Comparative Analysis of Classic Semen Extenders for Frozen–Thawed Boar Semen
The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—on the energy metabolism of frozen–thaw...
Saved in:
Published in | Animals (Basel) Vol. 15; no. 13; p. 1885 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.06.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2076-2615 2076-2615 |
DOI | 10.3390/ani15131885 |
Cover
Loading…
Abstract | The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—on the energy metabolism of frozen–thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen–thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group (p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity (p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY’s superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG’s disruption of the glycolysis–TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen–thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality. |
---|---|
AbstractList | The choice of semen extender is crucial for the in vitro preservation of mammalian sperm. This study compares two classic semen extenders for frozen–thawed boar semen—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—to evaluate their effects on spermatozoa motility, structural integrity, and energy metabolism after thawing. The results indicate that the LEY-based semen extender significantly outperforms the TCG-based extender in maintaining the quality indicators of thawed semen, providing important insights for optimizing the cryopreservation techniques of boar semen. The choice of semen extender is crucial for the in vitro preservation of mammalian sperm. This study compares two classic semen extenders for frozen–thawed boar semen—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—to evaluate their effects on spermatozoa motility, structural integrity, and energy metabolism after thawing. The results indicate that the LEY-based semen extender significantly outperforms the TCG-based extender in maintaining the quality indicators of thawed semen, providing important insights for optimizing the cryopreservation techniques of boar semen. The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—on the energy metabolism of frozen–thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen–thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group ( p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity ( p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY’s superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG’s disruption of the glycolysis–TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen–thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality. The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—on the energy metabolism of frozen–thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen–thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group (p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity (p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY’s superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG’s disruption of the glycolysis–TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen–thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality. The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders-TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)-on the energy metabolism of frozen-thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen-thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group ( < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity ( < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY's superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG's disruption of the