Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering

Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tiss...

Full description

Saved in:
Bibliographic Details
Published inJournal of cardiovascular development and disease Vol. 8; no. 11; p. 137
Main Authors Khanna, Astha, Zamani, Maedeh, Huang, Ngan F.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.10.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
AbstractList Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Author Zamani, Maedeh
Khanna, Astha
Huang, Ngan F.
AuthorAffiliation 2 Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; maedeh@stanford.edu
3 Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
4 Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
1 Graver Technologies, Newark, NJ 07105, USA; akhanna@gravertech.com
5 Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
AuthorAffiliation_xml – name: 5 Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
– name: 1 Graver Technologies, Newark, NJ 07105, USA; akhanna@gravertech.com
– name: 4 Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
– name: 2 Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; maedeh@stanford.edu
– name: 3 Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
Author_xml – sequence: 1
  givenname: Astha
  surname: Khanna
  fullname: Khanna, Astha
– sequence: 2
  givenname: Maedeh
  surname: Zamani
  fullname: Zamani, Maedeh
– sequence: 3
  givenname: Ngan F.
  orcidid: 0000-0003-2298-6790
  surname: Huang
  fullname: Huang, Ngan F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34821690$$D View this record in MEDLINE/PubMed
BookMark eNpt0s9LHDEUB_AgFrXWU-9loJdCmZqfM5lLQZdtKyhe7Dm8TV62WWYnNpkR-983u2tllZ4Skk--vLzkLTkc4oCEvGf0ixAdPV9Z5zRjlIn2gJxwQXUtJFeHe_NjcpbzitJiJKeMH5FjITVnTUdPyM38cUxgse-nHlJ1A2MKj_UlZHTVZYhrGDEF6HPlY6pmkFyID5DtFt-FnCes5sMyDFjYsHxH3viC8expPCU_v83vZj_q69vvV7OL69rKVo01454jgAa0nXSttNDphgnkC-9pK-zCM2UFa1XLXSOKEMq12HCwrtNScXFKrna5LsLK3KewhvTHRAhmuxDT0kAag-3RMKE66KTvoGlls9AdeKsFKIlaeHS6ZH3dZd1PizU6i0NpSP8i9OXOEH6ZZXwwuuG8obQEfHoKSPH3hHk065A3HYUB45RNQbyRVMi20I-v6CpOaSit2iqqBVWqqA_7FT2X8u_VCvi8AzbFnBP6Z8Ko2XwLs_ctimavtA0jjCFurhP6_575CyHTuoc
CitedBy_id crossref_primary_10_3390_ijms23073482
crossref_primary_10_1088_2053_1591_ad2160
crossref_primary_10_3389_fchem_2022_1092123
crossref_primary_10_3390_app15031145
crossref_primary_10_3390_cells13080688
crossref_primary_10_1021_acs_biomac_3c00387
crossref_primary_10_3390_ijms23105618
crossref_primary_10_3390_polym14153023
crossref_primary_10_3389_fmats_2023_1168616
crossref_primary_10_1016_j_bea_2022_100059
crossref_primary_10_3390_biomimetics8050446
crossref_primary_10_7759_cureus_69835
crossref_primary_10_1007_s10741_023_10367_6
crossref_primary_10_3390_biomedicines13020259
crossref_primary_10_3389_fcvm_2022_807255
crossref_primary_10_1088_1748_605X_ad04fd
crossref_primary_10_1002_jbm_a_37602
crossref_primary_10_3390_biotech14010023
crossref_primary_10_1002_bit_28456
crossref_primary_10_3390_polym15193854
crossref_primary_10_1038_s41598_024_80973_3
crossref_primary_10_3390_bioengineering9100555
crossref_primary_10_3390_biom13081180
crossref_primary_10_1177_20417314251316918
crossref_primary_10_3390_bioengineering9040168
crossref_primary_10_7759_cureus_43431
crossref_primary_10_3390_jfb14010021
crossref_primary_10_1002_adhm_202402199
crossref_primary_10_1016_j_bmt_2024_05_001
crossref_primary_10_3390_ijms26052309
crossref_primary_10_1155_2022_1953861
Cites_doi 10.1002/jbm.a.36179
10.1097/01.JCN.0000343562.06614.49
10.1016/j.biomaterials.2016.09.003
10.1098/rsif.2014.0817
10.1371/journal.pone.0209269
10.1177/1534734607301394
10.1002/jbm.a.35544
10.1038/s41578-018-0023-x
10.1016/j.biomaterials.2021.120764
10.1016/j.biomaterials.2019.119741
10.1016/j.actbio.2014.02.049
10.1016/j.biomaterials.2010.07.110
10.1016/j.biomaterials.2016.10.026
10.1016/j.biomaterials.2012.02.009
10.1038/nprot.2012.051
10.1002/jcp.29653
10.1021/acs.biomac.7b01165
10.1089/ten.tec.2017.0088
10.1113/jphysiol.1991.sp018863
10.1088/1758-5090/aa7e98
10.1002/jbm.a.36572
10.1016/j.stemcr.2016.08.017
10.1016/S0142-9612(03)00340-5
10.1126/scitranslmed.3001426
10.1016/j.actbio.2014.02.022
10.1002/adma.201302042
10.1038/s41598-017-06986-3
10.2147/VHRM.S50536
10.2217/3dp-2018-0002
10.1016/j.actbio.2020.10.029
10.1016/j.actbio.2012.08.036
10.1016/j.actbio.2017.04.014
10.1002/jbm.820240505
10.1016/j.ymeth.2015.03.005
10.1016/j.actbio.2018.04.044
10.1016/j.ijsu.2015.11.008
10.1089/ten.2006.0437
10.1016/j.biotechadv.2019.107421
10.1016/0014-3057(94)90003-5
10.1006/excr.1993.1016
10.1016/j.actbio.2016.11.069
10.1016/j.bbadis.2014.07.008
10.1016/j.yexcr.2013.06.019
10.1186/s40824-018-0141-y
10.1002/adfm.202005769
10.2217/nnm.10.12
10.1038/nm1684
10.1016/S0142-9612(98)90187-9
10.1089/ten.tec.2008.0635
10.1016/j.addr.2012.09.009
10.1634/stemcells.2008-0033
10.1016/j.biomaterials.2013.08.017
10.1016/j.cardiores.2005.02.006
10.1016/S0140-6736(16)00557-2
10.1007/s12265-011-9304-0
10.1161/CIRCULATIONAHA.113.008193
10.3233/BME-171668
10.1093/cvr/19.6.326
10.1016/j.actbio.2017.07.028
10.1073/pnas.93.8.3509
10.1016/j.trsl.2013.11.003
10.1016/j.biomaterials.2017.06.025
10.1038/nrm3904
10.1089/ten.2005.11.1860
10.1016/j.addr.2015.11.019
10.1088/1748-605X/abbdbd
10.1016/0142-9612(95)00307-X
10.1002/adhm.201801217
10.1016/j.actbio.2009.05.004
10.1016/j.mser.2021.100641
10.1016/j.msec.2018.07.061
10.1089/ten.tea.2007.0107
10.1016/j.actbio.2011.03.012
10.1073/pnas.1308887110
10.1002/jbm.b.34160
10.1016/j.biomaterials.2015.01.045
10.1161/CIRCRESAHA.115.306361
10.1152/physiol.00026.2017
10.1016/j.biomaterials.2017.11.033
10.1016/j.biomaterials.2011.04.049
10.1007/BF01412597
10.1089/ten.2006.0096
10.1016/j.bbcan.2003.07.002
10.1093/cvr/cvs135
10.3390/cells9030778
10.1186/s13019-017-0661-x
10.1016/j.actbio.2014.12.014
10.1016/j.actbio.2017.11.038
10.1091/mbc.e10-04-0334
10.1161/CIRCULATIONAHA.106.652859
10.1038/nrcardio.2013.77
10.1021/acs.nanolett.5b04028
10.1007/BF02723051
10.1089/ten.teb.2009.0630
10.1016/j.yexcr.2014.05.012
10.1007/978-3-319-97421-7_8
10.1038/nbt.2958
10.1016/j.jacc.2015.08.879
10.1088/0957-4484/25/1/014011
10.1038/pr.2011.64
10.1111/j.1524-475X.2011.00673.x
10.1007/s13206-020-4108-4
10.1089/ten.tea.2008.0526
10.1021/ma000459d
10.1016/j.biomaterials.2015.02.061
10.1023/B:ABME.0000017552.65260.94
10.1002/jbm.a.34957
10.1016/j.jvs.2004.01.046
10.1002/(SICI)1097-4636(199910)47:1<65::AID-JBM9>3.0.CO;2-F
10.1073/pnas.1019506108
10.1016/j.biomaterials.2014.07.042
10.1097/IJG.0000000000000108
10.1002/jbm.a.20007
10.1215/S1152851705000232
10.1007/s40119-017-0094-6
10.1016/j.biomaterials.2010.01.035
10.1021/acsami.7b04114
10.2217/rme.15.45
10.1126/sciadv.1500758
10.1242/jcs.023820
10.1016/j.ejcts.2004.12.052
10.1007/s10439-006-9226-1
10.1016/j.cardfail.2010.10.002
10.1016/j.biomaterials.2006.09.038
10.1016/S0741-5214(97)70302-1
10.1039/C7BM00883J
10.1016/j.biomaterials.2014.03.026
10.1016/B978-0-12-521980-8.50020-1
10.1073/pnas.91.26.12378
10.1101/2021.03.30.437600
10.1002/hep.22193
10.3390/polym11040687
10.1146/annurev.bioeng.3.1.335
10.1002/term.1895
10.1016/0092-8674(78)90031-4
10.1016/j.actbio.2019.04.026
10.1016/j.tcb.2019.10.001
10.1002/9783527690916
10.3390/polym10050542
10.1007/s12033-011-9401-y
10.1002/jbm.a.30060
10.1007/s40778-016-0056-2
10.1038/nrm3620
10.1089/ten.tec.2009.0392
10.1007/s12195-015-0406-7
10.1152/ajpcell.00060.2012
10.1016/j.actbio.2016.11.058
10.1038/nature22978
10.1371/journal.pone.0254160
10.1038/s41467-019-13605-4
10.3791/51011
10.1016/j.cardiores.2003.12.022
10.1016/j.actbio.2016.08.003
10.1016/0092-8674(86)90470-8
10.1016/B978-0-12-405945-0.00024-7
10.1016/j.mvr.2019.103925
10.1038/sj.bmt.1700999
10.1016/S0142-9612(02)00175-8
10.1089/ten.2006.0078
10.1016/j.semcancer.2005.05.004
10.1016/j.bbagen.2014.01.010
10.1038/srep18705
10.1016/B978-008045154-1/50020-4
10.1155/2014/756078
10.1016/j.biomaterials.2011.01.057
10.1038/ncomms4935
10.1016/j.biomaterials.2018.03.042
10.1182/blood-2008-12-196451
10.14744/AnatolJCardiol.2017.7464
10.1021/acs.langmuir.1c00018
10.1088/1748-605X/aa78d0
10.1016/0267-6605(92)90094-A
10.1088/1758-5090/8/2/025008
10.1016/j.actbio.2020.11.006
10.3390/bioengineering4010010
10.1016/j.biomaterials.2006.05.053
10.1016/j.cardiores.2004.10.012
10.1016/0140-6736(92)93287-W
10.1007/s10856-012-4684-5
10.1159/000331415
10.1038/185117a0
10.1016/j.biomaterials.2013.02.036
10.1021/acsbiomaterials.6b00176
10.1089/ten.tea.2008.0441
10.1038/nbt.3413
10.1002/adfm.201700798
10.1186/1471-2482-8-22
10.1007/s10439-016-1638-y
10.1126/science.284.5413.489
10.1021/acsbiomaterials.8b01112
10.1016/j.biomaterials.2010.08.072
10.1016/j.biomaterials.2011.06.022
10.1016/j.actbio.2011.07.023
10.1161/01.RES.0000191547.64391.e3
10.1067/mva.2001.111747
10.1126/science.7031899
10.1089/ten.tec.2011.0210
10.1371/journal.pone.0241040
10.1016/j.biomaterials.2007.08.007
10.1002/jbm.b.34197
10.1039/C8BM01246F
10.1016/j.biomaterials.2003.10.073
10.1038/s41598-018-21681-7
10.1253/circj.CJ-10-0717
10.1152/ajpheart.00935.2014
10.1016/j.actbio.2017.10.032
10.22203/eCM.v033a05
10.1016/j.actbio.2016.12.015
10.1021/nn507488s
10.1016/j.biomaterials.2018.05.031
10.1016/j.biotechadv.2019.02.009
10.1016/0022-5193(82)90388-5
10.1101/cshperspect.a005090
10.1007/s10439-010-9935-3
10.1016/j.biomaterials.2010.03.053
10.1089/wound.2013.0485
10.1155/2016/8364382
10.1016/j.biomaterials.2010.12.016
10.1016/0040-8166(79)90011-9
10.1111/j.1524-475X.2009.00466.x
10.1016/j.biomaterials.2015.10.020
10.2217/rme-2020-0023
10.1002/jbm.b.34444
10.3390/bioengineering5030069
10.1039/C7BM00323D
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jcdd8110137
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2308-3425
ExternalDocumentID oai_doaj_org_article_1359a94f9a6746b89afc83a54e83fed8
PMC8622600
34821690
10_3390_jcdd8110137
Genre Journal Article
Review
GrantInformation_xml – fundername: BLRD VA
  grantid: I01 BX004259
– fundername: VA
  grantid: 1I01BX002310 and 1I01BX004259
– fundername: NHLBI NIH HHS
  grantid: R01 HL127113
– fundername: NIH HHS
  grantid: R01 HL127113 and R01 HL142718
– fundername: American Heart Association
  grantid: 20IPA35360085 and 20IPA35310731
– fundername: RRD VA
  grantid: I01 RX001222
– fundername: NHLBI NIH HHS
  grantid: R01 HL142718
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
CCPQU
CITATION
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c475t-12f2eaa8aec94d74ca98613e2bff073cbf15c317572d634d735d7e62acd984523
IEDL.DBID DOA
ISSN 2308-3425
IngestDate Wed Aug 27 01:32:15 EDT 2025
Thu Aug 21 18:18:18 EDT 2025
Fri Jul 11 12:24:38 EDT 2025
Mon Jun 30 02:28:21 EDT 2025
Thu Jan 02 22:45:19 EST 2025
Tue Jul 01 01:48:11 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords extracellular matrix (ECM)
tissue engineering
regenerative medicine
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-12f2eaa8aec94d74ca98613e2bff073cbf15c317572d634d735d7e62acd984523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2298-6790
OpenAccessLink https://doaj.org/article/1359a94f9a6746b89afc83a54e83fed8
PMID 34821690
PQID 2602083055
PQPubID 5046891
ParticipantIDs doaj_primary_oai_doaj_org_article_1359a94f9a6746b89afc83a54e83fed8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8622600
proquest_miscellaneous_2602640347
proquest_journals_2602083055
pubmed_primary_34821690
crossref_primary_10_3390_jcdd8110137
crossref_citationtrail_10_3390_jcdd8110137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211022
PublicationDateYYYYMMDD 2021-10-22
PublicationDate_xml – month: 10
  year: 2021
  text: 20211022
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of cardiovascular development and disease
PublicationTitleAlternate J Cardiovasc Dev Dis
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_93
Eagland (ref_38) 1994; 30
ref_138
Ozguldez (ref_53) 2018; 22
ref_90
Yue (ref_5) 2014; 23
Vedadghavami (ref_230) 2017; 62
Wang (ref_122) 2014; 10
Uchida (ref_131) 2015; 104
Carvalho (ref_87) 2020; 235
Serpooshan (ref_78) 2013; 34
Malda (ref_148) 2013; 25
Benning (ref_136) 2017; 105
Karantalis (ref_82) 2015; 66
Wolchok (ref_109) 2010; 31
Brennecke (ref_139) 2017; 55
Li (ref_228) 2003; 68A
Nakayama (ref_51) 2016; 16
ref_128
Xue (ref_16) 2015; 4
Melhem (ref_217) 2017; 3
Grauss (ref_99) 2005; 27
Sun (ref_135) 2017; 66
ref_121
Crapo (ref_66) 2011; 32
Maia (ref_132) 2014; 10
Huang (ref_164) 2007; 13
Kavelaars (ref_86) 2012; 71
Efraim (ref_89) 2016; 50
Spitzer (ref_83) 1997; 20
Edwards (ref_183) 1967; 8
Lu (ref_58) 2011; 17
Gattazzo (ref_12) 2014; 1840
ref_79
Farmer (ref_182) 1978; 15
McKavanagh (ref_186) 2017; 6
ref_76
Xavier (ref_151) 2015; 9
ref_155
Reyna (ref_1) 2021; 143
ref_157
Das (ref_70) 2018; 2
ref_73
Peppas (ref_32) 1996; 17
Lu (ref_110) 2011; 32
Hume (ref_240) 2010; 31
ref_81
Caiado (ref_127) 2011; 32
ref_80
Zhang (ref_220) 2016; 110
ref_88
ref_143
ref_145
Qiu (ref_177) 2015; 308
Colly (ref_150) 2021; 37
Heschel (ref_236) 2009; 15
Wong (ref_26) 2005; 65
Suri (ref_137) 2009; 5
Hume (ref_239) 2012; 33
Toursarkissian (ref_188) 1997; 25
Sottile (ref_13) 2004; 1654
Bassat (ref_61) 2017; 547
ref_215
Liao (ref_108) 2010; 31
ref_218
Guo (ref_124) 2020; 119
Row (ref_210) 2015; 50
Peak (ref_153) 2015; 8
ref_219
Lawson (ref_198) 2016; 387
Dahl (ref_199) 2007; 35
Hess (ref_184) 2014; 130
Shin (ref_224) 2012; 7
Zaitseva (ref_238) 2020; 15
Nakayama (ref_52) 2015; 10
ref_203
ref_202
Bonnans (ref_133) 2014; 15
ref_209
Quint (ref_196) 2011; 108
Le (ref_94) 2018; 169
Das (ref_104) 2019; 95
Wells (ref_175) 2008; 47
Kong (ref_214) 2018; 107
Koobatian (ref_205) 2015; 76
Bracaglia (ref_192) 2017; 18
Lin (ref_189) 2004; 39
Schultz (ref_14) 2009; 17
Schultz (ref_8) 2011; 19
Choi (ref_107) 2010; 31
Bennett (ref_28) 2016; 118
ref_118
Gui (ref_100) 2009; 15
ref_111
Yannas (ref_2) 1982; 215
Gaharwar (ref_152) 2011; 7
Hirata (ref_91) 2018; 65
ref_225
ref_103
Agren (ref_15) 2007; 6
Murugan (ref_169) 2007; 13
ref_226
Pati (ref_55) 2014; 5
Lai (ref_171) 2011; 7
ref_223
Weymann (ref_97) 2011; 75
Hussey (ref_31) 2018; 3
Xu (ref_112) 2014; 1842
Akbay (ref_105) 2018; 107
Han (ref_211) 2017; 28
Ott (ref_227) 2008; 14
Akhyari (ref_98) 2011; 17
Peng (ref_208) 2012; 195
Ghosh (ref_142) 2007; 28
Stratman (ref_119) 2009; 114
Ning (ref_123) 2015; 52
Taylor (ref_77) 2018; 74
McFetridge (ref_71) 2004; 70A
ref_10
Hume (ref_241) 2011; 32
Smith (ref_54) 2018; 33
Xie (ref_176) 2018; 155
ref_19
Angelini (ref_185) 1985; 19
ref_18
Zhang (ref_60) 2017; 49
ref_17
Davis (ref_116) 2005; 97
Tharmalingam (ref_48) 2011; 49
Brigham (ref_146) 2009; 5
Nair (ref_193) 2015; 11
Iwase (ref_85) 2005; 66
Mintz (ref_158) 2014; 102
Kang (ref_154) 2016; 34
ref_24
ref_22
ref_21
ref_20
Kaiser (ref_63) 2019; 5
Roskelley (ref_181) 1994; 91
Niklason (ref_195) 2001; 33
Nguyen (ref_114) 2016; 7
Curtis (ref_216) 2009; 24
Ballotta (ref_84) 2014; 35
Nettles (ref_229) 2004; 32
Connelly (ref_170) 2017; 50
Niklason (ref_194) 1999; 284
Hinderer (ref_232) 2016; 97
Keane (ref_67) 2015; 84
Huang (ref_57) 2013; 34
Ahmed (ref_11) 2016; 2
Wanjare (ref_168) 2017; 5
Frantz (ref_3) 2010; 123
Chen (ref_173) 2017; 23
Roeder (ref_206) 1999; 47
Sellaro (ref_72) 2007; 13
Cheng (ref_106) 2009; 15
Ziegler (ref_59) 2012; 303
Tao (ref_92) 2014; 11
Bissell (ref_6) 1982; 99
Brynda (ref_126) 2013; 102
Baker (ref_163) 2012; 125
Bergers (ref_29) 2005; 7
Kim (ref_45) 2017; 9
Kutty (ref_50) 2007; 28
Roe (ref_234) 1992; 9
Stamati (ref_115) 2014; 327
Giobbe (ref_141) 2019; 10
Drury (ref_144) 2003; 24
Chimene (ref_156) 2016; 44
Guo (ref_161) 2012; 23
Brown (ref_74) 2013; 163
Bourget (ref_162) 2019; 30
Kleinman (ref_147) 2005; 15
Geckil (ref_159) 2010; 5
Coakley (ref_207) 2015; 25
Huang (ref_237) 2005; 11
Sperinde (ref_40) 2000; 33
VanWinkle (ref_130) 1996; 32
Cheung (ref_235) 1990; 24
Yokoyama (ref_37) 1986; 264
Yap (ref_113) 2019; 29
Ma (ref_212) 2017; 12
Reid (ref_4) 2020; 108
Deanfield (ref_27) 2007; 115
Liu (ref_129) 2006; 27
Yamamoto (ref_201) 1993; 204
Kidson (ref_190) 1978; 58
ref_68
Hennink (ref_36) 2012; 64
Rhodes (ref_62) 2008; 26
ref_65
ref_166
French (ref_95) 2016; 2016
Kim (ref_75) 2020; 14
Wichterle (ref_39) 1960; 185
Wainwright (ref_96) 2010; 16
Candiello (ref_140) 2018; 177
Heng (ref_221) 2004; 62
Foster (ref_134) 2018; 6
Predel (ref_25) 1992; 340
Hu (ref_33) 2019; 7
Murphy (ref_149) 2014; 32
McWhorter (ref_172) 2013; 110
Lacolley (ref_23) 2012; 95
Shin (ref_102) 2021; 119
Hou (ref_56) 2016; 44
Li (ref_213) 2018; 93
ref_35
Jordan (ref_165) 1986; 44
ref_197
ref_30
Seifu (ref_101) 2013; 10
Beamish (ref_200) 2010; 16
Kristofik (ref_242) 2017; 141
Nagaoka (ref_49) 2010; 38
Monchaux (ref_120) 2009; 2
Kural (ref_178) 2013; 319
Boudreau (ref_180) 1996; 93
Nguyen (ref_34) 2002; 23
Ding (ref_125) 2015; 15
Lu (ref_204) 2019; 107
Jang (ref_222) 2016; 112
Gilbert (ref_69) 2006; 27
ref_47
ref_46
Whitesides (ref_167) 2001; 3
ref_44
ref_42
ref_187
ref_41
Hudlicka (ref_174) 1991; 444
ref_191
Lee (ref_43) 2013; 9
Cummings (ref_231) 2004; 25
ref_9
Johnson (ref_233) 1999; 20
Fathi (ref_64) 2014; 35
Watt (ref_117) 2013; 14
Emerman (ref_179) 1979; 11
ref_7
Vega (ref_160) 2017; 33
References_xml – volume: 105
  start-page: 3231
  year: 2017
  ident: ref_136
  article-title: Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.36179
– volume: 58
  start-page: I1
  year: 1978
  ident: ref_190
  article-title: Low compliance and arterial graft occlusion
  publication-title: Circulation
– volume: 24
  start-page: 87
  year: 2009
  ident: ref_216
  article-title: Cardiac tissue engineering
  publication-title: J. Cardiovasc. Nurs.
  doi: 10.1097/01.JCN.0000343562.06614.49
– volume: 110
  start-page: 45
  year: 2016
  ident: ref_220
  article-title: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.09.003
– ident: ref_155
  doi: 10.1098/rsif.2014.0817
– ident: ref_80
  doi: 10.1371/journal.pone.0209269
– volume: 6
  start-page: 82
  year: 2007
  ident: ref_15
  article-title: The Extracellular Matrix in Wound Healing: A Closer Look at Therapeutics for Chronic Wounds
  publication-title: Int. J. Low. Extrem. Wounds
  doi: 10.1177/1534734607301394
– volume: 104
  start-page: 94
  year: 2015
  ident: ref_131
  article-title: Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.35544
– volume: 3
  start-page: 159
  year: 2018
  ident: ref_31
  article-title: Extracellular matrix-based materials for regenerative medicine
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0023-x
– ident: ref_103
  doi: 10.1016/j.biomaterials.2021.120764
– ident: ref_226
  doi: 10.1016/j.biomaterials.2019.119741
– volume: 10
  start-page: 3197
  year: 2014
  ident: ref_132
  article-title: Matrix-driven formation of mesenchymal stem cell–extracellular matrix microtissues on soft alginate hydrogels
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.02.049
– volume: 31
  start-page: 8911
  year: 2010
  ident: ref_108
  article-title: Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.07.110
– volume: 112
  start-page: 264
  year: 2016
  ident: ref_222
  article-title: 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.10.026
– volume: 33
  start-page: 3615
  year: 2012
  ident: ref_239
  article-title: Strategies to reduce dendritic cell activation through functional biomaterial design
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.02.009
– volume: 7
  start-page: 1247
  year: 2012
  ident: ref_224
  article-title: Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.051
– volume: 235
  start-page: 7496
  year: 2020
  ident: ref_87
  article-title: Loss and rescue of osteocalcin and osteopontin modulate osteogenic and angiogenic features of mesenchymal stem/stromal cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.29653
– volume: 18
  start-page: 3802
  year: 2017
  ident: ref_192
  article-title: 3D Printed Pericardium Hydrogels to Promote Wound Healing in Vascular Applications
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01165
– volume: 23
  start-page: 367
  year: 2017
  ident: ref_173
  article-title: Biomimetic Assembly of Vascular Endothelial Cells and Muscle Cells in Microgrooved Collagen Po-rous Scaffolds
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2017.0088
– volume: 444
  start-page: 1
  year: 1991
  ident: ref_174
  article-title: What makes blood vessels grow?
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1991.sp018863
– ident: ref_68
  doi: 10.1088/1758-5090/aa7e98
– volume: 107
  start-page: 561
  year: 2018
  ident: ref_105
  article-title: Investigation of survival and migration potential of differentiated cardiomyocytes transplanted with decellularized heart scaffold
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.36572
– volume: 7
  start-page: 802
  year: 2016
  ident: ref_114
  article-title: Differentiation of Human Embryonic Stem Cells to Endothelial Progenitor Cells on Laminins in Defined and Xeno-free Systems
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2016.08.017
– volume: 24
  start-page: 4337
  year: 2003
  ident: ref_144
  article-title: Hydrogels for tissue engineering: Scaffold design variables and applications
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00340-5
– ident: ref_197
  doi: 10.1126/scitranslmed.3001426
– volume: 10
  start-page: 2539
  year: 2014
  ident: ref_122
  article-title: Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid–tyramine hydrogel system to promote the formation of functional vasculature
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.02.022
– volume: 25
  start-page: 5011
  year: 2013
  ident: ref_148
  article-title: 25th Anniversary Article: Engineering Hydrogels for Biofabrication
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302042
– ident: ref_118
  doi: 10.1038/s41598-017-06986-3
– volume: 11
  start-page: 79
  year: 2015
  ident: ref_193
  article-title: Scaffolds in vascular regeneration: Current status
  publication-title: Vasc. Health Risk Manag.
  doi: 10.2147/VHRM.S50536
– volume: 2
  start-page: 69
  year: 2018
  ident: ref_70
  article-title: 3D bioprinting and decellularized ECM-based biomaterials for in vitro CV tissue engineering
  publication-title: J. 3D Print. Med.
  doi: 10.2217/3dp-2018-0002
– volume: 119
  start-page: 89
  year: 2020
  ident: ref_124
  article-title: A method for simultaneously crosslinking and functionalizing extracellular matrix-based biomaterials as bioprosthetic heart valves with enhanced endothelialization and reduced inflammation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.10.029
– volume: 9
  start-page: 5143
  year: 2013
  ident: ref_43
  article-title: Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.08.036
– volume: 55
  start-page: 1
  year: 2017
  ident: ref_139
  article-title: Native and solubilized decellularized extracellular matrix: A critical assessment of their potential for improving the expansion of mesenchymal stem cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.04.014
– volume: 24
  start-page: 581
  year: 1990
  ident: ref_235
  article-title: The effect of gamma-irradiation on collagen molecules, isolated alpha-chains, and crosslinked native fibers
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820240505
– volume: 84
  start-page: 25
  year: 2015
  ident: ref_67
  article-title: Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.03.005
– volume: 74
  start-page: 74
  year: 2018
  ident: ref_77
  article-title: Decellularized matrices in regenerative medicine
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.04.044
– volume: 25
  start-page: 31
  year: 2015
  ident: ref_207
  article-title: Comparing the endothelialisation of extracellular matrix bioscaffolds with coated synthetic vascular graft materials
  publication-title: Int. J. Surg.
  doi: 10.1016/j.ijsu.2015.11.008
– volume: 13
  start-page: 2301
  year: 2007
  ident: ref_72
  article-title: Maintenance of Hepatic Sinusoidal Endothelial Cell PhenotypeIn VitroUsing Organ-Specific Extracellular Matrix Scaffolds
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.0437
– ident: ref_47
  doi: 10.1016/j.biotechadv.2019.107421
– volume: 30
  start-page: 767
  year: 1994
  ident: ref_38
  article-title: Complexation between polyoxyethylene and polymethacrylic acid—The importance of the molar mass of polyoxyethylene
  publication-title: Eur. Polym. J.
  doi: 10.1016/0014-3057(94)90003-5
– volume: 204
  start-page: 121
  year: 1993
  ident: ref_201
  article-title: Type I Collagen Promotes Modulation of Cultured Rabbit Arterial Smooth Muscle Cells from a Contractile to a Synthetic Phenotype
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.1993.1016
– volume: 50
  start-page: 280
  year: 2017
  ident: ref_170
  article-title: Differential integrin expression regulates cell sensing of the matrix nanoscale geometry
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.11.069
– volume: 1842
  start-page: 2106
  year: 2014
  ident: ref_112
  article-title: Vascular wall extracellular matrix proteins and vascular diseases
  publication-title: Biochim. Biophys. Acta (BBA) Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2014.07.008
– volume: 319
  start-page: 2447
  year: 2013
  ident: ref_178
  article-title: Regulating tension in three-dimensional culture environments
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2013.06.019
– volume: 22
  start-page: 1
  year: 2018
  ident: ref_53
  article-title: Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells
  publication-title: Biomater. Res.
  doi: 10.1186/s40824-018-0141-y
– ident: ref_209
  doi: 10.1002/adfm.202005769
– volume: 5
  start-page: 469
  year: 2010
  ident: ref_159
  article-title: Engineering hydrogels as extracellular matrix mimics
  publication-title: Nanomedicine
  doi: 10.2217/nnm.10.12
– volume: 14
  start-page: 213
  year: 2008
  ident: ref_227
  article-title: Perfusion-decellularized matrix: Using na-ture’s platform to engineer a bioartificial heart
  publication-title: Nat. Med.
  doi: 10.1038/nm1684
– volume: 20
  start-page: 1003
  year: 1999
  ident: ref_233
  article-title: Nitrous acid pre-treatment of tendon xenografts cross-linked with glutaraldehyde and sterilized with gamma irradiation
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)90187-9
– volume: 15
  start-page: 697
  year: 2009
  ident: ref_106
  article-title: Decellularization of Chondrocyte-Encapsulated Collagen Microspheres: A Three-Dimensional Model to Study the Effects of Acellular Matrix on Stem Cell Fate
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2008.0635
– ident: ref_19
– volume: 64
  start-page: 223
  year: 2012
  ident: ref_36
  article-title: Novel crosslinking methods to design hydrogels
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.009
– volume: 26
  start-page: 1537
  year: 2008
  ident: ref_62
  article-title: Reprogrammed Mouse Fibroblasts Differentiate into Cells of the Cardiovascular and Hematopoietic Lineages
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0033
– volume: 34
  start-page: 9048
  year: 2013
  ident: ref_78
  article-title: The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.08.017
– volume: 66
  start-page: 543
  year: 2005
  ident: ref_85
  article-title: Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2005.02.006
– volume: 387
  start-page: 2026
  year: 2016
  ident: ref_198
  article-title: Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: Two phase 2 single-arm trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00557-2
– ident: ref_138
  doi: 10.1007/s12265-011-9304-0
– volume: 130
  start-page: 1445
  year: 2014
  ident: ref_184
  article-title: Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.008193
– volume: 28
  start-page: 213
  year: 2017
  ident: ref_211
  article-title: Surface heparinization and blood compatibility modification of small intestinal submucosa (SIS) for small-caliber vascular regeneration
  publication-title: Bio-Med. Mater. Eng.
  doi: 10.3233/BME-171668
– volume: 19
  start-page: 326
  year: 1985
  ident: ref_185
  article-title: Metabolic damage to human saphenous vein during preparation for coronary artery bypass grafting
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/19.6.326
– volume: 62
  start-page: 42
  year: 2017
  ident: ref_230
  article-title: Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.07.028
– volume: 93
  start-page: 3509
  year: 1996
  ident: ref_180
  article-title: Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.8.3509
– volume: 163
  start-page: 268
  year: 2013
  ident: ref_74
  article-title: Extracellular matrix as an inductive scaffold for functional tissue reconstruction
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2013.11.003
– volume: 141
  start-page: 63
  year: 2017
  ident: ref_242
  article-title: Improving in vivo outcomes of decellularized vascular grafts via incorporation of a novel extracellular matrix
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.06.025
– volume: 15
  start-page: 786
  year: 2014
  ident: ref_133
  article-title: Remodelling the extracellular matrix in development and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3904
– volume: 11
  start-page: 1860
  year: 2005
  ident: ref_237
  article-title: Injectable Biopolymers Enhance Angiogenesis after Myocardial Infarction
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2005.11.1860
– volume: 97
  start-page: 260
  year: 2016
  ident: ref_232
  article-title: ECM and ECM-like materials—Biomaterials for applications in regenerative medicine and cancer therapy
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.11.019
– ident: ref_215
  doi: 10.1088/1748-605X/abbdbd
– volume: 17
  start-page: 1553
  year: 1996
  ident: ref_32
  article-title: Hydrogels as mucoadhesive and bioadhesive materials: A review
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(95)00307-X
– ident: ref_73
  doi: 10.1002/adhm.201801217
– volume: 5
  start-page: 2385
  year: 2009
  ident: ref_137
  article-title: Photopatterned collagen–hyaluronic acid interpenetrating polymer network hydrogels
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.05.004
– ident: ref_44
  doi: 10.1016/j.mser.2021.100641
– volume: 93
  start-page: 61
  year: 2018
  ident: ref_213
  article-title: Vascular extracellular matrix and fibroblasts-coculture directed differentiation of human mesenchymal stem cells toward smooth muscle-like cells for vascular tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.07.061
– volume: 15
  start-page: 461
  year: 2009
  ident: ref_236
  article-title: Cytocompatibility of a Novel, Longitudinally Microstructured Collagen Scaffold Intended for Nerve Tissue Repair
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2007.0107
– volume: 7
  start-page: 2448
  year: 2011
  ident: ref_171
  article-title: Designing a tubular matrix of oriented collagen fibrils for tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.03.012
– volume: 110
  start-page: 17253
  year: 2013
  ident: ref_172
  article-title: Modulation of macrophage phenotype by cell shape
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1308887110
– volume: 107
  start-page: 672
  year: 2018
  ident: ref_214
  article-title: The use of heparin, bFGF, and VEGF 145 grafted acellular vascular scaffold in small diameter vascular graft
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  doi: 10.1002/jbm.b.34160
– volume: 50
  start-page: 115
  year: 2015
  ident: ref_210
  article-title: Arterial grafts exhibiting unprecedented cellular infiltration and remodeling in vivo: The role of cells in the vascular wall
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.045
– volume: 118
  start-page: 692
  year: 2016
  ident: ref_28
  article-title: Vascular Smooth Muscle Cells in Atherosclerosis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.306361
– volume: 33
  start-page: 16
  year: 2018
  ident: ref_54
  article-title: Stem cell differentiation is regulated by extracellular matrix mechanics
  publication-title: Physiology
  doi: 10.1152/physiol.00026.2017
– volume: 155
  start-page: 203
  year: 2018
  ident: ref_176
  article-title: Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.11.033
– volume: 32
  start-page: 6204
  year: 2011
  ident: ref_241
  article-title: Functionalized PEG hydrogels through reactive dip-coating for the formation of immunoactive barriers
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.04.049
– volume: 264
  start-page: 595
  year: 1986
  ident: ref_37
  article-title: Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/BF01412597
– volume: 2
  start-page: 239
  year: 2009
  ident: ref_120
  article-title: Effects of surface properties and bioactivation of biomaterials on endothelial cells
  publication-title: Front. Biosci.
– volume: 13
  start-page: 1809
  year: 2007
  ident: ref_164
  article-title: Chemical and physical regulation of stem cells and progenitor cells: Potential for cardio-vascular tissue engineering
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.0096
– volume: 1654
  start-page: 13
  year: 2004
  ident: ref_13
  article-title: Regulation of angiogenesis by extracellular matrix
  publication-title: Biochim. Biophys. Acta (BBA) Rev. Cancer
  doi: 10.1016/j.bbcan.2003.07.002
– volume: 95
  start-page: 194
  year: 2012
  ident: ref_23
  article-title: The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvs135
– ident: ref_121
  doi: 10.3390/cells9030778
– volume: 12
  start-page: 1
  year: 2017
  ident: ref_212
  article-title: Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells
  publication-title: J. Cardiothorac. Surg.
  doi: 10.1186/s13019-017-0661-x
– volume: 15
  start-page: 150
  year: 2015
  ident: ref_125
  article-title: Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.12.014
– volume: 66
  start-page: 272
  year: 2017
  ident: ref_135
  article-title: Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.11.038
– ident: ref_111
  doi: 10.1091/mbc.e10-04-0334
– volume: 115
  start-page: 1285
  year: 2007
  ident: ref_27
  article-title: Endothelial function and dysfunction: Testing and clinical relevance
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.652859
– volume: 10
  start-page: 410
  year: 2013
  ident: ref_101
  article-title: Small-diameter vascular tissue engineering
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2013.77
– volume: 16
  start-page: 410
  year: 2016
  ident: ref_51
  article-title: Nanoscale patterning of extracellular matrix alters endothelial function under shear stress
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04028
– volume: 32
  start-page: 478
  year: 1996
  ident: ref_130
  article-title: Cardiogel: A biosynthetic extracellular matrix for cardiomyocyte culture In Vitro
  publication-title: Cell. Dev. Biol.-Anim.
  doi: 10.1007/BF02723051
– volume: 16
  start-page: 467
  year: 2010
  ident: ref_200
  article-title: Molecular Regulation of Contractile Smooth Muscle Cell Phenotype: Implications for Vascular Tissue Engineering
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2009.0630
– volume: 327
  start-page: 68
  year: 2014
  ident: ref_115
  article-title: Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2014.05.012
– ident: ref_21
– ident: ref_143
  doi: 10.1007/978-3-319-97421-7_8
– volume: 32
  start-page: 773
  year: 2014
  ident: ref_149
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2958
– volume: 66
  start-page: 1990
  year: 2015
  ident: ref_82
  article-title: Synergistic Effects of Combined Cell Therapy for Chronic Ischemic Cardiomyopathy
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2015.08.879
– ident: ref_157
  doi: 10.1088/0957-4484/25/1/014011
– volume: 71
  start-page: 474
  year: 2012
  ident: ref_86
  article-title: Mesenchymal stem cells as a treatment for neonatal ischemic brain damage
  publication-title: Pediatr. Res.
  doi: 10.1038/pr.2011.64
– volume: 19
  start-page: 134
  year: 2011
  ident: ref_8
  article-title: Dynamic reciprocity in the wound microenvironment
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2011.00673.x
– volume: 14
  start-page: 84
  year: 2020
  ident: ref_75
  article-title: 3D Pancreatic Tissue Modeling in vitro: Advances and Prospects
  publication-title: BioChip J.
  doi: 10.1007/s13206-020-4108-4
– volume: 15
  start-page: 2665
  year: 2009
  ident: ref_100
  article-title: Development of Decellularized Human Umbilical Arteries as Small-Diameter Vascular Grafts
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2008.0526
– volume: 33
  start-page: 5476
  year: 2000
  ident: ref_40
  article-title: Control and prediction of gelation kinetics in enzymatically cross-linked poly (ethylene glycol) hydrogels
  publication-title: Macromolecules
  doi: 10.1021/ma000459d
– volume: 52
  start-page: 539
  year: 2015
  ident: ref_123
  article-title: The utilization of decellularized tendon slices to provide an inductive microenvironment for the proliferation and tenogenic differentiation of stem cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.02.061
– volume: 32
  start-page: 391
  year: 2004
  ident: ref_229
  article-title: Photocrosslinkable Hyaluronan as a Scaffold for Articular Cartilage Repair
  publication-title: Ann. Biomed. Eng.
  doi: 10.1023/B:ABME.0000017552.65260.94
– ident: ref_203
– volume: 102
  start-page: 2918
  year: 2014
  ident: ref_158
  article-title: Hybrid hyaluronic acid hydrogel/poly (ε-caprolactone) scaffold provides mechanically favorable platform for cartilage tissue engineering studies
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.34957
– volume: 39
  start-page: 1322
  year: 2004
  ident: ref_189
  article-title: Small-caliber heparin-coated ePTFE grafts reduce platelet deposition and neointimal hyperplasia in a baboon model
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2004.01.046
– volume: 47
  start-page: 65
  year: 1999
  ident: ref_206
  article-title: Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS), small-diameter vascular grafts
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(199910)47:1<65::AID-JBM9>3.0.CO;2-F
– volume: 108
  start-page: 9214
  year: 2011
  ident: ref_196
  article-title: Decellularized tissue-engineered blood vessel as an arterial conduit
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1019506108
– volume: 35
  start-page: 9100
  year: 2014
  ident: ref_84
  article-title: Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.07.042
– volume: 23
  start-page: S20
  year: 2014
  ident: ref_5
  article-title: Biology of the extracellular matrix: An overview
  publication-title: J. Glaucoma
  doi: 10.1097/IJG.0000000000000108
– volume: 68A
  start-page: 28
  year: 2003
  ident: ref_228
  article-title: Photocrosslinkable polysaccharides based on chondroitin sulfate
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.20007
– volume: 7
  start-page: 452
  year: 2005
  ident: ref_29
  article-title: The role of pericytes in blood-vessel formation and maintenance
  publication-title: Neuro Oncol.
  doi: 10.1215/S1152851705000232
– volume: 6
  start-page: 203
  year: 2017
  ident: ref_186
  article-title: Management and Prevention of Saphenous Vein Graft Failure: A Review
  publication-title: Cardiol. Ther.
  doi: 10.1007/s40119-017-0094-6
– volume: 31
  start-page: 3166
  year: 2010
  ident: ref_240
  article-title: Inducing local T cell apoptosis with anti-Fas-functionalized polymeric coatings fabricated via sur-face-initiated photopolymerizations
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.035
– volume: 9
  start-page: 21639
  year: 2017
  ident: ref_45
  article-title: Chondroitin Sulfate-Based Biomineralizing Surface Hydrogels for Bone Tissue Engineering
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04114
– volume: 10
  start-page: 745
  year: 2015
  ident: ref_52
  article-title: Bilayered vascular graft derived from human induced pluripotent stem cells with biomimetic structure and function
  publication-title: Regen. Med.
  doi: 10.2217/rme.15.45
– ident: ref_225
  doi: 10.1126/sciadv.1500758
– volume: 123
  start-page: 4195
  year: 2010
  ident: ref_3
  article-title: The extracellular matrix at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.023820
– volume: 27
  start-page: 566
  year: 2005
  ident: ref_99
  article-title: Histological evaluation of decellularised porcine aortic valves: Matrix changes due to different decellularisation methods
  publication-title: Eur. J. Cardio-Thoracic Surg.
  doi: 10.1016/j.ejcts.2004.12.052
– volume: 35
  start-page: 348
  year: 2007
  ident: ref_199
  article-title: Mechanical Properties and Compositions of Tissue Engineered and Native Arteries
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-006-9226-1
– volume: 17
  start-page: 82
  year: 2011
  ident: ref_58
  article-title: Extracellular matrix of collagen modulates intracellular calcium handling and electrophysiological characteristics of HL-1 cardiomyocytes with activation of angiotensin II type 1 receptor
  publication-title: J. Card. Fail.
  doi: 10.1016/j.cardfail.2010.10.002
– volume: 28
  start-page: 671
  year: 2007
  ident: ref_142
  article-title: Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.09.038
– volume: 25
  start-page: 730
  year: 1997
  ident: ref_188
  article-title: Thrombogenicity of small-diameter prosthetic grafts: Relative contributions of graft-associated thrombin and factor Xa
  publication-title: J. Vasc. Surg.
  doi: 10.1016/S0741-5214(97)70302-1
– volume: 6
  start-page: 614
  year: 2018
  ident: ref_134
  article-title: Protein-engineered hydrogels enhance the survival of induced pluripotent stem cell-derived endothelial cells for treatment of peripheral arterial disease
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00883J
– volume: 35
  start-page: 5425
  year: 2014
  ident: ref_64
  article-title: Elastin based cell-laden injectable hy-drogels with tunable gelation, mechanical and biodegradation properties
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.03.026
– ident: ref_7
  doi: 10.1016/B978-0-12-521980-8.50020-1
– volume: 91
  start-page: 12378
  year: 1994
  ident: ref_181
  article-title: Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.26.12378
– ident: ref_79
  doi: 10.1101/2021.03.30.437600
– volume: 47
  start-page: 1394
  year: 2008
  ident: ref_175
  article-title: The role of matrix stiffness in regulating cell behavior
  publication-title: Hepatology
  doi: 10.1002/hep.22193
– ident: ref_93
  doi: 10.3390/polym11040687
– volume: 3
  start-page: 335
  year: 2001
  ident: ref_167
  article-title: Soft Lithography in Biology and Biochemistry
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.3.1.335
– volume: 11
  start-page: 153
  year: 2014
  ident: ref_92
  article-title: Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.1895
– volume: 15
  start-page: 627
  year: 1978
  ident: ref_182
  article-title: Altered translatability of messenger RNA from suspended anchorage-dependent fibroblasts: Reversal upon cell attachment to a surface
  publication-title: Cell
  doi: 10.1016/0092-8674(78)90031-4
– volume: 95
  start-page: 188
  year: 2019
  ident: ref_104
  article-title: Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.04.026
– volume: 29
  start-page: 987
  year: 2019
  ident: ref_113
  article-title: Laminins in Cellular Differentiation
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2019.10.001
– ident: ref_145
  doi: 10.1002/9783527690916
– ident: ref_35
  doi: 10.3390/polym10050542
– volume: 49
  start-page: 263
  year: 2011
  ident: ref_48
  article-title: Enhanced Production of Human Recombinant Proteins from CHO cells Grown to High Densities in Macroporous Microcarriers
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-011-9401-y
– volume: 70A
  start-page: 224
  year: 2004
  ident: ref_71
  article-title: Preparation of porcine carotid arteries for vascular tissue engineering applications
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.30060
– volume: 2
  start-page: 197
  year: 2016
  ident: ref_11
  article-title: Extracellular Matrix Regulation of Stem Cell Behavior
  publication-title: Curr. Stem Cell Rep.
  doi: 10.1007/s40778-016-0056-2
– volume: 14
  start-page: 467
  year: 2013
  ident: ref_117
  article-title: Role of the extracellular matrix in regulating stem cell fate
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3620
– volume: 16
  start-page: 525
  year: 2010
  ident: ref_96
  article-title: Preparation of Cardiac Extracellular Matrix from an Intact Porcine Heart
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2009.0392
– volume: 8
  start-page: 404
  year: 2015
  ident: ref_153
  article-title: Elastomeric Cell-Laden Nanocomposite Microfibers for Engineering Complex Tissues
  publication-title: Cell. Mol. Bioeng.
  doi: 10.1007/s12195-015-0406-7
– volume: 303
  start-page: C757
  year: 2012
  ident: ref_59
  article-title: The dimeric platelet collagen receptor GPVI-Fc reduces platelet adhesion to activated endothelium and preserves myocardial function after transient ischemia in mice
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajpcell.00060.2012
– volume: 49
  start-page: 204
  year: 2017
  ident: ref_60
  article-title: Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.11.058
– volume: 547
  start-page: 179
  year: 2017
  ident: ref_61
  article-title: The extracellular matrix protein agrin promotes heart regeneration in mice
  publication-title: Nature
  doi: 10.1038/nature22978
– ident: ref_81
  doi: 10.1371/journal.pone.0254160
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_141
  article-title: Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13605-4
– ident: ref_46
  doi: 10.3791/51011
– volume: 62
  start-page: 34
  year: 2004
  ident: ref_221
  article-title: Strategies for directing the differentiation of stem cells into the cardiomyogenic line age in vitro
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2003.12.022
– volume: 44
  start-page: 188
  year: 2016
  ident: ref_56
  article-title: Combinatorial extracellular matrix microenvironments promote survival and phenotype of human induced pluripotent stem cell-derived endothelial cells in hypoxia
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.08.003
– volume: 44
  start-page: 489
  year: 1986
  ident: ref_165
  article-title: Evidence for two distinct mechanisms of anchorage stimulation in freshly explanted and 3T3 Swiss mouse fibroblasts
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90470-8
– ident: ref_20
  doi: 10.1016/B978-0-12-405945-0.00024-7
– ident: ref_88
  doi: 10.1016/j.mvr.2019.103925
– volume: 20
  start-page: 921
  year: 1997
  ident: ref_83
  article-title: Randomized comparison of G-CSF + GM-CSF vs G-CSF alone for mobilization of peripheral blood stem cells: Effects on hematopoietic recovery after high-dose chemotherapy
  publication-title: Bone Marrow Transplant.
  doi: 10.1038/sj.bmt.1700999
– volume: 23
  start-page: 4307
  year: 2002
  ident: ref_34
  article-title: Photopolymerizable hydrogels for tissue engineering applications
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00175-8
– volume: 13
  start-page: 1845
  year: 2007
  ident: ref_169
  article-title: Design Strategies of Tissue Engineering Scaffolds with Controlled Fiber Orientation
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.0078
– ident: ref_219
– volume: 15
  start-page: 378
  year: 2005
  ident: ref_147
  article-title: Matrigel: Basement membrane matrix with biological activity
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2005.05.004
– volume: 1840
  start-page: 2506
  year: 2014
  ident: ref_12
  article-title: Extracellular matrix: A dynamic microenvironment for stem cell niche
  publication-title: Biochim. Biophys. Acta (BBA)-Gen. Subj.
  doi: 10.1016/j.bbagen.2014.01.010
– ident: ref_90
  doi: 10.1038/srep18705
– ident: ref_166
  doi: 10.1016/B978-008045154-1/50020-4
– ident: ref_10
  doi: 10.1155/2014/756078
– volume: 32
  start-page: 3233
  year: 2011
  ident: ref_66
  article-title: An overview of tissue and whole organ decellularization processes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.01.057
– volume: 5
  start-page: 1
  year: 2014
  ident: ref_55
  article-title: Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4935
– volume: 169
  start-page: 11
  year: 2018
  ident: ref_94
  article-title: Injectable hyaluronic acid based microrods provide local micromechanical and biochemical cues to attenuate cardiac fibrosis after myocardial infarction
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.03.042
– volume: 114
  start-page: 237
  year: 2009
  ident: ref_119
  article-title: Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP–dependent proteolysis in 3-dimensional collagen matrices
  publication-title: Blood
  doi: 10.1182/blood-2008-12-196451
– ident: ref_218
  doi: 10.14744/AnatolJCardiol.2017.7464
– volume: 8
  start-page: 195
  year: 1967
  ident: ref_183
  article-title: The importance of proper caliber of lumen in femoral popliteal arterial reconstruction
  publication-title: J. Cardiovasc. Surg.
– ident: ref_22
– volume: 37
  start-page: 4154
  year: 2021
  ident: ref_150
  article-title: Poloxamer/Poly(ethylene glycol) Self-Healing Hydrogel for High-Precision Freeform Reversible Embedding of Suspended Hydrogel
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c00018
– ident: ref_191
  doi: 10.1088/1748-605X/aa78d0
– volume: 9
  start-page: 149
  year: 1992
  ident: ref_234
  article-title: The effect of gamma irradiation on a xenograft tendon bioprosthesis
  publication-title: Clin. Mater.
  doi: 10.1016/0267-6605(92)90094-A
– ident: ref_128
  doi: 10.1088/1758-5090/8/2/025008
– volume: 119
  start-page: 75
  year: 2021
  ident: ref_102
  article-title: 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.11.006
– ident: ref_76
  doi: 10.3390/bioengineering4010010
– volume: 27
  start-page: 5978
  year: 2006
  ident: ref_129
  article-title: Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.05.053
– volume: 65
  start-page: 702
  year: 2005
  ident: ref_26
  article-title: In vitro differences between venous and arterial-derived smooth muscle cells: Potential modulatory role of decorin
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2004.10.012
– volume: 340
  start-page: 878
  year: 1992
  ident: ref_25
  article-title: Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle
  publication-title: Lancet
  doi: 10.1016/0140-6736(92)93287-W
– volume: 23
  start-page: 2267
  year: 2012
  ident: ref_161
  article-title: Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-012-4684-5
– volume: 195
  start-page: 108
  year: 2012
  ident: ref_208
  article-title: A Novel Ovine ex vivo Arteriovenous Shunt Model to Test Vascular Implantability
  publication-title: Cells Tissues Organs
  doi: 10.1159/000331415
– volume: 185
  start-page: 117
  year: 1960
  ident: ref_39
  article-title: Hydrophilic Gels for Biological Use
  publication-title: Nature
  doi: 10.1038/185117a0
– volume: 34
  start-page: 4038
  year: 2013
  ident: ref_57
  article-title: The modulation of endothelial cell morphology, function, and survival using anisotropic nanofibrillar collagen scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.02.036
– volume: 3
  start-page: 1980
  year: 2017
  ident: ref_217
  article-title: 3D printed stem-cell-laden, micro-channeled hydrogel patch for the enhanced release of cell-secreting factors and treatment of myocardial infarctions
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00176
– volume: 5
  start-page: 1645
  year: 2009
  ident: ref_146
  article-title: Mechanically Robust and Bioadhesive Collagen and Photocrosslinkable Hyaluronic Acid Semi-Interpenetrating Networks
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2008.0441
– volume: 34
  start-page: 312
  year: 2016
  ident: ref_154
  article-title: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3413
– volume: 30
  start-page: 1
  year: 2019
  ident: ref_162
  article-title: Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 125
  start-page: 3015
  year: 2012
  ident: ref_163
  article-title: Deconstructing the third dimension—How 3D culture microenvironments alter cellular cues
  publication-title: J. Cell Sci.
– ident: ref_223
  doi: 10.1002/adfm.201700798
– ident: ref_187
  doi: 10.1186/1471-2482-8-22
– volume: 44
  start-page: 2090
  year: 2016
  ident: ref_156
  article-title: Advanced Bioinks for 3D Printing: A Materials Science Perspective
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1638-y
– volume: 284
  start-page: 489
  year: 1999
  ident: ref_194
  article-title: Functional Arteries Grown in Vitro
  publication-title: Science
  doi: 10.1126/science.284.5413.489
– volume: 5
  start-page: 887
  year: 2019
  ident: ref_63
  article-title: Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b01112
– volume: 31
  start-page: 9595
  year: 2010
  ident: ref_109
  article-title: The isolation of cell derived extracellular matrix constructs using sacrificial open-cell foams
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.072
– volume: 32
  start-page: 7096
  year: 2011
  ident: ref_127
  article-title: The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.06.022
– volume: 7
  start-page: 4139
  year: 2011
  ident: ref_152
  article-title: Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.07.023
– volume: 97
  start-page: 1093
  year: 2005
  ident: ref_116
  article-title: Endothelial Extracellular Matrix
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000191547.64391.e3
– ident: ref_202
– volume: 33
  start-page: 628
  year: 2001
  ident: ref_195
  article-title: Morphologic and mechanical characteristics of engineered bovine arteries
  publication-title: J. Vasc. Surg.
  doi: 10.1067/mva.2001.111747
– volume: 215
  start-page: 174
  year: 1982
  ident: ref_2
  article-title: Wound tissue can utilize a polymeric template to synthesize a functional extension of skin
  publication-title: Science
  doi: 10.1126/science.7031899
– volume: 27
  start-page: 3675
  year: 2006
  ident: ref_69
  article-title: Decellularization of tissues and organs
  publication-title: Biomaterials
– volume: 17
  start-page: 915
  year: 2011
  ident: ref_98
  article-title: The quest for an optimized protocol for whole-heart decellularization: A comparison of three popular and a novel decellularization technique and their diverse ef-fects on crucial extracellular matrix qualities
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2011.0210
– ident: ref_9
  doi: 10.1371/journal.pone.0241040
– volume: 28
  start-page: 4928
  year: 2007
  ident: ref_50
  article-title: The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.08.007
– volume: 107
  start-page: 1047
  year: 2019
  ident: ref_204
  article-title: Surface modification of polypropylene surgical meshes for improving adhesion with poloxamine hydrogel adhesive
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  doi: 10.1002/jbm.b.34197
– ident: ref_17
– volume: 7
  start-page: 843
  year: 2019
  ident: ref_33
  article-title: Advances in crosslinking strategies of biomedical hydrogels
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM01246F
– volume: 25
  start-page: 3699
  year: 2004
  ident: ref_231
  article-title: Properties of engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.10.073
– ident: ref_42
  doi: 10.1038/s41598-018-21681-7
– volume: 75
  start-page: 852
  year: 2011
  ident: ref_97
  article-title: Development and Evaluation of a Perfusion Decellularization Porcine Heart Model-Generation of 3-Dimensional Myocardial Neoscaffolds
  publication-title: Circ. J.
  doi: 10.1253/circj.CJ-10-0717
– volume: 143
  start-page: e254
  year: 2021
  ident: ref_1
  article-title: Heart disease and stroke statistics—2021 update: A report from the American Heart Association
  publication-title: Circulation
– ident: ref_24
– volume: 308
  start-page: H990
  year: 2015
  ident: ref_177
  article-title: A role for matrix stiffness in the regulation of cardiac side population cell function
  publication-title: Am. J. Physiol. Circ. Physiol.
  doi: 10.1152/ajpheart.00935.2014
– volume: 65
  start-page: 44
  year: 2018
  ident: ref_91
  article-title: Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.10.032
– volume: 33
  start-page: 59
  year: 2017
  ident: ref_160
  article-title: Recent advances in hydrogels for cartilage tissue engineering
  publication-title: Eur. Cells Mater.
  doi: 10.22203/eCM.v033a05
– volume: 50
  start-page: 220
  year: 2016
  ident: ref_89
  article-title: Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.12.015
– volume: 9
  start-page: 3109
  year: 2015
  ident: ref_151
  article-title: Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach
  publication-title: ACS Nano
  doi: 10.1021/nn507488s
– ident: ref_18
– volume: 177
  start-page: 27
  year: 2018
  ident: ref_140
  article-title: 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.05.031
– ident: ref_41
  doi: 10.1016/j.biotechadv.2019.02.009
– volume: 99
  start-page: 31
  year: 1982
  ident: ref_6
  article-title: How does the extracellular matrix direct gene expression?
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(82)90388-5
– ident: ref_30
  doi: 10.1101/cshperspect.a005090
– volume: 38
  start-page: 683
  year: 2010
  ident: ref_49
  article-title: Application of Recombinant Fusion Proteins for Tissue Engineering
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-9935-3
– volume: 31
  start-page: 5355
  year: 2010
  ident: ref_107
  article-title: The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.03.053
– volume: 4
  start-page: 119
  year: 2015
  ident: ref_16
  article-title: Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2013.0485
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_95
  article-title: Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential In Vitro
  publication-title: Stem Cells Int.
  doi: 10.1155/2016/8364382
– volume: 102
  start-page: 698
  year: 2013
  ident: ref_126
  article-title: Improved adhesion and differentiation of endothelial cells on surface-attached fibrin structures containing extracellular matrix proteins
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 32
  start-page: 2489
  year: 2011
  ident: ref_110
  article-title: Autologous extracellular matrix scaffolds for tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.12.016
– volume: 11
  start-page: 109
  year: 1979
  ident: ref_179
  article-title: Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture
  publication-title: Tissue Cell
  doi: 10.1016/0040-8166(79)90011-9
– volume: 17
  start-page: 153
  year: 2009
  ident: ref_14
  article-title: Interactions between extracellular matrix and growth factors in wound healing
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2009.00466.x
– volume: 76
  start-page: 344
  year: 2015
  ident: ref_205
  article-title: Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.10.020
– volume: 15
  start-page: 1761
  year: 2020
  ident: ref_238
  article-title: Delivery of hepatocyte growth factor mrna from nanofibrillar scaffolds in a pig model of peripheral arterial disease
  publication-title: Regen. Med.
  doi: 10.2217/rme-2020-0023
– volume: 108
  start-page: 910
  year: 2020
  ident: ref_4
  article-title: Hybrid cardiovascular sourced extracellular matrix scaffolds as possible platforms for vascular tissue engineering
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  doi: 10.1002/jbm.b.34444
– ident: ref_65
  doi: 10.3390/bioengineering5030069
– volume: 5
  start-page: 1567
  year: 2017
  ident: ref_168
  article-title: Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00323D
SSID ssj0001342012
Score 2.391205
SecondaryResourceType review_article
Snippet Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 137
SubjectTerms Angiogenesis
Biomedical materials
Blood vessels
Collagen
Extracellular matrix
extracellular matrix (ECM)
Gene expression
Heparan sulfate
Homeostasis
Hydrogels
Mechanical properties
Permeability
Phase transitions
Physiology
Polyethylene glycol
Polymerization
Proteins
Regenerative medicine
Review
Smooth muscle
Tissue engineering
Veins & arteries
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9xADBZtCqWXkL7dpMWFnAom9rw8cyrdkBAK21MCezPzbFOKnSYbyM-PZM9udkvo1ZaNkDSjx2g-ARw6Z11KVlfeuEhXclRlrOeVksE3idBXIp3ozn-oswvxfSEXueB2k9sqV3viuFGHwVON_AjjbobhQi3l16u_FU2NotPVPELjKTwj6DKy6nbRPtRYuED_xqZreRyz-6PfPgSNHq-huecbjmjE638syPy3V3LD-ZzuwW6OGstvk5pfwpPYv4Ln83wu_hrmJ3f4GRXhqau0nBPu_l01Qw8VytnlgFHpZGglhqjl8VYLank-ir7cACZ8AxenJ-fHZ1UelFB50cpl1bDEorXaRm9EaIW3RqObjgzVgEvYu9RIT4FCy4LiSMFlaKNi1gejBaaib2GnH_r4HspgdR1isEEp_A8PTqqkQq2dq7k1VhbwZSW1zmcUcRpm8afDbIJE3G2IuIDDNfHVBJ7xONmMxL8mIcTr8cFw_bPLC6hruDTWiGQsMqacNjZ5za1EW-IpBl3AwUp5XV6GN92D0RTwef0aFxApxPZxuJ1olKi5QD7eTbpec0LIP3SOWEC7ZQVbrG6_6S9_jSDdmCkS9v-H_7O1Dy8YNcmgM2TsAHaW17fxI0Y5S_dpNOV7ewn_ug
  priority: 102
  providerName: ProQuest
Title Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering
URI https://www.ncbi.nlm.nih.gov/pubmed/34821690
https://www.proquest.com/docview/2602083055
https://www.proquest.com/docview/2602640347
https://pubmed.ncbi.nlm.nih.gov/PMC8622600
https://doaj.org/article/1359a94f9a6746b89afc83a54e83fed8
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0gvgifntajwh9EkKT_cruo1euFOGKSAv3Fma_sCK5olfon-9Mkh45Kfjia3YSJjOz_GZ2Z38LcOQ9-pzRlsH5xEdyTOkwyNLoGOrM7CuJd3RX5-bsUn1Z6_Xkqi_uCRvogQfDHddSO3QqOzSNMt46zMFK1PQNmVPsj_kS5k2KqX51RSpCNjEcyJNU1x__CDFawrqabzyfQFDP1H9fevl3l-QEdk6fwdMxXyw-D3o-hwepewGPV-OO-EtYLW_pNV5-537SYsWM-7flgrApFourDeWjQ4gVlJwWJ3vNp8VFb_RiQkn4Ci5PlxcnZ-V4RUIZVKO3ZS2ySIgWU3AqNiqgswTQSZADaPIGn2sdOEVoRDSSJKSOTTICQ3RWURH6Gg66TZfeQhHRVjFFjIYMHWT02mQTK-t9JdGhnsGnO6u1YeQP52ssfrZUR7CJ24mJZ3C0E74eaDPuF1uw-XcizHXdP6AIaMcIaP8VATM4vHNeO07A3y2VaYKyy0qT3h93wzR12CHYpc3NIGNUJRXp8Wbw9U4T5vzhHcQZNHtRsKfq_kh39b2n56YakVn_3_2Pf3sPTwQ30RBYCnEIB9tfN-kDZUFbP4eHzbqZw6PF8vzrt3kf_n8A1bILMA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIuFW8CBYJULkhREzt27ANCbGm1pd2ettLegl-Boiop7VaUP8VvZCaP7S6quPWaTKLRzNjf2B5_A7BlrbFVZVTitA10JUcm2jieSOFdVhH7SqAT3cmRHB_nX2ZitgZ_hrswVFY5zIntRO0bR3vk25h3M0wXUiE-nv1MqGsUna4OLTS6sDgIv3_hku3iw_5n9O87xvZ2pzvjpO8qkLi8EPMkYxULxigTnM59kTujFWJaYKgzxruzVSYcoWrBvOQowYUvgmTGea1yQUQHOOXfQeBNabFXzIrrPR2eI56y7hog5zrd_uG8V4iwGfVZXwK-tj_ATUntv7WZS2C39wA2-iw1_tSF1UNYC_UjuDvpz-Efw2T3Cj-jTX-qYo0nxPN_lYwQEX08OmkwC-4CO8aUON5ZKXmNp62r4yUixCdwfCsmfArrdVOH5xB7o1IfvPFS4n-4t0JW0qfK2pQbbUQE7werla5nLafmGaclrl7IxOWSiSPYWgifdWQdN4uNyPwLEWLYbh8059_KfsCWGRfa6LzSBhWTVmlTOcWNwNjlVfAqgs3BeWU_7C_K6yCN4O3iNQ5YcoipQ3PZycg85Tnq8azz9UITYhqic8sIipUoWFF19U198r0lBceVKfUaePF_td7AvfF0clge7h8dvIT7jAp0EIgZ24T1-flleIUZ1ty-bsM6hq-3PY7-AmvZPNo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrVRxQbwJLRCkckGKNrFjxz4gxLa7aim7qlAr9Rb8hCKU9LEV5a_x65jJY7uLKm69xpNoNA_PODP-hpBtY7QJQcvEKuPxSo5IlLYsEdzZLCD6iseK7nQm9o7zTyf8ZI386e_CYFtlvyc2G7WrLf4jH0LeTSFdSDkfhq4t4nB38uHsPMEJUlhp7cdptCZy4H__guPb5fv9XdD1W0on46OdvaSbMJDYvODzJKOBeq2l9lblrsitVhLim6fAP9i-NSHjFiNsQZ1gQMG4K7yg2jolc46gB7D9rxd4KhqQ9dF4dvjl5g8PyyG60vZSIGMqHf6wzkmItxlOXV8Kg820gNtS3H87NZdC3-QBud_lrPHH1sgekjVfPSIb064q_5hMx9fwGpYAsKc1niLq_3Uygvjo4tFpDTlxa-YxJMjxzkoDbHzUKD5egkV8Qo7vRIhPyaCqK_-cxE7L1HmnnRDwHeYMF0G4VBqTMq00j8i7Xmql7TDMcZTGzxLOMijicknEEdleEJ-10B23k41Q_AsSxNtuHtQX38rOfcuMcaVVHpQGxoSRSgcrmeZgySx4JyOy1Suv7DaBy_LGZCPyZrEM7osK0ZWvr1oakacsBz6etbpecIK4Q1jFjEixYgUrrK6uVKffG4hwOKfi5IEX_2frNdkAHyo_788ONsk9it06EJUp3SKD-cWVfwnp1ty86uw6Jl_v2pX-Ak-cQnU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+Matrix-Based+Biomaterials+for+Cardiovascular+Tissue+Engineering&rft.jtitle=Journal+of+cardiovascular+development+and+disease&rft.au=Khanna%2C+Astha&rft.au=Zamani%2C+Maedeh&rft.au=Huang%2C+Ngan+F.&rft.date=2021-10-22&rft.pub=MDPI&rft.eissn=2308-3425&rft.volume=8&rft.issue=11&rft_id=info:doi/10.3390%2Fjcdd8110137&rft_id=info%3Apmid%2F34821690&rft.externalDocID=PMC8622600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2308-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2308-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2308-3425&client=summon