Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature
Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnes...
Saved in:
Published in | Journal of clinical medicine Vol. 10; no. 9; p. 1864 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.04.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2077-0383 2077-0383 |
DOI | 10.3390/jcm10091864 |
Cover
Loading…
Abstract | Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnesses such as urothelial and prostate cancer. In this article, we aim to discuss how algorithms and techniques of artificial intelligence are equipped in the field of urology to detect, treat, and estimate the outcomes of urological diseases. Furthermore, we explain the advantages that come from using AI over any existing traditional methods. |
---|---|
AbstractList | Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnesses such as urothelial and prostate cancer. In this article, we aim to discuss how algorithms and techniques of artificial intelligence are equipped in the field of urology to detect, treat, and estimate the outcomes of urological diseases. Furthermore, we explain the advantages that come from using AI over any existing traditional methods.Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnesses such as urothelial and prostate cancer. In this article, we aim to discuss how algorithms and techniques of artificial intelligence are equipped in the field of urology to detect, treat, and estimate the outcomes of urological diseases. Furthermore, we explain the advantages that come from using AI over any existing traditional methods. Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnesses such as urothelial and prostate cancer. In this article, we aim to discuss how algorithms and techniques of artificial intelligence are equipped in the field of urology to detect, treat, and estimate the outcomes of urological diseases. Furthermore, we explain the advantages that come from using AI over any existing traditional methods. |
Author | Ibrahim, Sufyan Karimi, Hadis Shetty, Dasharathraj K. Shah, Milap J. S. Dhavileswarapu, Aiswarya V. L. Khanuja, Harneet Singh Raza, Syed Zahid Somani, Bhaskar K. Naik, Nithesh Paul, Rahul Hameed, B. M. Zeeshan Rai, Bhavan Prasad |
AuthorAffiliation | 6 Department of Urology, Dr. B.R. Ambedkar Medical College, Bengaluru 560045, Karnataka, India; syed.zahid.raza@gmail.com 11 Department of Mechanical and Manufacturing, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India 12 Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; rpaul7@mgh.harvard.edu 5 Department of Electronics and Communication, GITAM University, Gandhi Nagar, Rushi Konda, Visakhapatnam 530045, Andhra Pradesh, India; aash.dhavil@gmail.com 3 iTRUE (International Training and Research in Uro-Oncology and Endourology) Group, Manipal 576104, Karnataka, India; sufyan.ibrahim2@gmail.com 14 Department of Urology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK 1 Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; zeeshanhameedbm@gmail.com (B.M.Z.H.); drmilapshah@gmail.com (M.J.S. |
AuthorAffiliation_xml | – name: 6 Department of Urology, Dr. B.R. Ambedkar Medical College, Bengaluru 560045, Karnataka, India; syed.zahid.raza@gmail.com – name: 9 Department of Humanities and Management, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; raja.shetty@manipal.edu – name: 2 KMC Innovation Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India – name: 8 Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; hskhanuja2@gmail.com – name: 4 Curiouz Techlab Private Limited, Manipal Government of Karnataka Bioincubator, Manipal 576104, Karnataka, India – name: 10 Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India – name: 1 Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; zeeshanhameedbm@gmail.com (B.M.Z.H.); drmilapshah@gmail.com (M.J.S.); bhaskarsomani@yahoo.com (B.K.S.) – name: 14 Department of Urology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK – name: 5 Department of Electronics and Communication, GITAM University, Gandhi Nagar, Rushi Konda, Visakhapatnam 530045, Andhra Pradesh, India; aash.dhavil@gmail.com – name: 13 Department of Urology, Freeman Hospital, Newcastle NE7 7DN, UK; urobhavan@gmail.com – name: 3 iTRUE (International Training and Research in Uro-Oncology and Endourology) Group, Manipal 576104, Karnataka, India; sufyan.ibrahim2@gmail.com – name: 12 Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; rpaul7@mgh.harvard.edu – name: 7 Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; hadiskarimi1997@gmail.com – name: 11 Department of Mechanical and Manufacturing, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India |
Author_xml | – sequence: 1 givenname: B. M. Zeeshan surname: Hameed fullname: Hameed, B. M. Zeeshan – sequence: 2 givenname: Aiswarya V. L. surname: S. Dhavileswarapu fullname: S. Dhavileswarapu, Aiswarya V. L. – sequence: 3 givenname: Syed Zahid surname: Raza fullname: Raza, Syed Zahid – sequence: 4 givenname: Hadis surname: Karimi fullname: Karimi, Hadis – sequence: 5 givenname: Harneet Singh surname: Khanuja fullname: Khanuja, Harneet Singh – sequence: 6 givenname: Dasharathraj K. orcidid: 0000-0002-5021-4029 surname: Shetty fullname: Shetty, Dasharathraj K. – sequence: 7 givenname: Sufyan orcidid: 0000-0001-9127-2738 surname: Ibrahim fullname: Ibrahim, Sufyan – sequence: 8 givenname: Milap J. surname: Shah fullname: Shah, Milap J. – sequence: 9 givenname: Nithesh orcidid: 0000-0003-0356-7697 surname: Naik fullname: Naik, Nithesh – sequence: 10 givenname: Rahul surname: Paul fullname: Paul, Rahul – sequence: 11 givenname: Bhavan Prasad surname: Rai fullname: Rai, Bhavan Prasad – sequence: 12 givenname: Bhaskar K. orcidid: 0000-0002-6248-6478 surname: Somani fullname: Somani, Bhaskar K. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33925767$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd9rFDEQx4NUbK198l0CvgjldJLsbrI-FI6rPw5OBLHPIZubvcuxm5xJ9sT_3tS2chbnZQby-X75TuY5OfHBIyEvGbwVooV3OzsygJappnpCzjhIOQOhxMnRfEouUtpBKaUqzuQzclqkvJaNPCOHecyud9aZgS59xmFwG_QWqfFrusyJLse9sZkGT29iGMLG2UJeu4QmYfpDfTHebHBEn9_TOV2EcR9xiz65A9JveHD4k4ae5i3SlcsYTZ4iviBPezMkvLjv5-Tm44fvi8-z1ddPy8V8NbOVrPOMi1JWdT0Ksa44YMslVOu6t6h6xnqo27auGrCdrK0E3mFnmtZAg4zxrkNxTq7ufPdTN-LalpDRDHof3WjiLx2M0_--eLfVm3DQinFRgSwGb-4NYvgxYcp6dMmWbzIew5Q0rzmoqlWcFfT1I3QXpujLeoUSwCrFAQr16jjR3ygPJykAuwNsDClF7LV12WQXbgO6QTO4ZUEfXb5oLh9pHmz_R_8GZqKvLg |
CitedBy_id | crossref_primary_10_1016_j_euros_2024_10_009 crossref_primary_10_4081_aiua_2024_12530 crossref_primary_10_1089_end_2023_0263 crossref_primary_10_3390_diagnostics12092235 crossref_primary_10_20517_2574_1225_2023_79 crossref_primary_10_3390_jcm10184225 crossref_primary_10_3389_fsurg_2022_939079 crossref_primary_10_3389_fped_2023_1149318 crossref_primary_10_3390_diagnostics14182059 crossref_primary_10_3390_diagnostics13193070 crossref_primary_10_1016_j_csbj_2022_12_004 crossref_primary_10_3390_cancers13123064 crossref_primary_10_23736_S2241_9136_24_00030_6 crossref_primary_10_1080_20905998_2024_2443334 crossref_primary_10_3389_fsurg_2024_1525713 crossref_primary_10_1097_MOU_0000000000001216 crossref_primary_10_3389_frai_2022_954497 crossref_primary_10_1007_s00120_023_02154_w crossref_primary_10_1016_j_euros_2024_01_002 crossref_primary_10_3390_diagnostics14192127 crossref_primary_10_3390_cancers14143358 crossref_primary_10_3390_diagnostics12020289 crossref_primary_10_1109_ACCESS_2023_3323024 crossref_primary_10_3390_diagnostics11091551 crossref_primary_10_1089_end_2024_0693 crossref_primary_10_1007_s00120_021_01610_9 crossref_primary_10_1089_end_2023_0680 crossref_primary_10_1177_15910199241238798 crossref_primary_10_1097_MOU_0000000000001227 crossref_primary_10_3390_cancers15092656 crossref_primary_10_1016_j_euros_2024_01_017 crossref_primary_10_3390_jcm13061590 crossref_primary_10_1097_MOU_0000000000001260 crossref_primary_10_2530_jslsm_jslsm_42_0026 crossref_primary_10_17264_stmarieng_13_101 crossref_primary_10_3389_fmed_2023_1202486 crossref_primary_10_1089_end_2024_0120 crossref_primary_10_3390_app12147216 crossref_primary_10_1016_j_ajur_2022_05_003 crossref_primary_10_1186_s12958_024_01193_y crossref_primary_10_1007_s00345_024_04987_2 crossref_primary_10_1016_j_euros_2024_05_004 crossref_primary_10_3390_jcm10184259 crossref_primary_10_3390_curroncol29060336 crossref_primary_10_1016_j_jpi_2022_100177 crossref_primary_10_3390_cells11101711 crossref_primary_10_1007_s00240_023_01516_5 crossref_primary_10_1097_MOU_0000000000001151 crossref_primary_10_1007_s00345_024_05054_6 crossref_primary_10_1007_s00345_024_05037_7 crossref_primary_10_21886_2308_6424_2023_11_3_142_148 crossref_primary_10_1007_s00240_024_01591_2 crossref_primary_10_1097_MOU_0000000000001154 |
Cites_doi | 10.1038/s41598-017-08008-8 10.1016/j.eururo.2017.08.028 10.1016/j.juro.2008.10.073 10.1016/j.eururo.2016.04.019 10.1016/j.juro.2018.02.2792 10.1007/s11548-017-1606-5 10.1016/j.juro.2018.04.059 10.1007/s10278-019-00230-2 10.18178/ijmlc.2018.8.1.661 10.1111/bju.14477 10.18632/oncotarget.11293 10.1007/s13246-017-0535-5 10.1007/s11548-015-1331-x 10.1002/14651858.CD011903.pub2 10.1089/end.2019.0509 10.1016/j.compbiomed.2015.05.015 10.1097/MOU.0000000000000814 10.1109/SMARTCOMP.2014.7043859 10.1089/end.2016.0791 10.1016/j.juro.2018.10.006 10.1016/j.euf.2021.03.002 10.1001/jama.2017.18391 10.1016/j.eururo.2019.11.024 10.1016/j.jpurol.2014.10.009 10.1001/jamanetworkopen.2018.2665 10.1097/JU.0000000000000186 10.1117/1.JBO.22.3.036015 10.1016/j.artmed.2017.12.001 10.1007/s00464-014-3982-z 10.1109/ACCESS.2017.2747838 10.1038/s41598-019-42431-3 10.1002/jbio.201700188 10.18632/oncotarget.16393 10.1038/bjc.2015.472 10.1002/mp.12510 10.1016/j.juro.2015.10.173 10.1016/j.fertnstert.2018.08.039 10.1016/j.juro.2017.09.147 10.1186/s40425-016-0117-1 10.1002/jmri.25562 10.1038/aja.2012.131 10.1136/bmj.l4923 10.4103/0970-1591.152918 10.1371/journal.pone.0090972 10.1016/S1569-9056(17)31156-9 10.1016/j.ejrad.2018.08.014 10.1089/end.2018.0209 10.1016/j.ijrobp.2016.11.036 10.1016/j.eswa.2012.05.028 10.1016/j.compbiomed.2018.04.021 10.1016/j.aju.2017.11.006 10.23736/S0393-2249.19.03613-0 10.1002/jmri.25983 10.1080/19396368.2016.1185654 10.1177/107327481502200307 10.1016/j.eswa.2016.11.006 10.1016/S1470-2045(14)71021-6 10.1016/j.eururo.2016.06.020 10.1016/j.jpurol.2014.07.011 10.1016/j.cmpb.2017.02.023 10.1007/s00261-017-1309-y 10.21037/tau.2017.07.22 10.18632/oncotarget.10830 10.1016/j.juro.2010.12.069 10.1002/mrm.26169 10.1111/bju.14735 10.1002/jmri.26178 10.1016/j.jpurol.2014.11.025 10.1073/pnas.1505935112 10.1016/j.jpurol.2015.03.006 10.7150/jca.21261 10.1109/TMI.2015.2502540 10.5152/tud.2020.20117 10.1038/s41598-018-22564-7 10.1016/j.juro.2015.09.090 10.1007/s11548-017-1522-8 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/jcm10091864 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2077-0383 |
ExternalDocumentID | PMC8123407 33925767 10_3390_jcm10091864 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA HMCUK HYE IAO IHR ITC KQ8 M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c475t-23333c8bfe33d420e92704d5fce8f11f05995460cb75c702beba69a06e112bbe3 |
IEDL.DBID | M48 |
ISSN | 2077-0383 |
IngestDate | Thu Aug 21 18:07:40 EDT 2025 Fri Jul 11 03:38:11 EDT 2025 Mon Jun 30 14:49:40 EDT 2025 Thu Apr 03 06:59:24 EDT 2025 Tue Jul 01 04:34:34 EDT 2025 Thu Apr 24 22:56:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | endourology hydronephrosis fertility machine learning urinary incontinence artificial intelligence kidney stone disease prostate cancer renal cell carcinoma urinary reflux pediatric urology bladder cancer urology reproductive urology urolithiasis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-23333c8bfe33d420e92704d5fce8f11f05995460cb75c702beba69a06e112bbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6248-6478 0000-0003-0356-7697 0000-0001-9127-2738 0000-0002-5021-4029 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jcm10091864 |
PMID | 33925767 |
PQID | 2530148200 |
PQPubID | 5046890 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8123407 proquest_miscellaneous_2520849821 proquest_journals_2530148200 pubmed_primary_33925767 crossref_citationtrail_10_3390_jcm10091864 crossref_primary_10_3390_jcm10091864 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210426 |
PublicationDateYYYYMMDD | 2021-04-26 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210426 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of clinical medicine |
PublicationTitleAlternate | J Clin Med |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Aminsharifi (ref_47) 2017; 31 ref_50 Kocak (ref_66) 2018; 107 Etafy (ref_69) 2018; 16 ref_13 Han (ref_67) 2019; 32 ref_51 ref_19 Ballouhey (ref_72) 2014; 29 Asensio (ref_74) 2015; 11 French (ref_79) 2017; 12 Venkatramani (ref_4) 2015; 31 Mannil (ref_48) 2018; 200 Sapre (ref_45) 2016; 114 Kwak (ref_11) 2017; 142 Avery (ref_73) 2015; 11 Zhang (ref_37) 2016; 7 ref_68 Kirby (ref_70) 2017; 6 ref_65 Bowen (ref_76) 2014; 10 Saeed (ref_57) 2017; 71 ref_64 ref_63 Abdeltawab (ref_52) 2019; 9 ref_28 Witjes (ref_62) 2017; 71 Marchini (ref_77) 2011; 185 Luchey (ref_25) 2015; 22 Harder (ref_36) 2018; 8 Checcucci (ref_81) 2020; 72 Merisaari (ref_9) 2016; 77 Wang (ref_44) 2015; 63 Vickram (ref_27) 2016; 62 Yoo (ref_53) 2017; 7 Logvinenko (ref_22) 2015; 11 Ginsburg (ref_8) 2017; 46 Shah (ref_29) 2020; 46 ref_33 Akinsal (ref_26) 2018; 15 Guidi (ref_56) 2017; 40 Sathianathen (ref_61) 2019; 201 Ms (ref_7) 2018; 48 Cerrolaza (ref_21) 2016; 195 Lee (ref_75) 2009; 181 Wong (ref_35) 2019; 123 Breda (ref_78) 2018; 73 Checcucci (ref_80) 2020; 30 Cosma (ref_34) 2017; 70 Baghdadi (ref_59) 2018; 199 Kwak (ref_12) 2017; 5 Ghani (ref_60) 2017; 16 Hung (ref_42) 2019; 124 Parekattil (ref_71) 2013; 15 Jendeberg (ref_31) 2018; 97 Candemir (ref_24) 2018; 8 ref_82 Zhang (ref_39) 2017; 8 Porpiglia (ref_5) 2020; 78 Xu (ref_14) 2017; 12 Nicolae (ref_55) 2017; 97 Papadopoulos (ref_32) 2013; 383 Lalonde (ref_40) 2014; 15 Nouranian (ref_54) 2015; 35 Zheng (ref_18) 2016; 7 Gil (ref_23) 2012; 39 Nosrati (ref_58) 2016; 11 Shao (ref_16) 2017; 8 Ikeda (ref_17) 2020; 34 Shiradkar (ref_38) 2018; 48 ref_43 ref_41 ref_2 Mannil (ref_49) 2017; 43 Kazemi (ref_30) 2018; 84 Diprose (ref_3) 2016; 129 Fehr (ref_10) 2015; 112 Beam (ref_1) 2018; 319 Bartsch (ref_46) 2016; 195 Blum (ref_20) 2018; 199 ref_6 Garapati (ref_15) 2017; 44 |
References_xml | – volume: 7 start-page: 1 year: 2017 ident: ref_53 article-title: A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study publication-title: Sci. Rep. doi: 10.1038/s41598-017-08008-8 – volume: 73 start-page: 273 year: 2018 ident: ref_78 article-title: Robot-assisted Kidney Transplantation: The European Experience publication-title: Eur. Urol. doi: 10.1016/j.eururo.2017.08.028 – volume: 181 start-page: 823 year: 2009 ident: ref_75 article-title: Robot Assisted Laparoscopic Partial Nephrectomy: A Viable and Safe Option in Children publication-title: J. Urol. doi: 10.1016/j.juro.2008.10.073 – volume: 71 start-page: 319 year: 2017 ident: ref_57 article-title: Comprehensive Drug Testing of Patient-derived Conditionally Reprogrammed Cells from Castration-resistant Prostate Cancer publication-title: Eur. Urol. doi: 10.1016/j.eururo.2016.04.019 – volume: 199 start-page: e1134 year: 2018 ident: ref_59 article-title: PD58-04 Modeling Automated Assessment of Surgical Performance Utilizing Computer Vision: Proof of Concept publication-title: J. Urol. doi: 10.1016/j.juro.2018.02.2792 – volume: 12 start-page: 1161 year: 2017 ident: ref_79 article-title: Predicting surgical skill from the first N seconds of a task: Value over task time using the isogony principle publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-017-1606-5 – ident: ref_65 – volume: 200 start-page: 829 year: 2018 ident: ref_48 article-title: Three-Dimensional Texture Analysis with Machine Learning Provides Incremental Predictive Information for Successful Shock Wave Lithotripsy in Patients with Kidney Stones publication-title: J. Urol. doi: 10.1016/j.juro.2018.04.059 – volume: 32 start-page: 638 year: 2019 ident: ref_67 article-title: The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method publication-title: J. Digit. Imaging doi: 10.1007/s10278-019-00230-2 – volume: 8 start-page: 44 year: 2018 ident: ref_24 article-title: Estimating the Semen Quality from Life-Style Using Fuzzy Radial Basis Functions publication-title: Int. J. Mach. Learn. Comput. doi: 10.18178/ijmlc.2018.8.1.661 – volume: 123 start-page: 51 year: 2019 ident: ref_35 article-title: Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy publication-title: BJU Int. doi: 10.1111/bju.14477 – volume: 7 start-page: 78140 year: 2016 ident: ref_37 article-title: An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification publication-title: Oncotarget doi: 10.18632/oncotarget.11293 – volume: 40 start-page: 337 year: 2017 ident: ref_56 article-title: Expert system classifier for adaptive radiation therapy in prostate cancer publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-017-0535-5 – volume: 11 start-page: 1409 year: 2016 ident: ref_58 article-title: Endoscopic scene labelling and augmentation using intraoperative pulsatile motion and colour appearance cues with preoperative anatomical priors publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-015-1331-x – ident: ref_64 doi: 10.1002/14651858.CD011903.pub2 – volume: 34 start-page: 352 year: 2020 ident: ref_17 article-title: Support System of Cystoscopic Diagnosis for Bladder Cancer Based on Artificial Intelligence publication-title: J. Endourol. doi: 10.1089/end.2019.0509 – volume: 63 start-page: 124 year: 2015 ident: ref_44 article-title: Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.05.015 – volume: 30 start-page: 788 year: 2020 ident: ref_80 article-title: Applications of neural networks in urology publication-title: Curr. Opin. Urol. doi: 10.1097/MOU.0000000000000814 – ident: ref_43 doi: 10.1109/SMARTCOMP.2014.7043859 – volume: 31 start-page: 461 year: 2017 ident: ref_47 article-title: Artificial Neural Network System to Predict the Postoperative Outcome of Percutaneous Nephrolithotomy publication-title: J. Endourol. doi: 10.1089/end.2016.0791 – volume: 201 start-page: 715 year: 2019 ident: ref_61 article-title: Robotic Assisted Radical Cystectomy vs Open Radical Cystectomy: Systematic Review and Meta-Analysis publication-title: J Urol. doi: 10.1016/j.juro.2018.10.006 – ident: ref_68 doi: 10.1016/j.euf.2021.03.002 – volume: 319 start-page: 1317 year: 2018 ident: ref_1 article-title: Big Data and Machine Learning in Health Care publication-title: JAMA doi: 10.1001/jama.2017.18391 – volume: 78 start-page: 229 year: 2020 ident: ref_5 article-title: Three-dimensional Augmented Reality Robot-assisted Partial Nephrectomy in Case of Complex Tumours (PADUA ≥ 10): A New Intraoperative Tool Overcoming the Ultrasound Guidance publication-title: Eur. Urol. doi: 10.1016/j.eururo.2019.11.024 – volume: 11 start-page: 69.e1 year: 2015 ident: ref_74 article-title: Failed pyeloplasty in children: Is robot-assisted laparoscopic reoperative repair feasible? publication-title: J. Pediatr. Urol. doi: 10.1016/j.jpurol.2014.10.009 – ident: ref_2 doi: 10.1001/jamanetworkopen.2018.2665 – ident: ref_33 doi: 10.1097/JU.0000000000000186 – ident: ref_13 doi: 10.1117/1.JBO.22.3.036015 – volume: 84 start-page: 117 year: 2018 ident: ref_30 article-title: A novel method for predicting kidney stone type using ensemble learning publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2017.12.001 – volume: 29 start-page: 2643 year: 2014 ident: ref_72 article-title: A comparison of robotic surgery in children weighing above and below 15.0 kg: Size does not affect surgery success publication-title: Surg. Endosc. doi: 10.1007/s00464-014-3982-z – volume: 5 start-page: 18526 year: 2017 ident: ref_12 article-title: Nuclear Architecture Analysis of Prostate Cancer via Convolutional Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2747838 – volume: 9 start-page: 1 year: 2019 ident: ref_52 article-title: A Novel CNN-Based CAD System for Early Assessment of Transplanted Kidney Dysfunction publication-title: Sci. Rep. doi: 10.1038/s41598-019-42431-3 – ident: ref_19 doi: 10.1002/jbio.201700188 – volume: 8 start-page: 38802 year: 2017 ident: ref_16 article-title: Metabolite marker discovery for the detection of bladder cancer by comparative metabolomics publication-title: Oncotarget doi: 10.18632/oncotarget.16393 – volume: 114 start-page: 454 year: 2016 ident: ref_45 article-title: A urinary microRNA signature can predict the presence of bladder urothelial carcinoma in patients undergoing surveillance publication-title: Br. J. Cancer doi: 10.1038/bjc.2015.472 – volume: 44 start-page: 5814 year: 2017 ident: ref_15 article-title: Urinary bladder cancer staging in CT urography using machine learning publication-title: Med. Phys. doi: 10.1002/mp.12510 – volume: 195 start-page: 1093 year: 2016 ident: ref_21 article-title: Quantitative Ultrasound for Measuring Obstructive Severity in Children with Hydronephrosis publication-title: J. Urol. doi: 10.1016/j.juro.2015.10.173 – ident: ref_28 doi: 10.1016/j.fertnstert.2018.08.039 – volume: 199 start-page: 847 year: 2018 ident: ref_20 article-title: Early Detection of Ureteropelvic Junction Obstruction Using Signal Analysis and Machine Learning: A Dynamic Solution to a Dynamic Problem publication-title: J. Urol. doi: 10.1016/j.juro.2017.09.147 – ident: ref_63 doi: 10.1186/s40425-016-0117-1 – volume: 46 start-page: 184 year: 2017 ident: ref_8 article-title: Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25562 – volume: 383 start-page: 253 year: 2013 ident: ref_32 article-title: Probabilistic Prediction for the Detection of Vesicoureteral Reflux publication-title: Program. Ing. Nat. – volume: 15 start-page: 67 year: 2013 ident: ref_71 article-title: Robotic assisted andrological surgery publication-title: Asian J. Androl. doi: 10.1038/aja.2012.131 – ident: ref_51 doi: 10.1136/bmj.l4923 – ident: ref_82 – volume: 31 start-page: 150 year: 2015 ident: ref_4 article-title: Urovision 2020: The future of urology publication-title: Indian J. Urol. doi: 10.4103/0970-1591.152918 – ident: ref_50 doi: 10.1371/journal.pone.0090972 – volume: 16 start-page: e1927 year: 2017 ident: ref_60 article-title: Video analysis of skill and technique (VAST): Machine learning to assess the technical skill of surgeons performing robotic prostatectomy publication-title: Eur. Urol. Suppl. doi: 10.1016/S1569-9056(17)31156-9 – volume: 107 start-page: 149 year: 2018 ident: ref_66 article-title: Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2018.08.014 – ident: ref_41 doi: 10.1089/end.2018.0209 – volume: 97 start-page: 822 year: 2017 ident: ref_55 article-title: Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy publication-title: Int. J. Radiat. Oncol. doi: 10.1016/j.ijrobp.2016.11.036 – volume: 39 start-page: 12564 year: 2012 ident: ref_23 article-title: Predicting seminal quality with artificial intelligence methods publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.05.028 – volume: 97 start-page: 153 year: 2018 ident: ref_31 article-title: Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.04.021 – volume: 16 start-page: 148 year: 2018 ident: ref_69 article-title: Review of the role of robotic surgery in male infertility publication-title: Arab. J. Urol. doi: 10.1016/j.aju.2017.11.006 – volume: 72 start-page: 49 year: 2020 ident: ref_81 article-title: Artificial intelligence and neural networks in urology: Current clinical applications publication-title: Minerva Urol. Nefrol. doi: 10.23736/S0393-2249.19.03613-0 – volume: 48 start-page: 818 year: 2018 ident: ref_7 article-title: Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25983 – volume: 62 start-page: 258 year: 2016 ident: ref_27 article-title: Validation of artificial neural network models for predicting biochemical markers associated with male infertility publication-title: Syst. Biol. Reprod. Med. doi: 10.1080/19396368.2016.1185654 – volume: 22 start-page: 301 year: 2015 ident: ref_25 article-title: Robotic-Assisted Radical Cystectomy publication-title: Cancer Control. doi: 10.1177/107327481502200307 – volume: 70 start-page: 1 year: 2017 ident: ref_34 article-title: A survey on computational intelligence approaches for predictive modeling in prostate cancer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.11.006 – volume: 15 start-page: 1521 year: 2014 ident: ref_40 article-title: Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: A retrospective cohort study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(14)71021-6 – volume: 71 start-page: 462 year: 2017 ident: ref_62 article-title: Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer publication-title: Eur. Urol. doi: 10.1016/j.eururo.2016.06.020 – volume: 10 start-page: 1284.e1 year: 2014 ident: ref_76 article-title: Robotic-assisted laparoscopic transplant-to-native ureteroureterostomy in a pediatric patient publication-title: J. Pediatr. Urol. doi: 10.1016/j.jpurol.2014.07.011 – volume: 142 start-page: 91 year: 2017 ident: ref_11 article-title: Multiview boosting digital pathology analysis of prostate cancer publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.02.023 – volume: 43 start-page: 1432 year: 2017 ident: ref_49 article-title: Prediction of successful shock wave lithotripsy with CT: A phantom study using texture analysis publication-title: Abdom. Radiol. doi: 10.1007/s00261-017-1309-y – volume: 6 start-page: 753 year: 2017 ident: ref_70 article-title: Vasectomy reversal: Decision making and technical innovations publication-title: Transl. Androl. Urol. doi: 10.21037/tau.2017.07.22 – ident: ref_6 – volume: 7 start-page: 59189 year: 2016 ident: ref_18 article-title: Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps publication-title: Oncotarget doi: 10.18632/oncotarget.10830 – volume: 185 start-page: 1870 year: 2011 ident: ref_77 article-title: Robotic Assisted Laparoscopic Ureteral Reimplantation in Children: Case Matched Comparative Study with Open Surgical Approach publication-title: J. Urol. doi: 10.1016/j.juro.2010.12.069 – volume: 77 start-page: 1249 year: 2016 ident: ref_9 article-title: Fitting methods for intravoxel incoherent motion imaging of prostate cancer on region of interest level: Repeatability and gleason score prediction publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26169 – volume: 15 start-page: 122 year: 2018 ident: ref_26 article-title: Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males publication-title: Urol. J. – volume: 124 start-page: 487 year: 2019 ident: ref_42 article-title: A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy publication-title: BJU Int. doi: 10.1111/bju.14735 – volume: 48 start-page: 1626 year: 2018 ident: ref_38 article-title: Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26178 – volume: 11 start-page: 139.e1 year: 2015 ident: ref_73 article-title: Robot-assisted laparoscopic pyeloplasty: Multi-institutional experience in infants publication-title: J. Pediatr. Urol. doi: 10.1016/j.jpurol.2014.11.025 – volume: 129 start-page: 73 year: 2016 ident: ref_3 article-title: Artificial intelligence in medicine: Humans need not apply? publication-title: New Zealand Med. J. – volume: 112 start-page: E6265 year: 2015 ident: ref_10 article-title: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1505935112 – volume: 11 start-page: 176.e1 year: 2015 ident: ref_22 article-title: Predictive value of specific ultrasound findings when used as a screening test for abnormalities on VCUG publication-title: J. Pediatr. Urol. doi: 10.1016/j.jpurol.2015.03.006 – volume: 8 start-page: 3261 year: 2017 ident: ref_39 article-title: Improvement in prediction of prostate cancer prognosis with somatic mutational signatures publication-title: J. Cancer doi: 10.7150/jca.21261 – volume: 35 start-page: 921 year: 2015 ident: ref_54 article-title: Learning-Based Multi-Label Segmentation of Transrectal Ultrasound Images for Prostate Brachytherapy publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2502540 – volume: 46 start-page: S27 year: 2020 ident: ref_29 article-title: Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study publication-title: Türk Urol. Derg. Turk. J. Urol. doi: 10.5152/tud.2020.20117 – volume: 8 start-page: 1 year: 2018 ident: ref_36 article-title: Tissue Phenomics for prognostic biomarker discovery in low- and intermediate-risk prostate cancer publication-title: Sci. Rep. doi: 10.1038/s41598-018-22564-7 – volume: 195 start-page: 493 year: 2016 ident: ref_46 article-title: Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder publication-title: J. Urol. doi: 10.1016/j.juro.2015.09.090 – volume: 12 start-page: 645 year: 2017 ident: ref_14 article-title: Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-017-1522-8 |
SSID | ssj0000884217 |
Score | 2.438323 |
SecondaryResourceType | review_article |
Snippet | Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1864 |
SubjectTerms | Algorithms Artificial intelligence Bladder cancer Clinical medicine Decision making Decision trees Deep learning Disease Health care industry Kidney cancer Machine learning Medicine Natural language processing Neural networks Patients Pediatrics Physicians Predictive analytics Prostate cancer R&D Research & development Review Urology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50BfEivq2uEsGTUEzTNGm9iPjAFfXkwt5K06aoaKu7q7_fmbZbd1VsjzOQ0kkm32Qm3wAcCpPZSGbaNRh3uTIhyttcUdkUvlEiNK_Inu_u1XVf3gyCQXPgNmrKKic-sXLUWZnSGfmxCAj8437FT9_eXeoaRdnVpoXGPCwQdRmVdOmBbs9YcAVJhNz1tTwfo_vj5_TVQ1ThhUrObkS_0OXPIsmpXedqBZYbuMjOavuuwpwt1mDxrkmIr8MnSWoSCNabYtdkSZGx3njEetUtSFYWrD-c-Dl2UWdlRpXWdwHMCTtj5B-G9rEua2d15oCVOUOcyG5bCuYN6F9dPpxfu00rBTeVOhi7wscnDU1ufT-TgtsIrSCzIE9tmHteTiwtgVQ8NTpINRfGmkRFCVcW8Zgx1t-ETlEWdhuYkAh5It8orq00KPVELpJEq8zLlJHcgaPJf43Thmec2l28xBhvkBHiKSM4cNgqv9X0Gn-rdScGips1Noq_Z4QDB60YVwelPJLClh-kI3goo1B4DmzV9mzHwUEo2tIO6BlLtwrEvD0rKZ4eKwZuREU-RsI7_3_WLiwJqoDh0hWqC53x8MPuIYQZm_1qnn4BjgrxtA priority: 102 providerName: ProQuest |
Title | Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33925767 https://www.proquest.com/docview/2530148200 https://www.proquest.com/docview/2520849821 https://pubmed.ncbi.nlm.nih.gov/PMC8123407 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7oBPFFvDudI4JPQjVN06QVRLzixImIg72Vpk2Zop1uU_Tfe9Kbm_pg-5hTUnJy-T7OyXcAdpiKtc9jaSnkXRYPjeRtIkzaFL5-yCTNxJ7bN-Kyw6-6bncKymKcxQAO_6R2pp5UZ_C09_H6eYQL_tAwTqTs-4_Rs41QwfYEn4YZPJKkWaHtAudnW7LncZZV32VUSosiLcvv6v38fvJ0-gU5f2ZOjh1FFwswX2BIcpw7fRGmdLoEs-0iSr4M76YlV4YgrTHJTRKmMWmNhqSVXY0k_ZR0BuXmR87yUM0ws_rOijkgx8RsGgPdy3PdSR5OIP2EIHgk15Uu8wp0Ls7vTy-tor6CFXHpjizm4BN5KtGOE3NGtY-u4bGbRNpLbDsx0i0uFzRS0o0kZUqrUPghFRpBmlLaWYVa2k_1OhDGEQf5jhJUaq6w1WYJC0MpYjsWitM67JbjGkSF-LipgfEUIAkxTgjGnFCHncr4Jdfc-NusUTooKOdNwFzDERHWYJfbVTMuGRMHCVPdfzM2jHrc95hdh7Xcn1U_2ImhYLIOcsLTlYGR455sSR96mSw3QiUH6fHG__5-E-aYSY-h3GKiAbXR4E1vIb4ZqSZMy65swszJ-c3tXTObyV9-Cvqd |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgJeEL_J2MBI4wUpmmM7doKEpsE2NaytEFqlvYU4cbRNkGxtB-Kf4m_kHCdZC4i3JY8-xZHvzv7Od_4MsM10YWJRKF9j3OWLzFLeltKWTeEbZ0zRhux5PJHDqfh4Ep6swa_uLIwtq-zmxGaiLurc7pHvsNCCf1yv6O7FpW9vjbLZ1e4KDWcWR-bnDwzZ5u-SfdTva8YOD44_DP32VgE_Fypc-Izjk0e6NJwXglET4w-JIixzE5VBUFrCklBImmsV5ooybXQm44xKg9BEa8Pxu7dgXXAMZQaw_v5g8ulzv6uDPisQ5LuDgJzHdOc8_xYgjgkiKVaXvr_w7J9lmUvr3OF9uNcCVLLnLOoBrJnqIdwetyn4R_DdtjjaCZIs8XmSrCpIspiTpDl3SeqKTGfdzEr2XR5o3khdl9y8JXvEzkgzc-oK6YnLVZC6JIhMyagnfX4M0xsZ5icwqOrKPAPCBIKsmGtJlREaWwNWsixTsggKqQX14E03rmneMpvbCza-phjhWCWkS0rwYLsXvnCEHv8W2-wUlLZePU-vbdCDV30z-qNNsmSVqa-sDKORiCMWePDU6bPvBzux8Z3yQK1ouhewXN-rLdXZacP5jTiMY-y98f_fegl3hsfjUTpKJkfP4S6z9TdU-ExuwmAxuzJbCKAW-kVrtQS-3LSj_AZLVS-s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VVqq4IGiBBgo1UntBitaxHTtBqlDFsmrohziw0t5CnDhqK0jK7paqf41f13GcpLsUcWty9CiOPDP2G8_4GWCX6cLEolC-xrjLF5mlvC2lLZvCN86Yog3Z88mpPByLL5NwsgJ_urMwtqyymxObibqoc7tHPmChBf-4XtFB2ZZFfB2OPl7-8u0NUjbT2l2n4UzkyNxcY_g220-GqOs9xkafv3069NsbBvxcqHDuM45PHunScF4IRk2MPyeKsMxNVAZBaclLQiFprlWYK8q00ZmMMyoNwhStDcfvPoI1xcPA-piaqH5_B71XINx3RwI5j-ngIv8ZIKIJIimWF8F7yPbvAs2FFW_0FJ60UJUcONt6Bium2oD1kzYZvwm_bYsjoCDJArMnyaqCJPMZSZoTmKSuyHjazbFk6DJCs0bqrvjmAzkgdm6amjNXUk9c1oLUJUGMSo57-ufnMH6QQX4Bq1VdmS0gTCDcirmWVBmhsTVgJcsyJYugkFpQD95345rmLce5vWrjR4qxjlVCuqAED3Z74UtH7fFvse1OQWnr37P0zho9eNc3o2fadEtWmfrKyjAaiThigQcvnT77frATG-kpD9SSpnsBy_q93FKdnzXs34jIOEbhr_7_Wzuwju6RHienR6_hMaI85vaNtmF1Pr0ybxBJzfXbxmQJfH9oH7kF-g8ycg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+and+Its+Impact+on+Urological+Diseases+and+Management%3A+A+Comprehensive+Review+of+the+Literature&rft.jtitle=Journal+of+clinical+medicine&rft.au=Hameed%2C+B.+M.+Zeeshan&rft.au=S.+Dhavileswarapu%2C+Aiswarya+V.+L.&rft.au=Raza%2C+Syed+Zahid&rft.au=Karimi%2C+Hadis&rft.date=2021-04-26&rft.issn=2077-0383&rft.eissn=2077-0383&rft.volume=10&rft.issue=9&rft.spage=1864&rft_id=info:doi/10.3390%2Fjcm10091864&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcm10091864 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon |