Comparative Analysis of Classic Semen Extenders for Frozen–Thawed Boar Semen

The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—on the energy metabolism of frozen–thaw...

Full description

Saved in:
Bibliographic Details
Published inAnimals (Basel) Vol. 15; no. 13; p. 1885
Main Authors Kong, Yuting, He, Mengqian, Gao, Jun, Xu, Jiehuan, Lu, Naisheng, Wu, Caifeng, Sun, Lingwei, Dai, Jianjun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN2076-2615
2076-2615
DOI10.3390/ani15131885

Cover

Loading…
Abstract The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—on the energy metabolism of frozen–thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen–thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group (p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity (p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY’s superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG’s disruption of the glycolysis–TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen–thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality.
AbstractList The choice of semen extender is crucial for the in vitro preservation of mammalian sperm. This study compares two classic semen extenders for frozen–thawed boar semen—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—to evaluate their effects on spermatozoa motility, structural integrity, and energy metabolism after thawing. The results indicate that the LEY-based semen extender significantly outperforms the TCG-based extender in maintaining the quality indicators of thawed semen, providing important insights for optimizing the cryopreservation techniques of boar semen.
The choice of semen extender is crucial for the in vitro preservation of mammalian sperm. This study compares two classic semen extenders for frozen–thawed boar semen—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—to evaluate their effects on spermatozoa motility, structural integrity, and energy metabolism after thawing. The results indicate that the LEY-based semen extender significantly outperforms the TCG-based extender in maintaining the quality indicators of thawed semen, providing important insights for optimizing the cryopreservation techniques of boar semen. The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—on the energy metabolism of frozen–thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen–thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group ( p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity ( p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY’s superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG’s disruption of the glycolysis–TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen–thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality.
The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—on the energy metabolism of frozen–thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen–thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group (p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity (p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY’s superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG’s disruption of the glycolysis–TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen–thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality.
The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders-TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)-on the energy metabolism of frozen-thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen-thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group ( < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity ( < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY's superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG's disruption of the glycolysis-TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen-thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality.
The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders-TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)-on the energy metabolism of frozen-thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen-thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group (p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity (p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY's superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG's disruption of the glycolysis-TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen-thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality.The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders-TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)-on the energy metabolism of frozen-thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen-thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group (p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity (p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY's superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG's disruption of the glycolysis-TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen-thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality.
Audience Academic
Author Wu, Caifeng
Dai, Jianjun
He, Mengqian
Kong, Yuting
Lu, Naisheng
Xu, Jiehuan
Gao, Jun
Sun, Lingwei
AuthorAffiliation 4 Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
3 Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
2 Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; he1037247863@163.com (M.H.); gaojun@saas.sh.cn (J.G.); jiehuanxu810@163.com (J.X.); lunaisheng@saas.sh.cn (N.L.); wucaifengwcf@163.com (C.W.)
1 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; kytdyx2022@163.com
AuthorAffiliation_xml – name: 4 Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
– name: 2 Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; he1037247863@163.com (M.H.); gaojun@saas.sh.cn (J.G.); jiehuanxu810@163.com (J.X.); lunaisheng@saas.sh.cn (N.L.); wucaifengwcf@163.com (C.W.)
– name: 3 Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
– name: 1 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; kytdyx2022@163.com
Author_xml – sequence: 1
  givenname: Yuting
  surname: Kong
  fullname: Kong, Yuting
– sequence: 2
  givenname: Mengqian
  orcidid: 0009-0000-6241-8291
  surname: He
  fullname: He, Mengqian
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-2372-4445
  surname: Gao
  fullname: Gao, Jun
– sequence: 4
  givenname: Jiehuan
  surname: Xu
  fullname: Xu, Jiehuan
– sequence: 5
  givenname: Naisheng
  surname: Lu
  fullname: Lu, Naisheng
– sequence: 6
  givenname: Caifeng
  surname: Wu
  fullname: Wu, Caifeng
– sequence: 7
  givenname: Lingwei
  orcidid: 0000-0002-3438-6584
  surname: Sun
  fullname: Sun, Lingwei
– sequence: 8
  givenname: Jianjun
  surname: Dai
  fullname: Dai, Jianjun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40646783$$D View this record in MEDLINE/PubMed
BookMark eNpdkk9vFCEUwImpsbX25N1M4sXEbOU_w8msm1abNHqwnskbBrZsZmCF2Wo9-R38hn4SqVObVjhAHr_8eA_eU7QXU3QIPSf4mDGN30AMRBBG2lY8QgcUK7mgkoi9e_t9dFTKBtehBKvwE7TPseRStewAfVylcQsZpnDlmmWE4bqE0iTfrAYoJdjmsxtdbE6-Ty72LpfGp9yc5vTDxd8_f11cwjfXN-8S5Bl8hh57GIo7ul0P0ZfTk4vVh8X5p_dnq-X5wnIlpgVxoJUilqlO1ly0p53UlPTa-q7T1kpgSoPnHLe90I6LXgKGVoqOcOl6YIfobPb2CTZmm8MI-dokCOZvIOW1gTwFOzhDBRcegApwimuGu1ZawJ2H3mspuaqut7Nru-tG11sXpwzDA-nDkxguzTpdGUIpb4XA1fDq1pDT150rkxlDsW4YILq0K4ZRqiWVisuKvvwP3aRdru8-U4RxIkSljmdqDbWCEH2qF9s6ezcGWzvAhxpftrwqOSE3Gby4X8Nd8v8-ugKvZ8DmVEp2_g4h2Nx0krnXSewPjHK6UQ
Cites_doi 10.1007/978-1-0716-0783-1_15
10.1002/pmic.201300225
10.1093/biolre/ioaa114
10.3390/ijms25169112
10.3390/antiox10060874
10.3390/cimb45060300
10.1016/j.theriogenology.2009.05.013
10.3390/biology12020231
10.3390/ijms222313057
10.3390/ani11071885
10.1016/j.anireprosci.2012.06.010
10.1111/rda.13389
10.3390/cells12111456
10.1002/j.1939-4640.2000.tb03268.x
10.1111/j.1439-0531.2006.00765.x
10.1016/j.repbio.2018.10.007
10.1095/biolreprod.112.104109
10.4103/1008-682X.135123
10.3390/ani10101930
10.1186/s40104-022-00689-0
10.3390/ani12070868
10.1002/pmic.201300564
10.1016/j.theriogenology.2015.09.047
10.1242/jeb.246674
10.3390/membranes15040109
10.1095/biolreprod.114.127621
10.3390/ijms241310983
10.1016/j.chembiol.2018.05.003
10.3390/life12081155
10.3390/antiox10010098
10.1016/j.pbi.2004.03.007
10.1046/j.1365-2605.2003.00457.x
10.1038/s41388-020-01639-8
10.1002/mrd.23772
10.1016/j.jbc.2022.102838
10.3390/biology13060370
10.1038/s41467-019-13668-3
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/ani15131885
DatabaseName CrossRef
PubMed
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

CrossRef
PubMed
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 2076-2615
ExternalDocumentID oai_doaj_org_article_2545faa25ae74930b86ca0bfadf96647
PMC12248550
A847464110
40646783
10_3390_ani15131885
Genre Journal Article
GeographicLocations United States
China
United States--US
Israel
GeographicLocations_xml – name: China
– name: United States
– name: Israel
– name: United States--US
GrantInformation_xml – fundername: National Key Research and Development Plan
  grantid: 2021YFD1200301
– fundername: National Nature Fund Youth Fund of China
  grantid: 32202640
GroupedDBID 5VS
7XC
8FE
8FH
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
APEBS
BENPR
CCPQU
CITATION
DIK
EAD
EAP
EPL
ESX
GROUPED_DOAJ
HYE
IAO
ITC
LK8
M48
MODMG
M~E
OK1
OZF
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TUS
ZBA
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c475t-1ea9771c37b64069f2b6921d9cfbb9cc6a379af4408d59e45d6a0a865b146eda3
IEDL.DBID M48
ISSN 2076-2615
IngestDate Wed Aug 27 01:26:19 EDT 2025
Thu Aug 21 18:23:16 EDT 2025
Sun Jul 13 18:30:34 EDT 2025
Sat Jul 12 03:52:18 EDT 2025
Tue Jul 15 03:51:32 EDT 2025
Tue Jul 15 01:30:42 EDT 2025
Thu Jul 03 08:29:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords boar semen
spermatozoa motility
cryopreservation
energy metabolism
semen extender
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-1ea9771c37b64069f2b6921d9cfbb9cc6a379af4408d59e45d6a0a865b146eda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-6241-8291
0000-0002-3438-6584
0000-0002-2372-4445
OpenAccessLink https://www.proquest.com/docview/3229134155?pq-origsite=%requestingapplication%
PMID 40646783
PQID 3229134155
PQPubID 2032438
ParticipantIDs doaj_primary_oai_doaj_org_article_2545faa25ae74930b86ca0bfadf96647
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12248550
proquest_miscellaneous_3229626746
proquest_journals_3229134155
gale_infotracacademiconefile_A847464110
pubmed_primary_40646783
crossref_primary_10_3390_ani15131885
PublicationCentury 2000
PublicationDate 2025-06-26
PublicationDateYYYYMMDD 2025-06-26
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Animals (Basel)
PublicationTitleAlternate Animals (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sion (ref_27) 2004; 27
Abruzzese (ref_9) 2024; 91
Chen (ref_37) 2018; 25
Fuller (ref_12) 2004; 25
Wang (ref_24) 2014; 14
ref_36
Eniafe (ref_8) 2021; 4
ref_11
ref_33
ref_31
(ref_5) 2006; 41
Arnold (ref_6) 2023; 299
Ozimic (ref_13) 2023; 45
Potter (ref_10) 2024; 227
ref_19
ref_18
ref_16
ref_38
ref_15
Balbach (ref_29) 2020; 103
Yeste (ref_1) 2016; 85
Pang (ref_22) 2022; 13
Visconti (ref_30) 2012; 87
Tourmente (ref_20) 2015; 93
(ref_14) 2012; 133
ref_25
Pezo (ref_4) 2019; 54
ref_21
Bailey (ref_2) 2000; 21
Flores (ref_17) 2009; 72
ref_3
Chandel (ref_35) 2020; 11
ref_26
Xu (ref_28) 2018; 18
Fernie (ref_34) 2004; 7
Yuan (ref_23) 2014; 14
ref_7
Agarwal (ref_32) 2015; 17
References_xml – ident: ref_16
  doi: 10.1007/978-1-0716-0783-1_15
– volume: 14
  start-page: 298
  year: 2014
  ident: ref_24
  article-title: Proteomic characteristics of human sperm cryopreservation
  publication-title: Proteomics
  doi: 10.1002/pmic.201300225
– volume: 103
  start-page: 791
  year: 2020
  ident: ref_29
  article-title: Metabolic changes in mouse sperm during capacitation
  publication-title: Biol. Reprod.
  doi: 10.1093/biolre/ioaa114
– ident: ref_11
  doi: 10.3390/ijms25169112
– ident: ref_31
  doi: 10.3390/antiox10060874
– volume: 45
  start-page: 4716
  year: 2023
  ident: ref_13
  article-title: Sperm cryopreservation today: Approaches, efficiency, and pitfalls
  publication-title: Curr. Issues Mol. Biol.
  doi: 10.3390/cimb45060300
– volume: 72
  start-page: 784
  year: 2009
  ident: ref_17
  article-title: The degree of resistance to freezing-thawing is related to specific changes in the structures of motile sperm subpopulations and mitochondrial activity in boar spermatozoa
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2009.05.013
– ident: ref_25
  doi: 10.3390/biology12020231
– ident: ref_33
  doi: 10.3390/ijms222313057
– ident: ref_21
  doi: 10.3390/ani11071885
– volume: 133
  start-page: 109
  year: 2012
  ident: ref_14
  article-title: Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation
  publication-title: Anim. Reprod. Sci.
  doi: 10.1016/j.anireprosci.2012.06.010
– volume: 54
  start-page: 423
  year: 2019
  ident: ref_4
  article-title: Preservation of boar semen: An update
  publication-title: Reprod. Domest. Anim.
  doi: 10.1111/rda.13389
– ident: ref_15
  doi: 10.3390/cells12111456
– volume: 21
  start-page: 1
  year: 2000
  ident: ref_2
  article-title: Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon
  publication-title: J. Androl.
  doi: 10.1002/j.1939-4640.2000.tb03268.x
– volume: 41
  start-page: 11
  year: 2006
  ident: ref_5
  article-title: Mammalian sperm energy resources management and survival during conservation in refrigeration
  publication-title: Reprod. Domest. Anim.
  doi: 10.1111/j.1439-0531.2006.00765.x
– volume: 18
  start-page: 344
  year: 2018
  ident: ref_28
  article-title: Human sperm acrosomal status, acrosomal responsiveness, and acrosin are predictive of the outcomes of in vitro fertilization: A prospective cohort study
  publication-title: Reprod. Biol.
  doi: 10.1016/j.repbio.2018.10.007
– volume: 87
  start-page: 72
  year: 2012
  ident: ref_30
  article-title: Sperm bioenergetics in a nutshell
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.112.104109
– volume: 17
  start-page: 230
  year: 2015
  ident: ref_32
  article-title: Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use?
  publication-title: Asian J. Androl.
  doi: 10.4103/1008-682X.135123
– ident: ref_19
  doi: 10.3390/ani10101930
– volume: 13
  start-page: 42
  year: 2022
  ident: ref_22
  article-title: Heat shock protein family D member 1 in boar spermatozoa is strongly related to the litter size of inseminated sows
  publication-title: J. Anim. Sci. Biotechnol.
  doi: 10.1186/s40104-022-00689-0
– ident: ref_3
  doi: 10.3390/ani12070868
– volume: 14
  start-page: 155
  year: 2014
  ident: ref_23
  article-title: Protein degradation and phosphorylation after freeze thawing result in spermatozoon dysfunction
  publication-title: Proteomics
  doi: 10.1002/pmic.201300564
– volume: 85
  start-page: 47
  year: 2016
  ident: ref_1
  article-title: Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2015.09.047
– volume: 227
  start-page: jeb246674
  year: 2024
  ident: ref_10
  article-title: Per capita sperm metabolism is density dependent
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.246674
– volume: 25
  start-page: 375
  year: 2004
  ident: ref_12
  article-title: Cryoprotectants: The essential antifreezes to protect life in the frozen state
  publication-title: Cryol Lett.
– ident: ref_26
  doi: 10.3390/membranes15040109
– volume: 93
  start-page: 64
  year: 2015
  ident: ref_20
  article-title: Performance of rodent spermatozoa over time is enhanced by increased ATP concentrations: The role of sperm competition
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.114.127621
– ident: ref_38
  doi: 10.3390/ijms241310983
– volume: 25
  start-page: 817
  year: 2018
  ident: ref_37
  article-title: Protein lipidation in cell signaling and diseases: Function, regulation, and therapeutic opportunities
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2018.05.003
– ident: ref_18
  doi: 10.3390/life12081155
– ident: ref_36
  doi: 10.3390/antiox10010098
– volume: 7
  start-page: 254
  year: 2004
  ident: ref_34
  article-title: Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2004.03.007
– volume: 27
  start-page: 108
  year: 2004
  ident: ref_27
  article-title: Annexin V binding to plasma membrane predicts the quality of human cryopreserved spermatozoa
  publication-title: Int. J. Androl.
  doi: 10.1046/j.1365-2605.2003.00457.x
– volume: 4
  start-page: 3351
  year: 2021
  ident: ref_8
  article-title: The functional roles of TCA cycle metabolites in cancer
  publication-title: Oncogene
  doi: 10.1038/s41388-020-01639-8
– volume: 91
  start-page: e23772
  year: 2024
  ident: ref_9
  article-title: Sperm metabolism
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.23772
– volume: 299
  start-page: 102838
  year: 2023
  ident: ref_6
  article-title: Regulation and function of the mammalian tricarboxylic acid cycle
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2022.102838
– ident: ref_7
  doi: 10.3390/biology13060370
– volume: 11
  start-page: 102
  year: 2020
  ident: ref_35
  article-title: Mitochondrial TCA cycle metabolites control physiology and disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13668-3
SSID ssj0000753151
Score 2.3290398
Snippet The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the...
The choice of semen extender is crucial for the in vitro preservation of mammalian sperm. This study compares two classic semen extenders for frozen–thawed...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1885
SubjectTerms Analysis
boar semen
Cryopreservation
Energy
energy metabolism
Enzymes
Ethical aspects
Glucose
Kinases
Lactose
Metabolism
Metabolites
Motility
Penicillin
Physiological aspects
Quality control
Reagents
semen extender
spermatozoa motility
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F03aVEh0JOJVy-vjknIEgrNpQmEXsToRbYHu2w2FHrqf8g_7C_pjOXdeumhl158kIWRv5E0MxrNN4wd2qxF8BRhFCLjI4YaTLZ1akDj-qJ8R8pG_nRhzq_Ux2t9PSn1RXfCCj1wAe4IHRidAYSG1CorGz83ARqfIWa01NWQR446b-JMfS3hOYm6rCTkSfTrj6BbYgPOYKqaPFFBA1P_3_vxRCHtXpacaJ_FE_Z4NBv5cRnuU_Ygdc_Ywy_9cCj-nF2c_iHx5hueEd5nPtS8XAb-mU4B-Vk58V7dcjRV-WLV_0jdr5_3lzfwPUV-0sOqdHzBrhZnl6fn9VgpoQ6q1et6lgDtuFmQrTeUypqFN1bMog3ZexuCAdlayFRdOmqblI4GGpgb7XGjTBHkS7bX9V16zXgEUCFZGUVOymQJaA94iY5FaoPyUlXscAOe-1YIMRw6EoSxm2BcsRMCdtuFWKyHBpStG2Xr_iXbin0gsThaa4h9gDFlAEdKrFXuGFWrMgotmIodbCTnxkV463CvonsFaDFV7P32NS4fiolAl_q70gd9OvxMxV4VQW_HjEiiGpnLis13psDOT-2-6ZY3A0U3xSuJKu7N_4Bhnz0SVHW4MbUwB2xvvbpLb9EUWvt3w6z_DZ5ECMk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LattAcGgTCr2U9K08yhYCPYnI2tVKOoU42IRCTWkTCL2I2Vfji5TKDoWc-g_9w35JZyTZsSn0osNqEat5P3ZmAI7LkKXWcIYxTQM9nI1RhzL2CWbEX1zvyNXIn2b64kp9vM6uh4DbYrhWuZKJnaB2jeUY-QkRHieJSf2d3v6IeWoUZ1eHERqPYZdEcEHO1-54Mvv8ZR1lIYUoSaf1hXmS_PsTrOe0QJTM05M3VFHXsf9fubyhmLYvTW5ooekePBvMR3HW4_s5PPL1C3jyremC4y9hdv7QzFus-o2IJohu9uXciq8cDRSTPvLdLgSZrGLaNve-_vPr9-UN_vROjBts-42v4Go6uTy_iIeJCbFVebaMRx7JnhtZmRvNJa0hNbpMR660wZjSWo0yLzHwlGmXlV5lTmOChc4MCUzvUL6Gnbqp_VsQDlFZX0qXBq90kEh2gZHkYPjcKiNVBMcr4FW3fWOMihwKhnG1AeMIxgzY9RbuZt0tNO33amCOipzULCCmGfpclTIxhbaYmIAukDem8gg-MFoq5jmCvcWhdIBOyt2rqjNSsUorsmQiOFxhrhqYcVE9kE4E79eviY04N4K1b-76PeTb0WcieNMjen1mgiSpk0JGUGyRwNZPbb-p5zddq27OW3LLuP3_n-sAnqY8VzjRcaoPYWfZ3vkjMnaW5t1A0X8B29UBJg
  priority: 102
  providerName: ProQuest
Title Comparative Analysis of Classic Semen Extenders for Frozen–Thawed Boar Semen
URI https://www.ncbi.nlm.nih.gov/pubmed/40646783
https://www.proquest.com/docview/3229134155
https://www.proquest.com/docview/3229626746
https://pubmed.ncbi.nlm.nih.gov/PMC12248550
https://doaj.org/article/2545faa25ae74930b86ca0bfadf96647
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVkhcEG8CZWWkSpwCu4ntJAeEutWuKqSuEHSliks0dmy6CCWQbsXjxH_gH_JLmMlj2QAHLjnETmSPZzzzjT0zAAeZV5E1fMIYRZ4ehQ1R-yx0Y1QkXxzvyNHIJwt9vJQvz9TZDvTFODsCXvwT2nE9qWX94emXT19fkMA_Z8RJkP0ZlivSW8ScqboCe6SSEpbQk87Of9-e1sWTphRjRLg9JNSg2li9P78faKcmif_fW_WWrhreo9xSTPMbcL2zKMVhywI3YceVt-Dq26rxl9-GxdHv_N6iT0EiKi-acpgrK96wg1DMWmd4fSHIihXzuvrmyp_ff5ye42dXiGmFddvxDizns9Oj47ArohBamah1OHFIJt7ExonRHOXqI6OzaFJk1huTWasxTjL0XHi6UJmTqtA4xlQrQ3uoKzC-C7tlVbr7IApEaV0WF5F3UvsYyVQwMWEOl1hpYhnAQU-8_GObKyMnjME0zrdoHMCUCbvpwgmumxdV_S7v5CUn3Ko8YqTQJTKLxybVFsfGY-EJoMkkgCe8LDkzBtHeYhdNQCPlhFb5IWldqSUZNwHs9yuX9-yV0zbGVw7ImArg8aaZJIuPS7B01WXbh-Ae_SaAe-1Cb8ZMlCQNk8YBpAMWGExq2FKuzpvs3XyUyVnkHvz3DB7CtYirDo-Zc_dhd11fukdkCq3NCPams8Wr16PGlTBqmP4XxHoKhg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVAguiH8WChipiNOqG9vrzR4QakqilLYRglSquGxtr01z2S1JqgpOvAPvwUPxJMzsT5oIiVsve7CtlXc8429-dmYAtlMfc2sowsi5x0duQ618GrpIxyhflO9I2chHYzU6lh9O4pMN-N3mwtBvle2dWF3UeWnJR76DjEdBYoS_d-ffQuoaRdHVtoVGzRYH7vslmmzzt_vv8Xxfcz4cTPZGYdNVILQyiRdh12nUebpWJEZR2qfnRqW8m6fWG5Naq7RIUu2pE3Mep07GudKR7qnY4KXici3wvTdgUwo0ZTqw2R-MP35aenUQgAViaJ0IKEQa7ehiigMoOdSteQX6qg4B_-LAChCu_6S5gnrDu3CnUVfZbs1f92DDFffh5peycsY_gPHeVfFw1tY3YaVnVa_NqWWfyfvIBrWnfTZnqCKz4az84Yo_P39NzvSly1m_1LN64UM4vhZaPoJOURbuCbBca2ldKnLunVReaNRDjECDxiVWGiED2G6Jl53XhTgyNGCIxtkKjQPoE2GXS6h6djVQzr5mjTBmaBTHXmsea5fIVESmp6yOjNe5R-tPJgG8oWPJSMaR9lY3qQq4U6qWle0ipEslUXMKYKs9uawR_nl2xaoBvFpOo9hSLEYXrryo16Atia8J4HF90Ms9IyURvnoigN4aC6x91PpMMT2rSoNTnJRK1D39_75ewq3R5OgwO9wfHzyD25x6Gkcq5GoLOovZhXuOitbCvGi4m8HpdQvUXxJrPk0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrUBcEP-kFDBSEados7bjbA4IddtdtRRWFbRSxSW1HZvuJWl3t6rgxDvwNjwOT8JMfra7QuLWSw6JZTnjGX_z45kB2Ep9zK2hCCPnHh-5DbXyaegiHaN8Ub4jZSN_Gqu9Y_nhJD5Zg99tLgxdq2zPxOqgzktLPvIuMh4FiRH-ur65FnG4O3p_fhFSBymKtLbtNGoWOXDfr9B8m73b38W9fsP5aHi0sxc2HQZCK5N4HvacRv2nZ0ViFKWAem5Uynt5ar0xqbVKiyTVnroy53HqZJwrHem-ig0eMC7XAue9BesJWkVRB9YHw_Hh54WHB8FYIJ7WSYFCpFFXFxN8gVJEnZuXYLDqFvAvJiyB4uqFzSUEHN2He43qyrZrXnsAa654CLe_lpVj_hGMd64LibO21gkrPav6bk4s-0KeSDasve7TGUN1mY2m5Q9X_Pn56-hMX7mcDUo9rQc-huMboeUT6BRl4Z4By7WW1qUi595J5YVGncQING5cYqURMoCtlnjZeV2UI0NjhmicLdE4gAERdjGEKmlXL8rpt6wRzAwN5NhrzWPtEpmKyPSV1ZHxOvdoCcokgLe0LRnJO9Le6iZtAVdKlbOybYR3qSRqUQFstjuXNQfBLLtm2wBeLz6jCFNcRheuvKzHoF2J0wTwtN7oxZqRkghlfRFAf4UFVn5q9UsxOavKhFPMlMrVbfx_Xa_gDgpS9nF_fPAc7nJqbxypkKtN6Mynl-4F6lxz87JhbganNy1PfwGmA0KC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Classic+Semen+Extenders+for+Frozen%E2%80%93Thawed+Boar+Semen&rft.jtitle=Animals+%28Basel%29&rft.au=Kong%2C+Yuting&rft.au=He%2C+Mengqian&rft.au=Gao%2C+Jun&rft.au=Xu%2C+Jiehuan&rft.date=2025-06-26&rft.pub=MDPI+AG&rft.issn=2076-2615&rft.eissn=2076-2615&rft.volume=15&rft.issue=13&rft_id=info:doi/10.3390%2Fani15131885&rft.externalDocID=A847464110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2615&client=summon