glycolysis-TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen-thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality. The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders-TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)-on the energy metabolism of frozen-thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen-thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group (p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity (p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY's superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG's disruption of the glycolysis-TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen-thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality.The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders-TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)-on the energy metabolism of frozen-thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen-thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group (p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity (p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY's superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG's disruption of the glycolysis-TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen-thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality. |
Audience | Academic |
Author | Wu, Caifeng Dai, Jianjun He, Mengqian Kong, Yuting Lu, Naisheng Xu, Jiehuan Gao, Jun Sun, Lingwei |
AuthorAffiliation | 4 Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China 3 Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China 2 Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; he1037247863@163.com (M.H.); gaojun@saas.sh.cn (J.G.); jiehuanxu810@163.com (J.X.); lunaisheng@saas.sh.cn (N.L.); wucaifengwcf@163.com (C.W.) 1 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; kytdyx2022@163.com |
AuthorAffiliation_xml | – name: 4 Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China – name: 2 Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; he1037247863@163.com (M.H.); gaojun@saas.sh.cn (J.G.); jiehuanxu810@163.com (J.X.); lunaisheng@saas.sh.cn (N.L.); wucaifengwcf@163.com (C.W.) – name: 3 Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China – name: 1 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; kytdyx2022@163.com |
Author_xml | – sequence: 1 givenname: Yuting surname: Kong fullname: Kong, Yuting – sequence: 2 givenname: Mengqian orcidid: 0009-0000-6241-8291 surname: He fullname: He, Mengqian – sequence: 3 givenname: Jun orcidid: 0000-0002-2372-4445 surname: Gao fullname: Gao, Jun – sequence: 4 givenname: Jiehuan surname: Xu fullname: Xu, Jiehuan – sequence: 5 givenname: Naisheng surname: Lu fullname: Lu, Naisheng – sequence: 6 givenname: Caifeng surname: Wu fullname: Wu, Caifeng – sequence: 7 givenname: Lingwei orcidid: 0000-0002-3438-6584 surname: Sun fullname: Sun, Lingwei – sequence: 8 givenname: Jianjun surname: Dai fullname: Dai, Jianjun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40646783$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk9vFCEUwImpsbX25N1M4sXEbOU_w8msm1abNHqwnskbBrZsZmCF2Wo9-R38hn4SqVObVjhAHr_8eA_eU7QXU3QIPSf4mDGN30AMRBBG2lY8QgcUK7mgkoi9e_t9dFTKBtehBKvwE7TPseRStewAfVylcQsZpnDlmmWE4bqE0iTfrAYoJdjmsxtdbE6-Ty72LpfGp9yc5vTDxd8_f11cwjfXN-8S5Bl8hh57GIo7ul0P0ZfTk4vVh8X5p_dnq-X5wnIlpgVxoJUilqlO1ly0p53UlPTa-q7T1kpgSoPnHLe90I6LXgKGVoqOcOl6YIfobPb2CTZmm8MI-dokCOZvIOW1gTwFOzhDBRcegApwimuGu1ZawJ2H3mspuaqut7Nru-tG11sXpwzDA-nDkxguzTpdGUIpb4XA1fDq1pDT150rkxlDsW4YILq0K4ZRqiWVisuKvvwP3aRdru8-U4RxIkSljmdqDbWCEH2qF9s6ezcGWzvAhxpftrwqOSE3Gby4X8Nd8v8-ugKvZ8DmVEp2_g4h2Nx0krnXSewPjHK6UQ |
Cites_doi | 10.1007/978-1-0716-0783-1_15 10.1002/pmic.201300225 10.1093/biolre/ioaa114 10.3390/ijms25169112 10.3390/antiox10060874 10.3390/cimb45060300 10.1016/j.theriogenology.2009.05.013 10.3390/biology12020231 10.3390/ijms222313057 10.3390/ani11071885 10.1016/j.anireprosci.2012.06.010 10.1111/rda.13389 10.3390/cells12111456 10.1002/j.1939-4640.2000.tb03268.x 10.1111/j.1439-0531.2006.00765.x 10.1016/j.repbio.2018.10.007 10.1095/biolreprod.112.104109 10.4103/1008-682X.135123 10.3390/ani10101930 10.1186/s40104-022-00689-0 10.3390/ani12070868 10.1002/pmic.201300564 10.1016/j.theriogenology.2015.09.047 10.1242/jeb.246674 10.3390/membranes15040109 10.1095/biolreprod.114.127621 10.3390/ijms241310983 10.1016/j.chembiol.2018.05.003 10.3390/life12081155 10.3390/antiox10010098 10.1016/j.pbi.2004.03.007 10.1046/j.1365-2605.2003.00457.x 10.1038/s41388-020-01639-8 10.1002/mrd.23772 10.1016/j.jbc.2022.102838 10.3390/biology13060370 10.1038/s41467-019-13668-3 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/ani15131885 |
DatabaseName | CrossRef PubMed ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 2076-2615 |
ExternalDocumentID | oai_doaj_org_article_2545faa25ae74930b86ca0bfadf96647 PMC12248550 A847464110 40646783 10_3390_ani15131885 |
Genre | Journal Article |
GeographicLocations | United States China United States--US Israel |
GeographicLocations_xml | – name: China – name: United States – name: Israel – name: United States--US |
GrantInformation_xml | – fundername: National Key Research and Development Plan grantid: 2021YFD1200301 – fundername: National Nature Fund Youth Fund of China grantid: 32202640 |
GroupedDBID | 5VS 7XC 8FE 8FH AAFWJ AAHBH AAYXX ABDBF ACUHS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS APEBS BENPR CCPQU CITATION DIK EAD EAP EPL ESX GROUPED_DOAJ HYE IAO ITC LK8 M48 MODMG M~E OK1 OZF PGMZT PHGZM PHGZT PIMPY PROAC RPM TUS ZBA NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c475t-1ea9771c37b64069f2b6921d9cfbb9cc6a379af4408d59e45d6a0a865b146eda3 |
IEDL.DBID | M48 |
ISSN | 2076-2615 |
IngestDate | Wed Aug 27 01:26:19 EDT 2025 Thu Aug 21 18:23:16 EDT 2025 Sun Jul 13 18:30:34 EDT 2025 Sat Jul 12 03:52:18 EDT 2025 Tue Jul 15 03:51:32 EDT 2025 Tue Jul 15 01:30:42 EDT 2025 Thu Jul 03 08:29:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | boar semen spermatozoa motility cryopreservation energy metabolism semen extender |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-1ea9771c37b64069f2b6921d9cfbb9cc6a379af4408d59e45d6a0a865b146eda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0000-6241-8291 0000-0002-3438-6584 0000-0002-2372-4445 |
OpenAccessLink | https://www.proquest.com/docview/3229134155?pq-origsite=%requestingapplication% |
PMID | 40646783 |
PQID | 3229134155 |
PQPubID | 2032438 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2545faa25ae74930b86ca0bfadf96647 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12248550 proquest_miscellaneous_3229626746 proquest_journals_3229134155 gale_infotracacademiconefile_A847464110 pubmed_primary_40646783 crossref_primary_10_3390_ani15131885 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-26 |
PublicationDateYYYYMMDD | 2025-06-26 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Animals (Basel) |
PublicationTitleAlternate | Animals (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Sion (ref_27) 2004; 27 Abruzzese (ref_9) 2024; 91 Chen (ref_37) 2018; 25 Fuller (ref_12) 2004; 25 Wang (ref_24) 2014; 14 ref_36 Eniafe (ref_8) 2021; 4 ref_11 ref_33 ref_31 (ref_5) 2006; 41 Arnold (ref_6) 2023; 299 Ozimic (ref_13) 2023; 45 Potter (ref_10) 2024; 227 ref_19 ref_18 ref_16 ref_38 ref_15 Balbach (ref_29) 2020; 103 Yeste (ref_1) 2016; 85 Pang (ref_22) 2022; 13 Visconti (ref_30) 2012; 87 Tourmente (ref_20) 2015; 93 (ref_14) 2012; 133 ref_25 Pezo (ref_4) 2019; 54 ref_21 Bailey (ref_2) 2000; 21 Flores (ref_17) 2009; 72 ref_3 Chandel (ref_35) 2020; 11 ref_26 Xu (ref_28) 2018; 18 Fernie (ref_34) 2004; 7 Yuan (ref_23) 2014; 14 ref_7 Agarwal (ref_32) 2015; 17 |
References_xml | – ident: ref_16 doi: 10.1007/978-1-0716-0783-1_15 – volume: 14 start-page: 298 year: 2014 ident: ref_24 article-title: Proteomic characteristics of human sperm cryopreservation publication-title: Proteomics doi: 10.1002/pmic.201300225 – volume: 103 start-page: 791 year: 2020 ident: ref_29 article-title: Metabolic changes in mouse sperm during capacitation publication-title: Biol. Reprod. doi: 10.1093/biolre/ioaa114 – ident: ref_11 doi: 10.3390/ijms25169112 – ident: ref_31 doi: 10.3390/antiox10060874 – volume: 45 start-page: 4716 year: 2023 ident: ref_13 article-title: Sperm cryopreservation today: Approaches, efficiency, and pitfalls publication-title: Curr. Issues Mol. Biol. doi: 10.3390/cimb45060300 – volume: 72 start-page: 784 year: 2009 ident: ref_17 article-title: The degree of resistance to freezing-thawing is related to specific changes in the structures of motile sperm subpopulations and mitochondrial activity in boar spermatozoa publication-title: Theriogenology doi: 10.1016/j.theriogenology.2009.05.013 – ident: ref_25 doi: 10.3390/biology12020231 – ident: ref_33 doi: 10.3390/ijms222313057 – ident: ref_21 doi: 10.3390/ani11071885 – volume: 133 start-page: 109 year: 2012 ident: ref_14 article-title: Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation publication-title: Anim. Reprod. Sci. doi: 10.1016/j.anireprosci.2012.06.010 – volume: 54 start-page: 423 year: 2019 ident: ref_4 article-title: Preservation of boar semen: An update publication-title: Reprod. Domest. Anim. doi: 10.1111/rda.13389 – ident: ref_15 doi: 10.3390/cells12111456 – volume: 21 start-page: 1 year: 2000 ident: ref_2 article-title: Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon publication-title: J. Androl. doi: 10.1002/j.1939-4640.2000.tb03268.x – volume: 41 start-page: 11 year: 2006 ident: ref_5 article-title: Mammalian sperm energy resources management and survival during conservation in refrigeration publication-title: Reprod. Domest. Anim. doi: 10.1111/j.1439-0531.2006.00765.x – volume: 18 start-page: 344 year: 2018 ident: ref_28 article-title: Human sperm acrosomal status, acrosomal responsiveness, and acrosin are predictive of the outcomes of in vitro fertilization: A prospective cohort study publication-title: Reprod. Biol. doi: 10.1016/j.repbio.2018.10.007 – volume: 87 start-page: 72 year: 2012 ident: ref_30 article-title: Sperm bioenergetics in a nutshell publication-title: Biol. Reprod. doi: 10.1095/biolreprod.112.104109 – volume: 17 start-page: 230 year: 2015 ident: ref_32 article-title: Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use? publication-title: Asian J. Androl. doi: 10.4103/1008-682X.135123 – ident: ref_19 doi: 10.3390/ani10101930 – volume: 13 start-page: 42 year: 2022 ident: ref_22 article-title: Heat shock protein family D member 1 in boar spermatozoa is strongly related to the litter size of inseminated sows publication-title: J. Anim. Sci. Biotechnol. doi: 10.1186/s40104-022-00689-0 – ident: ref_3 doi: 10.3390/ani12070868 – volume: 14 start-page: 155 year: 2014 ident: ref_23 article-title: Protein degradation and phosphorylation after freeze thawing result in spermatozoon dysfunction publication-title: Proteomics doi: 10.1002/pmic.201300564 – volume: 85 start-page: 47 year: 2016 ident: ref_1 article-title: Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs publication-title: Theriogenology doi: 10.1016/j.theriogenology.2015.09.047 – volume: 227 start-page: jeb246674 year: 2024 ident: ref_10 article-title: Per capita sperm metabolism is density dependent publication-title: J. Exp. Biol. doi: 10.1242/jeb.246674 – volume: 25 start-page: 375 year: 2004 ident: ref_12 article-title: Cryoprotectants: The essential antifreezes to protect life in the frozen state publication-title: Cryol Lett. – ident: ref_26 doi: 10.3390/membranes15040109 – volume: 93 start-page: 64 year: 2015 ident: ref_20 article-title: Performance of rodent spermatozoa over time is enhanced by increased ATP concentrations: The role of sperm competition publication-title: Biol. Reprod. doi: 10.1095/biolreprod.114.127621 – ident: ref_38 doi: 10.3390/ijms241310983 – volume: 25 start-page: 817 year: 2018 ident: ref_37 article-title: Protein lipidation in cell signaling and diseases: Function, regulation, and therapeutic opportunities publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.05.003 – ident: ref_18 doi: 10.3390/life12081155 – ident: ref_36 doi: 10.3390/antiox10010098 – volume: 7 start-page: 254 year: 2004 ident: ref_34 article-title: Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2004.03.007 – volume: 27 start-page: 108 year: 2004 ident: ref_27 article-title: Annexin V binding to plasma membrane predicts the quality of human cryopreserved spermatozoa publication-title: Int. J. Androl. doi: 10.1046/j.1365-2605.2003.00457.x – volume: 4 start-page: 3351 year: 2021 ident: ref_8 article-title: The functional roles of TCA cycle metabolites in cancer publication-title: Oncogene doi: 10.1038/s41388-020-01639-8 – volume: 91 start-page: e23772 year: 2024 ident: ref_9 article-title: Sperm metabolism publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.23772 – volume: 299 start-page: 102838 year: 2023 ident: ref_6 article-title: Regulation and function of the mammalian tricarboxylic acid cycle publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2022.102838 – ident: ref_7 doi: 10.3390/biology13060370 – volume: 11 start-page: 102 year: 2020 ident: ref_35 article-title: Mitochondrial TCA cycle metabolites control physiology and disease publication-title: Nat. Commun. doi: 10.1038/s41467-019-13668-3 |
SSID | ssj0000753151 |
Score | 2.3290398 |
Snippet | The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the... The choice of semen extender is crucial for the in vitro preservation of mammalian sperm. This study compares two classic semen extenders for frozen–thawed... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1885 |
SubjectTerms | Analysis boar semen Cryopreservation Energy energy metabolism Enzymes Ethical aspects Glucose Kinases Lactose Metabolism Metabolites Motility Penicillin Physiological aspects Quality control Reagents semen extender spermatozoa motility |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F03aVEh0JOJVy-vjknIEgrNpQmEXsToRbYHu2w2FHrqf8g_7C_pjOXdeumhl158kIWRv5E0MxrNN4wd2qxF8BRhFCLjI4YaTLZ1akDj-qJ8R8pG_nRhzq_Ux2t9PSn1RXfCCj1wAe4IHRidAYSG1CorGz83ARqfIWa01NWQR446b-JMfS3hOYm6rCTkSfTrj6BbYgPOYKqaPFFBA1P_3_vxRCHtXpacaJ_FE_Z4NBv5cRnuU_Ygdc_Ywy_9cCj-nF2c_iHx5hueEd5nPtS8XAb-mU4B-Vk58V7dcjRV-WLV_0jdr5_3lzfwPUV-0sOqdHzBrhZnl6fn9VgpoQ6q1et6lgDtuFmQrTeUypqFN1bMog3ZexuCAdlayFRdOmqblI4GGpgb7XGjTBHkS7bX9V16zXgEUCFZGUVOymQJaA94iY5FaoPyUlXscAOe-1YIMRw6EoSxm2BcsRMCdtuFWKyHBpStG2Xr_iXbin0gsThaa4h9gDFlAEdKrFXuGFWrMgotmIodbCTnxkV463CvonsFaDFV7P32NS4fiolAl_q70gd9OvxMxV4VQW_HjEiiGpnLis13psDOT-2-6ZY3A0U3xSuJKu7N_4Bhnz0SVHW4MbUwB2xvvbpLb9EUWvt3w6z_DZ5ECMk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LattAcGgTCr2U9K08yhYCPYnI2tVKOoU42IRCTWkTCL2I2Vfji5TKDoWc-g_9w35JZyTZsSn0osNqEat5P3ZmAI7LkKXWcIYxTQM9nI1RhzL2CWbEX1zvyNXIn2b64kp9vM6uh4DbYrhWuZKJnaB2jeUY-QkRHieJSf2d3v6IeWoUZ1eHERqPYZdEcEHO1-54Mvv8ZR1lIYUoSaf1hXmS_PsTrOe0QJTM05M3VFHXsf9fubyhmLYvTW5ooekePBvMR3HW4_s5PPL1C3jyremC4y9hdv7QzFus-o2IJohu9uXciq8cDRSTPvLdLgSZrGLaNve-_vPr9-UN_vROjBts-42v4Go6uTy_iIeJCbFVebaMRx7JnhtZmRvNJa0hNbpMR660wZjSWo0yLzHwlGmXlV5lTmOChc4MCUzvUL6Gnbqp_VsQDlFZX0qXBq90kEh2gZHkYPjcKiNVBMcr4FW3fWOMihwKhnG1AeMIxgzY9RbuZt0tNO33amCOipzULCCmGfpclTIxhbaYmIAukDem8gg-MFoq5jmCvcWhdIBOyt2rqjNSsUorsmQiOFxhrhqYcVE9kE4E79eviY04N4K1b-76PeTb0WcieNMjen1mgiSpk0JGUGyRwNZPbb-p5zddq27OW3LLuP3_n-sAnqY8VzjRcaoPYWfZ3vkjMnaW5t1A0X8B29UBJg priority: 102 providerName: ProQuest |
Title | Comparative Analysis of Classic Semen Extenders for Frozen–Thawed Boar Semen |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40646783 https://www.proquest.com/docview/3229134155 https://www.proquest.com/docview/3229626746 https://pubmed.ncbi.nlm.nih.gov/PMC12248550 https://doaj.org/article/2545faa25ae74930b86ca0bfadf96647 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVkhcEG8CZWWkSpwCu4ntJAeEutWuKqSuEHSliks0dmy6CCWQbsXjxH_gH_JLmMlj2QAHLjnETmSPZzzzjT0zAAeZV5E1fMIYRZ4ehQ1R-yx0Y1QkXxzvyNHIJwt9vJQvz9TZDvTFODsCXvwT2nE9qWX94emXT19fkMA_Z8RJkP0ZlivSW8ScqboCe6SSEpbQk87Of9-e1sWTphRjRLg9JNSg2li9P78faKcmif_fW_WWrhreo9xSTPMbcL2zKMVhywI3YceVt-Dq26rxl9-GxdHv_N6iT0EiKi-acpgrK96wg1DMWmd4fSHIihXzuvrmyp_ff5ye42dXiGmFddvxDizns9Oj47ArohBamah1OHFIJt7ExonRHOXqI6OzaFJk1huTWasxTjL0XHi6UJmTqtA4xlQrQ3uoKzC-C7tlVbr7IApEaV0WF5F3UvsYyVQwMWEOl1hpYhnAQU-8_GObKyMnjME0zrdoHMCUCbvpwgmumxdV_S7v5CUn3Ko8YqTQJTKLxybVFsfGY-EJoMkkgCe8LDkzBtHeYhdNQCPlhFb5IWldqSUZNwHs9yuX9-yV0zbGVw7ImArg8aaZJIuPS7B01WXbh-Ae_SaAe-1Cb8ZMlCQNk8YBpAMWGExq2FKuzpvs3XyUyVnkHvz3DB7CtYirDo-Zc_dhd11fukdkCq3NCPams8Wr16PGlTBqmP4XxHoKhg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVAguiH8WChipiNOqG9vrzR4QakqilLYRglSquGxtr01z2S1JqgpOvAPvwUPxJMzsT5oIiVsve7CtlXc8429-dmYAtlMfc2sowsi5x0duQ618GrpIxyhflO9I2chHYzU6lh9O4pMN-N3mwtBvle2dWF3UeWnJR76DjEdBYoS_d-ffQuoaRdHVtoVGzRYH7vslmmzzt_vv8Xxfcz4cTPZGYdNVILQyiRdh12nUebpWJEZR2qfnRqW8m6fWG5Naq7RIUu2pE3Mep07GudKR7qnY4KXici3wvTdgUwo0ZTqw2R-MP35aenUQgAViaJ0IKEQa7ehiigMoOdSteQX6qg4B_-LAChCu_6S5gnrDu3CnUVfZbs1f92DDFffh5peycsY_gPHeVfFw1tY3YaVnVa_NqWWfyfvIBrWnfTZnqCKz4az84Yo_P39NzvSly1m_1LN64UM4vhZaPoJOURbuCbBca2ldKnLunVReaNRDjECDxiVWGiED2G6Jl53XhTgyNGCIxtkKjQPoE2GXS6h6djVQzr5mjTBmaBTHXmsea5fIVESmp6yOjNe5R-tPJgG8oWPJSMaR9lY3qQq4U6qWle0ipEslUXMKYKs9uawR_nl2xaoBvFpOo9hSLEYXrryo16Atia8J4HF90Ms9IyURvnoigN4aC6x91PpMMT2rSoNTnJRK1D39_75ewq3R5OgwO9wfHzyD25x6Gkcq5GoLOovZhXuOitbCvGi4m8HpdQvUXxJrPk0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrUBcEP-kFDBSEados7bjbA4IddtdtRRWFbRSxSW1HZvuJWl3t6rgxDvwNjwOT8JMfra7QuLWSw6JZTnjGX_z45kB2Ep9zK2hCCPnHh-5DbXyaegiHaN8Ub4jZSN_Gqu9Y_nhJD5Zg99tLgxdq2zPxOqgzktLPvIuMh4FiRH-ur65FnG4O3p_fhFSBymKtLbtNGoWOXDfr9B8m73b38W9fsP5aHi0sxc2HQZCK5N4HvacRv2nZ0ViFKWAem5Uynt5ar0xqbVKiyTVnroy53HqZJwrHem-ig0eMC7XAue9BesJWkVRB9YHw_Hh54WHB8FYIJ7WSYFCpFFXFxN8gVJEnZuXYLDqFvAvJiyB4uqFzSUEHN2He43qyrZrXnsAa654CLe_lpVj_hGMd64LibO21gkrPav6bk4s-0KeSDasve7TGUN1mY2m5Q9X_Pn56-hMX7mcDUo9rQc-huMboeUT6BRl4Z4By7WW1qUi595J5YVGncQING5cYqURMoCtlnjZeV2UI0NjhmicLdE4gAERdjGEKmlXL8rpt6wRzAwN5NhrzWPtEpmKyPSV1ZHxOvdoCcokgLe0LRnJO9Le6iZtAVdKlbOybYR3qSRqUQFstjuXNQfBLLtm2wBeLz6jCFNcRheuvKzHoF2J0wTwtN7oxZqRkghlfRFAf4UFVn5q9UsxOavKhFPMlMrVbfx_Xa_gDgpS9nF_fPAc7nJqbxypkKtN6Mynl-4F6lxz87JhbganNy1PfwGmA0KC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Classic+Semen+Extenders+for+Frozen%E2%80%93Thawed+Boar+Semen&rft.jtitle=Animals+%28Basel%29&rft.au=Kong%2C+Yuting&rft.au=He%2C+Mengqian&rft.au=Gao%2C+Jun&rft.au=Xu%2C+Jiehuan&rft.date=2025-06-26&rft.pub=MDPI+AG&rft.issn=2076-2615&rft.eissn=2076-2615&rft.volume=15&rft.issue=13&rft_id=info:doi/10.3390%2Fani15131885&rft.externalDocID=A847464110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2615&client=summon |