Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature

Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnes...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical medicine Vol. 10; no. 9; p. 1864
Main Authors Hameed, B. M. Zeeshan, S. Dhavileswarapu, Aiswarya V. L., Raza, Syed Zahid, Karimi, Hadis, Khanuja, Harneet Singh, Shetty, Dasharathraj K., Ibrahim, Sufyan, Shah, Milap J., Naik, Nithesh, Paul, Rahul, Rai, Bhavan Prasad, Somani, Bhaskar K.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.04.2021
MDPI
Subjects
Online AccessGet full text
ISSN2077-0383
2077-0383
DOI10.3390/jcm10091864

Cover

Loading…
Abstract Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnesses such as urothelial and prostate cancer. In this article, we aim to discuss how algorithms and techniques of artificial intelligence are equipped in the field of urology to detect, treat, and estimate the outcomes of urological diseases. Furthermore, we explain the advantages that come from using AI over any existing traditional methods.
AbstractList Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnesses such as urothelial and prostate cancer. In this article, we aim to discuss how algorithms and techniques of artificial intelligence are equipped in the field of urology to detect, treat, and estimate the outcomes of urological diseases. Furthermore, we explain the advantages that come from using AI over any existing traditional methods.Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnesses such as urothelial and prostate cancer. In this article, we aim to discuss how algorithms and techniques of artificial intelligence are equipped in the field of urology to detect, treat, and estimate the outcomes of urological diseases. Furthermore, we explain the advantages that come from using AI over any existing traditional methods.
Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnesses such as urothelial and prostate cancer. In this article, we aim to discuss how algorithms and techniques of artificial intelligence are equipped in the field of urology to detect, treat, and estimate the outcomes of urological diseases. Furthermore, we explain the advantages that come from using AI over any existing traditional methods.
Author Ibrahim, Sufyan
Karimi, Hadis
Shetty, Dasharathraj K.
Shah, Milap J.
S. Dhavileswarapu, Aiswarya V. L.
Khanuja, Harneet Singh
Raza, Syed Zahid
Somani, Bhaskar K.
Naik, Nithesh
Paul, Rahul
Hameed, B. M. Zeeshan
Rai, Bhavan Prasad
AuthorAffiliation 6 Department of Urology, Dr. B.R. Ambedkar Medical College, Bengaluru 560045, Karnataka, India; syed.zahid.raza@gmail.com
11 Department of Mechanical and Manufacturing, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
12 Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; rpaul7@mgh.harvard.edu
5 Department of Electronics and Communication, GITAM University, Gandhi Nagar, Rushi Konda, Visakhapatnam 530045, Andhra Pradesh, India; aash.dhavil@gmail.com
3 iTRUE (International Training and Research in Uro-Oncology and Endourology) Group, Manipal 576104, Karnataka, India; sufyan.ibrahim2@gmail.com
14 Department of Urology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
1 Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; zeeshanhameedbm@gmail.com (B.M.Z.H.); drmilapshah@gmail.com (M.J.S.
AuthorAffiliation_xml – name: 6 Department of Urology, Dr. B.R. Ambedkar Medical College, Bengaluru 560045, Karnataka, India; syed.zahid.raza@gmail.com
– name: 9 Department of Humanities and Management, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; raja.shetty@manipal.edu
– name: 2 KMC Innovation Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
– name: 8 Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; hskhanuja2@gmail.com
– name: 4 Curiouz Techlab Private Limited, Manipal Government of Karnataka Bioincubator, Manipal 576104, Karnataka, India
– name: 10 Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
– name: 1 Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; zeeshanhameedbm@gmail.com (B.M.Z.H.); drmilapshah@gmail.com (M.J.S.); bhaskarsomani@yahoo.com (B.K.S.)
– name: 14 Department of Urology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
– name: 5 Department of Electronics and Communication, GITAM University, Gandhi Nagar, Rushi Konda, Visakhapatnam 530045, Andhra Pradesh, India; aash.dhavil@gmail.com
– name: 13 Department of Urology, Freeman Hospital, Newcastle NE7 7DN, UK; urobhavan@gmail.com
– name: 3 iTRUE (International Training and Research in Uro-Oncology and Endourology) Group, Manipal 576104, Karnataka, India; sufyan.ibrahim2@gmail.com
– name: 12 Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; rpaul7@mgh.harvard.edu
– name: 7 Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; hadiskarimi1997@gmail.com
– name: 11 Department of Mechanical and Manufacturing, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
Author_xml – sequence: 1
  givenname: B. M. Zeeshan
  surname: Hameed
  fullname: Hameed, B. M. Zeeshan
– sequence: 2
  givenname: Aiswarya V. L.
  surname: S. Dhavileswarapu
  fullname: S. Dhavileswarapu, Aiswarya V. L.
– sequence: 3
  givenname: Syed Zahid
  surname: Raza
  fullname: Raza, Syed Zahid
– sequence: 4
  givenname: Hadis
  surname: Karimi
  fullname: Karimi, Hadis
– sequence: 5
  givenname: Harneet Singh
  surname: Khanuja
  fullname: Khanuja, Harneet Singh
– sequence: 6
  givenname: Dasharathraj K.
  orcidid: 0000-0002-5021-4029
  surname: Shetty
  fullname: Shetty, Dasharathraj K.
– sequence: 7
  givenname: Sufyan
  orcidid: 0000-0001-9127-2738
  surname: Ibrahim
  fullname: Ibrahim, Sufyan
– sequence: 8
  givenname: Milap J.
  surname: Shah
  fullname: Shah, Milap J.
– sequence: 9
  givenname: Nithesh
  orcidid: 0000-0003-0356-7697
  surname: Naik
  fullname: Naik, Nithesh
– sequence: 10
  givenname: Rahul
  surname: Paul
  fullname: Paul, Rahul
– sequence: 11
  givenname: Bhavan Prasad
  surname: Rai
  fullname: Rai, Bhavan Prasad
– sequence: 12
  givenname: Bhaskar K.
  orcidid: 0000-0002-6248-6478
  surname: Somani
  fullname: Somani, Bhaskar K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33925767$$D View this record in MEDLINE/PubMed
BookMark eNptkd9rFDEQx4NUbK198l0CvgjldJLsbrI-FI6rPw5OBLHPIZubvcuxm5xJ9sT_3tS2chbnZQby-X75TuY5OfHBIyEvGbwVooV3OzsygJappnpCzjhIOQOhxMnRfEouUtpBKaUqzuQzclqkvJaNPCOHecyud9aZgS59xmFwG_QWqfFrusyJLse9sZkGT29iGMLG2UJeu4QmYfpDfTHebHBEn9_TOV2EcR9xiz65A9JveHD4k4ae5i3SlcsYTZ4iviBPezMkvLjv5-Tm44fvi8-z1ddPy8V8NbOVrPOMi1JWdT0Ksa44YMslVOu6t6h6xnqo27auGrCdrK0E3mFnmtZAg4zxrkNxTq7ufPdTN-LalpDRDHof3WjiLx2M0_--eLfVm3DQinFRgSwGb-4NYvgxYcp6dMmWbzIew5Q0rzmoqlWcFfT1I3QXpujLeoUSwCrFAQr16jjR3ygPJykAuwNsDClF7LV12WQXbgO6QTO4ZUEfXb5oLh9pHmz_R_8GZqKvLg
CitedBy_id crossref_primary_10_1016_j_euros_2024_10_009
crossref_primary_10_4081_aiua_2024_12530
crossref_primary_10_1089_end_2023_0263
crossref_primary_10_3390_diagnostics12092235
crossref_primary_10_20517_2574_1225_2023_79
crossref_primary_10_3390_jcm10184225
crossref_primary_10_3389_fsurg_2022_939079
crossref_primary_10_3389_fped_2023_1149318
crossref_primary_10_3390_diagnostics14182059
crossref_primary_10_3390_diagnostics13193070
crossref_primary_10_1016_j_csbj_2022_12_004
crossref_primary_10_3390_cancers13123064
crossref_primary_10_23736_S2241_9136_24_00030_6
crossref_primary_10_1080_20905998_2024_2443334
crossref_primary_10_3389_fsurg_2024_1525713
crossref_primary_10_1097_MOU_0000000000001216
crossref_primary_10_3389_frai_2022_954497
crossref_primary_10_1007_s00120_023_02154_w
crossref_primary_10_1016_j_euros_2024_01_002
crossref_primary_10_3390_diagnostics14192127
crossref_primary_10_3390_cancers14143358
crossref_primary_10_3390_diagnostics12020289
crossref_primary_10_1109_ACCESS_2023_3323024
crossref_primary_10_3390_diagnostics11091551
crossref_primary_10_1089_end_2024_0693
crossref_primary_10_1007_s00120_021_01610_9
crossref_primary_10_1089_end_2023_0680
crossref_primary_10_1177_15910199241238798
crossref_primary_10_1097_MOU_0000000000001227
crossref_primary_10_3390_cancers15092656
crossref_primary_10_1016_j_euros_2024_01_017
crossref_primary_10_3390_jcm13061590
crossref_primary_10_1097_MOU_0000000000001260
crossref_primary_10_2530_jslsm_jslsm_42_0026
crossref_primary_10_17264_stmarieng_13_101
crossref_primary_10_3389_fmed_2023_1202486
crossref_primary_10_1089_end_2024_0120
crossref_primary_10_3390_app12147216
crossref_primary_10_1016_j_ajur_2022_05_003
crossref_primary_10_1186_s12958_024_01193_y
crossref_primary_10_1007_s00345_024_04987_2
crossref_primary_10_1016_j_euros_2024_05_004
crossref_primary_10_3390_jcm10184259
crossref_primary_10_3390_curroncol29060336
crossref_primary_10_1016_j_jpi_2022_100177
crossref_primary_10_3390_cells11101711
crossref_primary_10_1007_s00240_023_01516_5
crossref_primary_10_1097_MOU_0000000000001151
crossref_primary_10_1007_s00345_024_05054_6
crossref_primary_10_1007_s00345_024_05037_7
crossref_primary_10_21886_2308_6424_2023_11_3_142_148
crossref_primary_10_1007_s00240_024_01591_2
crossref_primary_10_1097_MOU_0000000000001154
Cites_doi 10.1038/s41598-017-08008-8
10.1016/j.eururo.2017.08.028
10.1016/j.juro.2008.10.073
10.1016/j.eururo.2016.04.019
10.1016/j.juro.2018.02.2792
10.1007/s11548-017-1606-5
10.1016/j.juro.2018.04.059
10.1007/s10278-019-00230-2
10.18178/ijmlc.2018.8.1.661
10.1111/bju.14477
10.18632/oncotarget.11293
10.1007/s13246-017-0535-5
10.1007/s11548-015-1331-x
10.1002/14651858.CD011903.pub2
10.1089/end.2019.0509
10.1016/j.compbiomed.2015.05.015
10.1097/MOU.0000000000000814
10.1109/SMARTCOMP.2014.7043859
10.1089/end.2016.0791
10.1016/j.juro.2018.10.006
10.1016/j.euf.2021.03.002
10.1001/jama.2017.18391
10.1016/j.eururo.2019.11.024
10.1016/j.jpurol.2014.10.009
10.1001/jamanetworkopen.2018.2665
10.1097/JU.0000000000000186
10.1117/1.JBO.22.3.036015
10.1016/j.artmed.2017.12.001
10.1007/s00464-014-3982-z
10.1109/ACCESS.2017.2747838
10.1038/s41598-019-42431-3
10.1002/jbio.201700188
10.18632/oncotarget.16393
10.1038/bjc.2015.472
10.1002/mp.12510
10.1016/j.juro.2015.10.173
10.1016/j.fertnstert.2018.08.039
10.1016/j.juro.2017.09.147
10.1186/s40425-016-0117-1
10.1002/jmri.25562
10.1038/aja.2012.131
10.1136/bmj.l4923
10.4103/0970-1591.152918
10.1371/journal.pone.0090972
10.1016/S1569-9056(17)31156-9
10.1016/j.ejrad.2018.08.014
10.1089/end.2018.0209
10.1016/j.ijrobp.2016.11.036
10.1016/j.eswa.2012.05.028
10.1016/j.compbiomed.2018.04.021
10.1016/j.aju.2017.11.006
10.23736/S0393-2249.19.03613-0
10.1002/jmri.25983
10.1080/19396368.2016.1185654
10.1177/107327481502200307
10.1016/j.eswa.2016.11.006
10.1016/S1470-2045(14)71021-6
10.1016/j.eururo.2016.06.020
10.1016/j.jpurol.2014.07.011
10.1016/j.cmpb.2017.02.023
10.1007/s00261-017-1309-y
10.21037/tau.2017.07.22
10.18632/oncotarget.10830
10.1016/j.juro.2010.12.069
10.1002/mrm.26169
10.1111/bju.14735
10.1002/jmri.26178
10.1016/j.jpurol.2014.11.025
10.1073/pnas.1505935112
10.1016/j.jpurol.2015.03.006
10.7150/jca.21261
10.1109/TMI.2015.2502540
10.5152/tud.2020.20117
10.1038/s41598-018-22564-7
10.1016/j.juro.2015.09.090
10.1007/s11548-017-1522-8
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/jcm10091864
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2077-0383
ExternalDocumentID PMC8123407
33925767
10_3390_jcm10091864
Genre Journal Article
Review
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
HMCUK
HYE
IAO
IHR
ITC
KQ8
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c475t-23333c8bfe33d420e92704d5fce8f11f05995460cb75c702beba69a06e112bbe3
IEDL.DBID M48
ISSN 2077-0383
IngestDate Thu Aug 21 18:07:40 EDT 2025
Fri Jul 11 03:38:11 EDT 2025
Mon Jun 30 14:49:40 EDT 2025
Thu Apr 03 06:59:24 EDT 2025
Tue Jul 01 04:34:34 EDT 2025
Thu Apr 24 22:56:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords endourology
hydronephrosis
fertility
machine learning
urinary incontinence
artificial intelligence
kidney stone disease
prostate cancer
renal cell carcinoma
urinary reflux
pediatric urology
bladder cancer
urology
reproductive urology
urolithiasis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-23333c8bfe33d420e92704d5fce8f11f05995460cb75c702beba69a06e112bbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6248-6478
0000-0003-0356-7697
0000-0001-9127-2738
0000-0002-5021-4029
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jcm10091864
PMID 33925767
PQID 2530148200
PQPubID 5046890
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8123407
proquest_miscellaneous_2520849821
proquest_journals_2530148200
pubmed_primary_33925767
crossref_citationtrail_10_3390_jcm10091864
crossref_primary_10_3390_jcm10091864
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210426
PublicationDateYYYYMMDD 2021-04-26
PublicationDate_xml – month: 4
  year: 2021
  text: 20210426
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of clinical medicine
PublicationTitleAlternate J Clin Med
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Aminsharifi (ref_47) 2017; 31
ref_50
Kocak (ref_66) 2018; 107
Etafy (ref_69) 2018; 16
ref_13
Han (ref_67) 2019; 32
ref_51
ref_19
Ballouhey (ref_72) 2014; 29
Asensio (ref_74) 2015; 11
French (ref_79) 2017; 12
Venkatramani (ref_4) 2015; 31
Mannil (ref_48) 2018; 200
Sapre (ref_45) 2016; 114
Kwak (ref_11) 2017; 142
Avery (ref_73) 2015; 11
Zhang (ref_37) 2016; 7
ref_68
Kirby (ref_70) 2017; 6
ref_65
Bowen (ref_76) 2014; 10
Saeed (ref_57) 2017; 71
ref_64
ref_63
Abdeltawab (ref_52) 2019; 9
ref_28
Witjes (ref_62) 2017; 71
Marchini (ref_77) 2011; 185
Luchey (ref_25) 2015; 22
Harder (ref_36) 2018; 8
Checcucci (ref_81) 2020; 72
Merisaari (ref_9) 2016; 77
Wang (ref_44) 2015; 63
Vickram (ref_27) 2016; 62
Yoo (ref_53) 2017; 7
Logvinenko (ref_22) 2015; 11
Ginsburg (ref_8) 2017; 46
Shah (ref_29) 2020; 46
ref_33
Akinsal (ref_26) 2018; 15
Guidi (ref_56) 2017; 40
Sathianathen (ref_61) 2019; 201
Ms (ref_7) 2018; 48
Cerrolaza (ref_21) 2016; 195
Lee (ref_75) 2009; 181
Wong (ref_35) 2019; 123
Breda (ref_78) 2018; 73
Checcucci (ref_80) 2020; 30
Cosma (ref_34) 2017; 70
Baghdadi (ref_59) 2018; 199
Kwak (ref_12) 2017; 5
Ghani (ref_60) 2017; 16
Hung (ref_42) 2019; 124
Parekattil (ref_71) 2013; 15
Jendeberg (ref_31) 2018; 97
Candemir (ref_24) 2018; 8
ref_82
Zhang (ref_39) 2017; 8
Porpiglia (ref_5) 2020; 78
Xu (ref_14) 2017; 12
Nicolae (ref_55) 2017; 97
Papadopoulos (ref_32) 2013; 383
Lalonde (ref_40) 2014; 15
Nouranian (ref_54) 2015; 35
Zheng (ref_18) 2016; 7
Gil (ref_23) 2012; 39
Nosrati (ref_58) 2016; 11
Shao (ref_16) 2017; 8
Ikeda (ref_17) 2020; 34
Shiradkar (ref_38) 2018; 48
ref_43
ref_41
ref_2
Mannil (ref_49) 2017; 43
Kazemi (ref_30) 2018; 84
Diprose (ref_3) 2016; 129
Fehr (ref_10) 2015; 112
Beam (ref_1) 2018; 319
Bartsch (ref_46) 2016; 195
Blum (ref_20) 2018; 199
ref_6
Garapati (ref_15) 2017; 44
References_xml – volume: 7
  start-page: 1
  year: 2017
  ident: ref_53
  article-title: A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08008-8
– volume: 73
  start-page: 273
  year: 2018
  ident: ref_78
  article-title: Robot-assisted Kidney Transplantation: The European Experience
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2017.08.028
– volume: 181
  start-page: 823
  year: 2009
  ident: ref_75
  article-title: Robot Assisted Laparoscopic Partial Nephrectomy: A Viable and Safe Option in Children
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2008.10.073
– volume: 71
  start-page: 319
  year: 2017
  ident: ref_57
  article-title: Comprehensive Drug Testing of Patient-derived Conditionally Reprogrammed Cells from Castration-resistant Prostate Cancer
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2016.04.019
– volume: 199
  start-page: e1134
  year: 2018
  ident: ref_59
  article-title: PD58-04 Modeling Automated Assessment of Surgical Performance Utilizing Computer Vision: Proof of Concept
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2018.02.2792
– volume: 12
  start-page: 1161
  year: 2017
  ident: ref_79
  article-title: Predicting surgical skill from the first N seconds of a task: Value over task time using the isogony principle
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-017-1606-5
– ident: ref_65
– volume: 200
  start-page: 829
  year: 2018
  ident: ref_48
  article-title: Three-Dimensional Texture Analysis with Machine Learning Provides Incremental Predictive Information for Successful Shock Wave Lithotripsy in Patients with Kidney Stones
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2018.04.059
– volume: 32
  start-page: 638
  year: 2019
  ident: ref_67
  article-title: The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-019-00230-2
– volume: 8
  start-page: 44
  year: 2018
  ident: ref_24
  article-title: Estimating the Semen Quality from Life-Style Using Fuzzy Radial Basis Functions
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.18178/ijmlc.2018.8.1.661
– volume: 123
  start-page: 51
  year: 2019
  ident: ref_35
  article-title: Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy
  publication-title: BJU Int.
  doi: 10.1111/bju.14477
– volume: 7
  start-page: 78140
  year: 2016
  ident: ref_37
  article-title: An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11293
– volume: 40
  start-page: 337
  year: 2017
  ident: ref_56
  article-title: Expert system classifier for adaptive radiation therapy in prostate cancer
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-017-0535-5
– volume: 11
  start-page: 1409
  year: 2016
  ident: ref_58
  article-title: Endoscopic scene labelling and augmentation using intraoperative pulsatile motion and colour appearance cues with preoperative anatomical priors
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-015-1331-x
– ident: ref_64
  doi: 10.1002/14651858.CD011903.pub2
– volume: 34
  start-page: 352
  year: 2020
  ident: ref_17
  article-title: Support System of Cystoscopic Diagnosis for Bladder Cancer Based on Artificial Intelligence
  publication-title: J. Endourol.
  doi: 10.1089/end.2019.0509
– volume: 63
  start-page: 124
  year: 2015
  ident: ref_44
  article-title: Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.05.015
– volume: 30
  start-page: 788
  year: 2020
  ident: ref_80
  article-title: Applications of neural networks in urology
  publication-title: Curr. Opin. Urol.
  doi: 10.1097/MOU.0000000000000814
– ident: ref_43
  doi: 10.1109/SMARTCOMP.2014.7043859
– volume: 31
  start-page: 461
  year: 2017
  ident: ref_47
  article-title: Artificial Neural Network System to Predict the Postoperative Outcome of Percutaneous Nephrolithotomy
  publication-title: J. Endourol.
  doi: 10.1089/end.2016.0791
– volume: 201
  start-page: 715
  year: 2019
  ident: ref_61
  article-title: Robotic Assisted Radical Cystectomy vs Open Radical Cystectomy: Systematic Review and Meta-Analysis
  publication-title: J Urol.
  doi: 10.1016/j.juro.2018.10.006
– ident: ref_68
  doi: 10.1016/j.euf.2021.03.002
– volume: 319
  start-page: 1317
  year: 2018
  ident: ref_1
  article-title: Big Data and Machine Learning in Health Care
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
– volume: 78
  start-page: 229
  year: 2020
  ident: ref_5
  article-title: Three-dimensional Augmented Reality Robot-assisted Partial Nephrectomy in Case of Complex Tumours (PADUA ≥ 10): A New Intraoperative Tool Overcoming the Ultrasound Guidance
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2019.11.024
– volume: 11
  start-page: 69.e1
  year: 2015
  ident: ref_74
  article-title: Failed pyeloplasty in children: Is robot-assisted laparoscopic reoperative repair feasible?
  publication-title: J. Pediatr. Urol.
  doi: 10.1016/j.jpurol.2014.10.009
– ident: ref_2
  doi: 10.1001/jamanetworkopen.2018.2665
– ident: ref_33
  doi: 10.1097/JU.0000000000000186
– ident: ref_13
  doi: 10.1117/1.JBO.22.3.036015
– volume: 84
  start-page: 117
  year: 2018
  ident: ref_30
  article-title: A novel method for predicting kidney stone type using ensemble learning
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.12.001
– volume: 29
  start-page: 2643
  year: 2014
  ident: ref_72
  article-title: A comparison of robotic surgery in children weighing above and below 15.0 kg: Size does not affect surgery success
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-014-3982-z
– volume: 5
  start-page: 18526
  year: 2017
  ident: ref_12
  article-title: Nuclear Architecture Analysis of Prostate Cancer via Convolutional Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2747838
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_52
  article-title: A Novel CNN-Based CAD System for Early Assessment of Transplanted Kidney Dysfunction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42431-3
– ident: ref_19
  doi: 10.1002/jbio.201700188
– volume: 8
  start-page: 38802
  year: 2017
  ident: ref_16
  article-title: Metabolite marker discovery for the detection of bladder cancer by comparative metabolomics
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.16393
– volume: 114
  start-page: 454
  year: 2016
  ident: ref_45
  article-title: A urinary microRNA signature can predict the presence of bladder urothelial carcinoma in patients undergoing surveillance
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2015.472
– volume: 44
  start-page: 5814
  year: 2017
  ident: ref_15
  article-title: Urinary bladder cancer staging in CT urography using machine learning
  publication-title: Med. Phys.
  doi: 10.1002/mp.12510
– volume: 195
  start-page: 1093
  year: 2016
  ident: ref_21
  article-title: Quantitative Ultrasound for Measuring Obstructive Severity in Children with Hydronephrosis
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2015.10.173
– ident: ref_28
  doi: 10.1016/j.fertnstert.2018.08.039
– volume: 199
  start-page: 847
  year: 2018
  ident: ref_20
  article-title: Early Detection of Ureteropelvic Junction Obstruction Using Signal Analysis and Machine Learning: A Dynamic Solution to a Dynamic Problem
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2017.09.147
– ident: ref_63
  doi: 10.1186/s40425-016-0117-1
– volume: 46
  start-page: 184
  year: 2017
  ident: ref_8
  article-title: Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25562
– volume: 383
  start-page: 253
  year: 2013
  ident: ref_32
  article-title: Probabilistic Prediction for the Detection of Vesicoureteral Reflux
  publication-title: Program. Ing. Nat.
– volume: 15
  start-page: 67
  year: 2013
  ident: ref_71
  article-title: Robotic assisted andrological surgery
  publication-title: Asian J. Androl.
  doi: 10.1038/aja.2012.131
– ident: ref_51
  doi: 10.1136/bmj.l4923
– ident: ref_82
– volume: 31
  start-page: 150
  year: 2015
  ident: ref_4
  article-title: Urovision 2020: The future of urology
  publication-title: Indian J. Urol.
  doi: 10.4103/0970-1591.152918
– ident: ref_50
  doi: 10.1371/journal.pone.0090972
– volume: 16
  start-page: e1927
  year: 2017
  ident: ref_60
  article-title: Video analysis of skill and technique (VAST): Machine learning to assess the technical skill of surgeons performing robotic prostatectomy
  publication-title: Eur. Urol. Suppl.
  doi: 10.1016/S1569-9056(17)31156-9
– volume: 107
  start-page: 149
  year: 2018
  ident: ref_66
  article-title: Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2018.08.014
– ident: ref_41
  doi: 10.1089/end.2018.0209
– volume: 97
  start-page: 822
  year: 2017
  ident: ref_55
  article-title: Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy
  publication-title: Int. J. Radiat. Oncol.
  doi: 10.1016/j.ijrobp.2016.11.036
– volume: 39
  start-page: 12564
  year: 2012
  ident: ref_23
  article-title: Predicting seminal quality with artificial intelligence methods
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.05.028
– volume: 97
  start-page: 153
  year: 2018
  ident: ref_31
  article-title: Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.04.021
– volume: 16
  start-page: 148
  year: 2018
  ident: ref_69
  article-title: Review of the role of robotic surgery in male infertility
  publication-title: Arab. J. Urol.
  doi: 10.1016/j.aju.2017.11.006
– volume: 72
  start-page: 49
  year: 2020
  ident: ref_81
  article-title: Artificial intelligence and neural networks in urology: Current clinical applications
  publication-title: Minerva Urol. Nefrol.
  doi: 10.23736/S0393-2249.19.03613-0
– volume: 48
  start-page: 818
  year: 2018
  ident: ref_7
  article-title: Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25983
– volume: 62
  start-page: 258
  year: 2016
  ident: ref_27
  article-title: Validation of artificial neural network models for predicting biochemical markers associated with male infertility
  publication-title: Syst. Biol. Reprod. Med.
  doi: 10.1080/19396368.2016.1185654
– volume: 22
  start-page: 301
  year: 2015
  ident: ref_25
  article-title: Robotic-Assisted Radical Cystectomy
  publication-title: Cancer Control.
  doi: 10.1177/107327481502200307
– volume: 70
  start-page: 1
  year: 2017
  ident: ref_34
  article-title: A survey on computational intelligence approaches for predictive modeling in prostate cancer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.11.006
– volume: 15
  start-page: 1521
  year: 2014
  ident: ref_40
  article-title: Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: A retrospective cohort study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(14)71021-6
– volume: 71
  start-page: 462
  year: 2017
  ident: ref_62
  article-title: Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2016.06.020
– volume: 10
  start-page: 1284.e1
  year: 2014
  ident: ref_76
  article-title: Robotic-assisted laparoscopic transplant-to-native ureteroureterostomy in a pediatric patient
  publication-title: J. Pediatr. Urol.
  doi: 10.1016/j.jpurol.2014.07.011
– volume: 142
  start-page: 91
  year: 2017
  ident: ref_11
  article-title: Multiview boosting digital pathology analysis of prostate cancer
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.02.023
– volume: 43
  start-page: 1432
  year: 2017
  ident: ref_49
  article-title: Prediction of successful shock wave lithotripsy with CT: A phantom study using texture analysis
  publication-title: Abdom. Radiol.
  doi: 10.1007/s00261-017-1309-y
– volume: 6
  start-page: 753
  year: 2017
  ident: ref_70
  article-title: Vasectomy reversal: Decision making and technical innovations
  publication-title: Transl. Androl. Urol.
  doi: 10.21037/tau.2017.07.22
– ident: ref_6
– volume: 7
  start-page: 59189
  year: 2016
  ident: ref_18
  article-title: Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10830
– volume: 185
  start-page: 1870
  year: 2011
  ident: ref_77
  article-title: Robotic Assisted Laparoscopic Ureteral Reimplantation in Children: Case Matched Comparative Study with Open Surgical Approach
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2010.12.069
– volume: 77
  start-page: 1249
  year: 2016
  ident: ref_9
  article-title: Fitting methods for intravoxel incoherent motion imaging of prostate cancer on region of interest level: Repeatability and gleason score prediction
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26169
– volume: 15
  start-page: 122
  year: 2018
  ident: ref_26
  article-title: Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males
  publication-title: Urol. J.
– volume: 124
  start-page: 487
  year: 2019
  ident: ref_42
  article-title: A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy
  publication-title: BJU Int.
  doi: 10.1111/bju.14735
– volume: 48
  start-page: 1626
  year: 2018
  ident: ref_38
  article-title: Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26178
– volume: 11
  start-page: 139.e1
  year: 2015
  ident: ref_73
  article-title: Robot-assisted laparoscopic pyeloplasty: Multi-institutional experience in infants
  publication-title: J. Pediatr. Urol.
  doi: 10.1016/j.jpurol.2014.11.025
– volume: 129
  start-page: 73
  year: 2016
  ident: ref_3
  article-title: Artificial intelligence in medicine: Humans need not apply?
  publication-title: New Zealand Med. J.
– volume: 112
  start-page: E6265
  year: 2015
  ident: ref_10
  article-title: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1505935112
– volume: 11
  start-page: 176.e1
  year: 2015
  ident: ref_22
  article-title: Predictive value of specific ultrasound findings when used as a screening test for abnormalities on VCUG
  publication-title: J. Pediatr. Urol.
  doi: 10.1016/j.jpurol.2015.03.006
– volume: 8
  start-page: 3261
  year: 2017
  ident: ref_39
  article-title: Improvement in prediction of prostate cancer prognosis with somatic mutational signatures
  publication-title: J. Cancer
  doi: 10.7150/jca.21261
– volume: 35
  start-page: 921
  year: 2015
  ident: ref_54
  article-title: Learning-Based Multi-Label Segmentation of Transrectal Ultrasound Images for Prostate Brachytherapy
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2502540
– volume: 46
  start-page: S27
  year: 2020
  ident: ref_29
  article-title: Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study
  publication-title: Türk Urol. Derg. Turk. J. Urol.
  doi: 10.5152/tud.2020.20117
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_36
  article-title: Tissue Phenomics for prognostic biomarker discovery in low- and intermediate-risk prostate cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22564-7
– volume: 195
  start-page: 493
  year: 2016
  ident: ref_46
  article-title: Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2015.09.090
– volume: 12
  start-page: 645
  year: 2017
  ident: ref_14
  article-title: Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-017-1522-8
SSID ssj0000884217
Score 2.438323
SecondaryResourceType review_article
Snippet Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1864
SubjectTerms Algorithms
Artificial intelligence
Bladder cancer
Clinical medicine
Decision making
Decision trees
Deep learning
Disease
Health care industry
Kidney cancer
Machine learning
Medicine
Natural language processing
Neural networks
Patients
Pediatrics
Physicians
Predictive analytics
Prostate cancer
R&D
Research & development
Review
Urology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50BfEivq2uEsGTUEzTNGm9iPjAFfXkwt5K06aoaKu7q7_fmbZbd1VsjzOQ0kkm32Qm3wAcCpPZSGbaNRh3uTIhyttcUdkUvlEiNK_Inu_u1XVf3gyCQXPgNmrKKic-sXLUWZnSGfmxCAj8437FT9_eXeoaRdnVpoXGPCwQdRmVdOmBbs9YcAVJhNz1tTwfo_vj5_TVQ1ThhUrObkS_0OXPIsmpXedqBZYbuMjOavuuwpwt1mDxrkmIr8MnSWoSCNabYtdkSZGx3njEetUtSFYWrD-c-Dl2UWdlRpXWdwHMCTtj5B-G9rEua2d15oCVOUOcyG5bCuYN6F9dPpxfu00rBTeVOhi7wscnDU1ufT-TgtsIrSCzIE9tmHteTiwtgVQ8NTpINRfGmkRFCVcW8Zgx1t-ETlEWdhuYkAh5It8orq00KPVELpJEq8zLlJHcgaPJf43Thmec2l28xBhvkBHiKSM4cNgqv9X0Gn-rdScGips1Noq_Z4QDB60YVwelPJLClh-kI3goo1B4DmzV9mzHwUEo2tIO6BlLtwrEvD0rKZ4eKwZuREU-RsI7_3_WLiwJqoDh0hWqC53x8MPuIYQZm_1qnn4BjgrxtA
  priority: 102
  providerName: ProQuest
Title Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature
URI https://www.ncbi.nlm.nih.gov/pubmed/33925767
https://www.proquest.com/docview/2530148200
https://www.proquest.com/docview/2520849821
https://pubmed.ncbi.nlm.nih.gov/PMC8123407
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7oBPFFvDudI4JPQjVN06QVRLzixImIg72Vpk2Zop1uU_Tfe9Kbm_pg-5hTUnJy-T7OyXcAdpiKtc9jaSnkXRYPjeRtIkzaFL5-yCTNxJ7bN-Kyw6-6bncKymKcxQAO_6R2pp5UZ_C09_H6eYQL_tAwTqTs-4_Rs41QwfYEn4YZPJKkWaHtAudnW7LncZZV32VUSosiLcvv6v38fvJ0-gU5f2ZOjh1FFwswX2BIcpw7fRGmdLoEs-0iSr4M76YlV4YgrTHJTRKmMWmNhqSVXY0k_ZR0BuXmR87yUM0ws_rOijkgx8RsGgPdy3PdSR5OIP2EIHgk15Uu8wp0Ls7vTy-tor6CFXHpjizm4BN5KtGOE3NGtY-u4bGbRNpLbDsx0i0uFzRS0o0kZUqrUPghFRpBmlLaWYVa2k_1OhDGEQf5jhJUaq6w1WYJC0MpYjsWitM67JbjGkSF-LipgfEUIAkxTgjGnFCHncr4Jdfc-NusUTooKOdNwFzDERHWYJfbVTMuGRMHCVPdfzM2jHrc95hdh7Xcn1U_2ImhYLIOcsLTlYGR455sSR96mSw3QiUH6fHG__5-E-aYSY-h3GKiAbXR4E1vIb4ZqSZMy65swszJ-c3tXTObyV9-Cvqd
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgJeEL_J2MBI4wUpmmM7doKEpsE2NaytEFqlvYU4cbRNkGxtB-Kf4m_kHCdZC4i3JY8-xZHvzv7Od_4MsM10YWJRKF9j3OWLzFLeltKWTeEbZ0zRhux5PJHDqfh4Ep6swa_uLIwtq-zmxGaiLurc7pHvsNCCf1yv6O7FpW9vjbLZ1e4KDWcWR-bnDwzZ5u-SfdTva8YOD44_DP32VgE_Fypc-Izjk0e6NJwXglET4w-JIixzE5VBUFrCklBImmsV5ooybXQm44xKg9BEa8Pxu7dgXXAMZQaw_v5g8ulzv6uDPisQ5LuDgJzHdOc8_xYgjgkiKVaXvr_w7J9lmUvr3OF9uNcCVLLnLOoBrJnqIdwetyn4R_DdtjjaCZIs8XmSrCpIspiTpDl3SeqKTGfdzEr2XR5o3khdl9y8JXvEzkgzc-oK6YnLVZC6JIhMyagnfX4M0xsZ5icwqOrKPAPCBIKsmGtJlREaWwNWsixTsggKqQX14E03rmneMpvbCza-phjhWCWkS0rwYLsXvnCEHv8W2-wUlLZePU-vbdCDV30z-qNNsmSVqa-sDKORiCMWePDU6bPvBzux8Z3yQK1ouhewXN-rLdXZacP5jTiMY-y98f_fegl3hsfjUTpKJkfP4S6z9TdU-ExuwmAxuzJbCKAW-kVrtQS-3LSj_AZLVS-s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VVqq4IGiBBgo1UntBitaxHTtBqlDFsmrohziw0t5CnDhqK0jK7paqf41f13GcpLsUcWty9CiOPDP2G8_4GWCX6cLEolC-xrjLF5mlvC2lLZvCN86Yog3Z88mpPByLL5NwsgJ_urMwtqyymxObibqoc7tHPmChBf-4XtFB2ZZFfB2OPl7-8u0NUjbT2l2n4UzkyNxcY_g220-GqOs9xkafv3069NsbBvxcqHDuM45PHunScF4IRk2MPyeKsMxNVAZBaclLQiFprlWYK8q00ZmMMyoNwhStDcfvPoI1xcPA-piaqH5_B71XINx3RwI5j-ngIv8ZIKIJIimWF8F7yPbvAs2FFW_0FJ60UJUcONt6Bium2oD1kzYZvwm_bYsjoCDJArMnyaqCJPMZSZoTmKSuyHjazbFk6DJCs0bqrvjmAzkgdm6amjNXUk9c1oLUJUGMSo57-ufnMH6QQX4Bq1VdmS0gTCDcirmWVBmhsTVgJcsyJYugkFpQD95345rmLce5vWrjR4qxjlVCuqAED3Z74UtH7fFvse1OQWnr37P0zho9eNc3o2fadEtWmfrKyjAaiThigQcvnT77frATG-kpD9SSpnsBy_q93FKdnzXs34jIOEbhr_7_Wzuwju6RHienR6_hMaI85vaNtmF1Pr0ybxBJzfXbxmQJfH9oH7kF-g8ycg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+and+Its+Impact+on+Urological+Diseases+and+Management%3A+A+Comprehensive+Review+of+the+Literature&rft.jtitle=Journal+of+clinical+medicine&rft.au=Hameed%2C+B.+M.+Zeeshan&rft.au=S.+Dhavileswarapu%2C+Aiswarya+V.+L.&rft.au=Raza%2C+Syed+Zahid&rft.au=Karimi%2C+Hadis&rft.date=2021-04-26&rft.issn=2077-0383&rft.eissn=2077-0383&rft.volume=10&rft.issue=9&rft.spage=1864&rft_id=info:doi/10.3390%2Fjcm10091864&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcm10091864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon