Size-extensive vibrational self-consistent field method
The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrational...
Saved in:
Published in | The Journal of chemical physics Vol. 135; no. 13; pp. 134108 - 134108-11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
07.10.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/1.3644895 |
Cover
Loading…
Abstract | The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the
\documentclass[12pt]{minimal}\begin{document}$\partial ^4 V / \partial Q_i^2 \partial Q_j^2$\end{document}
∂
4
V
/
∂
Q
i
2
∂
Q
j
2
type, where
V
is the electronic energy and
Q
i
is the
i
th normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures. |
---|---|
AbstractList | The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the \documentclass[12pt]{minimal}\begin{document}$\partial ^4 V / \partial Q_i^2 \partial Q_j^2$\end{document}∂4V/∂Qi2∂Qj2 type, where V is the electronic energy and Qi is the ith normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures. The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the ∂(4)V/∂Q(i)(2)∂Q(j)(2) type, where V is the electronic energy and Q(i) is the ith normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures.The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the ∂(4)V/∂Q(i)(2)∂Q(j)(2) type, where V is the electronic energy and Q(i) is the ith normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures. The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the ∂(4)V/∂Q(i)(2)∂Q(j)(2) type, where V is the electronic energy and Q(i) is the ith normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures. The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the \documentclass[12pt]{minimal}\begin{document}$\partial ^4 V / \partial Q_i^2 \partial Q_j^2$\end{document} ∂ 4 V / ∂ Q i 2 ∂ Q j 2 type, where V is the electronic energy and Q i is the i th normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures. |
Author | Hirata, So Keçeli, Murat |
Author_xml | – sequence: 1 givenname: Murat surname: Keçeli fullname: Keçeli, Murat organization: Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA – sequence: 2 givenname: So surname: Hirata fullname: Hirata, So email: sohirata@illinois.edu. organization: Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21992283$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMlKBDEURYO02IMu_AGpnbio7kyVYSNI4wQNLtR1SGXASA1tJS3q11s9uRBdvcU998I7YzBo2sYBcIrgFEFGZmhKGKVCFgdghKCQOWcSDsAIQoxyySAbgnGMrxBCxDE9AkOMpMRYkBHgj-HL5e4juSaGd5e9h7LTKbSNrrLoKp-btg9iH6fMB1fZrHbppbXH4NDrKrqT3Z2A55vrp_ldvni4vZ9fLXJDeZFyQoj1xBMusIQWI2stYiU3HFrEvSGFp6bABjtmuC4gwsZKDxETwlOuS0cm4Hy7u-zat5WLSdUhGldVunHtKioJKcaFELQnz3bkqqydVcsu1Lr7VPtfe2C2BUzXxtg5r0xIm19Tp0OlEFRrmwqpnc2-cfGrsR_9i73csnG_-j-8dq5-nKuNc_INGXSIuQ |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1063_5_0160363 crossref_primary_10_1063_1_4813123 crossref_primary_10_1063_5_0164326 crossref_primary_10_1021_acs_jpcb_0c08493 crossref_primary_10_1021_acs_jctc_1c00060 crossref_primary_10_1063_1_4894507 crossref_primary_10_1021_acs_jctc_3c00589 crossref_primary_10_1063_1_5004151 crossref_primary_10_1080_0144235X_2014_1001220 crossref_primary_10_1021_acs_jctc_9b00964 crossref_primary_10_1063_1_4901061 crossref_primary_10_1021_acs_jctc_7b01075 crossref_primary_10_1002_jcc_23241 crossref_primary_10_1021_jp5060155 crossref_primary_10_1063_1_4934234 crossref_primary_10_1039_c2cp40090a crossref_primary_10_1063_1_4729602 crossref_primary_10_1063_1_5089460 crossref_primary_10_1080_00268976_2017_1288937 crossref_primary_10_1080_00268976_2021_1949503 crossref_primary_10_1063_1_4892614 crossref_primary_10_1021_acs_jctc_5b01168 crossref_primary_10_1021_jp4008834 crossref_primary_10_1021_acs_jctc_1c00314 crossref_primary_10_1021_jp410587b crossref_primary_10_1063_1_4944743 crossref_primary_10_1021_jacs_4c03198 crossref_primary_10_1063_1_4865098 crossref_primary_10_1039_c3cp50739d crossref_primary_10_1063_1_4951011 crossref_primary_10_1146_annurev_physchem_032511_143718 crossref_primary_10_3390_molecules26226893 crossref_primary_10_1039_C5CP05979H crossref_primary_10_1021_acs_jpca_9b03592 crossref_primary_10_1063_1_4753422 crossref_primary_10_1063_1_4866365 crossref_primary_10_1063_1_4931472 crossref_primary_10_1063_5_0176612 crossref_primary_10_1080_00268976_2017_1321153 crossref_primary_10_1063_1_4904220 crossref_primary_10_1039_C4CP04068F crossref_primary_10_1063_5_0122268 crossref_primary_10_1021_acs_jpca_7b11722 crossref_primary_10_1021_acsomega_8b03364 crossref_primary_10_1063_1_4767776 |
Cites_doi | 10.1080/00268978700101081 10.1063/1.435782 10.1063/1.468524 10.1063/1.2748774 10.1063/1.1631817 10.1021/j100273a008 10.1063/1.3021471 10.1021/ar00127a002 10.1126/science.7539156 10.1016/0009-2614(93)E1380-Y 10.1063/1.3092921 10.1063/1.1764501 10.1016/0301-0104(80)85002-6 10.1063/1.481881 10.1063/1.3040427 10.1063/1.472922 10.1063/1.472960 10.1063/1.1637579 10.1063/1.1324704 10.1080/00268976800101381 10.1080/00268977000101491 10.1126/science.1079558 10.1063/1.2805085 10.1063/1.3193708 10.1063/1.3462237 10.1007/s00214-011-0954-4 10.1063/1.3124802 10.1063/1.2912184 10.1002/qua.560390208 10.1063/1.479452 10.1002/SERIES2007 10.1021/ct9004454 10.1063/1.2423006 10.1063/1.474210 |
ContentType | Journal Article |
Copyright | 2011 American Institute of Physics |
Copyright_xml | – notice: 2011 American Institute of Physics |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1063/1.3644895 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
EndPage | 134108-11 |
ExternalDocumentID | 21992283 10_1063_1_3644895 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NSF grantid: OCI-1102418 – fundername: NSF grantid: CHE-1118616 – fundername: DOE grantid: DE-FG02-11ER16211 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS ADXHL BDMKI CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c475t-333df3f378290d21ddd16b7c70d17fc35f4c52c2e6c7a5012cd9f01688f47abe3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 12:42:01 EDT 2025 Thu Apr 03 07:07:49 EDT 2025 Tue Jul 01 00:44:26 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 Fri Jun 21 00:17:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | 2011 American Institute of Physics |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c475t-333df3f378290d21ddd16b7c70d17fc35f4c52c2e6c7a5012cd9f01688f47abe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21992283 |
PQID | 904225884 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_904225884 pubmed_primary_21992283 crossref_citationtrail_10_1063_1_3644895 crossref_primary_10_1063_1_3644895 scitation_primary_10_1063_1_3644895Size_extensive_vibra |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-07 |
PublicationDateYYYYMMDD | 2011-10-07 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2011 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Hansen, M.; Sparta, M.; Seidler, P.; Toffoli, D.; Christiansen, O. 2010; 6 Yagi, K.; Taketsugu, T.; Hirao, K.; Gordon, M. 2000; 113 Yagi, K.; Hirata, S.; Hirao, K. 2007; 127 Respondek, I.; Benoit, D. 2009; 131 Bowman, J. 1978; 68 Tobin, F.; Bowman, J. 1980; 47 Watson, J. 1970; 19 Benoit, D. 2008; 129 Nagalakshmi, V.; Lakshminarayana, V.; Sumithra, G.; Durga Prasad, M. 1994; 217 Yagi, K.; Hirao, K.; Taketsugu, T.; Schmidt, M.; Gordon, M. 2004; 121 Roitberg, A.; Gerber, R.; Elber, R.; Ratner, M. 1995; 268 Irle, S.; Bowman, J. 2000; 113 Chaban, G.; Jung, J.; Gerber, R. 1999; 111 Toffoli, D.; Kongsted, J.; Christiansen, O. 2007; 127 Carter, S.; Culik, S.; Bowman, J. 1997; 107 Carney, G.; Sprandel, L.; Kern, C. 1978; 37 Hirata, S.; Keçeli, M.; Yagi, K. 2010; 133 Hansen, M.; Christiansen, O.; Toffoli, D.; Kongsted, J. 2008; 128 Benoit, D. 2004; 120 Norris, L.; Ratner, M.; Roitberg, A.; Gerber, R. 1996; 105 Császár, A.; Handy, N. 1995; 102 Matito, E.; Toffoli, D.; Christiansen, O. 2009; 130 Polyansky, O.; Császár, A.; Shirin, S.; Zobov, N.; Barletta, P.; Tennyson, J.; Schwenke, D.; Knowles, P. 2003; 299 Manzhos, S.; Carrington, T. 2008; 129 Hirata, S. 2011; 129 Ratner, M.; Gerber, R. 1986; 90 Benoit, D. 2006; 125 Bowman, J. 1986; 19 Christiansen, O. 2004; 120 Jung, J.; Gerber, R. 1996; 105 Sutcliffe, B.; Tennyson, J. 1991; 39 Watson, J. 1968; 15 Malshe, M.; Narulkar, R.; Raff, L.; Hagan, M.; Bukkapatnam, S.; Agrawal, P.; Komanduri, R. 2009; 130 Handy, N. 1987; 61 (2023062606101304700_c28) 2007; 127 (2023062606101304700_c37) 2008; 129 (2023062606101304700_c21) 1986; 19 (2023062606101304700_c1) 2008 (2023062606101304700_c36) 2006; 125 (2023062606101304700_c22) 1986; 90 (2023062606101304700_c24) 2008; 128 (2023062606101304700_c10) 2008; 129 (2023062606101304700_c34) 2011 (2023062606101304700_c7) 1968; 15 (2023062606101304700_c20) 1978; 68 (2023062606101304700_c17) 1996; 105 (2023062606101304700_c25) 2010; 6 (2023062606101304700_c38) 2009; 131 (2023062606101304700_c11) 2009; 130 (2023062606101304700_c31) 1980; 47 (2023062606101304700_c27) 1996; 105 (2023062606101304700_c5) 1991; 39 (2023062606101304700_c30) 2004; 120 (2023062606101304700_c26) 2004; 120 (2023062606101304700_c14) 1999; 111 (2023062606101304700_c39) 2005 (2023062606101304700_c12) 2009; 130 (2023062606101304700_c8) 1970; 19 (2023062606101304700_c13) 2004; 121 (2023062606101304700_c4) 1987; 61 (2023062606101304700_c16) 2000; 113 (2023062606101304700_c3) 2003; 299 (2023062606101304700_c9) 2007; 127 (2023062606101304700_c15) 2000; 113 (2023062606101304700_c29) 1994; 217 (2023062606101304700_c32) 2011; 129 (2023062606101304700_c6) 1995; 102 (2023062606101304700_c33) 2010; 133 (2023062606101304700_c19) 1978; 37 (2023062606101304700_c23) 1995; 268 (2023062606101304700_c18) 1997; 107 (2023062606101304700_c35) 2006 (2023062606101304700_c2) 2008 |
References_xml | – volume: 61 start-page: 207 year: 1987 publication-title: Mol. Phys. doi: 10.1080/00268978700101081 – volume: 68 start-page: 608 year: 1978 publication-title: J. Chem. Phys. doi: 10.1063/1.435782 – volume: 102 start-page: 3962 year: 1995 publication-title: J. Chem. Phys. doi: 10.1063/1.468524 – volume: 127 start-page: 034111 year: 2007 publication-title: J. Chem. Phys. doi: 10.1063/1.2748774 – volume: 120 start-page: 562 year: 2004 publication-title: J. Chem. Phys. doi: 10.1063/1.1631817 – volume: 90 start-page: 20 year: 1986 publication-title: J. Phys. Chem. doi: 10.1021/j100273a008 – volume: 129 start-page: 224104 year: 2008 publication-title: J. Chem. Phys. doi: 10.1063/1.3021471 – volume: 19 start-page: 202 year: 1986 publication-title: Acc. Chem. Res. doi: 10.1021/ar00127a002 – volume: 268 start-page: 1319 year: 1995 publication-title: Science doi: 10.1126/science.7539156 – volume: 217 start-page: 279 year: 1994 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)E1380-Y – volume: 130 start-page: 134104 year: 2009 publication-title: J. Chem. Phys. doi: 10.1063/1.3092921 – volume: 121 start-page: 1383 year: 2004 publication-title: J. Chem. Phys. doi: 10.1063/1.1764501 – volume: 47 start-page: 151 year: 1980 publication-title: Chem. Phys. doi: 10.1016/0301-0104(80)85002-6 – volume: 113 start-page: 1005 year: 2000 publication-title: J. Chem. Phys. doi: 10.1063/1.481881 – volume: 129 start-page: 234304 year: 2008 publication-title: J. Chem. Phys. doi: 10.1063/1.3040427 – volume: 105 start-page: 11261 year: 1996 publication-title: J. Chem. Phys. doi: 10.1063/1.472922 – volume: 105 start-page: 10332 year: 1996 publication-title: J. Chem. Phys. doi: 10.1063/1.472960 – volume: 120 start-page: 2149 year: 2004 publication-title: J. Chem. Phys. doi: 10.1063/1.1637579 – volume: 113 start-page: 8401 year: 2000 publication-title: J. Chem. Phys. doi: 10.1063/1.1324704 – volume: 15 start-page: 479 year: 1968 publication-title: Mol. Phys. doi: 10.1080/00268976800101381 – volume: 19 start-page: 465 year: 1970 publication-title: Mol. Phys. doi: 10.1080/00268977000101491 – volume: 299 start-page: 539 year: 2003 publication-title: Science doi: 10.1126/science.1079558 – volume: 127 start-page: 204106 year: 2007 publication-title: J. Chem. Phys. doi: 10.1063/1.2805085 – volume: 131 start-page: 054109 year: 2009 publication-title: J. Chem. Phys. doi: 10.1063/1.3193708 – volume: 133 start-page: 034109 year: 2010 publication-title: J. Chem. Phys. doi: 10.1063/1.3462237 – volume: 129 start-page: 727 year: 2011 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-011-0954-4 – volume: 130 start-page: 184102 year: 2009 publication-title: J. Chem. Phys. doi: 10.1063/1.3124802 – volume: 128 start-page: 174106 year: 2008 publication-title: J. Chem. Phys. doi: 10.1063/1.2912184 – volume: 39 start-page: 183 year: 1991 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560390208 – volume: 111 start-page: 1823 year: 1999 publication-title: J. Chem. Phys. doi: 10.1063/1.479452 – volume: 37 start-page: 305 year: 1978 publication-title: Adv. Chem. Phys. doi: 10.1002/SERIES2007 – volume: 6 start-page: 235 year: 2010 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct9004454 – volume: 125 start-page: 244110 year: 2006 publication-title: J. Chem. Phys. doi: 10.1063/1.2423006 – volume: 107 start-page: 10458 year: 1997 publication-title: J. Chem. Phys. doi: 10.1063/1.474210 – volume: 111 start-page: 1823 year: 1999 ident: 2023062606101304700_c14 publication-title: J. Chem. Phys. doi: 10.1063/1.479452 – volume: 61 start-page: 207 year: 1987 ident: 2023062606101304700_c4 publication-title: Mol. Phys. doi: 10.1080/00268978700101081 – volume: 129 start-page: 224104 year: 2008 ident: 2023062606101304700_c10 publication-title: J. Chem. Phys. doi: 10.1063/1.3021471 – volume: 130 start-page: 134104 year: 2009 ident: 2023062606101304700_c12 publication-title: J. Chem. Phys. doi: 10.1063/1.3092921 – volume: 127 start-page: 034111 year: 2007 ident: 2023062606101304700_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.2748774 – volume: 127 start-page: 204106 year: 2007 ident: 2023062606101304700_c9 publication-title: J. Chem. Phys. doi: 10.1063/1.2805085 – volume: 129 start-page: 234304 year: 2008 ident: 2023062606101304700_c37 publication-title: J. Chem. Phys. doi: 10.1063/1.3040427 – volume: 217 start-page: 279 year: 1994 ident: 2023062606101304700_c29 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)E1380-Y – volume: 121 start-page: 1383 year: 2004 ident: 2023062606101304700_c13 publication-title: J. Chem. Phys. doi: 10.1063/1.1764501 – volume: 130 start-page: 184102 year: 2009 ident: 2023062606101304700_c11 publication-title: J. Chem. Phys. doi: 10.1063/1.3124802 – volume: 6 start-page: 235 year: 2010 ident: 2023062606101304700_c25 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct9004454 – volume: 105 start-page: 11261 year: 1996 ident: 2023062606101304700_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.472922 – volume: 19 start-page: 465 year: 1970 ident: 2023062606101304700_c8 publication-title: Mol. Phys. doi: 10.1080/00268977000101491 – volume: 113 start-page: 8401 year: 2000 ident: 2023062606101304700_c15 publication-title: J. Chem. Phys. doi: 10.1063/1.1324704 – volume: 113 start-page: 1005 year: 2000 ident: 2023062606101304700_c16 publication-title: J. Chem. Phys. doi: 10.1063/1.481881 – year: 2005 ident: 2023062606101304700_c39 – volume-title: Biomedical Vibrational Spectroscopy year: 2008 ident: 2023062606101304700_c2 – volume: 125 start-page: 244110 year: 2006 ident: 2023062606101304700_c36 publication-title: J. Chem. Phys. doi: 10.1063/1.2423006 – volume: 128 start-page: 174106 year: 2008 ident: 2023062606101304700_c24 publication-title: J. Chem. Phys. doi: 10.1063/1.2912184 – volume-title: Vibrational Spectroscopy in Life Science year: 2008 ident: 2023062606101304700_c1 – volume: 90 start-page: 20 year: 1986 ident: 2023062606101304700_c22 publication-title: J. Phys. Chem. doi: 10.1021/j100273a008 – volume: 19 start-page: 202 year: 1986 ident: 2023062606101304700_c21 publication-title: Acc. Chem. Res. doi: 10.1021/ar00127a002 – volume: 133 start-page: 034109 year: 2010 ident: 2023062606101304700_c33 publication-title: J. Chem. Phys. doi: 10.1063/1.3462237 – volume: 37 start-page: 305 year: 1978 ident: 2023062606101304700_c19 publication-title: Adv. Chem. Phys. doi: 10.1002/SERIES2007 – volume: 120 start-page: 562 year: 2004 ident: 2023062606101304700_c26 publication-title: J. Chem. Phys. doi: 10.1063/1.1631817 – year: 2011 ident: 2023062606101304700_c34 – year: 2006 ident: 2023062606101304700_c35 – volume: 120 start-page: 2149 year: 2004 ident: 2023062606101304700_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.1637579 – volume: 102 start-page: 3962 year: 1995 ident: 2023062606101304700_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.468524 – volume: 68 start-page: 608 year: 1978 ident: 2023062606101304700_c20 publication-title: J. Chem. Phys. doi: 10.1063/1.435782 – volume: 47 start-page: 151 year: 1980 ident: 2023062606101304700_c31 publication-title: Chem. Phys. doi: 10.1016/0301-0104(80)85002-6 – volume: 129 start-page: 727 year: 2011 ident: 2023062606101304700_c32 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-011-0954-4 – volume: 15 start-page: 479 year: 1968 ident: 2023062606101304700_c7 publication-title: Mol. Phys. doi: 10.1080/00268976800101381 – volume: 268 start-page: 1319 year: 1995 ident: 2023062606101304700_c23 publication-title: Science doi: 10.1126/science.7539156 – volume: 299 start-page: 539 year: 2003 ident: 2023062606101304700_c3 publication-title: Science doi: 10.1126/science.1079558 – volume: 39 start-page: 183 year: 1991 ident: 2023062606101304700_c5 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560390208 – volume: 105 start-page: 10332 year: 1996 ident: 2023062606101304700_c17 publication-title: J. Chem. Phys. doi: 10.1063/1.472960 – volume: 131 start-page: 054109 year: 2009 ident: 2023062606101304700_c38 publication-title: J. Chem. Phys. doi: 10.1063/1.3193708 – volume: 107 start-page: 10458 year: 1997 ident: 2023062606101304700_c18 publication-title: J. Chem. Phys. doi: 10.1063/1.474210 |
SSID | ssj0001724 |
Score | 2.2440848 |
Snippet | The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 134108 |
SubjectTerms | Algorithms Anthracenes - chemistry Benzene - chemistry Naphthacenes - chemistry Naphthalenes - chemistry Spectrophotometry, Infrared - methods Vibration Water - chemistry |
Title | Size-extensive vibrational self-consistent field method |
URI | http://dx.doi.org/10.1063/1.3644895 https://www.ncbi.nlm.nih.gov/pubmed/21992283 https://www.proquest.com/docview/904225884 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7oFml9EK1at14I4oMvUzeZmczksVRlESvCttC3MJmZgLDslnbrQ3-9Z66bbStoX0KYXDlfcuY7c24AH6iRUisliFadIqzTjOA0bAjqQcvx2ERp59E9_lFPT9m3M36WOmTH7JJVd6Cv78wruQ-qOIa4uizZ_0A23xQHcB_xxS0ijNt_wnj269oSv4ztg9B_O9M3ru1d2nlPtIt-RRh9_SU7N7Ff9JCQrlPDPCnVqX5AWPFYe3qs96gLG7KpER6V42WmzlXvOehsOVxEiFFsYg178g5tRCj8HDwphf6XxJk8YfIIGnMiGyLq0PMzq9RQgiR9O3SgIV0BuYkczLdhgASVe0uhI4NyawsH1NmRDX8IWxXaA9UItg4_H3-f5UkXeVgsuB3eMBWRqumnfPEm9bhlTzyGbWQdIQBiwDFOnsKTiENxGJB-Bg_sYhe2j1JPvl14FIX1HMQm9sUA--IG9oXHvgjYv4DTr19OjqYkNsEgmgm-IpRS09OeCufxNlVpjCnrTmgxMaXoNeU907zSla21UBzphjZNjzxeyp4J1Vn6EkaL5cK-goL3lDfUWiUpZRWz0gjFpJb4H5uaqX4MH5N82iQI16hk3vpIhZq2ZRtFOYb3-dTzUBblrpOKJOQW5eQ8UWphl1eXbeMqz7kU6THsBeHnu1QuHho57xhERuPvj3CybrOsWy_r_Xtf-Rp21j_HGxitLq7sW-Scq-5d_N7-AAyYguE |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size-extensive+vibrational+self-consistent+field+method&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Ke%C3%A7eli%2C+Murat&rft.au=Hirata%2C+So&rft.date=2011-10-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=135&rft.issue=13&rft.spage=134108&rft.epage=134108-11&rft_id=info:doi/10.1063%2F1.3644895 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |