Size-extensive vibrational self-consistent field method

The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrational...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 135; no. 13; pp. 134108 - 134108-11
Main Authors Keçeli, Murat, Hirata, So
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 07.10.2011
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/1.3644895

Cover

Loading…
Abstract The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the \documentclass[12pt]{minimal}\begin{document}$\partial ^4 V / \partial Q_i^2 \partial Q_j^2$\end{document} ∂ 4 V / ∂ Q i 2 ∂ Q j 2 type, where V is the electronic energy and Q i is the i th normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures.
AbstractList The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the \documentclass[12pt]{minimal}\begin{document}$\partial ^4 V / \partial Q_i^2 \partial Q_j^2$\end{document}∂4V/∂Qi2∂Qj2 type, where V is the electronic energy and Qi is the ith normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures.
The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the ∂(4)V/∂Q(i)(2)∂Q(j)(2) type, where V is the electronic energy and Q(i) is the ith normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures.The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the ∂(4)V/∂Q(i)(2)∂Q(j)(2) type, where V is the electronic energy and Q(i) is the ith normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures.
The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the ∂(4)V/∂Q(i)(2)∂Q(j)(2) type, where V is the electronic energy and Q(i) is the ith normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures.
The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational perturbation and coupled-cluster methods. Together they account for anharmonic effects on vibrational transition frequencies and vibrationally averaged properties. This article reports the definition, programmable equations, and corresponding initial implementation of a diagrammatically size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original VSCF equations have been eliminated. When combined with a quartic force field (QFF), this compact and strictly size-extensive VSCF (XVSCF) method requires only quartic force constants of the \documentclass[12pt]{minimal}\begin{document}$\partial ^4 V / \partial Q_i^2 \partial Q_j^2$\end{document} ∂ 4 V / ∂ Q i 2 ∂ Q j 2 type, where V is the electronic energy and Q i is the i th normal coordinate. Consequently, the cost of a XVSCF calculation with a QFF increases only quadratically with the number of modes, while that of a VSCF calculation grows quartically. The effective (mean-field) potential of XVSCF felt by each mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Even when the same set of force constants is used, XVSCF is nearly three orders of magnitude faster than VSCF implemented similarly. Yet, the results of XVSCF and VSCF are shown to approach each other as the molecular size is increased, implicating the inclusion of unnecessary, nonphysical terms in VSCF. The diagrams of the XVSCF energy expression and their evaluation rules are also proposed, underscoring their connected structures.
Author Hirata, So
Keçeli, Murat
Author_xml – sequence: 1
  givenname: Murat
  surname: Keçeli
  fullname: Keçeli, Murat
  organization: Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
– sequence: 2
  givenname: So
  surname: Hirata
  fullname: Hirata, So
  email: sohirata@illinois.edu.
  organization: Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21992283$$D View this record in MEDLINE/PubMed
BookMark eNp1kMlKBDEURYO02IMu_AGpnbio7kyVYSNI4wQNLtR1SGXASA1tJS3q11s9uRBdvcU998I7YzBo2sYBcIrgFEFGZmhKGKVCFgdghKCQOWcSDsAIQoxyySAbgnGMrxBCxDE9AkOMpMRYkBHgj-HL5e4juSaGd5e9h7LTKbSNrrLoKp-btg9iH6fMB1fZrHbppbXH4NDrKrqT3Z2A55vrp_ldvni4vZ9fLXJDeZFyQoj1xBMusIQWI2stYiU3HFrEvSGFp6bABjtmuC4gwsZKDxETwlOuS0cm4Hy7u-zat5WLSdUhGldVunHtKioJKcaFELQnz3bkqqydVcsu1Lr7VPtfe2C2BUzXxtg5r0xIm19Tp0OlEFRrmwqpnc2-cfGrsR_9i73csnG_-j-8dq5-nKuNc_INGXSIuQ
CODEN JCPSA6
CitedBy_id crossref_primary_10_1063_5_0160363
crossref_primary_10_1063_1_4813123
crossref_primary_10_1063_5_0164326
crossref_primary_10_1021_acs_jpcb_0c08493
crossref_primary_10_1021_acs_jctc_1c00060
crossref_primary_10_1063_1_4894507
crossref_primary_10_1021_acs_jctc_3c00589
crossref_primary_10_1063_1_5004151
crossref_primary_10_1080_0144235X_2014_1001220
crossref_primary_10_1021_acs_jctc_9b00964
crossref_primary_10_1063_1_4901061
crossref_primary_10_1021_acs_jctc_7b01075
crossref_primary_10_1002_jcc_23241
crossref_primary_10_1021_jp5060155
crossref_primary_10_1063_1_4934234
crossref_primary_10_1039_c2cp40090a
crossref_primary_10_1063_1_4729602
crossref_primary_10_1063_1_5089460
crossref_primary_10_1080_00268976_2017_1288937
crossref_primary_10_1080_00268976_2021_1949503
crossref_primary_10_1063_1_4892614
crossref_primary_10_1021_acs_jctc_5b01168
crossref_primary_10_1021_jp4008834
crossref_primary_10_1021_acs_jctc_1c00314
crossref_primary_10_1021_jp410587b
crossref_primary_10_1063_1_4944743
crossref_primary_10_1021_jacs_4c03198
crossref_primary_10_1063_1_4865098
crossref_primary_10_1039_c3cp50739d
crossref_primary_10_1063_1_4951011
crossref_primary_10_1146_annurev_physchem_032511_143718
crossref_primary_10_3390_molecules26226893
crossref_primary_10_1039_C5CP05979H
crossref_primary_10_1021_acs_jpca_9b03592
crossref_primary_10_1063_1_4753422
crossref_primary_10_1063_1_4866365
crossref_primary_10_1063_1_4931472
crossref_primary_10_1063_5_0176612
crossref_primary_10_1080_00268976_2017_1321153
crossref_primary_10_1063_1_4904220
crossref_primary_10_1039_C4CP04068F
crossref_primary_10_1063_5_0122268
crossref_primary_10_1021_acs_jpca_7b11722
crossref_primary_10_1021_acsomega_8b03364
crossref_primary_10_1063_1_4767776
Cites_doi 10.1080/00268978700101081
10.1063/1.435782
10.1063/1.468524
10.1063/1.2748774
10.1063/1.1631817
10.1021/j100273a008
10.1063/1.3021471
10.1021/ar00127a002
10.1126/science.7539156
10.1016/0009-2614(93)E1380-Y
10.1063/1.3092921
10.1063/1.1764501
10.1016/0301-0104(80)85002-6
10.1063/1.481881
10.1063/1.3040427
10.1063/1.472922
10.1063/1.472960
10.1063/1.1637579
10.1063/1.1324704
10.1080/00268976800101381
10.1080/00268977000101491
10.1126/science.1079558
10.1063/1.2805085
10.1063/1.3193708
10.1063/1.3462237
10.1007/s00214-011-0954-4
10.1063/1.3124802
10.1063/1.2912184
10.1002/qua.560390208
10.1063/1.479452
10.1002/SERIES2007
10.1021/ct9004454
10.1063/1.2423006
10.1063/1.474210
ContentType Journal Article
Copyright 2011 American Institute of Physics
Copyright_xml – notice: 2011 American Institute of Physics
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1063/1.3644895
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
EndPage 134108-11
ExternalDocumentID 21992283
10_1063_1_3644895
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NSF
  grantid: OCI-1102418
– fundername: NSF
  grantid: CHE-1118616
– fundername: DOE
  grantid: DE-FG02-11ER16211
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
6TJ
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
ADXHL
BDMKI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c475t-333df3f378290d21ddd16b7c70d17fc35f4c52c2e6c7a5012cd9f01688f47abe3
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 12:42:01 EDT 2025
Thu Apr 03 07:07:49 EDT 2025
Tue Jul 01 00:44:26 EDT 2025
Thu Apr 24 23:12:56 EDT 2025
Fri Jun 21 00:17:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License 2011 American Institute of Physics
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c475t-333df3f378290d21ddd16b7c70d17fc35f4c52c2e6c7a5012cd9f01688f47abe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21992283
PQID 904225884
PQPubID 23479
ParticipantIDs proquest_miscellaneous_904225884
pubmed_primary_21992283
crossref_citationtrail_10_1063_1_3644895
crossref_primary_10_1063_1_3644895
scitation_primary_10_1063_1_3644895Size_extensive_vibra
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-07
PublicationDateYYYYMMDD 2011-10-07
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2011
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Hansen, M.; Sparta, M.; Seidler, P.; Toffoli, D.; Christiansen, O. 2010; 6
Yagi, K.; Taketsugu, T.; Hirao, K.; Gordon, M. 2000; 113
Yagi, K.; Hirata, S.; Hirao, K. 2007; 127
Respondek, I.; Benoit, D. 2009; 131
Bowman, J. 1978; 68
Tobin, F.; Bowman, J. 1980; 47
Watson, J. 1970; 19
Benoit, D. 2008; 129
Nagalakshmi, V.; Lakshminarayana, V.; Sumithra, G.; Durga Prasad, M. 1994; 217
Yagi, K.; Hirao, K.; Taketsugu, T.; Schmidt, M.; Gordon, M. 2004; 121
Roitberg, A.; Gerber, R.; Elber, R.; Ratner, M. 1995; 268
Irle, S.; Bowman, J. 2000; 113
Chaban, G.; Jung, J.; Gerber, R. 1999; 111
Toffoli, D.; Kongsted, J.; Christiansen, O. 2007; 127
Carter, S.; Culik, S.; Bowman, J. 1997; 107
Carney, G.; Sprandel, L.; Kern, C. 1978; 37
Hirata, S.; Keçeli, M.; Yagi, K. 2010; 133
Hansen, M.; Christiansen, O.; Toffoli, D.; Kongsted, J. 2008; 128
Benoit, D. 2004; 120
Norris, L.; Ratner, M.; Roitberg, A.; Gerber, R. 1996; 105
Császár, A.; Handy, N. 1995; 102
Matito, E.; Toffoli, D.; Christiansen, O. 2009; 130
Polyansky, O.; Császár, A.; Shirin, S.; Zobov, N.; Barletta, P.; Tennyson, J.; Schwenke, D.; Knowles, P. 2003; 299
Manzhos, S.; Carrington, T. 2008; 129
Hirata, S. 2011; 129
Ratner, M.; Gerber, R. 1986; 90
Benoit, D. 2006; 125
Bowman, J. 1986; 19
Christiansen, O. 2004; 120
Jung, J.; Gerber, R. 1996; 105
Sutcliffe, B.; Tennyson, J. 1991; 39
Watson, J. 1968; 15
Malshe, M.; Narulkar, R.; Raff, L.; Hagan, M.; Bukkapatnam, S.; Agrawal, P.; Komanduri, R. 2009; 130
Handy, N. 1987; 61
(2023062606101304700_c28) 2007; 127
(2023062606101304700_c37) 2008; 129
(2023062606101304700_c21) 1986; 19
(2023062606101304700_c1) 2008
(2023062606101304700_c36) 2006; 125
(2023062606101304700_c22) 1986; 90
(2023062606101304700_c24) 2008; 128
(2023062606101304700_c10) 2008; 129
(2023062606101304700_c34) 2011
(2023062606101304700_c7) 1968; 15
(2023062606101304700_c20) 1978; 68
(2023062606101304700_c17) 1996; 105
(2023062606101304700_c25) 2010; 6
(2023062606101304700_c38) 2009; 131
(2023062606101304700_c11) 2009; 130
(2023062606101304700_c31) 1980; 47
(2023062606101304700_c27) 1996; 105
(2023062606101304700_c5) 1991; 39
(2023062606101304700_c30) 2004; 120
(2023062606101304700_c26) 2004; 120
(2023062606101304700_c14) 1999; 111
(2023062606101304700_c39) 2005
(2023062606101304700_c12) 2009; 130
(2023062606101304700_c8) 1970; 19
(2023062606101304700_c13) 2004; 121
(2023062606101304700_c4) 1987; 61
(2023062606101304700_c16) 2000; 113
(2023062606101304700_c3) 2003; 299
(2023062606101304700_c9) 2007; 127
(2023062606101304700_c15) 2000; 113
(2023062606101304700_c29) 1994; 217
(2023062606101304700_c32) 2011; 129
(2023062606101304700_c6) 1995; 102
(2023062606101304700_c33) 2010; 133
(2023062606101304700_c19) 1978; 37
(2023062606101304700_c23) 1995; 268
(2023062606101304700_c18) 1997; 107
(2023062606101304700_c35) 2006
(2023062606101304700_c2) 2008
References_xml – volume: 61
  start-page: 207
  year: 1987
  publication-title: Mol. Phys.
  doi: 10.1080/00268978700101081
– volume: 68
  start-page: 608
  year: 1978
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.435782
– volume: 102
  start-page: 3962
  year: 1995
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.468524
– volume: 127
  start-page: 034111
  year: 2007
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2748774
– volume: 120
  start-page: 562
  year: 2004
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1631817
– volume: 90
  start-page: 20
  year: 1986
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100273a008
– volume: 129
  start-page: 224104
  year: 2008
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3021471
– volume: 19
  start-page: 202
  year: 1986
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00127a002
– volume: 268
  start-page: 1319
  year: 1995
  publication-title: Science
  doi: 10.1126/science.7539156
– volume: 217
  start-page: 279
  year: 1994
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)E1380-Y
– volume: 130
  start-page: 134104
  year: 2009
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3092921
– volume: 121
  start-page: 1383
  year: 2004
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1764501
– volume: 47
  start-page: 151
  year: 1980
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(80)85002-6
– volume: 113
  start-page: 1005
  year: 2000
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481881
– volume: 129
  start-page: 234304
  year: 2008
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3040427
– volume: 105
  start-page: 11261
  year: 1996
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472922
– volume: 105
  start-page: 10332
  year: 1996
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472960
– volume: 120
  start-page: 2149
  year: 2004
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1637579
– volume: 113
  start-page: 8401
  year: 2000
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1324704
– volume: 15
  start-page: 479
  year: 1968
  publication-title: Mol. Phys.
  doi: 10.1080/00268976800101381
– volume: 19
  start-page: 465
  year: 1970
  publication-title: Mol. Phys.
  doi: 10.1080/00268977000101491
– volume: 299
  start-page: 539
  year: 2003
  publication-title: Science
  doi: 10.1126/science.1079558
– volume: 127
  start-page: 204106
  year: 2007
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2805085
– volume: 131
  start-page: 054109
  year: 2009
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3193708
– volume: 133
  start-page: 034109
  year: 2010
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3462237
– volume: 129
  start-page: 727
  year: 2011
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-011-0954-4
– volume: 130
  start-page: 184102
  year: 2009
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3124802
– volume: 128
  start-page: 174106
  year: 2008
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2912184
– volume: 39
  start-page: 183
  year: 1991
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560390208
– volume: 111
  start-page: 1823
  year: 1999
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479452
– volume: 37
  start-page: 305
  year: 1978
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/SERIES2007
– volume: 6
  start-page: 235
  year: 2010
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct9004454
– volume: 125
  start-page: 244110
  year: 2006
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2423006
– volume: 107
  start-page: 10458
  year: 1997
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474210
– volume: 111
  start-page: 1823
  year: 1999
  ident: 2023062606101304700_c14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479452
– volume: 61
  start-page: 207
  year: 1987
  ident: 2023062606101304700_c4
  publication-title: Mol. Phys.
  doi: 10.1080/00268978700101081
– volume: 129
  start-page: 224104
  year: 2008
  ident: 2023062606101304700_c10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3021471
– volume: 130
  start-page: 134104
  year: 2009
  ident: 2023062606101304700_c12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3092921
– volume: 127
  start-page: 034111
  year: 2007
  ident: 2023062606101304700_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2748774
– volume: 127
  start-page: 204106
  year: 2007
  ident: 2023062606101304700_c9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2805085
– volume: 129
  start-page: 234304
  year: 2008
  ident: 2023062606101304700_c37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3040427
– volume: 217
  start-page: 279
  year: 1994
  ident: 2023062606101304700_c29
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)E1380-Y
– volume: 121
  start-page: 1383
  year: 2004
  ident: 2023062606101304700_c13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1764501
– volume: 130
  start-page: 184102
  year: 2009
  ident: 2023062606101304700_c11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3124802
– volume: 6
  start-page: 235
  year: 2010
  ident: 2023062606101304700_c25
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct9004454
– volume: 105
  start-page: 11261
  year: 1996
  ident: 2023062606101304700_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472922
– volume: 19
  start-page: 465
  year: 1970
  ident: 2023062606101304700_c8
  publication-title: Mol. Phys.
  doi: 10.1080/00268977000101491
– volume: 113
  start-page: 8401
  year: 2000
  ident: 2023062606101304700_c15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1324704
– volume: 113
  start-page: 1005
  year: 2000
  ident: 2023062606101304700_c16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481881
– year: 2005
  ident: 2023062606101304700_c39
– volume-title: Biomedical Vibrational Spectroscopy
  year: 2008
  ident: 2023062606101304700_c2
– volume: 125
  start-page: 244110
  year: 2006
  ident: 2023062606101304700_c36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2423006
– volume: 128
  start-page: 174106
  year: 2008
  ident: 2023062606101304700_c24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2912184
– volume-title: Vibrational Spectroscopy in Life Science
  year: 2008
  ident: 2023062606101304700_c1
– volume: 90
  start-page: 20
  year: 1986
  ident: 2023062606101304700_c22
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100273a008
– volume: 19
  start-page: 202
  year: 1986
  ident: 2023062606101304700_c21
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00127a002
– volume: 133
  start-page: 034109
  year: 2010
  ident: 2023062606101304700_c33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3462237
– volume: 37
  start-page: 305
  year: 1978
  ident: 2023062606101304700_c19
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/SERIES2007
– volume: 120
  start-page: 562
  year: 2004
  ident: 2023062606101304700_c26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1631817
– year: 2011
  ident: 2023062606101304700_c34
– year: 2006
  ident: 2023062606101304700_c35
– volume: 120
  start-page: 2149
  year: 2004
  ident: 2023062606101304700_c30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1637579
– volume: 102
  start-page: 3962
  year: 1995
  ident: 2023062606101304700_c6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.468524
– volume: 68
  start-page: 608
  year: 1978
  ident: 2023062606101304700_c20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.435782
– volume: 47
  start-page: 151
  year: 1980
  ident: 2023062606101304700_c31
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(80)85002-6
– volume: 129
  start-page: 727
  year: 2011
  ident: 2023062606101304700_c32
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-011-0954-4
– volume: 15
  start-page: 479
  year: 1968
  ident: 2023062606101304700_c7
  publication-title: Mol. Phys.
  doi: 10.1080/00268976800101381
– volume: 268
  start-page: 1319
  year: 1995
  ident: 2023062606101304700_c23
  publication-title: Science
  doi: 10.1126/science.7539156
– volume: 299
  start-page: 539
  year: 2003
  ident: 2023062606101304700_c3
  publication-title: Science
  doi: 10.1126/science.1079558
– volume: 39
  start-page: 183
  year: 1991
  ident: 2023062606101304700_c5
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560390208
– volume: 105
  start-page: 10332
  year: 1996
  ident: 2023062606101304700_c17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472960
– volume: 131
  start-page: 054109
  year: 2009
  ident: 2023062606101304700_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3193708
– volume: 107
  start-page: 10458
  year: 1997
  ident: 2023062606101304700_c18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474210
SSID ssj0001724
Score 2.2440848
Snippet The vibrational self-consistent field (VSCF) method is a mean-field approach to solve the vibrational Schrödinger equation and serves as a basis of vibrational...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 134108
SubjectTerms Algorithms
Anthracenes - chemistry
Benzene - chemistry
Naphthacenes - chemistry
Naphthalenes - chemistry
Spectrophotometry, Infrared - methods
Vibration
Water - chemistry
Title Size-extensive vibrational self-consistent field method
URI http://dx.doi.org/10.1063/1.3644895
https://www.ncbi.nlm.nih.gov/pubmed/21992283
https://www.proquest.com/docview/904225884
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7oFml9EK1at14I4oMvUzeZmczksVRlESvCttC3MJmZgLDslnbrQ3-9Z66bbStoX0KYXDlfcuY7c24AH6iRUisliFadIqzTjOA0bAjqQcvx2ERp59E9_lFPT9m3M36WOmTH7JJVd6Cv78wruQ-qOIa4uizZ_0A23xQHcB_xxS0ijNt_wnj269oSv4ztg9B_O9M3ru1d2nlPtIt-RRh9_SU7N7Ff9JCQrlPDPCnVqX5AWPFYe3qs96gLG7KpER6V42WmzlXvOehsOVxEiFFsYg178g5tRCj8HDwphf6XxJk8YfIIGnMiGyLq0PMzq9RQgiR9O3SgIV0BuYkczLdhgASVe0uhI4NyawsH1NmRDX8IWxXaA9UItg4_H3-f5UkXeVgsuB3eMBWRqumnfPEm9bhlTzyGbWQdIQBiwDFOnsKTiENxGJB-Bg_sYhe2j1JPvl14FIX1HMQm9sUA--IG9oXHvgjYv4DTr19OjqYkNsEgmgm-IpRS09OeCufxNlVpjCnrTmgxMaXoNeU907zSla21UBzphjZNjzxeyp4J1Vn6EkaL5cK-goL3lDfUWiUpZRWz0gjFpJb4H5uaqX4MH5N82iQI16hk3vpIhZq2ZRtFOYb3-dTzUBblrpOKJOQW5eQ8UWphl1eXbeMqz7kU6THsBeHnu1QuHho57xhERuPvj3CybrOsWy_r_Xtf-Rp21j_HGxitLq7sW-Scq-5d_N7-AAyYguE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size-extensive+vibrational+self-consistent+field+method&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Ke%C3%A7eli%2C+Murat&rft.au=Hirata%2C+So&rft.date=2011-10-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=135&rft.issue=13&rft.spage=134108&rft.epage=134108-11&rft_id=info:doi/10.1063%2F1.3644895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon