Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tiss...
Saved in:
Published in | Journal of cardiovascular development and disease Vol. 8; no. 11; p. 137 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
22.10.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation. |
---|---|
AbstractList | Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation. Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation. |
Author | Zamani, Maedeh Khanna, Astha Huang, Ngan F. |
AuthorAffiliation | 2 Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; maedeh@stanford.edu 3 Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA 4 Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA 1 Graver Technologies, Newark, NJ 07105, USA; akhanna@gravertech.com 5 Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA |
AuthorAffiliation_xml | – name: 5 Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA – name: 1 Graver Technologies, Newark, NJ 07105, USA; akhanna@gravertech.com – name: 4 Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – name: 2 Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; maedeh@stanford.edu – name: 3 Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA |
Author_xml | – sequence: 1 givenname: Astha surname: Khanna fullname: Khanna, Astha – sequence: 2 givenname: Maedeh surname: Zamani fullname: Zamani, Maedeh – sequence: 3 givenname: Ngan F. orcidid: 0000-0003-2298-6790 surname: Huang fullname: Huang, Ngan F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34821690$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0s9LHDEUB_AgFrXWU-9loJdCmZqfM5lLQZdtKyhe7Dm8TV62WWYnNpkR-983u2tllZ4Skk--vLzkLTkc4oCEvGf0ixAdPV9Z5zRjlIn2gJxwQXUtJFeHe_NjcpbzitJiJKeMH5FjITVnTUdPyM38cUxgse-nHlJ1A2MKj_UlZHTVZYhrGDEF6HPlY6pmkFyID5DtFt-FnCes5sMyDFjYsHxH3viC8expPCU_v83vZj_q69vvV7OL69rKVo01454jgAa0nXSttNDphgnkC-9pK-zCM2UFa1XLXSOKEMq12HCwrtNScXFKrna5LsLK3KewhvTHRAhmuxDT0kAag-3RMKE66KTvoGlls9AdeKsFKIlaeHS6ZH3dZd1PizU6i0NpSP8i9OXOEH6ZZXwwuuG8obQEfHoKSPH3hHk065A3HYUB45RNQbyRVMi20I-v6CpOaSit2iqqBVWqqA_7FT2X8u_VCvi8AzbFnBP6Z8Ko2XwLs_ctimavtA0jjCFurhP6_575CyHTuoc |
CitedBy_id | crossref_primary_10_3390_ijms23073482 crossref_primary_10_1088_2053_1591_ad2160 crossref_primary_10_3389_fchem_2022_1092123 crossref_primary_10_3390_app15031145 crossref_primary_10_3390_cells13080688 crossref_primary_10_1021_acs_biomac_3c00387 crossref_primary_10_3390_ijms23105618 crossref_primary_10_3390_polym14153023 crossref_primary_10_3389_fmats_2023_1168616 crossref_primary_10_1016_j_bea_2022_100059 crossref_primary_10_3390_biomimetics8050446 crossref_primary_10_7759_cureus_69835 crossref_primary_10_1007_s10741_023_10367_6 crossref_primary_10_3390_biomedicines13020259 crossref_primary_10_3389_fcvm_2022_807255 crossref_primary_10_1088_1748_605X_ad04fd crossref_primary_10_1002_jbm_a_37602 crossref_primary_10_3390_biotech14010023 crossref_primary_10_1002_bit_28456 crossref_primary_10_3390_polym15193854 crossref_primary_10_1038_s41598_024_80973_3 crossref_primary_10_3390_bioengineering9100555 crossref_primary_10_3390_biom13081180 crossref_primary_10_1177_20417314251316918 crossref_primary_10_3390_bioengineering9040168 crossref_primary_10_7759_cureus_43431 crossref_primary_10_3390_jfb14010021 crossref_primary_10_1002_adhm_202402199 crossref_primary_10_1016_j_bmt_2024_05_001 crossref_primary_10_3390_ijms26052309 crossref_primary_10_1155_2022_1953861 |
Cites_doi | 10.1002/jbm.a.36179 10.1097/01.JCN.0000343562.06614.49 10.1016/j.biomaterials.2016.09.003 10.1098/rsif.2014.0817 10.1371/journal.pone.0209269 10.1177/1534734607301394 10.1002/jbm.a.35544 10.1038/s41578-018-0023-x 10.1016/j.biomaterials.2021.120764 10.1016/j.biomaterials.2019.119741 10.1016/j.actbio.2014.02.049 10.1016/j.biomaterials.2010.07.110 10.1016/j.biomaterials.2016.10.026 10.1016/j.biomaterials.2012.02.009 10.1038/nprot.2012.051 10.1002/jcp.29653 10.1021/acs.biomac.7b01165 10.1089/ten.tec.2017.0088 10.1113/jphysiol.1991.sp018863 10.1088/1758-5090/aa7e98 10.1002/jbm.a.36572 10.1016/j.stemcr.2016.08.017 10.1016/S0142-9612(03)00340-5 10.1126/scitranslmed.3001426 10.1016/j.actbio.2014.02.022 10.1002/adma.201302042 10.1038/s41598-017-06986-3 10.2147/VHRM.S50536 10.2217/3dp-2018-0002 10.1016/j.actbio.2020.10.029 10.1016/j.actbio.2012.08.036 10.1016/j.actbio.2017.04.014 10.1002/jbm.820240505 10.1016/j.ymeth.2015.03.005 10.1016/j.actbio.2018.04.044 10.1016/j.ijsu.2015.11.008 10.1089/ten.2006.0437 10.1016/j.biotechadv.2019.107421 10.1016/0014-3057(94)90003-5 10.1006/excr.1993.1016 10.1016/j.actbio.2016.11.069 10.1016/j.bbadis.2014.07.008 10.1016/j.yexcr.2013.06.019 10.1186/s40824-018-0141-y 10.1002/adfm.202005769 10.2217/nnm.10.12 10.1038/nm1684 10.1016/S0142-9612(98)90187-9 10.1089/ten.tec.2008.0635 10.1016/j.addr.2012.09.009 10.1634/stemcells.2008-0033 10.1016/j.biomaterials.2013.08.017 10.1016/j.cardiores.2005.02.006 10.1016/S0140-6736(16)00557-2 10.1007/s12265-011-9304-0 10.1161/CIRCULATIONAHA.113.008193 10.3233/BME-171668 10.1093/cvr/19.6.326 10.1016/j.actbio.2017.07.028 10.1073/pnas.93.8.3509 10.1016/j.trsl.2013.11.003 10.1016/j.biomaterials.2017.06.025 10.1038/nrm3904 10.1089/ten.2005.11.1860 10.1016/j.addr.2015.11.019 10.1088/1748-605X/abbdbd 10.1016/0142-9612(95)00307-X 10.1002/adhm.201801217 10.1016/j.actbio.2009.05.004 10.1016/j.mser.2021.100641 10.1016/j.msec.2018.07.061 10.1089/ten.tea.2007.0107 10.1016/j.actbio.2011.03.012 10.1073/pnas.1308887110 10.1002/jbm.b.34160 10.1016/j.biomaterials.2015.01.045 10.1161/CIRCRESAHA.115.306361 10.1152/physiol.00026.2017 10.1016/j.biomaterials.2017.11.033 10.1016/j.biomaterials.2011.04.049 10.1007/BF01412597 10.1089/ten.2006.0096 10.1016/j.bbcan.2003.07.002 10.1093/cvr/cvs135 10.3390/cells9030778 10.1186/s13019-017-0661-x 10.1016/j.actbio.2014.12.014 10.1016/j.actbio.2017.11.038 10.1091/mbc.e10-04-0334 10.1161/CIRCULATIONAHA.106.652859 10.1038/nrcardio.2013.77 10.1021/acs.nanolett.5b04028 10.1007/BF02723051 10.1089/ten.teb.2009.0630 10.1016/j.yexcr.2014.05.012 10.1007/978-3-319-97421-7_8 10.1038/nbt.2958 10.1016/j.jacc.2015.08.879 10.1088/0957-4484/25/1/014011 10.1038/pr.2011.64 10.1111/j.1524-475X.2011.00673.x 10.1007/s13206-020-4108-4 10.1089/ten.tea.2008.0526 10.1021/ma000459d 10.1016/j.biomaterials.2015.02.061 10.1023/B:ABME.0000017552.65260.94 10.1002/jbm.a.34957 10.1016/j.jvs.2004.01.046 10.1002/(SICI)1097-4636(199910)47:1<65::AID-JBM9>3.0.CO;2-F 10.1073/pnas.1019506108 10.1016/j.biomaterials.2014.07.042 10.1097/IJG.0000000000000108 10.1002/jbm.a.20007 10.1215/S1152851705000232 10.1007/s40119-017-0094-6 10.1016/j.biomaterials.2010.01.035 10.1021/acsami.7b04114 10.2217/rme.15.45 10.1126/sciadv.1500758 10.1242/jcs.023820 10.1016/j.ejcts.2004.12.052 10.1007/s10439-006-9226-1 10.1016/j.cardfail.2010.10.002 10.1016/j.biomaterials.2006.09.038 10.1016/S0741-5214(97)70302-1 10.1039/C7BM00883J 10.1016/j.biomaterials.2014.03.026 10.1016/B978-0-12-521980-8.50020-1 10.1073/pnas.91.26.12378 10.1101/2021.03.30.437600 10.1002/hep.22193 10.3390/polym11040687 10.1146/annurev.bioeng.3.1.335 10.1002/term.1895 10.1016/0092-8674(78)90031-4 10.1016/j.actbio.2019.04.026 10.1016/j.tcb.2019.10.001 10.1002/9783527690916 10.3390/polym10050542 10.1007/s12033-011-9401-y 10.1002/jbm.a.30060 10.1007/s40778-016-0056-2 10.1038/nrm3620 10.1089/ten.tec.2009.0392 10.1007/s12195-015-0406-7 10.1152/ajpcell.00060.2012 10.1016/j.actbio.2016.11.058 10.1038/nature22978 10.1371/journal.pone.0254160 10.1038/s41467-019-13605-4 10.3791/51011 10.1016/j.cardiores.2003.12.022 10.1016/j.actbio.2016.08.003 10.1016/0092-8674(86)90470-8 10.1016/B978-0-12-405945-0.00024-7 10.1016/j.mvr.2019.103925 10.1038/sj.bmt.1700999 10.1016/S0142-9612(02)00175-8 10.1089/ten.2006.0078 10.1016/j.semcancer.2005.05.004 10.1016/j.bbagen.2014.01.010 10.1038/srep18705 10.1016/B978-008045154-1/50020-4 10.1155/2014/756078 10.1016/j.biomaterials.2011.01.057 10.1038/ncomms4935 10.1016/j.biomaterials.2018.03.042 10.1182/blood-2008-12-196451 10.14744/AnatolJCardiol.2017.7464 10.1021/acs.langmuir.1c00018 10.1088/1748-605X/aa78d0 10.1016/0267-6605(92)90094-A 10.1088/1758-5090/8/2/025008 10.1016/j.actbio.2020.11.006 10.3390/bioengineering4010010 10.1016/j.biomaterials.2006.05.053 10.1016/j.cardiores.2004.10.012 10.1016/0140-6736(92)93287-W 10.1007/s10856-012-4684-5 10.1159/000331415 10.1038/185117a0 10.1016/j.biomaterials.2013.02.036 10.1021/acsbiomaterials.6b00176 10.1089/ten.tea.2008.0441 10.1038/nbt.3413 10.1002/adfm.201700798 10.1186/1471-2482-8-22 10.1007/s10439-016-1638-y 10.1126/science.284.5413.489 10.1021/acsbiomaterials.8b01112 10.1016/j.biomaterials.2010.08.072 10.1016/j.biomaterials.2011.06.022 10.1016/j.actbio.2011.07.023 10.1161/01.RES.0000191547.64391.e3 10.1067/mva.2001.111747 10.1126/science.7031899 10.1089/ten.tec.2011.0210 10.1371/journal.pone.0241040 10.1016/j.biomaterials.2007.08.007 10.1002/jbm.b.34197 10.1039/C8BM01246F 10.1016/j.biomaterials.2003.10.073 10.1038/s41598-018-21681-7 10.1253/circj.CJ-10-0717 10.1152/ajpheart.00935.2014 10.1016/j.actbio.2017.10.032 10.22203/eCM.v033a05 10.1016/j.actbio.2016.12.015 10.1021/nn507488s 10.1016/j.biomaterials.2018.05.031 10.1016/j.biotechadv.2019.02.009 10.1016/0022-5193(82)90388-5 10.1101/cshperspect.a005090 10.1007/s10439-010-9935-3 10.1016/j.biomaterials.2010.03.053 10.1089/wound.2013.0485 10.1155/2016/8364382 10.1016/j.biomaterials.2010.12.016 10.1016/0040-8166(79)90011-9 10.1111/j.1524-475X.2009.00466.x 10.1016/j.biomaterials.2015.10.020 10.2217/rme-2020-0023 10.1002/jbm.b.34444 10.3390/bioengineering5030069 10.1039/C7BM00323D |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jcdd8110137 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2308-3425 |
ExternalDocumentID | oai_doaj_org_article_1359a94f9a6746b89afc83a54e83fed8 PMC8622600 34821690 10_3390_jcdd8110137 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: BLRD VA grantid: I01 BX004259 – fundername: VA grantid: 1I01BX002310 and 1I01BX004259 – fundername: NHLBI NIH HHS grantid: R01 HL127113 – fundername: NIH HHS grantid: R01 HL127113 and R01 HL142718 – fundername: American Heart Association grantid: 20IPA35360085 and 20IPA35310731 – fundername: RRD VA grantid: I01 RX001222 – fundername: NHLBI NIH HHS grantid: R01 HL142718 |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AADQD AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR CCPQU CITATION FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR ITC KQ8 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c475t-12f2eaa8aec94d74ca98613e2bff073cbf15c317572d634d735d7e62acd984523 |
IEDL.DBID | DOA |
ISSN | 2308-3425 |
IngestDate | Wed Aug 27 01:32:15 EDT 2025 Thu Aug 21 18:18:18 EDT 2025 Fri Jul 11 12:24:38 EDT 2025 Mon Jun 30 02:28:21 EDT 2025 Thu Jan 02 22:45:19 EST 2025 Tue Jul 01 01:48:11 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | extracellular matrix (ECM) tissue engineering regenerative medicine |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-12f2eaa8aec94d74ca98613e2bff073cbf15c317572d634d735d7e62acd984523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2298-6790 |
OpenAccessLink | https://doaj.org/article/1359a94f9a6746b89afc83a54e83fed8 |
PMID | 34821690 |
PQID | 2602083055 |
PQPubID | 5046891 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1359a94f9a6746b89afc83a54e83fed8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8622600 proquest_miscellaneous_2602640347 proquest_journals_2602083055 pubmed_primary_34821690 crossref_primary_10_3390_jcdd8110137 crossref_citationtrail_10_3390_jcdd8110137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211022 |
PublicationDateYYYYMMDD | 2021-10-22 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211022 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of cardiovascular development and disease |
PublicationTitleAlternate | J Cardiovasc Dev Dis |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_93 Eagland (ref_38) 1994; 30 ref_138 Ozguldez (ref_53) 2018; 22 ref_90 Yue (ref_5) 2014; 23 Vedadghavami (ref_230) 2017; 62 Wang (ref_122) 2014; 10 Uchida (ref_131) 2015; 104 Carvalho (ref_87) 2020; 235 Serpooshan (ref_78) 2013; 34 Malda (ref_148) 2013; 25 Benning (ref_136) 2017; 105 Karantalis (ref_82) 2015; 66 Wolchok (ref_109) 2010; 31 Brennecke (ref_139) 2017; 55 Li (ref_228) 2003; 68A Nakayama (ref_51) 2016; 16 ref_128 Xue (ref_16) 2015; 4 Melhem (ref_217) 2017; 3 Grauss (ref_99) 2005; 27 Sun (ref_135) 2017; 66 ref_121 Crapo (ref_66) 2011; 32 Maia (ref_132) 2014; 10 Huang (ref_164) 2007; 13 Kavelaars (ref_86) 2012; 71 Efraim (ref_89) 2016; 50 Spitzer (ref_83) 1997; 20 Edwards (ref_183) 1967; 8 Lu (ref_58) 2011; 17 Gattazzo (ref_12) 2014; 1840 ref_79 Farmer (ref_182) 1978; 15 McKavanagh (ref_186) 2017; 6 ref_76 Xavier (ref_151) 2015; 9 ref_155 Reyna (ref_1) 2021; 143 ref_157 Das (ref_70) 2018; 2 ref_73 Peppas (ref_32) 1996; 17 Lu (ref_110) 2011; 32 Hume (ref_240) 2010; 31 ref_81 Caiado (ref_127) 2011; 32 ref_80 Zhang (ref_220) 2016; 110 ref_88 ref_143 ref_145 Qiu (ref_177) 2015; 308 Colly (ref_150) 2021; 37 Heschel (ref_236) 2009; 15 Wong (ref_26) 2005; 65 Suri (ref_137) 2009; 5 Hume (ref_239) 2012; 33 Toursarkissian (ref_188) 1997; 25 Sottile (ref_13) 2004; 1654 Bassat (ref_61) 2017; 547 ref_215 Liao (ref_108) 2010; 31 ref_218 Guo (ref_124) 2020; 119 Row (ref_210) 2015; 50 Peak (ref_153) 2015; 8 ref_219 Lawson (ref_198) 2016; 387 Dahl (ref_199) 2007; 35 Hess (ref_184) 2014; 130 Shin (ref_224) 2012; 7 Zaitseva (ref_238) 2020; 15 Nakayama (ref_52) 2015; 10 ref_203 ref_202 Bonnans (ref_133) 2014; 15 ref_209 Quint (ref_196) 2011; 108 Le (ref_94) 2018; 169 Das (ref_104) 2019; 95 Wells (ref_175) 2008; 47 Kong (ref_214) 2018; 107 Koobatian (ref_205) 2015; 76 Bracaglia (ref_192) 2017; 18 Lin (ref_189) 2004; 39 Schultz (ref_14) 2009; 17 Schultz (ref_8) 2011; 19 Choi (ref_107) 2010; 31 Bennett (ref_28) 2016; 118 ref_118 Gui (ref_100) 2009; 15 ref_111 Yannas (ref_2) 1982; 215 Gaharwar (ref_152) 2011; 7 Hirata (ref_91) 2018; 65 ref_225 ref_103 Agren (ref_15) 2007; 6 Murugan (ref_169) 2007; 13 ref_226 Pati (ref_55) 2014; 5 Lai (ref_171) 2011; 7 ref_223 Weymann (ref_97) 2011; 75 Hussey (ref_31) 2018; 3 Xu (ref_112) 2014; 1842 Akbay (ref_105) 2018; 107 Han (ref_211) 2017; 28 Ott (ref_227) 2008; 14 Akhyari (ref_98) 2011; 17 Peng (ref_208) 2012; 195 Ghosh (ref_142) 2007; 28 Stratman (ref_119) 2009; 114 Ning (ref_123) 2015; 52 Taylor (ref_77) 2018; 74 McFetridge (ref_71) 2004; 70A ref_10 Hume (ref_241) 2011; 32 Smith (ref_54) 2018; 33 Xie (ref_176) 2018; 155 ref_19 Angelini (ref_185) 1985; 19 ref_18 Zhang (ref_60) 2017; 49 ref_17 Davis (ref_116) 2005; 97 Tharmalingam (ref_48) 2011; 49 Brigham (ref_146) 2009; 5 Nair (ref_193) 2015; 11 Iwase (ref_85) 2005; 66 Mintz (ref_158) 2014; 102 Kang (ref_154) 2016; 34 ref_24 ref_22 ref_21 ref_20 Kaiser (ref_63) 2019; 5 Roskelley (ref_181) 1994; 91 Niklason (ref_195) 2001; 33 Nguyen (ref_114) 2016; 7 Curtis (ref_216) 2009; 24 Ballotta (ref_84) 2014; 35 Nettles (ref_229) 2004; 32 Connelly (ref_170) 2017; 50 Niklason (ref_194) 1999; 284 Hinderer (ref_232) 2016; 97 Keane (ref_67) 2015; 84 Huang (ref_57) 2013; 34 Ahmed (ref_11) 2016; 2 Wanjare (ref_168) 2017; 5 Frantz (ref_3) 2010; 123 Chen (ref_173) 2017; 23 Roeder (ref_206) 1999; 47 Sellaro (ref_72) 2007; 13 Cheng (ref_106) 2009; 15 Ziegler (ref_59) 2012; 303 Tao (ref_92) 2014; 11 Bissell (ref_6) 1982; 99 Brynda (ref_126) 2013; 102 Baker (ref_163) 2012; 125 Bergers (ref_29) 2005; 7 Kim (ref_45) 2017; 9 Kutty (ref_50) 2007; 28 Roe (ref_234) 1992; 9 Stamati (ref_115) 2014; 327 Giobbe (ref_141) 2019; 10 Drury (ref_144) 2003; 24 Chimene (ref_156) 2016; 44 Guo (ref_161) 2012; 23 Brown (ref_74) 2013; 163 Bourget (ref_162) 2019; 30 Kleinman (ref_147) 2005; 15 Geckil (ref_159) 2010; 5 Coakley (ref_207) 2015; 25 Huang (ref_237) 2005; 11 Sperinde (ref_40) 2000; 33 VanWinkle (ref_130) 1996; 32 Cheung (ref_235) 1990; 24 Yokoyama (ref_37) 1986; 264 Yap (ref_113) 2019; 29 Ma (ref_212) 2017; 12 Reid (ref_4) 2020; 108 Deanfield (ref_27) 2007; 115 Liu (ref_129) 2006; 27 Yamamoto (ref_201) 1993; 204 Kidson (ref_190) 1978; 58 ref_68 Hennink (ref_36) 2012; 64 Rhodes (ref_62) 2008; 26 ref_65 ref_166 French (ref_95) 2016; 2016 Kim (ref_75) 2020; 14 Wichterle (ref_39) 1960; 185 Wainwright (ref_96) 2010; 16 Candiello (ref_140) 2018; 177 Heng (ref_221) 2004; 62 Foster (ref_134) 2018; 6 Predel (ref_25) 1992; 340 Hu (ref_33) 2019; 7 Murphy (ref_149) 2014; 32 McWhorter (ref_172) 2013; 110 Lacolley (ref_23) 2012; 95 Shin (ref_102) 2021; 119 Hou (ref_56) 2016; 44 Li (ref_213) 2018; 93 ref_35 Jordan (ref_165) 1986; 44 ref_197 ref_30 Seifu (ref_101) 2013; 10 Beamish (ref_200) 2010; 16 Kristofik (ref_242) 2017; 141 Nagaoka (ref_49) 2010; 38 Monchaux (ref_120) 2009; 2 Kural (ref_178) 2013; 319 Boudreau (ref_180) 1996; 93 Nguyen (ref_34) 2002; 23 Ding (ref_125) 2015; 15 Lu (ref_204) 2019; 107 Jang (ref_222) 2016; 112 Gilbert (ref_69) 2006; 27 ref_47 ref_46 Whitesides (ref_167) 2001; 3 ref_44 ref_42 ref_187 ref_41 Hudlicka (ref_174) 1991; 444 ref_191 Lee (ref_43) 2013; 9 Cummings (ref_231) 2004; 25 ref_9 Johnson (ref_233) 1999; 20 Fathi (ref_64) 2014; 35 Watt (ref_117) 2013; 14 Emerman (ref_179) 1979; 11 ref_7 Vega (ref_160) 2017; 33 |
References_xml | – volume: 105 start-page: 3231 year: 2017 ident: ref_136 article-title: Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.36179 – volume: 58 start-page: I1 year: 1978 ident: ref_190 article-title: Low compliance and arterial graft occlusion publication-title: Circulation – volume: 24 start-page: 87 year: 2009 ident: ref_216 article-title: Cardiac tissue engineering publication-title: J. Cardiovasc. Nurs. doi: 10.1097/01.JCN.0000343562.06614.49 – volume: 110 start-page: 45 year: 2016 ident: ref_220 article-title: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.09.003 – ident: ref_155 doi: 10.1098/rsif.2014.0817 – ident: ref_80 doi: 10.1371/journal.pone.0209269 – volume: 6 start-page: 82 year: 2007 ident: ref_15 article-title: The Extracellular Matrix in Wound Healing: A Closer Look at Therapeutics for Chronic Wounds publication-title: Int. J. Low. Extrem. Wounds doi: 10.1177/1534734607301394 – volume: 104 start-page: 94 year: 2015 ident: ref_131 article-title: Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.35544 – volume: 3 start-page: 159 year: 2018 ident: ref_31 article-title: Extracellular matrix-based materials for regenerative medicine publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0023-x – ident: ref_103 doi: 10.1016/j.biomaterials.2021.120764 – ident: ref_226 doi: 10.1016/j.biomaterials.2019.119741 – volume: 10 start-page: 3197 year: 2014 ident: ref_132 article-title: Matrix-driven formation of mesenchymal stem cell–extracellular matrix microtissues on soft alginate hydrogels publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.02.049 – volume: 31 start-page: 8911 year: 2010 ident: ref_108 article-title: Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.07.110 – volume: 112 start-page: 264 year: 2016 ident: ref_222 article-title: 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.10.026 – volume: 33 start-page: 3615 year: 2012 ident: ref_239 article-title: Strategies to reduce dendritic cell activation through functional biomaterial design publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.02.009 – volume: 7 start-page: 1247 year: 2012 ident: ref_224 article-title: Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.051 – volume: 235 start-page: 7496 year: 2020 ident: ref_87 article-title: Loss and rescue of osteocalcin and osteopontin modulate osteogenic and angiogenic features of mesenchymal stem/stromal cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29653 – volume: 18 start-page: 3802 year: 2017 ident: ref_192 article-title: 3D Printed Pericardium Hydrogels to Promote Wound Healing in Vascular Applications publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01165 – volume: 23 start-page: 367 year: 2017 ident: ref_173 article-title: Biomimetic Assembly of Vascular Endothelial Cells and Muscle Cells in Microgrooved Collagen Po-rous Scaffolds publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2017.0088 – volume: 444 start-page: 1 year: 1991 ident: ref_174 article-title: What makes blood vessels grow? publication-title: J. Physiol. doi: 10.1113/jphysiol.1991.sp018863 – ident: ref_68 doi: 10.1088/1758-5090/aa7e98 – volume: 107 start-page: 561 year: 2018 ident: ref_105 article-title: Investigation of survival and migration potential of differentiated cardiomyocytes transplanted with decellularized heart scaffold publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.36572 – volume: 7 start-page: 802 year: 2016 ident: ref_114 article-title: Differentiation of Human Embryonic Stem Cells to Endothelial Progenitor Cells on Laminins in Defined and Xeno-free Systems publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2016.08.017 – volume: 24 start-page: 4337 year: 2003 ident: ref_144 article-title: Hydrogels for tissue engineering: Scaffold design variables and applications publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00340-5 – ident: ref_197 doi: 10.1126/scitranslmed.3001426 – volume: 10 start-page: 2539 year: 2014 ident: ref_122 article-title: Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid–tyramine hydrogel system to promote the formation of functional vasculature publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.02.022 – volume: 25 start-page: 5011 year: 2013 ident: ref_148 article-title: 25th Anniversary Article: Engineering Hydrogels for Biofabrication publication-title: Adv. Mater. doi: 10.1002/adma.201302042 – ident: ref_118 doi: 10.1038/s41598-017-06986-3 – volume: 11 start-page: 79 year: 2015 ident: ref_193 article-title: Scaffolds in vascular regeneration: Current status publication-title: Vasc. Health Risk Manag. doi: 10.2147/VHRM.S50536 – volume: 2 start-page: 69 year: 2018 ident: ref_70 article-title: 3D bioprinting and decellularized ECM-based biomaterials for in vitro CV tissue engineering publication-title: J. 3D Print. Med. doi: 10.2217/3dp-2018-0002 – volume: 119 start-page: 89 year: 2020 ident: ref_124 article-title: A method for simultaneously crosslinking and functionalizing extracellular matrix-based biomaterials as bioprosthetic heart valves with enhanced endothelialization and reduced inflammation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.10.029 – volume: 9 start-page: 5143 year: 2013 ident: ref_43 article-title: Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.08.036 – volume: 55 start-page: 1 year: 2017 ident: ref_139 article-title: Native and solubilized decellularized extracellular matrix: A critical assessment of their potential for improving the expansion of mesenchymal stem cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.04.014 – volume: 24 start-page: 581 year: 1990 ident: ref_235 article-title: The effect of gamma-irradiation on collagen molecules, isolated alpha-chains, and crosslinked native fibers publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820240505 – volume: 84 start-page: 25 year: 2015 ident: ref_67 article-title: Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance publication-title: Methods doi: 10.1016/j.ymeth.2015.03.005 – volume: 74 start-page: 74 year: 2018 ident: ref_77 article-title: Decellularized matrices in regenerative medicine publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.04.044 – volume: 25 start-page: 31 year: 2015 ident: ref_207 article-title: Comparing the endothelialisation of extracellular matrix bioscaffolds with coated synthetic vascular graft materials publication-title: Int. J. Surg. doi: 10.1016/j.ijsu.2015.11.008 – volume: 13 start-page: 2301 year: 2007 ident: ref_72 article-title: Maintenance of Hepatic Sinusoidal Endothelial Cell PhenotypeIn VitroUsing Organ-Specific Extracellular Matrix Scaffolds publication-title: Tissue Eng. doi: 10.1089/ten.2006.0437 – ident: ref_47 doi: 10.1016/j.biotechadv.2019.107421 – volume: 30 start-page: 767 year: 1994 ident: ref_38 article-title: Complexation between polyoxyethylene and polymethacrylic acid—The importance of the molar mass of polyoxyethylene publication-title: Eur. Polym. J. doi: 10.1016/0014-3057(94)90003-5 – volume: 204 start-page: 121 year: 1993 ident: ref_201 article-title: Type I Collagen Promotes Modulation of Cultured Rabbit Arterial Smooth Muscle Cells from a Contractile to a Synthetic Phenotype publication-title: Exp. Cell Res. doi: 10.1006/excr.1993.1016 – volume: 50 start-page: 280 year: 2017 ident: ref_170 article-title: Differential integrin expression regulates cell sensing of the matrix nanoscale geometry publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.11.069 – volume: 1842 start-page: 2106 year: 2014 ident: ref_112 article-title: Vascular wall extracellular matrix proteins and vascular diseases publication-title: Biochim. Biophys. Acta (BBA) Mol. Basis Dis. doi: 10.1016/j.bbadis.2014.07.008 – volume: 319 start-page: 2447 year: 2013 ident: ref_178 article-title: Regulating tension in three-dimensional culture environments publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2013.06.019 – volume: 22 start-page: 1 year: 2018 ident: ref_53 article-title: Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells publication-title: Biomater. Res. doi: 10.1186/s40824-018-0141-y – ident: ref_209 doi: 10.1002/adfm.202005769 – volume: 5 start-page: 469 year: 2010 ident: ref_159 article-title: Engineering hydrogels as extracellular matrix mimics publication-title: Nanomedicine doi: 10.2217/nnm.10.12 – volume: 14 start-page: 213 year: 2008 ident: ref_227 article-title: Perfusion-decellularized matrix: Using na-ture’s platform to engineer a bioartificial heart publication-title: Nat. Med. doi: 10.1038/nm1684 – volume: 20 start-page: 1003 year: 1999 ident: ref_233 article-title: Nitrous acid pre-treatment of tendon xenografts cross-linked with glutaraldehyde and sterilized with gamma irradiation publication-title: Biomaterials doi: 10.1016/S0142-9612(98)90187-9 – volume: 15 start-page: 697 year: 2009 ident: ref_106 article-title: Decellularization of Chondrocyte-Encapsulated Collagen Microspheres: A Three-Dimensional Model to Study the Effects of Acellular Matrix on Stem Cell Fate publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2008.0635 – ident: ref_19 – volume: 64 start-page: 223 year: 2012 ident: ref_36 article-title: Novel crosslinking methods to design hydrogels publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.009 – volume: 26 start-page: 1537 year: 2008 ident: ref_62 article-title: Reprogrammed Mouse Fibroblasts Differentiate into Cells of the Cardiovascular and Hematopoietic Lineages publication-title: Stem Cells doi: 10.1634/stemcells.2008-0033 – volume: 34 start-page: 9048 year: 2013 ident: ref_78 article-title: The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.08.017 – volume: 66 start-page: 543 year: 2005 ident: ref_85 article-title: Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2005.02.006 – volume: 387 start-page: 2026 year: 2016 ident: ref_198 article-title: Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: Two phase 2 single-arm trials publication-title: Lancet doi: 10.1016/S0140-6736(16)00557-2 – ident: ref_138 doi: 10.1007/s12265-011-9304-0 – volume: 130 start-page: 1445 year: 2014 ident: ref_184 article-title: Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.008193 – volume: 28 start-page: 213 year: 2017 ident: ref_211 article-title: Surface heparinization and blood compatibility modification of small intestinal submucosa (SIS) for small-caliber vascular regeneration publication-title: Bio-Med. Mater. Eng. doi: 10.3233/BME-171668 – volume: 19 start-page: 326 year: 1985 ident: ref_185 article-title: Metabolic damage to human saphenous vein during preparation for coronary artery bypass grafting publication-title: Cardiovasc. Res. doi: 10.1093/cvr/19.6.326 – volume: 62 start-page: 42 year: 2017 ident: ref_230 article-title: Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.07.028 – volume: 93 start-page: 3509 year: 1996 ident: ref_180 article-title: Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.8.3509 – volume: 163 start-page: 268 year: 2013 ident: ref_74 article-title: Extracellular matrix as an inductive scaffold for functional tissue reconstruction publication-title: Transl. Res. doi: 10.1016/j.trsl.2013.11.003 – volume: 141 start-page: 63 year: 2017 ident: ref_242 article-title: Improving in vivo outcomes of decellularized vascular grafts via incorporation of a novel extracellular matrix publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.06.025 – volume: 15 start-page: 786 year: 2014 ident: ref_133 article-title: Remodelling the extracellular matrix in development and disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3904 – volume: 11 start-page: 1860 year: 2005 ident: ref_237 article-title: Injectable Biopolymers Enhance Angiogenesis after Myocardial Infarction publication-title: Tissue Eng. doi: 10.1089/ten.2005.11.1860 – volume: 97 start-page: 260 year: 2016 ident: ref_232 article-title: ECM and ECM-like materials—Biomaterials for applications in regenerative medicine and cancer therapy publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.11.019 – ident: ref_215 doi: 10.1088/1748-605X/abbdbd – volume: 17 start-page: 1553 year: 1996 ident: ref_32 article-title: Hydrogels as mucoadhesive and bioadhesive materials: A review publication-title: Biomaterials doi: 10.1016/0142-9612(95)00307-X – ident: ref_73 doi: 10.1002/adhm.201801217 – volume: 5 start-page: 2385 year: 2009 ident: ref_137 article-title: Photopatterned collagen–hyaluronic acid interpenetrating polymer network hydrogels publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.05.004 – ident: ref_44 doi: 10.1016/j.mser.2021.100641 – volume: 93 start-page: 61 year: 2018 ident: ref_213 article-title: Vascular extracellular matrix and fibroblasts-coculture directed differentiation of human mesenchymal stem cells toward smooth muscle-like cells for vascular tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.07.061 – volume: 15 start-page: 461 year: 2009 ident: ref_236 article-title: Cytocompatibility of a Novel, Longitudinally Microstructured Collagen Scaffold Intended for Nerve Tissue Repair publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2007.0107 – volume: 7 start-page: 2448 year: 2011 ident: ref_171 article-title: Designing a tubular matrix of oriented collagen fibrils for tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.03.012 – volume: 110 start-page: 17253 year: 2013 ident: ref_172 article-title: Modulation of macrophage phenotype by cell shape publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1308887110 – volume: 107 start-page: 672 year: 2018 ident: ref_214 article-title: The use of heparin, bFGF, and VEGF 145 grafted acellular vascular scaffold in small diameter vascular graft publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.34160 – volume: 50 start-page: 115 year: 2015 ident: ref_210 article-title: Arterial grafts exhibiting unprecedented cellular infiltration and remodeling in vivo: The role of cells in the vascular wall publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.01.045 – volume: 118 start-page: 692 year: 2016 ident: ref_28 article-title: Vascular Smooth Muscle Cells in Atherosclerosis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.306361 – volume: 33 start-page: 16 year: 2018 ident: ref_54 article-title: Stem cell differentiation is regulated by extracellular matrix mechanics publication-title: Physiology doi: 10.1152/physiol.00026.2017 – volume: 155 start-page: 203 year: 2018 ident: ref_176 article-title: Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.11.033 – volume: 32 start-page: 6204 year: 2011 ident: ref_241 article-title: Functionalized PEG hydrogels through reactive dip-coating for the formation of immunoactive barriers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.04.049 – volume: 264 start-page: 595 year: 1986 ident: ref_37 article-title: Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting publication-title: Colloid Polym. Sci. doi: 10.1007/BF01412597 – volume: 2 start-page: 239 year: 2009 ident: ref_120 article-title: Effects of surface properties and bioactivation of biomaterials on endothelial cells publication-title: Front. Biosci. – volume: 13 start-page: 1809 year: 2007 ident: ref_164 article-title: Chemical and physical regulation of stem cells and progenitor cells: Potential for cardio-vascular tissue engineering publication-title: Tissue Eng. doi: 10.1089/ten.2006.0096 – volume: 1654 start-page: 13 year: 2004 ident: ref_13 article-title: Regulation of angiogenesis by extracellular matrix publication-title: Biochim. Biophys. Acta (BBA) Rev. Cancer doi: 10.1016/j.bbcan.2003.07.002 – volume: 95 start-page: 194 year: 2012 ident: ref_23 article-title: The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvs135 – ident: ref_121 doi: 10.3390/cells9030778 – volume: 12 start-page: 1 year: 2017 ident: ref_212 article-title: Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells publication-title: J. Cardiothorac. Surg. doi: 10.1186/s13019-017-0661-x – volume: 15 start-page: 150 year: 2015 ident: ref_125 article-title: Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.12.014 – volume: 66 start-page: 272 year: 2017 ident: ref_135 article-title: Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.11.038 – ident: ref_111 doi: 10.1091/mbc.e10-04-0334 – volume: 115 start-page: 1285 year: 2007 ident: ref_27 article-title: Endothelial function and dysfunction: Testing and clinical relevance publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.652859 – volume: 10 start-page: 410 year: 2013 ident: ref_101 article-title: Small-diameter vascular tissue engineering publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2013.77 – volume: 16 start-page: 410 year: 2016 ident: ref_51 article-title: Nanoscale patterning of extracellular matrix alters endothelial function under shear stress publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04028 – volume: 32 start-page: 478 year: 1996 ident: ref_130 article-title: Cardiogel: A biosynthetic extracellular matrix for cardiomyocyte culture In Vitro publication-title: Cell. Dev. Biol.-Anim. doi: 10.1007/BF02723051 – volume: 16 start-page: 467 year: 2010 ident: ref_200 article-title: Molecular Regulation of Contractile Smooth Muscle Cell Phenotype: Implications for Vascular Tissue Engineering publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2009.0630 – volume: 327 start-page: 68 year: 2014 ident: ref_115 article-title: Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2014.05.012 – ident: ref_21 – ident: ref_143 doi: 10.1007/978-3-319-97421-7_8 – volume: 32 start-page: 773 year: 2014 ident: ref_149 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2958 – volume: 66 start-page: 1990 year: 2015 ident: ref_82 article-title: Synergistic Effects of Combined Cell Therapy for Chronic Ischemic Cardiomyopathy publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2015.08.879 – ident: ref_157 doi: 10.1088/0957-4484/25/1/014011 – volume: 71 start-page: 474 year: 2012 ident: ref_86 article-title: Mesenchymal stem cells as a treatment for neonatal ischemic brain damage publication-title: Pediatr. Res. doi: 10.1038/pr.2011.64 – volume: 19 start-page: 134 year: 2011 ident: ref_8 article-title: Dynamic reciprocity in the wound microenvironment publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2011.00673.x – volume: 14 start-page: 84 year: 2020 ident: ref_75 article-title: 3D Pancreatic Tissue Modeling in vitro: Advances and Prospects publication-title: BioChip J. doi: 10.1007/s13206-020-4108-4 – volume: 15 start-page: 2665 year: 2009 ident: ref_100 article-title: Development of Decellularized Human Umbilical Arteries as Small-Diameter Vascular Grafts publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2008.0526 – volume: 33 start-page: 5476 year: 2000 ident: ref_40 article-title: Control and prediction of gelation kinetics in enzymatically cross-linked poly (ethylene glycol) hydrogels publication-title: Macromolecules doi: 10.1021/ma000459d – volume: 52 start-page: 539 year: 2015 ident: ref_123 article-title: The utilization of decellularized tendon slices to provide an inductive microenvironment for the proliferation and tenogenic differentiation of stem cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.02.061 – volume: 32 start-page: 391 year: 2004 ident: ref_229 article-title: Photocrosslinkable Hyaluronan as a Scaffold for Articular Cartilage Repair publication-title: Ann. Biomed. Eng. doi: 10.1023/B:ABME.0000017552.65260.94 – ident: ref_203 – volume: 102 start-page: 2918 year: 2014 ident: ref_158 article-title: Hybrid hyaluronic acid hydrogel/poly (ε-caprolactone) scaffold provides mechanically favorable platform for cartilage tissue engineering studies publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.34957 – volume: 39 start-page: 1322 year: 2004 ident: ref_189 article-title: Small-caliber heparin-coated ePTFE grafts reduce platelet deposition and neointimal hyperplasia in a baboon model publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2004.01.046 – volume: 47 start-page: 65 year: 1999 ident: ref_206 article-title: Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS), small-diameter vascular grafts publication-title: J. Biomed. Mater. Res. doi: 10.1002/(SICI)1097-4636(199910)47:1<65::AID-JBM9>3.0.CO;2-F – volume: 108 start-page: 9214 year: 2011 ident: ref_196 article-title: Decellularized tissue-engineered blood vessel as an arterial conduit publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1019506108 – volume: 35 start-page: 9100 year: 2014 ident: ref_84 article-title: Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.07.042 – volume: 23 start-page: S20 year: 2014 ident: ref_5 article-title: Biology of the extracellular matrix: An overview publication-title: J. Glaucoma doi: 10.1097/IJG.0000000000000108 – volume: 68A start-page: 28 year: 2003 ident: ref_228 article-title: Photocrosslinkable polysaccharides based on chondroitin sulfate publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.20007 – volume: 7 start-page: 452 year: 2005 ident: ref_29 article-title: The role of pericytes in blood-vessel formation and maintenance publication-title: Neuro Oncol. doi: 10.1215/S1152851705000232 – volume: 6 start-page: 203 year: 2017 ident: ref_186 article-title: Management and Prevention of Saphenous Vein Graft Failure: A Review publication-title: Cardiol. Ther. doi: 10.1007/s40119-017-0094-6 – volume: 31 start-page: 3166 year: 2010 ident: ref_240 article-title: Inducing local T cell apoptosis with anti-Fas-functionalized polymeric coatings fabricated via sur-face-initiated photopolymerizations publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.035 – volume: 9 start-page: 21639 year: 2017 ident: ref_45 article-title: Chondroitin Sulfate-Based Biomineralizing Surface Hydrogels for Bone Tissue Engineering publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04114 – volume: 10 start-page: 745 year: 2015 ident: ref_52 article-title: Bilayered vascular graft derived from human induced pluripotent stem cells with biomimetic structure and function publication-title: Regen. Med. doi: 10.2217/rme.15.45 – ident: ref_225 doi: 10.1126/sciadv.1500758 – volume: 123 start-page: 4195 year: 2010 ident: ref_3 article-title: The extracellular matrix at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.023820 – volume: 27 start-page: 566 year: 2005 ident: ref_99 article-title: Histological evaluation of decellularised porcine aortic valves: Matrix changes due to different decellularisation methods publication-title: Eur. J. Cardio-Thoracic Surg. doi: 10.1016/j.ejcts.2004.12.052 – volume: 35 start-page: 348 year: 2007 ident: ref_199 article-title: Mechanical Properties and Compositions of Tissue Engineered and Native Arteries publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-006-9226-1 – volume: 17 start-page: 82 year: 2011 ident: ref_58 article-title: Extracellular matrix of collagen modulates intracellular calcium handling and electrophysiological characteristics of HL-1 cardiomyocytes with activation of angiotensin II type 1 receptor publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2010.10.002 – volume: 28 start-page: 671 year: 2007 ident: ref_142 article-title: Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.09.038 – volume: 25 start-page: 730 year: 1997 ident: ref_188 article-title: Thrombogenicity of small-diameter prosthetic grafts: Relative contributions of graft-associated thrombin and factor Xa publication-title: J. Vasc. Surg. doi: 10.1016/S0741-5214(97)70302-1 – volume: 6 start-page: 614 year: 2018 ident: ref_134 article-title: Protein-engineered hydrogels enhance the survival of induced pluripotent stem cell-derived endothelial cells for treatment of peripheral arterial disease publication-title: Biomater. Sci. doi: 10.1039/C7BM00883J – volume: 35 start-page: 5425 year: 2014 ident: ref_64 article-title: Elastin based cell-laden injectable hy-drogels with tunable gelation, mechanical and biodegradation properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.03.026 – ident: ref_7 doi: 10.1016/B978-0-12-521980-8.50020-1 – volume: 91 start-page: 12378 year: 1994 ident: ref_181 article-title: Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.26.12378 – ident: ref_79 doi: 10.1101/2021.03.30.437600 – volume: 47 start-page: 1394 year: 2008 ident: ref_175 article-title: The role of matrix stiffness in regulating cell behavior publication-title: Hepatology doi: 10.1002/hep.22193 – ident: ref_93 doi: 10.3390/polym11040687 – volume: 3 start-page: 335 year: 2001 ident: ref_167 article-title: Soft Lithography in Biology and Biochemistry publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.3.1.335 – volume: 11 start-page: 153 year: 2014 ident: ref_92 article-title: Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.1895 – volume: 15 start-page: 627 year: 1978 ident: ref_182 article-title: Altered translatability of messenger RNA from suspended anchorage-dependent fibroblasts: Reversal upon cell attachment to a surface publication-title: Cell doi: 10.1016/0092-8674(78)90031-4 – volume: 95 start-page: 188 year: 2019 ident: ref_104 article-title: Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.04.026 – volume: 29 start-page: 987 year: 2019 ident: ref_113 article-title: Laminins in Cellular Differentiation publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2019.10.001 – ident: ref_145 doi: 10.1002/9783527690916 – ident: ref_35 doi: 10.3390/polym10050542 – volume: 49 start-page: 263 year: 2011 ident: ref_48 article-title: Enhanced Production of Human Recombinant Proteins from CHO cells Grown to High Densities in Macroporous Microcarriers publication-title: Mol. Biotechnol. doi: 10.1007/s12033-011-9401-y – volume: 70A start-page: 224 year: 2004 ident: ref_71 article-title: Preparation of porcine carotid arteries for vascular tissue engineering applications publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.30060 – volume: 2 start-page: 197 year: 2016 ident: ref_11 article-title: Extracellular Matrix Regulation of Stem Cell Behavior publication-title: Curr. Stem Cell Rep. doi: 10.1007/s40778-016-0056-2 – volume: 14 start-page: 467 year: 2013 ident: ref_117 article-title: Role of the extracellular matrix in regulating stem cell fate publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3620 – volume: 16 start-page: 525 year: 2010 ident: ref_96 article-title: Preparation of Cardiac Extracellular Matrix from an Intact Porcine Heart publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2009.0392 – volume: 8 start-page: 404 year: 2015 ident: ref_153 article-title: Elastomeric Cell-Laden Nanocomposite Microfibers for Engineering Complex Tissues publication-title: Cell. Mol. Bioeng. doi: 10.1007/s12195-015-0406-7 – volume: 303 start-page: C757 year: 2012 ident: ref_59 article-title: The dimeric platelet collagen receptor GPVI-Fc reduces platelet adhesion to activated endothelium and preserves myocardial function after transient ischemia in mice publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajpcell.00060.2012 – volume: 49 start-page: 204 year: 2017 ident: ref_60 article-title: Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.11.058 – volume: 547 start-page: 179 year: 2017 ident: ref_61 article-title: The extracellular matrix protein agrin promotes heart regeneration in mice publication-title: Nature doi: 10.1038/nature22978 – ident: ref_81 doi: 10.1371/journal.pone.0254160 – volume: 10 start-page: 1 year: 2019 ident: ref_141 article-title: Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture publication-title: Nat. Commun. doi: 10.1038/s41467-019-13605-4 – ident: ref_46 doi: 10.3791/51011 – volume: 62 start-page: 34 year: 2004 ident: ref_221 article-title: Strategies for directing the differentiation of stem cells into the cardiomyogenic line age in vitro publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2003.12.022 – volume: 44 start-page: 188 year: 2016 ident: ref_56 article-title: Combinatorial extracellular matrix microenvironments promote survival and phenotype of human induced pluripotent stem cell-derived endothelial cells in hypoxia publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.08.003 – volume: 44 start-page: 489 year: 1986 ident: ref_165 article-title: Evidence for two distinct mechanisms of anchorage stimulation in freshly explanted and 3T3 Swiss mouse fibroblasts publication-title: Cell doi: 10.1016/0092-8674(86)90470-8 – ident: ref_20 doi: 10.1016/B978-0-12-405945-0.00024-7 – ident: ref_88 doi: 10.1016/j.mvr.2019.103925 – volume: 20 start-page: 921 year: 1997 ident: ref_83 article-title: Randomized comparison of G-CSF + GM-CSF vs G-CSF alone for mobilization of peripheral blood stem cells: Effects on hematopoietic recovery after high-dose chemotherapy publication-title: Bone Marrow Transplant. doi: 10.1038/sj.bmt.1700999 – volume: 23 start-page: 4307 year: 2002 ident: ref_34 article-title: Photopolymerizable hydrogels for tissue engineering applications publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00175-8 – volume: 13 start-page: 1845 year: 2007 ident: ref_169 article-title: Design Strategies of Tissue Engineering Scaffolds with Controlled Fiber Orientation publication-title: Tissue Eng. doi: 10.1089/ten.2006.0078 – ident: ref_219 – volume: 15 start-page: 378 year: 2005 ident: ref_147 article-title: Matrigel: Basement membrane matrix with biological activity publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2005.05.004 – volume: 1840 start-page: 2506 year: 2014 ident: ref_12 article-title: Extracellular matrix: A dynamic microenvironment for stem cell niche publication-title: Biochim. Biophys. Acta (BBA)-Gen. Subj. doi: 10.1016/j.bbagen.2014.01.010 – ident: ref_90 doi: 10.1038/srep18705 – ident: ref_166 doi: 10.1016/B978-008045154-1/50020-4 – ident: ref_10 doi: 10.1155/2014/756078 – volume: 32 start-page: 3233 year: 2011 ident: ref_66 article-title: An overview of tissue and whole organ decellularization processes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.01.057 – volume: 5 start-page: 1 year: 2014 ident: ref_55 article-title: Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink publication-title: Nat. Commun. doi: 10.1038/ncomms4935 – volume: 169 start-page: 11 year: 2018 ident: ref_94 article-title: Injectable hyaluronic acid based microrods provide local micromechanical and biochemical cues to attenuate cardiac fibrosis after myocardial infarction publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.03.042 – volume: 114 start-page: 237 year: 2009 ident: ref_119 article-title: Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP–dependent proteolysis in 3-dimensional collagen matrices publication-title: Blood doi: 10.1182/blood-2008-12-196451 – ident: ref_218 doi: 10.14744/AnatolJCardiol.2017.7464 – volume: 8 start-page: 195 year: 1967 ident: ref_183 article-title: The importance of proper caliber of lumen in femoral popliteal arterial reconstruction publication-title: J. Cardiovasc. Surg. – ident: ref_22 – volume: 37 start-page: 4154 year: 2021 ident: ref_150 article-title: Poloxamer/Poly(ethylene glycol) Self-Healing Hydrogel for High-Precision Freeform Reversible Embedding of Suspended Hydrogel publication-title: Langmuir doi: 10.1021/acs.langmuir.1c00018 – ident: ref_191 doi: 10.1088/1748-605X/aa78d0 – volume: 9 start-page: 149 year: 1992 ident: ref_234 article-title: The effect of gamma irradiation on a xenograft tendon bioprosthesis publication-title: Clin. Mater. doi: 10.1016/0267-6605(92)90094-A – ident: ref_128 doi: 10.1088/1758-5090/8/2/025008 – volume: 119 start-page: 75 year: 2021 ident: ref_102 article-title: 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.11.006 – ident: ref_76 doi: 10.3390/bioengineering4010010 – volume: 27 start-page: 5978 year: 2006 ident: ref_129 article-title: Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.05.053 – volume: 65 start-page: 702 year: 2005 ident: ref_26 article-title: In vitro differences between venous and arterial-derived smooth muscle cells: Potential modulatory role of decorin publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2004.10.012 – volume: 340 start-page: 878 year: 1992 ident: ref_25 article-title: Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle publication-title: Lancet doi: 10.1016/0140-6736(92)93287-W – volume: 23 start-page: 2267 year: 2012 ident: ref_161 article-title: Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-012-4684-5 – volume: 195 start-page: 108 year: 2012 ident: ref_208 article-title: A Novel Ovine ex vivo Arteriovenous Shunt Model to Test Vascular Implantability publication-title: Cells Tissues Organs doi: 10.1159/000331415 – volume: 185 start-page: 117 year: 1960 ident: ref_39 article-title: Hydrophilic Gels for Biological Use publication-title: Nature doi: 10.1038/185117a0 – volume: 34 start-page: 4038 year: 2013 ident: ref_57 article-title: The modulation of endothelial cell morphology, function, and survival using anisotropic nanofibrillar collagen scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.02.036 – volume: 3 start-page: 1980 year: 2017 ident: ref_217 article-title: 3D printed stem-cell-laden, micro-channeled hydrogel patch for the enhanced release of cell-secreting factors and treatment of myocardial infarctions publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00176 – volume: 5 start-page: 1645 year: 2009 ident: ref_146 article-title: Mechanically Robust and Bioadhesive Collagen and Photocrosslinkable Hyaluronic Acid Semi-Interpenetrating Networks publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2008.0441 – volume: 34 start-page: 312 year: 2016 ident: ref_154 article-title: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3413 – volume: 30 start-page: 1 year: 2019 ident: ref_162 article-title: Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting publication-title: J. Mater. Sci. Mater. Med. – volume: 125 start-page: 3015 year: 2012 ident: ref_163 article-title: Deconstructing the third dimension—How 3D culture microenvironments alter cellular cues publication-title: J. Cell Sci. – ident: ref_223 doi: 10.1002/adfm.201700798 – ident: ref_187 doi: 10.1186/1471-2482-8-22 – volume: 44 start-page: 2090 year: 2016 ident: ref_156 article-title: Advanced Bioinks for 3D Printing: A Materials Science Perspective publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1638-y – volume: 284 start-page: 489 year: 1999 ident: ref_194 article-title: Functional Arteries Grown in Vitro publication-title: Science doi: 10.1126/science.284.5413.489 – volume: 5 start-page: 887 year: 2019 ident: ref_63 article-title: Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b01112 – volume: 31 start-page: 9595 year: 2010 ident: ref_109 article-title: The isolation of cell derived extracellular matrix constructs using sacrificial open-cell foams publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.08.072 – volume: 32 start-page: 7096 year: 2011 ident: ref_127 article-title: The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.06.022 – volume: 7 start-page: 4139 year: 2011 ident: ref_152 article-title: Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.07.023 – volume: 97 start-page: 1093 year: 2005 ident: ref_116 article-title: Endothelial Extracellular Matrix publication-title: Circ. Res. doi: 10.1161/01.RES.0000191547.64391.e3 – ident: ref_202 – volume: 33 start-page: 628 year: 2001 ident: ref_195 article-title: Morphologic and mechanical characteristics of engineered bovine arteries publication-title: J. Vasc. Surg. doi: 10.1067/mva.2001.111747 – volume: 215 start-page: 174 year: 1982 ident: ref_2 article-title: Wound tissue can utilize a polymeric template to synthesize a functional extension of skin publication-title: Science doi: 10.1126/science.7031899 – volume: 27 start-page: 3675 year: 2006 ident: ref_69 article-title: Decellularization of tissues and organs publication-title: Biomaterials – volume: 17 start-page: 915 year: 2011 ident: ref_98 article-title: The quest for an optimized protocol for whole-heart decellularization: A comparison of three popular and a novel decellularization technique and their diverse ef-fects on crucial extracellular matrix qualities publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2011.0210 – ident: ref_9 doi: 10.1371/journal.pone.0241040 – volume: 28 start-page: 4928 year: 2007 ident: ref_50 article-title: The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.08.007 – volume: 107 start-page: 1047 year: 2019 ident: ref_204 article-title: Surface modification of polypropylene surgical meshes for improving adhesion with poloxamine hydrogel adhesive publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.34197 – ident: ref_17 – volume: 7 start-page: 843 year: 2019 ident: ref_33 article-title: Advances in crosslinking strategies of biomedical hydrogels publication-title: Biomater. Sci. doi: 10.1039/C8BM01246F – volume: 25 start-page: 3699 year: 2004 ident: ref_231 article-title: Properties of engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.10.073 – ident: ref_42 doi: 10.1038/s41598-018-21681-7 – volume: 75 start-page: 852 year: 2011 ident: ref_97 article-title: Development and Evaluation of a Perfusion Decellularization Porcine Heart Model-Generation of 3-Dimensional Myocardial Neoscaffolds publication-title: Circ. J. doi: 10.1253/circj.CJ-10-0717 – volume: 143 start-page: e254 year: 2021 ident: ref_1 article-title: Heart disease and stroke statistics—2021 update: A report from the American Heart Association publication-title: Circulation – ident: ref_24 – volume: 308 start-page: H990 year: 2015 ident: ref_177 article-title: A role for matrix stiffness in the regulation of cardiac side population cell function publication-title: Am. J. Physiol. Circ. Physiol. doi: 10.1152/ajpheart.00935.2014 – volume: 65 start-page: 44 year: 2018 ident: ref_91 article-title: Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.10.032 – volume: 33 start-page: 59 year: 2017 ident: ref_160 article-title: Recent advances in hydrogels for cartilage tissue engineering publication-title: Eur. Cells Mater. doi: 10.22203/eCM.v033a05 – volume: 50 start-page: 220 year: 2016 ident: ref_89 article-title: Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.12.015 – volume: 9 start-page: 3109 year: 2015 ident: ref_151 article-title: Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach publication-title: ACS Nano doi: 10.1021/nn507488s – ident: ref_18 – volume: 177 start-page: 27 year: 2018 ident: ref_140 article-title: 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.05.031 – ident: ref_41 doi: 10.1016/j.biotechadv.2019.02.009 – volume: 99 start-page: 31 year: 1982 ident: ref_6 article-title: How does the extracellular matrix direct gene expression? publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(82)90388-5 – ident: ref_30 doi: 10.1101/cshperspect.a005090 – volume: 38 start-page: 683 year: 2010 ident: ref_49 article-title: Application of Recombinant Fusion Proteins for Tissue Engineering publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-9935-3 – volume: 31 start-page: 5355 year: 2010 ident: ref_107 article-title: The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.03.053 – volume: 4 start-page: 119 year: 2015 ident: ref_16 article-title: Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring publication-title: Adv. Wound Care doi: 10.1089/wound.2013.0485 – volume: 2016 start-page: 1 year: 2016 ident: ref_95 article-title: Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential In Vitro publication-title: Stem Cells Int. doi: 10.1155/2016/8364382 – volume: 102 start-page: 698 year: 2013 ident: ref_126 article-title: Improved adhesion and differentiation of endothelial cells on surface-attached fibrin structures containing extracellular matrix proteins publication-title: J. Biomed. Mater. Res. Part A – volume: 32 start-page: 2489 year: 2011 ident: ref_110 article-title: Autologous extracellular matrix scaffolds for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.12.016 – volume: 11 start-page: 109 year: 1979 ident: ref_179 article-title: Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture publication-title: Tissue Cell doi: 10.1016/0040-8166(79)90011-9 – volume: 17 start-page: 153 year: 2009 ident: ref_14 article-title: Interactions between extracellular matrix and growth factors in wound healing publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2009.00466.x – volume: 76 start-page: 344 year: 2015 ident: ref_205 article-title: Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.020 – volume: 15 start-page: 1761 year: 2020 ident: ref_238 article-title: Delivery of hepatocyte growth factor mrna from nanofibrillar scaffolds in a pig model of peripheral arterial disease publication-title: Regen. Med. doi: 10.2217/rme-2020-0023 – volume: 108 start-page: 910 year: 2020 ident: ref_4 article-title: Hybrid cardiovascular sourced extracellular matrix scaffolds as possible platforms for vascular tissue engineering publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.34444 – ident: ref_65 doi: 10.3390/bioengineering5030069 – volume: 5 start-page: 1567 year: 2017 ident: ref_168 article-title: Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells publication-title: Biomater. Sci. doi: 10.1039/C7BM00323D |
SSID | ssj0001342012 |
Score | 2.391205 |
SecondaryResourceType | review_article |
Snippet | Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 137 |
SubjectTerms | Angiogenesis Biomedical materials Blood vessels Collagen Extracellular matrix extracellular matrix (ECM) Gene expression Heparan sulfate Homeostasis Hydrogels Mechanical properties Permeability Phase transitions Physiology Polyethylene glycol Polymerization Proteins Regenerative medicine Review Smooth muscle Tissue engineering Veins & arteries |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9xADBZtCqWXkL7dpMWFnAom9rw8cyrdkBAK21MCezPzbFOKnSYbyM-PZM9udkvo1ZaNkDSjx2g-ARw6Z11KVlfeuEhXclRlrOeVksE3idBXIp3ozn-oswvxfSEXueB2k9sqV3viuFGHwVON_AjjbobhQi3l16u_FU2NotPVPELjKTwj6DKy6nbRPtRYuED_xqZreRyz-6PfPgSNHq-huecbjmjE638syPy3V3LD-ZzuwW6OGstvk5pfwpPYv4Ln83wu_hrmJ3f4GRXhqau0nBPu_l01Qw8VytnlgFHpZGglhqjl8VYLank-ir7cACZ8AxenJ-fHZ1UelFB50cpl1bDEorXaRm9EaIW3RqObjgzVgEvYu9RIT4FCy4LiSMFlaKNi1gejBaaib2GnH_r4HspgdR1isEEp_A8PTqqkQq2dq7k1VhbwZSW1zmcUcRpm8afDbIJE3G2IuIDDNfHVBJ7xONmMxL8mIcTr8cFw_bPLC6hruDTWiGQsMqacNjZ5za1EW-IpBl3AwUp5XV6GN92D0RTwef0aFxApxPZxuJ1olKi5QD7eTbpec0LIP3SOWEC7ZQVbrG6_6S9_jSDdmCkS9v-H_7O1Dy8YNcmgM2TsAHaW17fxI0Y5S_dpNOV7ewn_ug priority: 102 providerName: ProQuest |
Title | Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34821690 https://www.proquest.com/docview/2602083055 https://www.proquest.com/docview/2602640347 https://pubmed.ncbi.nlm.nih.gov/PMC8622600 https://doaj.org/article/1359a94f9a6746b89afc83a54e83fed8 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0gvgifntajwh9EkKT_cruo1euFOGKSAv3Fma_sCK5olfon-9Mkh45Kfjia3YSJjOz_GZ2Z38LcOQ9-pzRlsH5xEdyTOkwyNLoGOrM7CuJd3RX5-bsUn1Z6_Xkqi_uCRvogQfDHddSO3QqOzSNMt46zMFK1PQNmVPsj_kS5k2KqX51RSpCNjEcyJNU1x__CDFawrqabzyfQFDP1H9fevl3l-QEdk6fwdMxXyw-D3o-hwepewGPV-OO-EtYLW_pNV5-537SYsWM-7flgrApFourDeWjQ4gVlJwWJ3vNp8VFb_RiQkn4Ci5PlxcnZ-V4RUIZVKO3ZS2ySIgWU3AqNiqgswTQSZADaPIGn2sdOEVoRDSSJKSOTTICQ3RWURH6Gg66TZfeQhHRVjFFjIYMHWT02mQTK-t9JdGhnsGnO6u1YeQP52ssfrZUR7CJ24mJZ3C0E74eaDPuF1uw-XcizHXdP6AIaMcIaP8VATM4vHNeO07A3y2VaYKyy0qT3h93wzR12CHYpc3NIGNUJRXp8Wbw9U4T5vzhHcQZNHtRsKfq_kh39b2n56YakVn_3_2Pf3sPTwQ30RBYCnEIB9tfN-kDZUFbP4eHzbqZw6PF8vzrt3kf_n8A1bILMA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIuFW8CBYJULkhREzt27ANCbGm1pd2ettLegl-Boiop7VaUP8VvZCaP7S6quPWaTKLRzNjf2B5_A7BlrbFVZVTitA10JUcm2jieSOFdVhH7SqAT3cmRHB_nX2ZitgZ_hrswVFY5zIntRO0bR3vk25h3M0wXUiE-nv1MqGsUna4OLTS6sDgIv3_hku3iw_5n9O87xvZ2pzvjpO8qkLi8EPMkYxULxigTnM59kTujFWJaYKgzxruzVSYcoWrBvOQowYUvgmTGea1yQUQHOOXfQeBNabFXzIrrPR2eI56y7hog5zrd_uG8V4iwGfVZXwK-tj_ATUntv7WZS2C39wA2-iw1_tSF1UNYC_UjuDvpz-Efw2T3Cj-jTX-qYo0nxPN_lYwQEX08OmkwC-4CO8aUON5ZKXmNp62r4yUixCdwfCsmfArrdVOH5xB7o1IfvPFS4n-4t0JW0qfK2pQbbUQE7werla5nLafmGaclrl7IxOWSiSPYWgifdWQdN4uNyPwLEWLYbh8059_KfsCWGRfa6LzSBhWTVmlTOcWNwNjlVfAqgs3BeWU_7C_K6yCN4O3iNQ5YcoipQ3PZycg85Tnq8azz9UITYhqic8sIipUoWFF19U198r0lBceVKfUaePF_td7AvfF0clge7h8dvIT7jAp0EIgZ24T1-flleIUZ1ty-bsM6hq-3PY7-AmvZPNo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrVRxQbwJLRCkckGKNrFjxz4gxLa7aim7qlAr9Rb8hCKU9LEV5a_x65jJY7uLKm69xpNoNA_PODP-hpBtY7QJQcvEKuPxSo5IlLYsEdzZLCD6iseK7nQm9o7zTyf8ZI386e_CYFtlvyc2G7WrLf4jH0LeTSFdSDkfhq4t4nB38uHsPMEJUlhp7cdptCZy4H__guPb5fv9XdD1W0on46OdvaSbMJDYvODzJKOBeq2l9lblrsitVhLim6fAP9i-NSHjFiNsQZ1gQMG4K7yg2jolc46gB7D9rxd4KhqQ9dF4dvjl5g8PyyG60vZSIGMqHf6wzkmItxlOXV8Kg820gNtS3H87NZdC3-QBud_lrPHH1sgekjVfPSIb064q_5hMx9fwGpYAsKc1niLq_3Uygvjo4tFpDTlxa-YxJMjxzkoDbHzUKD5egkV8Qo7vRIhPyaCqK_-cxE7L1HmnnRDwHeYMF0G4VBqTMq00j8i7Xmql7TDMcZTGzxLOMijicknEEdleEJ-10B23k41Q_AsSxNtuHtQX38rOfcuMcaVVHpQGxoSRSgcrmeZgySx4JyOy1Suv7DaBy_LGZCPyZrEM7osK0ZWvr1oakacsBz6etbpecIK4Q1jFjEixYgUrrK6uVKffG4hwOKfi5IEX_2frNdkAHyo_788ONsk9it06EJUp3SKD-cWVfwnp1ty86uw6Jl_v2pX-Ak-cQnU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+Matrix-Based+Biomaterials+for+Cardiovascular+Tissue+Engineering&rft.jtitle=Journal+of+cardiovascular+development+and+disease&rft.au=Khanna%2C+Astha&rft.au=Zamani%2C+Maedeh&rft.au=Huang%2C+Ngan+F.&rft.date=2021-10-22&rft.pub=MDPI&rft.eissn=2308-3425&rft.volume=8&rft.issue=11&rft_id=info:doi/10.3390%2Fjcdd8110137&rft_id=info%3Apmid%2F34821690&rft.externalDocID=PMC8622600 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2308-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2308-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2308-3425&client=summon |