQPubID 54626
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10241612
proquest_miscellaneous_2830219213
proquest_journals_2911650763
pubmed_primary_37362729
crossref_primary_10_1007_s11042_023_15363_4
crossref_citationtrail_10_1007_s11042_023_15363_4
springer_journals_10_1007_s11042_023_15363_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Yargic (15363_CR46) 2019; 56
15363_CR47
S Wang (15363_CR42) 2013; 31
15363_CR45
15363_CR43
M Bewong (15363_CR6) 2019; 82
X Zheng (15363_CR49) 2019; 493
Z Ma (15363_CR30) 2019; 496
MS Rahman (15363_CR34) 2019; 180
F Lopes (15363_CR29) 2014; 29 Issue.2
V Puri (15363_CR33) 2019; 32
15363_CR50
15363_CR16
15363_CR15
15363_CR14
P Gupta (15363_CR21) 2013; 32
A Clementi (15363_CR13) 2013; 21
15363_CR12
15363_CR11
H Sajjad (15363_CR36) 2019; 86
15363_CR18
S Guo (15363_CR20) 2019; 164
D Li (15363_CR27) 2019; 47
D Chandramohan (15363_CR10) 2015; 16
15363_CR7
M Xiao (15363_CR44) 2014; 63
15363_CR26
15363_CR25
15363_CR8
15363_CR24
15363_CR3
15363_CR23
15363_CR2
15363_CR22
15363_CR4
Y Zhou (15363_CR51) 2019; 47
S Rashidibajgan (15363_CR35) 2019; 84
15363_CR28
A Benharref (15363_CR5) 2014; 18
C Dhasarathan (15363_CR17) 2023; 199
15363_CR1
15363_CR38
15363_CR37
D Chandramohan (15363_CR9) 2014; 5
C Groba (15363_CR19) 2014; 7
15363_CR32
NB Mehta (15363_CR31) 2013; 61
15363_CR39
Q Zhang (15363_CR48) 2019; 480
15363_CR41
15363_CR40
References_xml – ident: 15363_CR25
  doi: 10.1016/j.cose.2019.03.008
– volume: 84
  start-page: 244
  year: 2019
  ident: 15363_CR35
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2019.03.020
– volume: 32
  start-page: 45
  year: 2019
  ident: 15363_CR33
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2019.02.001
– volume: 86
  start-page: 358
  year: 2019
  ident: 15363_CR36
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2019.06.017
– volume: 82
  start-page: 53
  year: 2019
  ident: 15363_CR6
  publication-title: Inf Syst
  doi: 10.1016/j.is.2019.01.001
– volume: 7
  start-page: 642
  issue: 4
  year: 2014
  ident: 15363_CR19
  publication-title: Service Comput IEEE Trans
  doi: 10.1109/TSC.2013.2295811
– ident: 15363_CR50
  doi: 10.1016/j.ins.2018.10.021
– ident: 15363_CR1
– ident: 15363_CR38
  doi: 10.1109/TNET.2011.2159735
– volume: 32
  start-page: 8
  issue: 1
  year: 2013
  ident: 15363_CR21
  publication-title: Comput-Aid Des Integrate Circ Syst IEEE Trans
  doi: 10.1109/TCAD.2012.2223467
– ident: 15363_CR39
  doi: 10.1109/TMC.2012.86
– volume: 61
  start-page: 2735
  issue: 7
  year: 2013
  ident: 15363_CR31
  publication-title: Commun IEEE Trans
  doi: 10.1109/TCOMM.2013.043013.120517
– volume: 496
  start-page: 225
  year: 2019
  ident: 15363_CR30
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.05.025
– ident: 15363_CR40
  doi: 10.1016/j.future.2018.08.043
– ident: 15363_CR43
  doi: 10.1016/j.jisa.2019.03.009
– ident: 15363_CR47
  doi: 10.1109/LCOMM.2011.092011.111200
– ident: 15363_CR11
  doi: 10.1002/spy2.32
– volume: 47
  start-page: 59
  year: 2019
  ident: 15363_CR27
  publication-title: J Inf Secur Appl
– ident: 15363_CR18
  doi: 10.1016/j.ins.2019.03.035
– ident: 15363_CR45
  doi: 10.1016/j.ins.2019.07.078
– volume: 493
  start-page: 91
  year: 2019
  ident: 15363_CR49
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.04.036
– volume: 63
  start-page: 1682
  issue: 7
  year: 2014
  ident: 15363_CR44
  publication-title: Comput IEEE Trans
  doi: 10.1109/TC.2013.55
– volume: 5
  start-page: 1350016
  issue: 1
  year: 2014
  ident: 15363_CR9
  publication-title: Int J Model Simul Sci Comput (World Scientific)
  doi: 10.1142/S1793962313500165
– volume: 29 Issue.2
  start-page: 178
  year: 2014
  ident: 15363_CR29
  publication-title: Taylor Francis-Int J Parallel, Emerg Distribut Syst
  doi: 10.1080/17445760.2013.831415
– ident: 15363_CR3
  doi: 10.1016/j.jii.2019.07.002
– ident: 15363_CR22
  doi: 10.1145/1795194.1795211
– volume: 480
  start-page: 1
  year: 2019
  ident: 15363_CR48
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.12.016
– volume: 18
  start-page: 46
  issue: 1
  year: 2014
  ident: 15363_CR5
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2013.2262659
– volume: 199
  start-page: 87
  year: 2023
  ident: 15363_CR17
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2022.12.004
– volume: 164
  start-page: 320
  year: 2019
  ident: 15363_CR20
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2019.06.024
– ident: 15363_CR4
  doi: 10.1016/j.icte.2018.03.003
– ident: 15363_CR28
  doi: 10.1016/j.future.2018.08.006
– ident: 15363_CR7
  doi: 10.1016/j.comnet.2019.106866
– volume: 47
  start-page: 295
  year: 2019
  ident: 15363_CR51
  publication-title: J Inf Secur Appl
– ident: 15363_CR8
  doi: 10.1016/j.cose.2019.101570
– volume: 180
  start-page: 104
  year: 2019
  ident: 15363_CR34
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.05.022
– ident: 15363_CR15
  doi: 10.1016/j.jisa.2019.04.011
– ident: 15363_CR32
– volume: 56
  start-page: 994
  year: 2019
  ident: 15363_CR46
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2019.02.009
– ident: 15363_CR16
  doi: 10.1007/s11227-021-03720-9
– ident: 15363_CR41
  doi: 10.1109/MPRV.2011.74
– ident: 15363_CR24
  doi: 10.1016/j.future.2019.07.023
– ident: 15363_CR2
  doi: 10.1109/JSAC.2014.140309
– volume: 16
  start-page: 151
  year: 2015
  ident: 15363_CR10
  publication-title: Egypt Inf J (Elsevier)
  doi: 10.1016/j.eij.2015.02.002
– volume: 31
  start-page: 369
  issue: 9
  year: 2013
  ident: 15363_CR42
  publication-title: IEEE J Select Areas Communications/Supplement
  doi: 10.1109/JSAC.2013.SUP.0513033
– ident: 15363_CR37
  doi: 10.1016/j.sysarc.2019.01.005
– ident: 15363_CR26
  doi: 10.1016/j.neucom.2019.07.039
– volume: 21
  start-page: 610
  issue: 2
  year: 2013
  ident: 15363_CR13
  publication-title: IEEE/ACM Trans Netw
  doi: 10.1109/TNET.2012.2204407
– ident: 15363_CR23
  doi: 10.1080/10798587.2013.771438
– ident: 15363_CR12
  doi: 10.48550/arXiv.2107.04191
– ident: 15363_CR14
  doi: 10.1016/j.future.2018.07.036
SSID ssj0016524
Score 2.4858844
Snippet In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7249
SubjectTerms Access control
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Diagnosis
Health care
Health services
Medical diagnosis
Medical electronics
Multiagent systems
Multimedia Information Systems
Patients
Privacy
Reagents
Real time
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8N9gIPjPGZwSYj8QaWmsR2zN4qNFRN2p5WwVvkT0CiaUVbJP57zomTrnQg7THxJU7y8_nO8d3vAE6LzKdam5QKJjVlinuqleaUI8TSSWd9nUj767cYDNnPG34Tk8KmbbR7uyVZz9SLZLc0pJKgjaGopSKnbA0-cly7h3E9zPrd3oHgsZSt7FG0h2lMlfn3PZbN0YqPuRoq-Wq_tDZDV9uwFf1H0m8A_wwfXLUDn9raDCSq6g5s_kU0uAvXfVKNR8reG1JHEFIVMqpIMGGWYE9PyjyTUSiuZaYE3VjiaJMgSUJk2HeiiHVuQmKJiVvSMpHvwfDqx5_LAY0lFahhBZ_R_MJKlac80Mhz57kWDs9r6zOXa6-5dl5qz4T1guGx9V6LohBWcpW6DIX2Yb0aV-4QiDG2V2QW_SPPmM-ETEONCYX2XprCMJdA2n7Z0kS-8VD24qFcMCUHNEpEo6zRKFkCZ901k4Zt413p4xawMmretMwuAqFQD6fNBE66ZtSZsBGiKjeeo0wgPQtEcChz0ODbdZcXaNJxxZGAXEK-Ewh83Mst1f1dzcuNvlpYLmYJnLeDZPFcb7_Gl_8TP4INHPSs-Q10DOuzx7n7io7RTH-r9eAFL3QESw
  priority: 102
  providerName: Springer Nature
Title A nomadic multi-agent based privacy metrics for e-health care: a deep learning approach
URI https://link.springer.com/article/10.1007/s11042-023-15363-4
https://www.ncbi.nlm.nih.gov/pubmed/37362729
https://www.proquest.com/docview/2911650763
https://www.proquest.com/docview/2830219213
https://pubmed.ncbi.nlm.nih.gov/PMC10241612
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4EDj_IKLZWRuIFFk9iOy6Va0G4rEBVCrCinyE-oRLMLu63Uf89M4mRZKnqKYk_iOGN7xo_5PoAXVRFza13OldCWCyMjt8ZKLlHFOujgYxtI-_FYHU3F-xN5khbcFulYZT8mtgO1nzlaI39d7BNQDM66y4P5L06sUbS7mig0bsJmjpaGWrieHA67CEomUlu9x9Ey5ilopgudyykwBS0Wxz6vSi7WDdMVb_Pqocl_dk5bgzS5B3eSJ8lGnervw43QbMHdnqWBpU67Bbf_ghx8AF9HrJmdGX_qWHuWkBuKrWJkzDzDki6Mu2RnRLPlFgwdWhZ4FyrJ6IzYG2aYD2HOEtnEd9Zjkj-E6WT85d0RT-QK3IlKLnm577Upc0mA8jJEaVXAdOtjEUobrbQhahuF8lEJvPcxWlVVymtp8lCg0CPYaGZNeALMOb9XFR49pShELJTOiW3CoOXXrnIiZJD3f7Z2CXmcCDB-1ivMZNJGjdqoW23UIoOXwzPzDnfjWumdXmF16oOLetViMng-ZGPvoS0R04TZOcoQ_BlBwqHM406_Q3FlhcYd5x4Z6DXNDwKEzL2e05z-aBG60WujiWORwau-kay-6__VeHp9NbbhVoEv7haAdmBj-fs8PEOXaGl323a_C5ujw28fxnh9Oz7-9BlTp8XoD1OBC4c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOPMorUMBIcAKLxrETLxJCFbBs6ePUit5SP9tKNLuwW1D_FL-RmbyWpaK3HpNM4thje8b2zPcBvChETK11Kc-ltlwaFbk1VnGFKtZBBx_rRNrtnXy0J7_sq_0l-N3lwlBYZTcn1hO1HzvaI38jBgQUg6vu7P3kOyfWKDpd7Sg0mm6xGc5-4ZJt-m7jI-r3pRDDT7sfRrxlFeBOFmrGs4HXJksVIamrEJXNA963PoqQ2WiVDVHbKHMfc4nXPkabF0XutTJpECiE370CV2WWDSiEUA8_96cWuWpJdPUaR0uctkk6TapeSokwaCE5zjF5xuWiITzn3Z4P0vznpLY2gMPbcLP1XNl609XuwFKoVuBWxwrB2kliBW78BXF4F76us2p8YvyxY3XsIjeUy8XIeHqGJf007oydEK2XmzJ0oFngTWomo5i0t8wwH8KEteQWh6zDQL8He5fS7PdhuRpX4SEw5_xaITx6ZlHKKHKdEruFQU9Du8LJkEDatWzpWqRzItz4Vs4xmkkbJWqjrLVRygRe9e9MGpyPC6VXO4WV7ZiflvMemsDz_jGOVjqCMVUYn6IMwa0RBB3KPGj02xeXFehM4FonAb2g-V6AkMAXn1THRzUiOHqJtFAVCbzuOsn8v_5fjUcXV-MZXBvtbm-VWxs7m4_husBCms2nVVie_TgNT9Adm9mn9RhgcHDZg-4P1zpHBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48CivQAEjwQmsbhzbcZEQqihLS6HiQEVvqZ9QiWYXdgvqX-PXMZPHLktFbz0mmcRJxuMZ2zPfB_CkFCl3zudcS-O4tCpxZ53iClVsookhNYW0H3b11p58t6_2l-B3XwtDaZX9mNgM1GHkaY18TawTUAzOuou11KVFfNwcvhp_58QgRTutPZ1G20V24skvnL5NXm5voq6fCjF88-n1Fu8YBriXpZryYj0YW-SKUNVVTMrpiOddSCIWLjnlYjIuSR2SlngcUnK6LHUwyuZRoBA-9wJcLAszIPYEM3w728HQqiPUNQOOXjnvCnbasr2cimLQW3Icb3TB5aJTPBXpnk7Y_GfXtnGGw-twtYti2Ubb7W7AUqxX4FrPEMG6AWMFrvwFd3gTPm-wenRkw6FnTR4jt1TXxciRBoYt_bT-hB0RxZefMAymWeRtmSaj_LQXzLIQ45h1RBdfWI-Hfgv2zuW334blelTHu8C8D4NSBIzSkpRJaJMT04XFqMP40suYQd7_2cp3qOdEvvGtmuM1kzYq1EbVaKOSGTyb3TNuMT_OlF7tFVZ19j-p5r01g8ezy2i5tB1j6zg6RhmCXiM4OpS50-p31lxRYmCB854MzILmZwKECr54pT782qCDY8RIk1aRwfO-k8zf6_-fce_sz3gEl9Dcqvfbuzv34bLANtp1qFVYnv44jg8wMpu6h40JMDg4b5v7A_TySzE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nomadic+multi-agent+based+privacy+metrics+for+e-health+care%3A+a+deep+learning+approach&rft.jtitle=Multimedia+tools+and+applications&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=3&rft.spage=7249&rft.epage=7272&rft_id=info:doi/10.1007%2Fs11042-023-15363-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon