Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor
Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation...
Saved in:
Published in | Journal of bacteriology Vol. 198; no. 8; pp. 1337 - 1346 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shewanella oneidensis
strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by
S. oneidensis
are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in
S. oneidensis
have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by
S. oneidensis
through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of
S. oneidensis
through the generation of proton motive force. Exogenous formate also greatly accelerated growth on
N
-acetylglucosamine, a carbon source normally utilized very slowly by
S. oneidensis
under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of
S. oneidensis
using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in
S. oneidensis
.
IMPORTANCE
Shewanella
species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of
Shewanella oneidensis
. Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of
S. oneidensis
are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation. |
---|---|
AbstractList | Shewanella oneidensis
strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by
S. oneidensis
are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in
S. oneidensis
have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by
S. oneidensis
through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of
S. oneidensis
through the generation of proton motive force. Exogenous formate also greatly accelerated growth on
N
-acetylglucosamine, a carbon source normally utilized very slowly by
S. oneidensis
under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of
S. oneidensis
using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in
S. oneidensis
.
IMPORTANCE
Shewanella
species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of
Shewanella oneidensis
. Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of
S. oneidensis
are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation. Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis. Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis. Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation. Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms inS. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation inS. oneidensis. Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation. |
Author | VanDrisse, Chelsey M. Kane, Aunica L. Joo, Heena Maysonet, Rebecca Brutinel, Evan D. Kotloski, Nicholas J. Gralnick, Jeffrey A. |
Author_xml | – sequence: 1 givenname: Aunica L. surname: Kane fullname: Kane, Aunica L. organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA – sequence: 2 givenname: Evan D. surname: Brutinel fullname: Brutinel, Evan D. organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA – sequence: 3 givenname: Heena surname: Joo fullname: Joo, Heena organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA – sequence: 4 givenname: Rebecca surname: Maysonet fullname: Maysonet, Rebecca organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA – sequence: 5 givenname: Chelsey M. surname: VanDrisse fullname: VanDrisse, Chelsey M. organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA – sequence: 6 givenname: Nicholas J. surname: Kotloski fullname: Kotloski, Nicholas J. organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA – sequence: 7 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA, Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26883823$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdFrFDEQh4NU7LX65LsEfCxbJ5vNbvIitKWtlhYF-x6y2YmXspecSe4O_etNbS0qPgUy33zzY-aA7IUYkJDXDI4Za-W7q9NjANUODRPPyIKBko0QHPbIAqBljWKK75ODnO8AWNeJ9gXZb3spuWz5gvy4iGllCtIbLGaMs88r6gP9ssSdCTjPhtZhfsKQfaaXGDBVONPPKZYY6E0sfou0OixSE6b6j1sMpaIp7sqS7nxZxk2pNXo-oy2pNp1Yi-sS00vy3Jk546vH95DcXpzfnn1orj9dfjw7uW5sN4jS8K6Xk2K97WEcjRMKO2DGCiGAGxglOJTO9VIhmGlqJ9663mE_gXVs7A0_JO8ftOvNuMLJ1njJzHqd_Mqk7zoar_-uBL_UX-NWd1IooaAK3j4KUvy2wVz0XdykUCNrNkhQbODdUKk3f4558v9edQWOHgCbYs4J3RPCQN8fUl-d6l-H1ExUmv1DW19M8fE-o5__2_MT0QSjFQ |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1186_s13568_020_00966_z crossref_primary_10_1016_j_ymben_2025_02_002 crossref_primary_10_1080_01490451_2016_1199152 crossref_primary_10_5189_revpolarography_68_15 crossref_primary_10_1016_j_bioelechem_2024_108661 crossref_primary_10_1016_j_envres_2020_110196 crossref_primary_10_1021_acs_analchem_9b02900 crossref_primary_10_1080_01490451_2016_1182834 crossref_primary_10_1093_bbb_zbab088 crossref_primary_10_1038_s42003_021_02040_1 crossref_primary_10_1016_j_jclepro_2020_124084 crossref_primary_10_1007_s11306_017_1201_3 crossref_primary_10_1016_j_joule_2024_10_005 crossref_primary_10_1021_acssynbio_8b00218 crossref_primary_10_4236_ajac_2019_109031 crossref_primary_10_1080_07388551_2023_2167065 crossref_primary_10_1021_acs_est_3c01367 crossref_primary_10_4014_jmb_2212_12024 crossref_primary_10_1021_acsabm_4c01276 crossref_primary_10_1016_j_pss_2020_104850 crossref_primary_10_1038_s41467_018_03416_4 crossref_primary_10_3389_fenrg_2019_00095 crossref_primary_10_1128_spectrum_00512_24 crossref_primary_10_1073_pnas_2000802117 crossref_primary_10_1038_srep31143 crossref_primary_10_1016_j_bioelechem_2019_05_010 crossref_primary_10_1021_acssynbio_2c00408 crossref_primary_10_1128_AEM_02668_18 crossref_primary_10_1002_smll_202311016 crossref_primary_10_1021_jacs_2c00934 crossref_primary_10_1038_s41598_019_43771_w crossref_primary_10_1093_femsre_fuz031 crossref_primary_10_1016_j_jhazmat_2021_126090 crossref_primary_10_1128_mBio_01263_17 crossref_primary_10_1128_aem_01108_23 crossref_primary_10_3390_microorganisms10081585 crossref_primary_10_1128_AEM_00415_18 crossref_primary_10_1128_aem_00868_23 crossref_primary_10_1186_s40643_019_0245_9 crossref_primary_10_1128_spectrum_02798_22 crossref_primary_10_1021_acscatal_7b02736 crossref_primary_10_1016_j_enzmictec_2018_05_005 crossref_primary_10_1128_mSystems_00165_16 crossref_primary_10_1039_D1NA00686J crossref_primary_10_1111_1751_7915_13309 crossref_primary_10_1016_j_biotechadv_2019_02_007 crossref_primary_10_1002_slct_201602021 crossref_primary_10_1007_s00253_020_10608_w crossref_primary_10_1016_j_ymben_2023_08_004 crossref_primary_10_1016_j_synbio_2025_01_001 crossref_primary_10_1128_AEM_01253_20 |
Cites_doi | 10.1128/AEM.72.4.2925-2935.2006 10.1038/nrmicro1947 10.1128/AEM.01588-06 10.1111/j.1365-2958.2010.07266.x 10.1128/AEM.32.6.781-791.1976 10.1128/JB.00090-10 10.1128/JB.187.20.7138-7145.2005 10.1128/JB.180.23.6292-6297.1998 10.1073/pnas.0806798106 10.1128/AEM.05382-11 10.1128/aem.61.4.1551-1554.1995 10.1128/AEM.02183-12 10.1046/j.1365-2958.2001.02257.x 10.1128/JB.00925-09 10.1093/nar/gkh340 10.1016/j.bbabio.2008.09.008 10.1007/s00253-010-2820-z 10.1073/pnas.0900086106 10.1126/science.1068186 10.1128/JB.01464-08 10.1128/JB.182.1.67-75.2000 10.1093/molbev/mst197 10.1007/s10482-006-9088-4 10.1093/oso/9780195135848.001.0001 10.1042/BST20120150 10.1128/AEM.69.6.3636-3639.2003 10.1016/j.biosystems.2011.10.003 10.1046/j.1365-2672.2000.00910.x 10.1074/jbc.M605052200 10.1042/BST0330042 10.1016/j.tim.2004.02.007 10.1146/annurev.micro.61.080706.093257 10.1042/BJ20120197 10.2307/2408678 10.1007/0-387-30746-X_45 |
ContentType | Journal Article |
Copyright | Copyright © 2016, American Society for Microbiology. All Rights Reserved. Copyright American Society for Microbiology Apr 2016 Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. – notice: Copyright American Society for Microbiology Apr 2016 – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1128/JB.00927-15 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Formate Metabolism in S. oneidensis |
EISSN | 1098-5530 |
EndPage | 1346 |
ExternalDocumentID | PMC4859590 4021823111 26883823 10_1128_JB_00927_15 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: DOD | Office of Naval Research (ONR) grantid: N000141310552 – fundername: DOD | Office of Naval Research (ONR) grantid: N000141210309 |
GroupedDBID | --- -DZ -~X .55 0R~ 18M 29J 2WC 39C 4.4 53G 5GY 5RE 5VS 79B 85S AAGFI AAYXX ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B O9- OK1 P-S P2P PQQKQ RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT W8F WH7 WOQ X7M YQT YR2 YZZ ZCA ~02 ~KM .GJ 186 1VV 3O- 8WZ 9M8 A6W ADXHL AFFDN AFFNX AGCDD AI. AIDAL AJUXI C1A CGR CUY CVF ECM EIF MVM NHB NPM OHT P-O QZG VH1 WHG Y6R ZCG ZGI ZXP ZY4 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c475t-3468d916c60bbaf59e401ac55503a0b80fe8ff689e0add2d32f6fe6d0cf1b6a3 |
ISSN | 0021-9193 |
IngestDate | Thu Aug 21 18:23:02 EDT 2025 Mon Jun 30 07:44:37 EDT 2025 Mon Jul 21 05:54:15 EDT 2025 Tue Jul 01 03:26:32 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Copyright © 2016, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c475t-3468d916c60bbaf59e401ac55503a0b80fe8ff689e0add2d32f6fe6d0cf1b6a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 Citation Kane AL, Brutinel ED, Joo H, Maysonet R, VanDrisse CM, Kotloski NJ, Gralnick JA. 2016. Formate metabolism in Shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor. J Bacteriol 198:1337–1346. doi:10.1128/JB.00927-15. Present address: Evan D. Brutinel, 3M Corporate Research Materials Lab, 3M Center, St. Paul, Minnesota, USA; Nicholas J. Kotloski, George Mason University, Fairfax, Virginia, USA. |
OpenAccessLink | https://jb.asm.org/content/jb/198/8/1337.full.pdf |
PMID | 26883823 |
PQID | 1780917347 |
PQPubID | 40724 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4859590 proquest_journals_1780917347 pubmed_primary_26883823 crossref_primary_10_1128_JB_00927_15 crossref_citationtrail_10_1128_JB_00927_15 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2016 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 Balch W (e_1_3_3_23_2) 1976; 32 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 Nei M (e_1_3_3_28_2) 2000 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 Leonhartsberger S (e_1_3_3_21_2) 2002; 4 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 |
References_xml | – ident: e_1_3_3_19_2 doi: 10.1128/AEM.72.4.2925-2935.2006 – ident: e_1_3_3_4_2 doi: 10.1038/nrmicro1947 – ident: e_1_3_3_13_2 doi: 10.1128/AEM.01588-06 – ident: e_1_3_3_37_2 doi: 10.1111/j.1365-2958.2010.07266.x – volume: 4 start-page: 269 year: 2002 ident: e_1_3_3_21_2 article-title: The molecular biology of formate metabolism in enterobacteria publication-title: J Mol Microbiol Biotechnol – volume: 32 start-page: 781 year: 1976 ident: e_1_3_3_23_2 article-title: New approach to cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (Hs-Com)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere publication-title: Appl Environ Microbiol doi: 10.1128/AEM.32.6.781-791.1976 – ident: e_1_3_3_29_2 doi: 10.1128/JB.00090-10 – ident: e_1_3_3_34_2 doi: 10.1128/JB.187.20.7138-7145.2005 – ident: e_1_3_3_8_2 doi: 10.1128/JB.180.23.6292-6297.1998 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.0806798106 – ident: e_1_3_3_30_2 doi: 10.1128/AEM.05382-11 – ident: e_1_3_3_20_2 doi: 10.1128/aem.61.4.1551-1554.1995 – ident: e_1_3_3_12_2 doi: 10.1128/AEM.02183-12 – ident: e_1_3_3_9_2 doi: 10.1046/j.1365-2958.2001.02257.x – ident: e_1_3_3_24_2 doi: 10.1128/JB.00925-09 – ident: e_1_3_3_25_2 doi: 10.1093/nar/gkh340 – ident: e_1_3_3_11_2 doi: 10.1016/j.bbabio.2008.09.008 – ident: e_1_3_3_17_2 doi: 10.1007/s00253-010-2820-z – ident: e_1_3_3_10_2 doi: 10.1073/pnas.0900086106 – ident: e_1_3_3_22_2 doi: 10.1126/science.1068186 – ident: e_1_3_3_32_2 doi: 10.1128/JB.01464-08 – ident: e_1_3_3_6_2 doi: 10.1128/JB.182.1.67-75.2000 – ident: e_1_3_3_26_2 doi: 10.1093/molbev/mst197 – ident: e_1_3_3_16_2 doi: 10.1007/s10482-006-9088-4 – volume-title: Molecular evolution and phylogenetics year: 2000 ident: e_1_3_3_28_2 doi: 10.1093/oso/9780195135848.001.0001 – ident: e_1_3_3_7_2 doi: 10.1042/BST20120150 – ident: e_1_3_3_15_2 doi: 10.1128/AEM.69.6.3636-3639.2003 – ident: e_1_3_3_31_2 doi: 10.1016/j.biosystems.2011.10.003 – ident: e_1_3_3_18_2 doi: 10.1046/j.1365-2672.2000.00910.x – ident: e_1_3_3_33_2 doi: 10.1074/jbc.M605052200 – ident: e_1_3_3_35_2 doi: 10.1042/BST0330042 – ident: e_1_3_3_36_2 doi: 10.1016/j.tim.2004.02.007 – ident: e_1_3_3_3_2 doi: 10.1146/annurev.micro.61.080706.093257 – ident: e_1_3_3_5_2 doi: 10.1042/BJ20120197 – ident: e_1_3_3_27_2 doi: 10.2307/2408678 – ident: e_1_3_3_2_2 doi: 10.1007/0-387-30746-X_45 |
SSID | ssj0014452 |
Score | 2.412532 |
Snippet | Shewanella oneidensis
strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of... Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1337 |
SubjectTerms | Anaerobic conditions Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Bioremediation Biotechnology Carbon sources Dehydrogenase Dehydrogenases Ecophysiology Energy conservation Fermentation Formate Dehydrogenases - genetics Formate Dehydrogenases - metabolism Formates - metabolism Gene Deletion Gene Expression Regulation, Bacterial - physiology Gram-negative bacteria Iron oxides Metabolism Operon Organic carbon Oxidation Phylogeny Physiology Protons Shewanella - genetics Shewanella - metabolism |
Title | Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26883823 https://www.proquest.com/docview/1780917347 https://pubmed.ncbi.nlm.nih.gov/PMC4859590 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBIXxG86BvJhJ6aMJE4c57ihTVNREYci9RY5ia1WGmm1BU3bYX8779mOk0CRgEtUJalT9ftsv_fy3vcIOYxzmSQq5oEOIx0krC6DvJZhUDOumarR5sUC5_kXfvEtmS3T5WRyP6wuacvj6m5nXcn_oArnAFeskv0HZP2gcAI-A75wBITh-FcYnxuDEyamagHLS-x3sYbpulI3ErNX5NGmQRmrBkVHrL40Rlm_Xm1QS2O-MVlDMIavGTBqTtcYj7ppVyZEi1nLsAKcuWY52FxCba1A8S6btrTaz6NQ_WeXTXti6lCOfLAZWNWCiWtC0GjP97nHs83G7oiq8ZvGXN6CZ2DfnDhKDAMWER_kuSi7yKKGKbYrGq3CuRjQTQzWVPCis92LfYwFDLPTYxSOygJbFjqAffvd4B5zIfBtZ7_j-TzE7tID8jAGN8MUiy99ihD4mmnsajrhWR8HT0INaffdsUHzm5fya7LtwHpZPCVPHET0xHLoGZmo5jl5ZBuR3r4gd45JtGcSXTe0ZxLtmUQ9k6hlErVMooZJFJhEOyZRyyTqmATXaMck2jHpJVmcny0-XQSuK0dQJVnaBizhoganouJhWUqd5gpcdFml4OoyGZYi1EpozUWuQtg745rFmmvF67DSUckle0X2GvjNbwgVUtc5EEaIUiVlWolQVoxzVWUiZJqzKfnQ_bNF5RTrsXHKZWE811gUs9PCIFJE6ZQc-pu3Vqhl920HHUSFm8nXRQQPzKOMJdmUvLZo-TE6mKckG-Hob0B99vGVZr0yOu0Jagfm4f4fx3xLHvcT5IDstVc_1DuwcdvyvSHiT-ALrS8 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formate+Metabolism+in+Shewanella+oneidensis+Generates+Proton+Motive+Force+and+Prevents+Growth+without+an+Electron+Acceptor&rft.jtitle=Journal+of+bacteriology&rft.au=Kane%2C+Aunica+L&rft.au=Brutinel%2C+Evan+D&rft.au=Joo%2C+Heena&rft.au=Maysonet%2C+Rebecca&rft.date=2016-04-01&rft.eissn=1098-5530&rft.volume=198&rft.issue=8&rft.spage=1337&rft_id=info:doi/10.1128%2FJB.00927-15&rft_id=info%3Apmid%2F26883823&rft.externalDocID=26883823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |