Dendritic Aggregated Residual Deep Learning for Meningioma MRI Diagnosis

The diagnosis of meningioma through magnetic resonance imaging (MRI) holds significant importance in clinical medicine. To enhance the accuracy of meningioma diagnosis, a more effective image classification method is required to comprehensively capture subtle features within MRI images. Although dee...

Full description

Saved in:
Bibliographic Details
Published inIEICE Transactions on Information and Systems Vol. E108.D; no. 8; pp. 1016 - 1019
Main Authors WANG, Ningning, DU, Qianhang, YUAN, Zijing, GAO, Yu, WANG, Rong-Long, GAO, Shangce
Format Journal Article
LanguageEnglish
Published The Institute of Electronics, Information and Communication Engineers 01.08.2025
一般社団法人 電子情報通信学会
Subjects
Online AccessGet full text
ISSN0916-8532
1745-1361
DOI10.1587/transinf.2024EDL8049

Cover

Abstract The diagnosis of meningioma through magnetic resonance imaging (MRI) holds significant importance in clinical medicine. To enhance the accuracy of meningioma diagnosis, a more effective image classification method is required to comprehensively capture subtle features within MRI images. Although deep learning networks have been successfully applied to this problem, the conventional neural networks based on McCulloch-Pitts neurons suffer from low performance and insufficient feature extraction, due to simplistic structure and neglect of the nonlinear effects of synapses. Therefore, we propose a novel dendritic learning-based ResNeXt model, named DResNeXt. It utilizes the residual structure of ResNeXt and the cardinality method to adequately extract features of MRI images. Then, we innovationally introduce a dendritic neural model to improve the nonlinear information processing of biological neurons for comprehensively handling extracted features. Experimental results demonstrate the outstanding performance of the proposed DResNeXt model in the classification task of meningioma MRI dataset, surpassing the ResNeXt model in preventing overfitting. Additionally, compared to other deep learning models, it exhibits higher accuracy and superior image classification performance.
AbstractList The diagnosis of meningioma through magnetic resonance imaging (MRI) holds significant importance in clinical medicine. To enhance the accuracy of meningioma diagnosis, a more effective image classification method is required to comprehensively capture subtle features within MRI images. Although deep learning networks have been successfully applied to this problem, the conventional neural networks based on McCulloch-Pitts neurons suffer from low performance and insufficient feature extraction, due to simplistic structure and neglect of the nonlinear effects of synapses. Therefore, we propose a novel dendritic learning-based ResNeXt model, named DResNeXt. It utilizes the residual structure of ResNeXt and the cardinality method to adequately extract features of MRI images. Then, we innovationally introduce a dendritic neural model to improve the nonlinear information processing of biological neurons for comprehensively handling extracted features. Experimental results demonstrate the outstanding performance of the proposed DResNeXt model in the classification task of meningioma MRI dataset, surpassing the ResNeXt model in preventing overfitting. Additionally, compared to other deep learning models, it exhibits higher accuracy and superior image classification performance.
ArticleNumber 2024EDL8049
Author Ningning WANG
Rong-Long WANG
Qianhang DU
Zijing YUAN
Yu GAO
Shangce GAO
Author_xml – sequence: 1
  givenname: Ningning
  surname: WANG
  fullname: WANG, Ningning
– sequence: 2
  givenname: Qianhang
  surname: DU
  fullname: DU, Qianhang
– sequence: 3
  givenname: Zijing
  surname: YUAN
  fullname: YUAN, Zijing
– sequence: 4
  givenname: Yu
  surname: GAO
  fullname: GAO, Yu
– sequence: 5
  givenname: Rong-Long
  surname: WANG
  fullname: WANG, Rong-Long
– sequence: 6
  givenname: Shangce
  surname: GAO
  fullname: GAO, Shangce
BackLink https://cir.nii.ac.jp/crid/1390584718859559168$$DView record in CiNii
BookMark eNpNkEtPwzAQhC0EEi3wDzjkwDVlN37EOVak0EpBSBWcLdfdBKPiVHY48O9JVV6XnTnMzErflJ2GPhBj1wgzlLq8HaINyYd2VkAhFnWjQVQnbIKlkDlyhadsAhWqXEtenLNpSm8AqAuUE7asKWyjH7zL5l0XqbMDbbM1Jb_9sLusJtpnDdkYfOiyto_ZIx2s799t9rheZbW3XeiTT5fsrLW7RFffesFe7hfPd8u8eXpY3c2b3IlSDjkq4JJAYYlYKtxuFIhWVMRFVWwscNE60WKhEGTpKscLcoWyAOCcapUjfsHEcdfFPqVIrdlH_27jp0EwBxrmh4b5R2Os3RxrwXvj_OEir0BqUaLWspJyBKTH2PoYe0uD7eh328aR0I7-thcI2tRG_5h_v37D7tVGQ4F_AVAhfUQ
Cites_doi 10.1007/s40998-021-00426-9
10.1007/s10278-020-00371-9
10.1016/j.procs.2021.01.025
10.1109/JAS.2023.123978
10.1109/TIM.2023.3290301
10.1109/ACCESS.2020.3005450
10.1109/TNNLS.2021.3105901
10.1109/TNNLS.2018.2846646
10.1109/TIFS.2023.3328431
10.1016/j.engstruct.2022.115406
10.1109/JAS.2023.123813
10.1109/JBHI.2021.3100758
10.1007/BF02478259
10.1109/CVPR.2017.243
ContentType Journal Article
Copyright 2025 The Institute of Electronics, Information and Communication Engineers
Copyright_xml – notice: 2025 The Institute of Electronics, Information and Communication Engineers
DBID RYH
AAYXX
CITATION
DOI 10.1587/transinf.2024EDL8049
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1745-1361
EndPage 1019
ExternalDocumentID 10_1587_transinf_2024EDL8049
article_transinf_E108_D_8_E108_D_2024EDL8049_article_char_en
GroupedDBID -~X
5GY
ABJNI
ABZEH
ACGFS
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
ICE
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TN5
ZKX
1TH
AFFNX
C1A
CKLRP
H13
RIG
RYH
RYL
VOH
ZE2
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c475t-16035e061711761db604f49e3492ba034fc4f1261057c9c32ec26a000cc6f6ce3
ISSN 0916-8532
IngestDate Wed Aug 06 19:14:11 EDT 2025
Thu Jun 26 23:29:59 EDT 2025
Mon Sep 01 00:08:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c475t-16035e061711761db604f49e3492ba034fc4f1261057c9c32ec26a000cc6f6ce3
OpenAccessLink https://www.jstage.jst.go.jp/article/transinf/E108.D/8/E108.D_2024EDL8049/_article/-char/en
PageCount 4
ParticipantIDs crossref_primary_10_1587_transinf_2024EDL8049
nii_cinii_1390584718859559168
jstage_primary_article_transinf_E108_D_8_E108_D_2024EDL8049_article_char_en
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IEICE Transactions on Information and Systems
PublicationTitleAlternate IEICE Trans. Inf. & Syst.
PublicationTitle_FL IEICE Trans. Inf. & Syst
PublicationYear 2025
Publisher The Institute of Electronics, Information and Communication Engineers
一般社団法人 電子情報通信学会
Publisher_xml – name: The Institute of Electronics, Information and Communication Engineers
– name: 一般社団法人 電子情報通信学会
References [7] G. Huang, Z. Liu, L. van der Maaten, and K.Q. Weinberger, “Densely connected convolutional networks,” Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2261-2269, July 2017. 10.1109/cvpr.2017.243
[8] Y. He, X. Kang, Q. Yan, and E. Li, “ResNeXt+: Attention mechanisms based on ResNeXt for malware detection and classification,” IEEE Trans. Inf. Forensics Secur., vol.19, pp.1142-1155, 2024. 10.1109/tifs.2023.3328431
[14] L. Li, Y. Zhu, and Z. Zhu, “Automatic modulation classification using ResNeXt-GRU with deep feature fusion,” IEEE Trans. Instrum. Meas., vol.72, pp.1-10, Art no. 2519710, 2023. 10.1109/tim.2023.3290301
[1] E. Irmak, “Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized framework,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol.45, no.3, pp.1015-1036, 2021. 10.1007/s40998-021-00426-9
[5] D. Sarwinda, R.H. Paradisa, A. Bustamam, and P. Anggia, “Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer,” Procedia Computer Science, vol.179, pp.423-431, 2021. 10.1016/j.procs.2021.01.025
[13] Z. Liu, Z. Zhang, Z. Lei, M. Omura, R.-L. Wang, and S. Gao, “Dendritic deep learning for medical segmentation,” IEEE/CAA J. Autom. Sin., vol.11, no.3, pp.803-805, 2024. 10.1109/jas.2023.123813
[12] Z. Zhang, Z. Lei, M. Omura, H. Hasegawa, and S. Gao, “Dendritic learning-incorporated vision transformer for image recognition,” IEEE/CAA J. Autom. Sin., vol.11, no.2, pp.539-541, 2024. 10.1109/jas.2023.123978
[4] A. Sekhar, S. Biswas, R. Hazra, A.K. Sunaniya, A. Mukherjee, and L. Yang, “Brain tumor classification using fine-tuned GoogleNet features and machine learning algorithms: IoMT enabled CAD system,” IEEE J. Biomed. Health Inform., vol.26, no.3, pp.983-991, 2021. 10.1109/jbhi.2021.3100758
[9] W.S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, vol.5, pp.115-133, 1943. 10.1007/bf02478259
[11] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction,” IEEE Trans. Neural Netw. Learn. Syst., vol.30, no.2, pp.601-614, 2019. 10.1109/tnnls.2018.2846646
[2] K.M. Hosny, M.A. Kassem, and M.M. Fouad, “Classification of skin lesions into seven classes using transfer learning with AlexNet,” Journal of Digital Imaging, vol.33, pp.1325-1334, 2020. 10.1007/s10278-020-00371-9
[6] H. Pan, Z. Pang, Y. Wang, Y. Wang, and L. Chen, “A new image recognition and classification method combining transfer learning algorithm and MobileNet model for welding defects,” IEEE Access, vol.8, pp.119951-119960, 2020. 10.1109/access.2020.3005450
[10] S. Gao, M. Zhou, Z. Wang, D. Sugiyama, J. Cheng, J. Wang, and Y. Todo, “Fully complex-valued dendritic neuron model,” IEEE Trans. Neural Netw. Learn. Syst., vol.34, no.4, pp.2105-2118, 2023. 10.1109/tnnls.2021.3105901
[3] Y. Que, Y. Dai, X. Ji, A.K. Leung, Z. Chen, Z. Jiang, and Y. Tang, “Automatic classification of asphalt pavement cracks using a novel integrated generative adversarial networks and improved VGG model,” Engineering Structures, vol.277, 115406, 2023. 10.1016/j.engstruct.2022.115406
11
12
13
14
1
2
3
4
5
6
7
8
9
10
References_xml – reference: [7] G. Huang, Z. Liu, L. van der Maaten, and K.Q. Weinberger, “Densely connected convolutional networks,” Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2261-2269, July 2017. 10.1109/cvpr.2017.243
– reference: [10] S. Gao, M. Zhou, Z. Wang, D. Sugiyama, J. Cheng, J. Wang, and Y. Todo, “Fully complex-valued dendritic neuron model,” IEEE Trans. Neural Netw. Learn. Syst., vol.34, no.4, pp.2105-2118, 2023. 10.1109/tnnls.2021.3105901
– reference: [14] L. Li, Y. Zhu, and Z. Zhu, “Automatic modulation classification using ResNeXt-GRU with deep feature fusion,” IEEE Trans. Instrum. Meas., vol.72, pp.1-10, Art no. 2519710, 2023. 10.1109/tim.2023.3290301
– reference: [6] H. Pan, Z. Pang, Y. Wang, Y. Wang, and L. Chen, “A new image recognition and classification method combining transfer learning algorithm and MobileNet model for welding defects,” IEEE Access, vol.8, pp.119951-119960, 2020. 10.1109/access.2020.3005450
– reference: [13] Z. Liu, Z. Zhang, Z. Lei, M. Omura, R.-L. Wang, and S. Gao, “Dendritic deep learning for medical segmentation,” IEEE/CAA J. Autom. Sin., vol.11, no.3, pp.803-805, 2024. 10.1109/jas.2023.123813
– reference: [11] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction,” IEEE Trans. Neural Netw. Learn. Syst., vol.30, no.2, pp.601-614, 2019. 10.1109/tnnls.2018.2846646
– reference: [1] E. Irmak, “Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized framework,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol.45, no.3, pp.1015-1036, 2021. 10.1007/s40998-021-00426-9
– reference: [2] K.M. Hosny, M.A. Kassem, and M.M. Fouad, “Classification of skin lesions into seven classes using transfer learning with AlexNet,” Journal of Digital Imaging, vol.33, pp.1325-1334, 2020. 10.1007/s10278-020-00371-9
– reference: [12] Z. Zhang, Z. Lei, M. Omura, H. Hasegawa, and S. Gao, “Dendritic learning-incorporated vision transformer for image recognition,” IEEE/CAA J. Autom. Sin., vol.11, no.2, pp.539-541, 2024. 10.1109/jas.2023.123978
– reference: [9] W.S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, vol.5, pp.115-133, 1943. 10.1007/bf02478259
– reference: [4] A. Sekhar, S. Biswas, R. Hazra, A.K. Sunaniya, A. Mukherjee, and L. Yang, “Brain tumor classification using fine-tuned GoogleNet features and machine learning algorithms: IoMT enabled CAD system,” IEEE J. Biomed. Health Inform., vol.26, no.3, pp.983-991, 2021. 10.1109/jbhi.2021.3100758
– reference: [5] D. Sarwinda, R.H. Paradisa, A. Bustamam, and P. Anggia, “Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer,” Procedia Computer Science, vol.179, pp.423-431, 2021. 10.1016/j.procs.2021.01.025
– reference: [3] Y. Que, Y. Dai, X. Ji, A.K. Leung, Z. Chen, Z. Jiang, and Y. Tang, “Automatic classification of asphalt pavement cracks using a novel integrated generative adversarial networks and improved VGG model,” Engineering Structures, vol.277, 115406, 2023. 10.1016/j.engstruct.2022.115406
– reference: [8] Y. He, X. Kang, Q. Yan, and E. Li, “ResNeXt+: Attention mechanisms based on ResNeXt for malware detection and classification,” IEEE Trans. Inf. Forensics Secur., vol.19, pp.1142-1155, 2024. 10.1109/tifs.2023.3328431
– ident: 1
  doi: 10.1007/s40998-021-00426-9
– ident: 2
  doi: 10.1007/s10278-020-00371-9
– ident: 5
  doi: 10.1016/j.procs.2021.01.025
– ident: 12
  doi: 10.1109/JAS.2023.123978
– ident: 14
  doi: 10.1109/TIM.2023.3290301
– ident: 6
  doi: 10.1109/ACCESS.2020.3005450
– ident: 10
  doi: 10.1109/TNNLS.2021.3105901
– ident: 11
  doi: 10.1109/TNNLS.2018.2846646
– ident: 8
  doi: 10.1109/TIFS.2023.3328431
– ident: 3
  doi: 10.1016/j.engstruct.2022.115406
– ident: 13
  doi: 10.1109/JAS.2023.123813
– ident: 4
  doi: 10.1109/JBHI.2021.3100758
– ident: 9
  doi: 10.1007/BF02478259
– ident: 7
  doi: 10.1109/CVPR.2017.243
SSID ssj0018215
Score 2.3853958
Snippet The diagnosis of meningioma through magnetic resonance imaging (MRI) holds significant importance in clinical medicine. To enhance the accuracy of meningioma...
SourceID crossref
nii
jstage
SourceType Index Database
Publisher
StartPage 1016
SubjectTerms deep learning
dendritic learning
image classification
meningioma
Title Dendritic Aggregated Residual Deep Learning for Meningioma MRI Diagnosis
URI https://www.jstage.jst.go.jp/article/transinf/E108.D/8/E108.D_2024EDL8049/_article/-char/en
https://cir.nii.ac.jp/crid/1390584718859559168
Volume E108.D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX IEICE Transactions on Information and Systems, 2025/08/01, Vol.E108.D(8), pp.1016-1019
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2hQM98CggFijygVuVkji2kxyjJmWXskVFXaniEm0cG6USadXNXvgX_GPGcZy4aIUoFytreUeJ5_PM2J4HQu8VrP9I8MBTVFCPVpx5iQyVxwE9SRlxRYiOd16c8dmSfrpkl5PJL8dradOWR-Ln1riS_-Eq9AFfdZTsPTg7EIUOeAb-QgschvafeJzJpupKFRym32HfrE_EdLTh2gRYZVLe2PypxltyIbv6RNc_VoeLr3MQd52bXb12LdR5Pj_OdeUIW0a8u0_o86u21nl57SQ61yI9NaFPZ0C-scpQm8dL3XsOENTn0oOEWaadc8G3-soZ-zH90umDjXsQQdjgBjecKAbcA-1vhKs08jSizAtCk2_dCtw88OOjzAFX7EhQfZrgaGP4mWyV9EyflZx0swH9sNEnNM8-x75JgHo3sfYfCm9wQ9QbIKBTWCqFQ2UHPSBR1N38n56PF1MxMUUx7Lf20ZhA5cO2d7lj7Ty8AoNfZ3LYaerasWIunqLH_fYDpwZLz9BENvvoiS3tgXtJv4_2nDyVz9FsABoegYYt0LAGGrZAwwAUPAINA9DwALQXaHmSXxzPvL4EhydoxFpPFyFnUpu5QRDxoCq5TxWF1UwTUq78kCpBVQC7cDD7RSJCIgXhK1CzQnDFhQxfot3mupGvEF5FxFe-YHSlOI0UCINSMlIRJZIqKhMxRZ6dquLGZFop_sagKTo18zmM7tfhOFoDrciK2D44_x4G6-BGkCVTdABMKUStW9gV-awz23T2Pwa8jl_f8-3eoEfjGnmLdtvbjTwA87Ut33WA-g3PSZcv
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dendritic+Aggregated+Residual+Deep+Learning+for+Meningioma+MRI+Diagnosis&rft.jtitle=IEICE+transactions+on+information+and+systems&rft.au=WANG%2C+Ningning&rft.au=DU%2C+Qianhang&rft.au=YUAN%2C+Zijing&rft.au=GAO%2C+Yu&rft.date=2025-08-01&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E108.D&rft.issue=8&rft.spage=1016&rft.epage=1019&rft_id=info:doi/10.1587%2Ftransinf.2024EDL8049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1587_transinf_2024EDL8049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon