Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor

Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 198; no. 8; pp. 1337 - 1346
Main Authors Kane, Aunica L., Brutinel, Evan D., Joo, Heena, Maysonet, Rebecca, VanDrisse, Chelsey M., Kotloski, Nicholas J., Gralnick, Jeffrey A.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N -acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis . IMPORTANCE Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis . Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation.
AbstractList Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N -acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis . IMPORTANCE Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis . Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation.
Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis. Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis. Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation.
Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms inS. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation inS. oneidensis. Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation.
Author VanDrisse, Chelsey M.
Kane, Aunica L.
Joo, Heena
Maysonet, Rebecca
Brutinel, Evan D.
Kotloski, Nicholas J.
Gralnick, Jeffrey A.
Author_xml – sequence: 1
  givenname: Aunica L.
  surname: Kane
  fullname: Kane, Aunica L.
  organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
– sequence: 2
  givenname: Evan D.
  surname: Brutinel
  fullname: Brutinel, Evan D.
  organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
– sequence: 3
  givenname: Heena
  surname: Joo
  fullname: Joo, Heena
  organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
– sequence: 4
  givenname: Rebecca
  surname: Maysonet
  fullname: Maysonet, Rebecca
  organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
– sequence: 5
  givenname: Chelsey M.
  surname: VanDrisse
  fullname: VanDrisse, Chelsey M.
  organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
– sequence: 6
  givenname: Nicholas J.
  surname: Kotloski
  fullname: Kotloski, Nicholas J.
  organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
– sequence: 7
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
  organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA, Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26883823$$D View this record in MEDLINE/PubMed
BookMark eNptkdFrFDEQh4NU7LX65LsEfCxbJ5vNbvIitKWtlhYF-x6y2YmXspecSe4O_etNbS0qPgUy33zzY-aA7IUYkJDXDI4Za-W7q9NjANUODRPPyIKBko0QHPbIAqBljWKK75ODnO8AWNeJ9gXZb3spuWz5gvy4iGllCtIbLGaMs88r6gP9ssSdCTjPhtZhfsKQfaaXGDBVONPPKZYY6E0sfou0OixSE6b6j1sMpaIp7sqS7nxZxk2pNXo-oy2pNp1Yi-sS00vy3Jk546vH95DcXpzfnn1orj9dfjw7uW5sN4jS8K6Xk2K97WEcjRMKO2DGCiGAGxglOJTO9VIhmGlqJ9663mE_gXVs7A0_JO8ftOvNuMLJ1njJzHqd_Mqk7zoar_-uBL_UX-NWd1IooaAK3j4KUvy2wVz0XdykUCNrNkhQbODdUKk3f4558v9edQWOHgCbYs4J3RPCQN8fUl-d6l-H1ExUmv1DW19M8fE-o5__2_MT0QSjFQ
CODEN JOBAAY
CitedBy_id crossref_primary_10_1186_s13568_020_00966_z
crossref_primary_10_1016_j_ymben_2025_02_002
crossref_primary_10_1080_01490451_2016_1199152
crossref_primary_10_5189_revpolarography_68_15
crossref_primary_10_1016_j_bioelechem_2024_108661
crossref_primary_10_1016_j_envres_2020_110196
crossref_primary_10_1021_acs_analchem_9b02900
crossref_primary_10_1080_01490451_2016_1182834
crossref_primary_10_1093_bbb_zbab088
crossref_primary_10_1038_s42003_021_02040_1
crossref_primary_10_1016_j_jclepro_2020_124084
crossref_primary_10_1007_s11306_017_1201_3
crossref_primary_10_1016_j_joule_2024_10_005
crossref_primary_10_1021_acssynbio_8b00218
crossref_primary_10_4236_ajac_2019_109031
crossref_primary_10_1080_07388551_2023_2167065
crossref_primary_10_1021_acs_est_3c01367
crossref_primary_10_4014_jmb_2212_12024
crossref_primary_10_1021_acsabm_4c01276
crossref_primary_10_1016_j_pss_2020_104850
crossref_primary_10_1038_s41467_018_03416_4
crossref_primary_10_3389_fenrg_2019_00095
crossref_primary_10_1128_spectrum_00512_24
crossref_primary_10_1073_pnas_2000802117
crossref_primary_10_1038_srep31143
crossref_primary_10_1016_j_bioelechem_2019_05_010
crossref_primary_10_1021_acssynbio_2c00408
crossref_primary_10_1128_AEM_02668_18
crossref_primary_10_1002_smll_202311016
crossref_primary_10_1021_jacs_2c00934
crossref_primary_10_1038_s41598_019_43771_w
crossref_primary_10_1093_femsre_fuz031
crossref_primary_10_1016_j_jhazmat_2021_126090
crossref_primary_10_1128_mBio_01263_17
crossref_primary_10_1128_aem_01108_23
crossref_primary_10_3390_microorganisms10081585
crossref_primary_10_1128_AEM_00415_18
crossref_primary_10_1128_aem_00868_23
crossref_primary_10_1186_s40643_019_0245_9
crossref_primary_10_1128_spectrum_02798_22
crossref_primary_10_1021_acscatal_7b02736
crossref_primary_10_1016_j_enzmictec_2018_05_005
crossref_primary_10_1128_mSystems_00165_16
crossref_primary_10_1039_D1NA00686J
crossref_primary_10_1111_1751_7915_13309
crossref_primary_10_1016_j_biotechadv_2019_02_007
crossref_primary_10_1002_slct_201602021
crossref_primary_10_1007_s00253_020_10608_w
crossref_primary_10_1016_j_ymben_2023_08_004
crossref_primary_10_1016_j_synbio_2025_01_001
crossref_primary_10_1128_AEM_01253_20
Cites_doi 10.1128/AEM.72.4.2925-2935.2006
10.1038/nrmicro1947
10.1128/AEM.01588-06
10.1111/j.1365-2958.2010.07266.x
10.1128/AEM.32.6.781-791.1976
10.1128/JB.00090-10
10.1128/JB.187.20.7138-7145.2005
10.1128/JB.180.23.6292-6297.1998
10.1073/pnas.0806798106
10.1128/AEM.05382-11
10.1128/aem.61.4.1551-1554.1995
10.1128/AEM.02183-12
10.1046/j.1365-2958.2001.02257.x
10.1128/JB.00925-09
10.1093/nar/gkh340
10.1016/j.bbabio.2008.09.008
10.1007/s00253-010-2820-z
10.1073/pnas.0900086106
10.1126/science.1068186
10.1128/JB.01464-08
10.1128/JB.182.1.67-75.2000
10.1093/molbev/mst197
10.1007/s10482-006-9088-4
10.1093/oso/9780195135848.001.0001
10.1042/BST20120150
10.1128/AEM.69.6.3636-3639.2003
10.1016/j.biosystems.2011.10.003
10.1046/j.1365-2672.2000.00910.x
10.1074/jbc.M605052200
10.1042/BST0330042
10.1016/j.tim.2004.02.007
10.1146/annurev.micro.61.080706.093257
10.1042/BJ20120197
10.2307/2408678
10.1007/0-387-30746-X_45
ContentType Journal Article
Copyright Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Copyright American Society for Microbiology Apr 2016
Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
Copyright_xml – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved.
– notice: Copyright American Society for Microbiology Apr 2016
– notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1128/JB.00927-15
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Genetics Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Formate Metabolism in S. oneidensis
EISSN 1098-5530
EndPage 1346
ExternalDocumentID PMC4859590
4021823111
26883823
10_1128_JB_00927_15
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: DOD | Office of Naval Research (ONR)
  grantid: N000141310552
– fundername: DOD | Office of Naval Research (ONR)
  grantid: N000141210309
GroupedDBID ---
-DZ
-~X
.55
0R~
18M
29J
2WC
39C
4.4
53G
5GY
5RE
5VS
79B
85S
AAGFI
AAYXX
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
O9-
OK1
P-S
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YQT
YR2
YZZ
ZCA
~02
~KM
.GJ
186
1VV
3O-
8WZ
9M8
A6W
ADXHL
AFFDN
AFFNX
AGCDD
AI.
AIDAL
AJUXI
C1A
CGR
CUY
CVF
ECM
EIF
MVM
NHB
NPM
OHT
P-O
QZG
VH1
WHG
Y6R
ZCG
ZGI
ZXP
ZY4
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c475t-3468d916c60bbaf59e401ac55503a0b80fe8ff689e0add2d32f6fe6d0cf1b6a3
ISSN 0021-9193
IngestDate Thu Aug 21 18:23:02 EDT 2025
Mon Jun 30 07:44:37 EDT 2025
Mon Jul 21 05:54:15 EDT 2025
Tue Jul 01 03:26:32 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright © 2016, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c475t-3468d916c60bbaf59e401ac55503a0b80fe8ff689e0add2d32f6fe6d0cf1b6a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
Citation Kane AL, Brutinel ED, Joo H, Maysonet R, VanDrisse CM, Kotloski NJ, Gralnick JA. 2016. Formate metabolism in Shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor. J Bacteriol 198:1337–1346. doi:10.1128/JB.00927-15.
Present address: Evan D. Brutinel, 3M Corporate Research Materials Lab, 3M Center, St. Paul, Minnesota, USA; Nicholas J. Kotloski, George Mason University, Fairfax, Virginia, USA.
OpenAccessLink https://jb.asm.org/content/jb/198/8/1337.full.pdf
PMID 26883823
PQID 1780917347
PQPubID 40724
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4859590
proquest_journals_1780917347
pubmed_primary_26883823
crossref_primary_10_1128_JB_00927_15
crossref_citationtrail_10_1128_JB_00927_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
Balch W (e_1_3_3_23_2) 1976; 32
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
Nei M (e_1_3_3_28_2) 2000
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
Leonhartsberger S (e_1_3_3_21_2) 2002; 4
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
References_xml – ident: e_1_3_3_19_2
  doi: 10.1128/AEM.72.4.2925-2935.2006
– ident: e_1_3_3_4_2
  doi: 10.1038/nrmicro1947
– ident: e_1_3_3_13_2
  doi: 10.1128/AEM.01588-06
– ident: e_1_3_3_37_2
  doi: 10.1111/j.1365-2958.2010.07266.x
– volume: 4
  start-page: 269
  year: 2002
  ident: e_1_3_3_21_2
  article-title: The molecular biology of formate metabolism in enterobacteria
  publication-title: J Mol Microbiol Biotechnol
– volume: 32
  start-page: 781
  year: 1976
  ident: e_1_3_3_23_2
  article-title: New approach to cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (Hs-Com)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.32.6.781-791.1976
– ident: e_1_3_3_29_2
  doi: 10.1128/JB.00090-10
– ident: e_1_3_3_34_2
  doi: 10.1128/JB.187.20.7138-7145.2005
– ident: e_1_3_3_8_2
  doi: 10.1128/JB.180.23.6292-6297.1998
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.0806798106
– ident: e_1_3_3_30_2
  doi: 10.1128/AEM.05382-11
– ident: e_1_3_3_20_2
  doi: 10.1128/aem.61.4.1551-1554.1995
– ident: e_1_3_3_12_2
  doi: 10.1128/AEM.02183-12
– ident: e_1_3_3_9_2
  doi: 10.1046/j.1365-2958.2001.02257.x
– ident: e_1_3_3_24_2
  doi: 10.1128/JB.00925-09
– ident: e_1_3_3_25_2
  doi: 10.1093/nar/gkh340
– ident: e_1_3_3_11_2
  doi: 10.1016/j.bbabio.2008.09.008
– ident: e_1_3_3_17_2
  doi: 10.1007/s00253-010-2820-z
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.0900086106
– ident: e_1_3_3_22_2
  doi: 10.1126/science.1068186
– ident: e_1_3_3_32_2
  doi: 10.1128/JB.01464-08
– ident: e_1_3_3_6_2
  doi: 10.1128/JB.182.1.67-75.2000
– ident: e_1_3_3_26_2
  doi: 10.1093/molbev/mst197
– ident: e_1_3_3_16_2
  doi: 10.1007/s10482-006-9088-4
– volume-title: Molecular evolution and phylogenetics
  year: 2000
  ident: e_1_3_3_28_2
  doi: 10.1093/oso/9780195135848.001.0001
– ident: e_1_3_3_7_2
  doi: 10.1042/BST20120150
– ident: e_1_3_3_15_2
  doi: 10.1128/AEM.69.6.3636-3639.2003
– ident: e_1_3_3_31_2
  doi: 10.1016/j.biosystems.2011.10.003
– ident: e_1_3_3_18_2
  doi: 10.1046/j.1365-2672.2000.00910.x
– ident: e_1_3_3_33_2
  doi: 10.1074/jbc.M605052200
– ident: e_1_3_3_35_2
  doi: 10.1042/BST0330042
– ident: e_1_3_3_36_2
  doi: 10.1016/j.tim.2004.02.007
– ident: e_1_3_3_3_2
  doi: 10.1146/annurev.micro.61.080706.093257
– ident: e_1_3_3_5_2
  doi: 10.1042/BJ20120197
– ident: e_1_3_3_27_2
  doi: 10.2307/2408678
– ident: e_1_3_3_2_2
  doi: 10.1007/0-387-30746-X_45
SSID ssj0014452
Score 2.412532
Snippet Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of...
Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1337
SubjectTerms Anaerobic conditions
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Bioremediation
Biotechnology
Carbon sources
Dehydrogenase
Dehydrogenases
Ecophysiology
Energy conservation
Fermentation
Formate Dehydrogenases - genetics
Formate Dehydrogenases - metabolism
Formates - metabolism
Gene Deletion
Gene Expression Regulation, Bacterial - physiology
Gram-negative bacteria
Iron oxides
Metabolism
Operon
Organic carbon
Oxidation
Phylogeny
Physiology
Protons
Shewanella - genetics
Shewanella - metabolism
Title Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor
URI https://www.ncbi.nlm.nih.gov/pubmed/26883823
https://www.proquest.com/docview/1780917347
https://pubmed.ncbi.nlm.nih.gov/PMC4859590
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBIXxG86BvJhJ6aMJE4c57ihTVNREYci9RY5ia1WGmm1BU3bYX8779mOk0CRgEtUJalT9ftsv_fy3vcIOYxzmSQq5oEOIx0krC6DvJZhUDOumarR5sUC5_kXfvEtmS3T5WRyP6wuacvj6m5nXcn_oArnAFeskv0HZP2gcAI-A75wBITh-FcYnxuDEyamagHLS-x3sYbpulI3ErNX5NGmQRmrBkVHrL40Rlm_Xm1QS2O-MVlDMIavGTBqTtcYj7ppVyZEi1nLsAKcuWY52FxCba1A8S6btrTaz6NQ_WeXTXti6lCOfLAZWNWCiWtC0GjP97nHs83G7oiq8ZvGXN6CZ2DfnDhKDAMWER_kuSi7yKKGKbYrGq3CuRjQTQzWVPCis92LfYwFDLPTYxSOygJbFjqAffvd4B5zIfBtZ7_j-TzE7tID8jAGN8MUiy99ihD4mmnsajrhWR8HT0INaffdsUHzm5fya7LtwHpZPCVPHET0xHLoGZmo5jl5ZBuR3r4gd45JtGcSXTe0ZxLtmUQ9k6hlErVMooZJFJhEOyZRyyTqmATXaMck2jHpJVmcny0-XQSuK0dQJVnaBizhoganouJhWUqd5gpcdFml4OoyGZYi1EpozUWuQtg745rFmmvF67DSUckle0X2GvjNbwgVUtc5EEaIUiVlWolQVoxzVWUiZJqzKfnQ_bNF5RTrsXHKZWE811gUs9PCIFJE6ZQc-pu3Vqhl920HHUSFm8nXRQQPzKOMJdmUvLZo-TE6mKckG-Hob0B99vGVZr0yOu0Jagfm4f4fx3xLHvcT5IDstVc_1DuwcdvyvSHiT-ALrS8
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formate+Metabolism+in+Shewanella+oneidensis+Generates+Proton+Motive+Force+and+Prevents+Growth+without+an+Electron+Acceptor&rft.jtitle=Journal+of+bacteriology&rft.au=Kane%2C+Aunica+L&rft.au=Brutinel%2C+Evan+D&rft.au=Joo%2C+Heena&rft.au=Maysonet%2C+Rebecca&rft.date=2016-04-01&rft.eissn=1098-5530&rft.volume=198&rft.issue=8&rft.spage=1337&rft_id=info:doi/10.1128%2FJB.00927-15&rft_id=info%3Apmid%2F26883823&rft.externalDocID=26883823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon