A Two-Stage Method to Detect the Sex Ratio of Hemp Ducks Based on Object Detection and Classification Networks

The sex ratio is an important factor affecting the economic benefits of duck groups in the process of hemp duck breeding. However, the current manual counting method is inefficient, and the results are not always accurate. On the one hand, ducks are in constant motion, and on the other hand, the man...

Full description

Saved in:
Bibliographic Details
Published inAnimals (Basel) Vol. 12; no. 9; p. 1177
Main Authors Zheng, Xingze, Li, Feiyi, Lin, Bin, Xie, Donghang, Liu, Yang, Jiang, Kailin, Gong, Xinyao, Jiang, Hongbo, Peng, Ran, Duan, Xuliang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.05.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sex ratio is an important factor affecting the economic benefits of duck groups in the process of hemp duck breeding. However, the current manual counting method is inefficient, and the results are not always accurate. On the one hand, ducks are in constant motion, and on the other hand, the manual counting method relies on manpower; thus, it is difficult to avoid repeated and missed counts. In response to these problems, there is an urgent need for an efficient and accurate way of calculating the sex ratio of ducks to promote the farming industry. Detecting the sex ratio of ducks requires accurate counting of male ducks and female ducks. We established the world’s first manually marked sex classification dataset for hemp ducks, including 1663 images of duck groups; 17,090 images of whole, individual duck bodies; and 15,797 images of individual duck heads, which were manually captured and had sex information markers. Additionally, we used multiple deep neural network models for the target detection and sex classification of ducks. The average accuracy reached 98.68%, and with the combination of Yolov5 and VovNet_27slim, we achieved 99.29% accuracy, 98.60% F1 score, and 269.68 fps. The evaluation of the algorithm’s performance indicates that the automation method proposed in this paper is feasible for the sex classification of ducks in the farm environment, and is thus a feasible tool for sex ratio estimation.
AbstractList The sex ratio is an important factor affecting the economic benefits of duck groups in the process of hemp duck breeding. However, the current manual counting method is inefficient, and the results are not always accurate. On the one hand, ducks are in constant motion, and on the other hand, the manual counting method relies on manpower; thus, it is difficult to avoid repeated and missed counts. In response to these problems, there is an urgent need for an efficient and accurate way of calculating the sex ratio of ducks to promote the farming industry. Detecting the sex ratio of ducks requires accurate counting of male ducks and female ducks. We established the world’s first manually marked sex classification dataset for hemp ducks, including 1663 images of duck groups; 17,090 images of whole, individual duck bodies; and 15,797 images of individual duck heads, which were manually captured and had sex information markers. Additionally, we used multiple deep neural network models for the target detection and sex classification of ducks. The average accuracy reached 98.68%, and with the combination of Yolov5 and VovNet_27slim, we achieved 99.29% accuracy, 98.60% F1 score, and 269.68 fps. The evaluation of the algorithm’s performance indicates that the automation method proposed in this paper is feasible for the sex classification of ducks in the farm environment, and is thus a feasible tool for sex ratio estimation.
Simple SummaryThe sex ratio of hemp ducks is considered to be a major animal welfare issue in the commercial hemp duck farming industry, but currently, it still relies on an inefficient and inaccurate manual counting method. In order to obtain an efficient and accurate way of calculating the sex ratio of ducks to solve this problem, we established the world’s first manually marked sex classification dataset for hemp ducks and used multiple deep neural network models for the target detection and sex classification of ducks, with an average accuracy of 98.68%. The evaluation of the algorithm’s performance indicates that the automation method proposed in this paper is feasible for the sex classification of ducks in the farming environment and is thus a feasible tool for sex ratio estimation.AbstractThe sex ratio is an important factor affecting the economic benefits of duck groups in the process of hemp duck breeding. However, the current manual counting method is inefficient, and the results are not always accurate. On the one hand, ducks are in constant motion, and on the other hand, the manual counting method relies on manpower; thus, it is difficult to avoid repeated and missed counts. In response to these problems, there is an urgent need for an efficient and accurate way of calculating the sex ratio of ducks to promote the farming industry. Detecting the sex ratio of ducks requires accurate counting of male ducks and female ducks. We established the world’s first manually marked sex classification dataset for hemp ducks, including 1663 images of duck groups; 17,090 images of whole, individual duck bodies; and 15,797 images of individual duck heads, which were manually captured and had sex information markers. Additionally, we used multiple deep neural network models for the target detection and sex classification of ducks. The average accuracy reached 98.68%, and with the combination of Yolov5 and VovNet_27slim, we achieved 99.29% accuracy, 98.60% F1 score, and 269.68 fps. The evaluation of the algorithm’s performance indicates that the automation method proposed in this paper is feasible for the sex classification of ducks in the farm environment, and is thus a feasible tool for sex ratio estimation.
The sex ratio is an important factor affecting the economic benefits of duck groups in the process of hemp duck breeding. However, the current manual counting method is inefficient, and the results are not always accurate. On the one hand, ducks are in constant motion, and on the other hand, the manual counting method relies on manpower; thus, it is difficult to avoid repeated and missed counts. In response to these problems, there is an urgent need for an efficient and accurate way of calculating the sex ratio of ducks to promote the farming industry. Detecting the sex ratio of ducks requires accurate counting of male ducks and female ducks. We established the world's first manually marked sex classification dataset for hemp ducks, including 1663 images of duck groups; 17,090 images of whole, individual duck bodies; and 15,797 images of individual duck heads, which were manually captured and had sex information markers. Additionally, we used multiple deep neural network models for the target detection and sex classification of ducks. The average accuracy reached 98.68%, and with the combination of Yolov5 and VovNet_27slim, we achieved 99.29% accuracy, 98.60% F1 score, and 269.68 fps. The evaluation of the algorithm's performance indicates that the automation method proposed in this paper is feasible for the sex classification of ducks in the farm environment, and is thus a feasible tool for sex ratio estimation.The sex ratio is an important factor affecting the economic benefits of duck groups in the process of hemp duck breeding. However, the current manual counting method is inefficient, and the results are not always accurate. On the one hand, ducks are in constant motion, and on the other hand, the manual counting method relies on manpower; thus, it is difficult to avoid repeated and missed counts. In response to these problems, there is an urgent need for an efficient and accurate way of calculating the sex ratio of ducks to promote the farming industry. Detecting the sex ratio of ducks requires accurate counting of male ducks and female ducks. We established the world's first manually marked sex classification dataset for hemp ducks, including 1663 images of duck groups; 17,090 images of whole, individual duck bodies; and 15,797 images of individual duck heads, which were manually captured and had sex information markers. Additionally, we used multiple deep neural network models for the target detection and sex classification of ducks. The average accuracy reached 98.68%, and with the combination of Yolov5 and VovNet_27slim, we achieved 99.29% accuracy, 98.60% F1 score, and 269.68 fps. The evaluation of the algorithm's performance indicates that the automation method proposed in this paper is feasible for the sex classification of ducks in the farm environment, and is thus a feasible tool for sex ratio estimation.
Author Duan, Xuliang
Zheng, Xingze
Jiang, Kailin
Peng, Ran
Gong, Xinyao
Li, Feiyi
Lin, Bin
Liu, Yang
Xie, Donghang
Jiang, Hongbo
AuthorAffiliation 1 College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China; 202005739@stu.sicau.edu.cn (X.Z.); 202005483@stu.sicau.edu.cn (F.L.); 201902098@stu.sicau.edu.cn (B.L.); x_dong_hang@163.com (D.X.); 202005572@stu.sicau.edu.cn (Y.L.); 202005590@stu.sicau.edu.cn (X.G.); scaujhb@163.com (H.J.); pengran@stu.sicau.edu.cn (R.P.)
2 College of Science, Sichuan Agricultural University, Ya’an 625000, China; 202003978@stu.sicau.edu.cn
AuthorAffiliation_xml – name: 1 College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China; 202005739@stu.sicau.edu.cn (X.Z.); 202005483@stu.sicau.edu.cn (F.L.); 201902098@stu.sicau.edu.cn (B.L.); x_dong_hang@163.com (D.X.); 202005572@stu.sicau.edu.cn (Y.L.); 202005590@stu.sicau.edu.cn (X.G.); scaujhb@163.com (H.J.); pengran@stu.sicau.edu.cn (R.P.)
– name: 2 College of Science, Sichuan Agricultural University, Ya’an 625000, China; 202003978@stu.sicau.edu.cn
Author_xml – sequence: 1
  givenname: Xingze
  orcidid: 0000-0001-9134-8448
  surname: Zheng
  fullname: Zheng, Xingze
– sequence: 2
  givenname: Feiyi
  surname: Li
  fullname: Li, Feiyi
– sequence: 3
  givenname: Bin
  surname: Lin
  fullname: Lin, Bin
– sequence: 4
  givenname: Donghang
  surname: Xie
  fullname: Xie, Donghang
– sequence: 5
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 6
  givenname: Kailin
  surname: Jiang
  fullname: Jiang, Kailin
– sequence: 7
  givenname: Xinyao
  surname: Gong
  fullname: Gong, Xinyao
– sequence: 8
  givenname: Hongbo
  surname: Jiang
  fullname: Jiang, Hongbo
– sequence: 9
  givenname: Ran
  surname: Peng
  fullname: Peng, Ran
– sequence: 10
  givenname: Xuliang
  orcidid: 0000-0001-7559-346X
  surname: Duan
  fullname: Duan, Xuliang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35565603$$D View this record in MEDLINE/PubMed
BookMark eNptks1vEzEQxVeoiH7QE3dkiQtSteDv3b0glRRopUIlWs6W1x4nTjfrYDsU_nucpEVphS-23vzm6ckzh9XeGEaoqlcEv2Osw-_16AnFHSFN86w6oLiRNZVE7O2896vjlOa4nEYwIsiLap8JIYXE7KAaT9HNXaivs54C-gp5FizKAZ1BBpNRngG6ht_ou84-oODQOSyW6GxlbhP6qBNYFEZ01c_X7LbFF0GPFk0GnZJ33uiN9A3yXYi36WX13OkhwfH9fVT9-PzpZnJeX159uZicXtaGNyLXRLC-ZdR0mJOOALUOS224E7QBzXGDe04J9M70m1rbEGFZkZgzsmutY0fVxdbXBj1Xy-gXOv5RQXu1EUKcKh2zNwMoS6HtsNYdUMebXuqO97YnrrVcWCxN8fqw9Vqu-gVYA2OOenhk-rgy-pmahl-qI5hz3haDt_cGMfxcQcpq4ZOBYdAjhFVSVEreYoIJKeibJ-g8rOJYvmpN0VaQjjWFer2b6F-Uh7EWgGwBE0NKEZwyPm8mUQL6QRGs1tujdran9Jw86Xmw_R_9F2a_xD4
CitedBy_id crossref_primary_10_3390_s22187026
crossref_primary_10_3390_ani12192653
crossref_primary_10_1016_j_psj_2023_103076
crossref_primary_10_1109_ACCESS_2024_3505989
Cites_doi 10.1109/TPAMI.2016.2577031
10.1109/ICCV.2017.324
10.1142/S0218001418500234
10.1007/s11263-009-0275-4
10.1038/nature14539
10.1007/978-1-4899-7687-1_79
10.1109/CVPRW.2019.00103
10.1109/ICCV.2017.74
10.1016/j.infrared.2018.11.036
10.1186/s40537-018-0151-6
10.7717/peerj-cs.783
10.1016/j.biosystemseng.2018.01.002
10.1109/ICPR.2006.479
10.1007/s11263-014-0733-5
10.1109/ICCV.2017.593
10.1145/2964284.2967274
10.13031/2013.20462
10.1007/s10336-019-01682-7
10.1016/j.biosystemseng.2019.01.003
10.1016/j.biosystemseng.2021.03.018
10.1017/S1751731120001676
10.1186/s40537-019-0197-0
10.1016/j.compag.2020.105863
10.1016/j.neunet.2018.07.011
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/ani12091177
DatabaseName CrossRef
PubMed
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 2076-2615
ExternalDocumentID oai_doaj_org_article_d2e890aa9e2f47b6a94bdb1f8d45d06c
PMC9104448
35565603
10_3390_ani12091177
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
7XC
8FE
8FH
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
APEBS
BENPR
CCPQU
CITATION
DIK
EAD
EAP
EPL
ESX
GROUPED_DOAJ
HYE
IAO
ITC
LK8
M48
MODMG
M~E
OK1
OZF
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TUS
ZBA
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c475t-153b832c904191e2df06ac4f527ea4070b421ebfcbe2df08715d34213fc698df3
IEDL.DBID M48
ISSN 2076-2615
IngestDate Wed Aug 27 01:20:50 EDT 2025
Thu Aug 21 14:13:07 EDT 2025
Fri Jul 11 01:08:33 EDT 2025
Mon Jun 30 07:31:22 EDT 2025
Mon Jul 21 05:46:34 EDT 2025
Thu Apr 24 23:09:48 EDT 2025
Tue Jul 01 01:55:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords duck detection
duck sex classification
farming automation
computer vision
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-153b832c904191e2df06ac4f527ea4070b421ebfcbe2df08715d34213fc698df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7559-346X
0000-0001-9134-8448
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ani12091177
PMID 35565603
PQID 2662851937
PQPubID 2032438
ParticipantIDs doaj_primary_oai_doaj_org_article_d2e890aa9e2f47b6a94bdb1f8d45d06c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9104448
proquest_miscellaneous_2664801011
proquest_journals_2662851937
pubmed_primary_35565603
crossref_citationtrail_10_3390_ani12091177
crossref_primary_10_3390_ani12091177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220504
PublicationDateYYYYMMDD 2022-05-04
PublicationDate_xml – month: 5
  year: 2022
  text: 20220504
  day: 4
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Animals (Basel)
PublicationTitleAlternate Animals (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Song (ref_36) 2021; 19
Fang (ref_16) 2021; 180
Leevy (ref_25) 2018; 5
ref_35
ref_34
ref_33
ref_32
Buda (ref_24) 2018; 106
ref_30
Ren (ref_10) 2016; 39
Geffen (ref_9) 2020; 14
ref_18
Lu (ref_6) 2018; 40
Lubich (ref_13) 2019; 2
Li (ref_4) 2014; 19
Linkola (ref_5) 2019; 160
LeCun (ref_14) 2015; 521
Vroegindeweij (ref_7) 2018; 167
Leroy (ref_12) 2006; 49
ref_23
ref_22
Everingham (ref_29) 2015; 111
ref_21
Everingham (ref_28) 2010; 88
ref_20
ref_1
NICKOLOVA (ref_3) 2004; 5
Lin (ref_31) 2021; 7
ref_2
Zhuang (ref_15) 2019; 179
ref_27
Shorten (ref_19) 2019; 6
ref_26
Geronimo (ref_8) 2019; 96
Pu (ref_17) 2018; 32
Pereira (ref_11) 2021; 206
References_xml – volume: 39
  start-page: 1137
  year: 2016
  ident: ref_10
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 5
  start-page: 367
  year: 2004
  ident: ref_3
  article-title: Effect of the sex ratio on the egg fertility of Muscovy duck (Cairina moshcata)
  publication-title: J. Cent. Eur. Agric.
– ident: ref_32
– ident: ref_26
  doi: 10.1109/ICCV.2017.324
– volume: 32
  start-page: 1850023
  year: 2018
  ident: ref_17
  article-title: Automatic recognition of flock behavior of chickens with convolutional neural network and kinect sensor
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001418500234
– volume: 88
  start-page: 303
  year: 2010
  ident: ref_28
  article-title: The PASCAL visual object classes challenge 2007 (VOC2007) development kit
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– ident: ref_1
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_18
– ident: ref_20
  doi: 10.1007/978-1-4899-7687-1_79
– ident: ref_22
  doi: 10.1109/CVPRW.2019.00103
– ident: ref_23
– ident: ref_21
– ident: ref_30
  doi: 10.1109/ICCV.2017.74
– volume: 96
  start-page: 303
  year: 2019
  ident: ref_8
  article-title: Computer vision system and near-infrared spectroscopy for identification and classification of chicken with wooden breast, and physicochemical and technological characterization
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.11.036
– volume: 5
  start-page: 42
  year: 2018
  ident: ref_25
  article-title: A survey on addressing high-class imbalance in big data
  publication-title: J. Big Data
  doi: 10.1186/s40537-018-0151-6
– volume: 19
  start-page: 34
  year: 2014
  ident: ref_4
  article-title: Factors affecting duck breeding performance
  publication-title: Rural Sci. Technol.
– volume: 7
  start-page: e783
  year: 2021
  ident: ref_31
  article-title: PlaneNet: An efficient local feature extraction network
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.783
– volume: 19
  start-page: 165
  year: 2021
  ident: ref_36
  article-title: A tilted rectangular range frame labeling method and analysis of remote sensing target detection application
  publication-title: J. China Inst. Water Resour. Hydropower Sci.
– ident: ref_33
– volume: 167
  start-page: 99
  year: 2018
  ident: ref_7
  article-title: Object discrimination in poultry housing using spectral reflectivity
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.01.002
– ident: ref_35
  doi: 10.1109/ICPR.2006.479
– ident: ref_2
– volume: 111
  start-page: 98
  year: 2015
  ident: ref_29
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– volume: 2
  start-page: 20
  year: 2019
  ident: ref_13
  article-title: Identification and classification of poultry eggs: A case study utilizing computer vision and machine learning
  publication-title: SMU Data Sci. Rev.
– volume: 40
  start-page: 76
  year: 2018
  ident: ref_6
  article-title: Design and application of WSN-based poultry body temperature monitoring system
  publication-title: China Poult.
– ident: ref_34
  doi: 10.1109/ICCV.2017.593
– ident: ref_27
  doi: 10.1145/2964284.2967274
– volume: 49
  start-page: 795
  year: 2006
  ident: ref_12
  article-title: A computer vision method for on-line behavioral quantification of individually caged poultry
  publication-title: Trans. ASABE
  doi: 10.13031/2013.20462
– volume: 160
  start-page: 1015
  year: 2019
  ident: ref_5
  article-title: Breeding sex ratios in two declining diving duck species: Between-year variation and changes over six decades
  publication-title: J. Ornithol.
  doi: 10.1007/s10336-019-01682-7
– volume: 179
  start-page: 106
  year: 2019
  ident: ref_15
  article-title: Detection of sick broilers by digital image processing and deep learning
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.01.003
– volume: 206
  start-page: 123
  year: 2021
  ident: ref_11
  article-title: Unrest index for estimating thermal comfort of poultry birds (Gallus gallus domesticus) using computer vision techniques
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.03.018
– volume: 14
  start-page: 2628
  year: 2020
  ident: ref_9
  article-title: A machine vision system to detect and count laying hens in battery cages
  publication-title: Animal
  doi: 10.1017/S1751731120001676
– volume: 6
  start-page: 60
  year: 2019
  ident: ref_19
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 180
  start-page: 105863
  year: 2021
  ident: ref_16
  article-title: Pose estimation and behavior classification of broiler chickens based on deep neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105863
– volume: 106
  start-page: 249
  year: 2018
  ident: ref_24
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.07.011
SSID ssj0000753151
Score 2.2460845
Snippet The sex ratio is an important factor affecting the economic benefits of duck groups in the process of hemp duck breeding. However, the current manual counting...
Simple SummaryThe sex ratio of hemp ducks is considered to be a major animal welfare issue in the commercial hemp duck farming industry, but currently, it...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1177
SubjectTerms Accuracy
Cameras
Classification
computer vision
Datasets
Deep learning
duck detection
duck sex classification
Efficiency
Eggs
farming automation
Farms
Hemp
Methods
Poultry
Surveillance
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8QwEA4iCL6It_ViBJ-EYo-03T56sgir4AHiS8npgabirujPdybtLruy4IuvSUrTzEzmm87F2L6KI2tVpkMVmSREfBuHUnIVaiXIkVOi1qd8595l3r3jF_fZ_VirL4oJa8oDNwd3qBPTKSMhSpNYXshclFxqGduO5pmOckW3L-q8MWPqpXHPpajLmoS8FO36Q-GeKU2UfJQTKshX6p8GL39HSY6pnfNFttDiRThq9rnEZoxbZnMPtf8bvsLcEdx-1SFCxkcDPd8NGgY1nBryDQCCO7gx33BNxw-1ha55ewfqCt2HY1RfGmoHV5J-xbSPIJVAOA2-VyZFEXnCwWUTLN5fZXfnZ7cn3bBtoRAqXmSDEO8ziTKryoijYWYSbaNcKG6zpDACbblI8iQ20irp59B6ynSKQ6lVednRNl1js652ZoMBqjiZpThqFd6upijjUiqb2VggSIuLKGAHw1OtVFtfnNpcvFZoZxAJqjESBMglw8XvTVmN6cuOiTyjJVQL2w8gh1Qth1R_cUjAtofErVoB7VeIS5IOoVd8x95oGkWL_CXCmfrTr6HiOngDBmy94YXRThCmUdmiNGDFBJdMbHVyxj0_-fLdCNA4GsWb__FtW2w-oXwMisDk22x28PFpdhAlDeSuF4gfzdcRYQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba1QxEA66RfBFvHu0ygg-CaHnknN7kq62LEJXqS0UXw651oIma3eL_nxncrJrV4qvSQ6EM5OZb-6MvdFF7pyuDde5LTni24IrJTQ3WlIgp0etT_XOR_Nmdio-ntVnyeG2TGmVa5kYBbUJmnzke6hIyo7gRvtu8ZPT1CiKrqYRGrfZDorgrpuwnenB_PPxxsuCCrFCnTYW5lVo3-9Jf0HlohSr3FJFsWP_TTDz32zJa-rn8D67l3Aj7I-EfsBuWf-Q3fkaolf8EfP7cPIrcISO5xaO4lRoWAX4YClGAAjy4Iv9DcdEBggOZvbHAmg69BKmqMYMBA-fFLlk0idILZDeQJyZSdlEkYAwH5PGl4_Z6eHByfsZT6MUuBZtveIo1xS-Xd3nAg00WxqXN1ILV5etlWjT5UqUhVVOq7iHVlRtKlyqnG76zrjqCZv44O0zBqjqVF3hqtMoZW3bF73SrnaFRLBWtHnG3q7_6qBTn3Ead_F9QHuDSDBcI0GG3LI-vBjba9x8bErk2RyhnthxIVyeD-mJDaa0XZ9L2dvSiVY1shfKqMJ1RtQmb3TGdtfEHdJDXQ5_2Spjrzfb-MQobiK9DVfxDDXZQUmYsacjL2xugnCN2hdVGWu3uGTrqts7_uJbbOONQE2gcfz8_9d6we6WVHFBOZZil01Wl1f2JeKglXqVmP0PWMMJFQ
  priority: 102
  providerName: ProQuest
Title A Two-Stage Method to Detect the Sex Ratio of Hemp Ducks Based on Object Detection and Classification Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/35565603
https://www.proquest.com/docview/2662851937
https://www.proquest.com/docview/2664801011
https://pubmed.ncbi.nlm.nih.gov/PMC9104448
https://doaj.org/article/d2e890aa9e2f47b6a94bdb1f8d45d06c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LbxMxEB6VVqBeEM-yUCIjcUIy7MO7mz0g1ECrCCkBlUaquKz8LEXFW5JUlH_PjHc3aqpwtb0PeWY83-exZwBe6yR2TueG69imHPFtwpUSmhstKZBToden-86TaTGeic-n-ekW9MU4uwlcbKR2VE9qNr94e_377wc0-PfEOJGyv5P-nG6AUvjxDuygSyqplMGkw_k_22hdloRSjCnydo6sIW_v6t1-fhfuoQOmhDTZmqMK-fw3gdDbZylvOKejB3C_Q5XsoFWDh7Bl_SO4-70Je-aPwR-wkz8NR2B5Ztkk1Ixmy4Z9shRBYAgB2Td7zY5JSKxxbGx_XTKqHb1gI3RyhjWefVG0YdM9grJk0hsWKmrSWaMgXjZtj5QvnsDs6PDk45h3hRa4FmW-5LjqKbRsXcUC6ZtNjYsLqYXL09JKZHyxEmlildMq9CHHyk2GTZnTRTU0LnsK277x9hkwdIQqz7DVaVyDbVklldIud4lEKJeUcQRv-lmtdZeFnIphXNTIRkga9Q1pRKhL_eDLNvnG5mEjEs9qCGXMDg3N_KzuDLA2qR1WsZSVTZ0oVSEroYxK3NCI3MSFjmC_F27da2GN6CUdEsbFb7xadaMBUlRFettchTGUggfXyQj2Wl1Y_UmvSxGUa1qy9qvrPf78R0jyjTBOIHV-_t93voDdlK5i0OFLsQ_by_mVfYkAaakGsDM6nH49HoQNhkEwhX9xdw4O
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAosEFySr6_Xajg8INbRVSpuASipVXMw-SyWwQ5Oq9E_1NzLjR2hQxa3X3U208nw7883uPABem4h7bxIbGu5EiPw2CrWWJrRG0UNOjlaf8p1H43R4ID8eJocrcNHlwlBYZacTa0VtK0N35OtoSESf6Eb2fvorpK5R9LratdBoYLHrzs_QZZu929lE-b4RYntr8mEYtl0FQiOzZB7iEdcIY5Nzib6KE9bzVBnpE5E5he4N11JETnuj6zl0KBIb41DsTZr3rY_xf2_AqoxTLnqwOtgaf95f3OqgAY7RhjaJgHGc83VVHlN6Kr2NLpm-ukPAVbT23-jMS-Zu-y7caXkq22iAdQ9WXHkfbn6t6lv4B1BusMlZFSJVPXJsVHehZvOKbTp6k2BIKtkX95vtk9hZ5dnQ_Zwy6kY9YwM0m5ZVJfuk6Qqo_Qmig6nSsrpHJ0Uv1YBh4yZIffYQDq7lIz-CXlmV7gkwNK06iXHUG9TqLsujXBuf-EghOYwyHsDb7qsWpq1rTu01fhTo35AIiksiCBCd3eJpU87j6mUDEs9iCdXgrgeqk6OiPdKFFa6fc6VyJ7zMdKpyqa2OfN_KxPLUBLDWCbdoFcOs-AvjAF4tpvFI0zuNKl11Wq-hoj6oeQN43GBhsROkh1QuKQ4gW0LJ0laXZ8rj73XZcCSGEp3xp__f1ku4NZyM9oq9nfHuM7gtKNuD4jvlGvTmJ6fuOXKwuX7RAp_Bt-s-a38AaGFFnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAosEFyQr9nptxweEGtIopTRUpZUqLmafpRLYoUlV-Gv8OmbWdmhQxa3X3U208nzz2nkBvNRx5JxOTagjy0O0b-NQKaFDoyUFcgrU-lTvvDvNJofi_VF6tAa_u1oYSqvsZKIX1KbW9EbeR0XCB2Ru5H3XpkXsjcZvZz9CmiBFkdZunEYDkR376xzdt_mb7RHS-hXn462Dd5OwnTAQapGnixDZXSGkdREJ9FssNy7KpBYu5bmV6OpESvDYKqeV30PnIjUJLiVOZ8XAuAT_9xqs5-QV9WB9uDXd21--8KAyTlCfNkWBSVJEfVmdUKkqxUlX1KCfFnCZiftvpuYF1Te-Dbdam5VtNiC7A2u2ugvXP9f-Rf4eVJvs4LwO0Ww9tmzXT6Rmi5qNLMUnGBqY7JP9yfYJAqx2bGK_zxhNpp6zIapQw-qKfVT0HNT-BJHCZGWYn9dJmUwePGzaJKzP78PhlXzkB9Cr6so-AoZqVqUJrjqNEt7mRVwo7VIXSzQU4zwK4HX3VUvd9jinURvfSvR1iATlBRIEiNTu8Kxp7XH5sSGRZ3mE-nH7hfr0uGzZuzTcDopIysJyJ3KVyUIoo2I3MCI1UaYD2OiIW7ZCYl7-hXQAL5bbyN4Us5GVrc_8GWrwg1I4gIcNFpY3QVORWiclAeQrKFm56upOdfLVtxBHI1GgY_74_9d6DjeQx8oP29OdJ3CTU-EHpXqKDegtTs_sUzTHFupZi3sGX66a1f4AdaxJ0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Stage+Method+to+Detect+the+Sex+Ratio+of+Hemp+Ducks+Based+on+Object+Detection+and+Classification+Networks&rft.jtitle=Animals+%28Basel%29&rft.au=Zheng%2C+Xingze&rft.au=Li%2C+Feiyi&rft.au=Lin%2C+Bin&rft.au=Xie%2C+Donghang&rft.date=2022-05-04&rft.issn=2076-2615&rft.eissn=2076-2615&rft.volume=12&rft.issue=9&rft_id=info:doi/10.3390%2Fani12091177&rft_id=info%3Apmid%2F35565603&rft.externalDocID=35565603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2615&client=summon