Contrasting strategies used by lichen microalgae to cope with desiccation-rehydration stress revealed by metabolite profiling and cell wall analysis
Summary Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen‐forming microalgae, Trebouxia sp. TR9 (TR9), isol...
Saved in:
Published in | Environmental microbiology Vol. 18; no. 5; pp. 1546 - 1560 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.05.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen‐forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation‐rehydration cycles), and Coccomyxa solorina‐saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%–30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation–rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose‐family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation–rehydration stress in correspondence with the water regime of their respective habitats. |
---|---|
AbstractList | Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats.Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats. Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen‐forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation‐rehydration cycles), and Coccomyxa solorina‐saccatae ( Csol ), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%–30% RH and then rehydrated. Under these conditions, RWC and ψ w decreased faster and simultaneously during dehydration in Cso l, whereas TR9 maintained its ψ w until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation–rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose‐family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol , indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation–rehydration stress in correspondence with the water regime of their respective habitats. Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats. Summary Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats. Summary Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen‐forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation‐rehydration cycles), and Coccomyxa solorina‐saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%–30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation–rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose‐family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation–rehydration stress in correspondence with the water regime of their respective habitats. Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and psi sub(w) decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its psi sub(w) until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats. |
Author | del Campo, Eva M. Centeno, Danilo C. Hell, Aline F. Braga, Marcia R. Casano, Leonardo M. |
Author_xml | – sequence: 1 givenname: Danilo C. surname: Centeno fullname: Centeno, Danilo C. organization: Centre of Natural Sciences and Humanities, Federal University of ABC, 09606-070, São Bernardo do Campo, SP, Brazil – sequence: 2 givenname: Aline F. surname: Hell fullname: Hell, Aline F. organization: Department of Plant Physiology and Biochemistry, Institute of Botany, SP, 04301-912, São Paulo, Brazil – sequence: 3 givenname: Marcia R. surname: Braga fullname: Braga, Marcia R. organization: Department of Plant Physiology and Biochemistry, Institute of Botany, SP, 04301-912, São Paulo, Brazil – sequence: 4 givenname: Eva M. surname: del Campo fullname: del Campo, Eva M. organization: Department of Life Sciences, University of Alcalá, Alcalá de Henares (Madrid), 28805-, Spain – sequence: 5 givenname: Leonardo M. surname: Casano fullname: Casano, Leonardo M. email: leonardo.casano@uah.es organization: Department of Life Sciences, University of Alcalá, Alcalá de Henares (Madrid), 28805-, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26914009$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhSNURB-wZocssWET6lfieIlGpS0qsOBRdpbt3My4eJLB9jCd_8EPxpnXohIqXtjX1neOLd9zWhz1Qw9F8ZLgtySPc8JrWlJJ85ZRLp8UJ4eTo0NN6HFxGuMdxkQwgZ8Vx7SWhGMsT4o_k6FPQcfk-imKuUowdRDRMkKLzBp5Z2fQo7mzYdB-qgGlAdlhAWjl0gy1EJ21OrmhLwPM1m3Y1KMTxIgC_Abtt05zSNoM3iVAizB0zo836r5FFrxHK50n3Wu_ji4-L5522kd4sVvPim_vL75Orsqbz5fXk3c3peWikiUzNeddg6uGti0YbDoqLa50U5vWgIEGKGZGcKGZNYQwK5imXWOENkywumJnxZutb37QryXEpOYujs_RPQzLqEhDK05o3eDHUSE5l4Kz_3AVTSUYkYJk9PUD9G5YhvwLG4pXkgkqM_VqRy3NHFq1CG6uw1rtu5iBagvkJsUYoFPWpU0jckOdVwSrMS1qzIMas6E2acm68we6vfW_FbubVs7D-jFcXXy83uvKrc7FBPcHnQ4_VZ0zWanbT5fqw4-G3n7_kjfsL5kN4CI |
CitedBy_id | crossref_primary_10_1038_s41598_019_44700_7 crossref_primary_10_1093_pcp_pcae143 crossref_primary_10_1007_s00248_021_01685_z crossref_primary_10_1142_S0218339021400052 crossref_primary_10_3389_fmicb_2021_623839 crossref_primary_10_1016_j_flora_2021_151953 crossref_primary_10_1639_0007_2745_119_4_446 crossref_primary_10_1007_s00248_023_02213_x crossref_primary_10_1111_jpy_12928 crossref_primary_10_1007_s11157_021_09595_9 crossref_primary_10_1111_mec_14764 crossref_primary_10_1007_s00248_021_01701_2 crossref_primary_10_1016_j_algal_2021_102462 crossref_primary_10_1016_j_algal_2024_103744 crossref_primary_10_1007_s00425_017_2814_5 crossref_primary_10_1016_j_algal_2020_102062 crossref_primary_10_1016_j_algal_2017_04_008 crossref_primary_10_1093_pcp_pcz103 crossref_primary_10_1016_j_envexpbot_2021_104397 crossref_primary_10_1186_s12870_021_02975_x crossref_primary_10_3390_microorganisms10050946 crossref_primary_10_1007_s40415_018_0442_3 crossref_primary_10_1093_plphys_kiad384 crossref_primary_10_1111_1462_2920_15043 crossref_primary_10_3390_plants10040807 crossref_primary_10_1016_j_algal_2021_102332 crossref_primary_10_1093_femsle_fnaa023 crossref_primary_10_3389_fpls_2017_00865 crossref_primary_10_1093_aob_mcz149 crossref_primary_10_1093_gbe_evab047 crossref_primary_10_1016_j_plaphy_2018_06_004 crossref_primary_10_1007_s13225_017_0386_0 crossref_primary_10_1007_s00248_020_01604_8 crossref_primary_10_1007_s13199_024_00982_8 crossref_primary_10_1007_s13199_024_00985_5 crossref_primary_10_1128_AEM_01619_17 crossref_primary_10_3389_fpls_2019_01356 crossref_primary_10_3390_microorganisms10122444 crossref_primary_10_1016_j_envexpbot_2024_106007 crossref_primary_10_1016_j_flora_2020_151604 crossref_primary_10_1093_aob_mcz181 |
Cites_doi | 10.1017/S0024282986000075 10.1016/j.neuint.2005.10.010 10.1093/glycob/cwr144 10.1006/lich.1999.0215 10.1111/j.1365-2818.2008.02036.x 10.1111/j.1529-8817.2011.00979.x 10.1016/j.jplph.2007.09.006 10.3389/fpls.2012.00082 10.1007/s11120-015-0196-8 10.1080/11263504.2011.601771 10.1007/BF00422045 10.1016/S1360-1385(01)02052-0 10.1104/pp.108.122465 10.1093/jxb/erm056 10.1104/pp.121.1.45 10.1111/nph.13515 10.1007/s00018-012-1155-6 10.1111/j.1399-3054.2010.01417.x 10.1016/j.femsle.2005.01.040 10.1016/j.plaphy.2013.07.005 10.1071/FP12321 10.1016/j.etap.2015.02.006 10.1093/aob/mcl246 10.1016/j.ijbiomac.2008.02.002 10.3389/fpls.2014.00096 10.1104/pp.113.232942 10.1111/tpj.12008 10.1017/CBO9780511790478.009 10.1007/s00248-011-9924-6 10.1093/mp/sss155 10.3389/fpls.2013.00482 10.1139/b81-322 10.1111/j.1574-6976.2009.00183.x 10.31939/vieraea.2013.41.23 10.1111/pce.12065 10.3390/plants4010112 10.1007/s00425-009-1019-y 10.1111/j.1462-2920.2010.02386.x 10.1111/j.1399-3054.2006.00777.x 10.1111/j.1399-3054.2008.01134.x 10.1007/s00425-012-1785-9 10.1016/j.plantsci.2015.04.003 10.1093/aob/mcq206 10.1111/j.1438-8677.2009.00249.x 10.1007/s00248-014-0524-0 10.3389/fpls.2013.00327 10.1021/ac60111a017 10.1016/j.tplants.2008.11.007 10.1016/j.jplph.2012.07.005 10.1111/j.1365-313X.2008.03673.x 10.1590/S1677-04202006000400005 10.1016/0003-2697(76)90527-3 10.1016/0003-2697(91)90372-Z 10.1016/0003-2697(69)90383-2 10.1016/j.fbr.2009.10.001 10.1111/j.1438-8677.2010.00436.x 10.1104/pp.106.086694 10.1242/jeb.02179 10.1023/A:1007151625527 10.1093/jexbot/52.358.961 10.3390/ijms14047405 10.1016/j.phytochem.2010.04.004 10.1016/0003-2697(90)90302-P 10.1016/j.carres.2005.03.022 10.1016/j.ijbiomac.2007.02.006 10.1111/j.1574-6941.2008.00568.x 10.1111/pce.12042 10.1007/s00709-009-0060-9 10.1007/BF01281320 10.1104/pp.51.5.914 10.1017/S0960258599000033 10.1016/S0031-9422(00)83826-1 |
ContentType | Journal Article |
Copyright | 2016 Society for Applied Microbiology and John Wiley & Sons Ltd 2016 Society for Applied Microbiology and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd – notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
DOI | 10.1111/1462-2920.13249 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 1560 |
ExternalDocumentID | 4036436421 26914009 10_1111_1462_2920_13249 EMI13249 ark_67375_WNG_JX82WVS5_W |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4759-3b644f80582ddeb0bf29c05a86bdbebe8e203b747a3cb113c73a2f8b7ab373653 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 1462-2920 |
IngestDate | Fri Jul 11 18:25:04 EDT 2025 Fri Jul 11 01:43:19 EDT 2025 Thu Jul 10 18:13:39 EDT 2025 Sun Jul 13 04:33:07 EDT 2025 Wed Feb 19 02:43:15 EST 2025 Thu Apr 24 23:05:41 EDT 2025 Tue Jul 01 04:00:36 EDT 2025 Wed Jan 22 16:24:49 EST 2025 Wed Oct 30 09:51:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2016 Society for Applied Microbiology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4759-3b644f80582ddeb0bf29c05a86bdbebe8e203b747a3cb113c73a2f8b7ab373653 |
Notes | istex:5B8FA8A475AD127AC59ABCD031DABB1320405635 ArticleID:EMI13249 ark:/67375/WNG-JX82WVS5-W ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26914009 |
PQID | 1784593729 |
PQPubID | 1066360 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1825412680 proquest_miscellaneous_1794497435 proquest_miscellaneous_1785731971 proquest_journals_1784593729 pubmed_primary_26914009 crossref_citationtrail_10_1111_1462_2920_13249 crossref_primary_10_1111_1462_2920_13249 wiley_primary_10_1111_1462_2920_13249_EMI13249 istex_primary_ark_67375_WNG_JX82WVS5_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05 May 2016 2016-05-00 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Moore, J.P., Nguema-Ona, E.E., Vicré-Gibouin, M., Sørensen, I., Willats, W.G., Driouich, A., and Farrant, J.M. (2013) Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta 237: 739-754. Maksimova, I.V., Bratkovskaia, L.B., and Plekhanov S.E. (2004) Extracellular carbohydrates and polysaccharides of the algae Chlorella pyrenoidosa Chick S-39. Biol Bull 312: 217-224. Farrant, J.M., Lehner, A., Cooper, K., and Wiswedel, S. (2009) Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant J 57: 65-79. Gribaa, A., Dardelle, F., Lehner, A., Rihouey, C., Burel, C., Ferchini, A., et al. (2013) Effect of water deficit on cell wall of the date palm (Phoenix dactylifera "deglet nour", Arecales) fruit development. Plant Cell Environ 36: 1056-1070. Jay, G.D., Culp, D.J., and Jahnke, M.R. (1990) Silver staining of extensively glycosylated proteins on sodium dodecyl sulfate-polyacrylamide gels: enhancement by carbohydrate-binding dyes. Anal Biochem 184: 324-330. Karsten, U., and Holzinger, A. (2012) Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol 63: 51-63. Whittaker, A., Bochicchio, A., Vazzana, C., Lindsey, G., and Farrant J. (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 56: 961-969. Fos, S., Deltoro, V.I., Calatayud, A., and Barreno E. (1999) Changes in water economy in relation to anatomical and morphological characteristics during thallus development in Parmelia acetabulum. Lichenologist 31: 375-387. Moore, J.P., Vicré-Gibouin M, Farrant, J.M., and Driouich, A. (2008) Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant 134: 237-245. Alpert, P. (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209: 1575-1584. Grube, M., and Berg, G. (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23: 72-85. Hoekstra, F.A., Golovina, E.A., and Buitink, J. (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6: 431-438. Feige, G.B., and Kremer, B.P. (1980) Unusual carbohydrate pattern in Trentepohlia species. Phytochem 19: 1844-1845. Cordeiro, L.M., Carbonero, E.R., Sassaki, G.L., Reis, R.A., Stocker-Worgotter, E., Gorin, P.A., and Iacomini, M. (2005) A fungus-type beta-galactofuranan in the cultivated Trebouxia photobiont of the lichen Ramalina gracilis. FEMS Microbiol Lett 244: 193-198. Gaff, D.F., and Oliver, M. (2013) The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct Plant Biol 40: 315-328. del Hoyo, A., Álvarez, R., del Campo, E.M., Gasulla, F., Barreno, E., and L.M. Casano (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann Bot 107: 109-118. Peters, S., Mundree, S.G., Thomson, J.A., Farrant, J.M., and Keller, F. (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58: 1947-1956. Gustavs, L., Görs, M., and Karsten, U. (2011) Polyols as chemotaxonomic markers to differentiate between aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). J Phycol 47: 533-537. Gechev, T.S., Benina, M., Obata, T., Tohge, T., Sujeeth, N., Minkov, I., et al. (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol Life Sci 70: 689-709. Cordeiro, L.M., Sassaki, G.L., and Iacomini, M. (2007) First report on polysaccharides of Asterochloris and their potential role in the lichen symbiosis. Int J Biol Macromol 41:193-197. Gasulla, F., de Nova, P.G., Esteban-Carrasco, A., Zapata, J.M., Barreno, E., and Guéra, A. (2009) Dehydration rate and time of desiccation affect recovery of the lichen alga Trebouxia erici: alternative and classical protective mechanisms. Planta 231: 195-208. Nishizawa, A., Yabuta, Y., and Shigeoka, S. (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147: 1251-1263. Filisetti-Cozzi, T.M., and Carpita, N.C. (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197: 157-162. Leucci, M.R., Lenucci, M.S., Piro, G., and Dalessandro, G. (2008) Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. J Plant Physiol 165: 1168-1180. Honegger, R., Peter, M., and Seherrer, S. (1996) Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma 190: 221-232. Domozych, D.S., Ciancia, M., Fangel, J.U., Mikkelsen, M.D., Ulvskov, P., and Willats, W.G. (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3: 82. Tefsen, B., Ram, A.F., van Die, I., and Routier, F.H. (2012) Galactofuranose in eukaryotes: aspects of biosynthesis and functional impact. Glycobiol 22: 456-469. Zacharius, R.M., Zell, T.E., Morrison, J.H., and Woodlock, J.J. (1969) Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem 30: 148-152. Molins, A., García-Breijo F.J., Reig-Armiñana, J., del Campo, E.M., Casano, L.M., and Barreno, E. (2013) Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen Parmotrema pseudotinctorum. VIERAEA 41: 349-370. Shen, B., Hohmann, S., Jensen, R.G., and Bohnert, H. (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121: 45-52. Yobi, A., Wone, B.W.M., Xu, W., Alexander, D.C., Guo, L., Ryals, J.A., et al. (2013) Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol Plant 6: 369-385. Casano, L.M., del Campo, E.M., Garcia-Breijo, F.J., Reig-Arminana, J., Gasulla, F., del Hoyo, A., et al. (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13: 806-818. Krog, H., and Swinscow, T.D.V. (1986) Solorina simensis and S. saccata. Lichenologist 18: 57-62. Moore, J.P., Le, N.T., Brandt, W.F., Driouich, A., and Farrant, J.M. (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plants Sci 14: 110-116. Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., and Tamagnini, P. (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33: 917-941. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. Yobi, A., Bernard, W.M., Wone, B.W.M., Xu, W., Alexander, D.C., Guo, L., et al. (2012) Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. Plant J 72: 983-999. Lüttge, U., and Büdel, B. (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chrorophyta) on tree bark. Plant Biol 123: 437-444. Casano, L.M., Braga, M.R., Álvarez, R., del Campo, E.M., and Barreno, E. (2015) Differences in the cell walls and extracellular polymers of the two Trebouxia microalgae coexisting in the lichen Ramalina farinacea are consistent with their distinct capacity to immobilize Pb. Plant Sci 236: 195-204. Suguiyama, V.F., Silva, E.A., Meirelles, S.T., Centeno, D.C., and Braga, M.R. (2014) Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time-dependent responses during desiccation and recovering. Front Plant Sci 5: 96. Cordeiro, L.M., de Oliveira, S.M., Buchi, D.F., and Iacomini, M. (2008) Galactofuranose-rich heteropolysaccharide from Trebouxia sp., photobiont of the lichen Ramalina gracilis and its effect on macrophage activation. Int J Biol Macromol 42: 436-440. Zhang, J., Liu, H., Zhao, Q.-H., Du, Y.-X., Chang, Q.-X., and Lu, Q.-L. (2011) Effects of ATP production on silicon uptake by roots of rice seedlings. Plant Biosyst 145: 866-872. Álvarez, R., del Hoyo, A., Garcia-Breijo, F., Reig-Arminana, J., del Campo, E.M., Guéra, A., et al. (2012) Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea. J Plant Physiol 169: 1797-1806. Kosugi, M., Shizuma, R., Moriyama, Y., Koike, H., Fukunaga, Y., Takeuchi, A., et al. (2014) Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi. Plant Physiol 166: 337-348. Álvarez, R., del Hoyo, A., Díaz-Rodríguez, C., Coello, A.J., del Campo, E.M., Barreno, E., et al. (2015) Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae. Microb Ecol 69: 698-709. Jensen, M., Chakir, S., and Feige, G.B. (1999) Osmotic and atmospheric dehydration effects in lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica 37: 393-404. Guéra, A., Gasulla, F., and Barreno, E. (2015) Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. Photosynth Res (DOI 10.1007/s11120-015-0196-8, Epub ahead of print). Carvalho, C.P., Hayashi, A.H., Bra 1991; 197 2015; 39 1973; 51 2013; 4 1969; 30 1996; 190 2009; 231 1999; 121 2013; 71 2013; 70 2011; 13 2008; 147 2012; 169 2013; 6 1990; 184 2012; 72 2009; 14 2009; 57 2014; 5 2013; 14 2006; 209 2005; 340 1976; 72 2013; 237 2008; 66 1962; 42 2014; 166 2001; 56 2008; 231 2012; 22 2012; 63 2010; 71 2009; 23 2007; 129 2015; 4 2013; 40 2010; 123 2013; 41 2008 2010; 243 2006; 18 1986; 18 2015; 208 2008; 165 2007; 99 2007; 58 1999; 9 2009; 33 2015; 69 2012; 3 2013; 36 2011; 107 1980; 19 2004; 312 2015; 236 2001; 6 2005; 244 1999; 37 2006; 48 2006; 142 1981; 59 1999; 31 2015 1956; 28 2007; 41 2008; 42 2011; 47 2008; 134 2011; 145 2011; 142 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Molins A. (e_1_2_6_57_1) 2013; 41 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Maksimova I.V. (e_1_2_6_55_1) 2004; 312 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 Fos S. (e_1_2_6_28_1) 1999; 31 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Whittaker, A., Bochicchio, A., Vazzana, C., Lindsey, G., and Farrant J. (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 56: 961-969. – reference: Kosugi, M., Shizuma, R., Moriyama, Y., Koike, H., Fukunaga, Y., Takeuchi, A., et al. (2014) Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi. Plant Physiol 166: 337-348. – reference: Dinakar, C., and Bartels, D. (2013) Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome, and metabolome analysis. Front Plant Sci 4: 482. – reference: Zhang, J., Liu, H., Zhao, Q.-H., Du, Y.-X., Chang, Q.-X., and Lu, Q.-L. (2011) Effects of ATP production on silicon uptake by roots of rice seedlings. Plant Biosyst 145: 866-872. – reference: Cordeiro, L.M., Carbonero, E.R., Sassaki, G.L., Reis, R.A., Stocker-Worgotter, E., Gorin, P.A., and Iacomini, M. (2005) A fungus-type beta-galactofuranan in the cultivated Trebouxia photobiont of the lichen Ramalina gracilis. FEMS Microbiol Lett 244: 193-198. – reference: Fait, A., Angelovici, R., Less, H., Ohad, I., Urbanczyk-Wochniak, E., Fernie, A.R., and Galili, G. (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142: 839-854. – reference: Bold, H.C., and Parker, B.C. (1962) Some supplementary attributes in the classification of Chlorococcum species. Arch Microbiol 42: 267-288. – reference: Casano, L.M., del Campo, E.M., Garcia-Breijo, F.J., Reig-Arminana, J., Gasulla, F., del Hoyo, A., et al. (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13: 806-818. – reference: Lu, Z., Nie, G., Beltonc, P.S., Tang, H., and Zhao, B. (2006) Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 48: 263-274. – reference: Casano, L.M., Braga, M.R., Álvarez, R., del Campo, E.M., and Barreno, E. (2015) Differences in the cell walls and extracellular polymers of the two Trebouxia microalgae coexisting in the lichen Ramalina farinacea are consistent with their distinct capacity to immobilize Pb. Plant Sci 236: 195-204. – reference: Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., and Tamagnini, P. (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33: 917-941. – reference: Proctor, M.C.F., Ligrone, R., and Duckett, J.G. (2007) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-strucutural changes during desiccation and recovery. Ann Bot 99: 75-93. – reference: Filisetti-Cozzi, T.M., and Carpita, N.C. (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197: 157-162. – reference: Moore, J.P., Vicré-Gibouin M, Farrant, J.M., and Driouich, A. (2008) Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant 134: 237-245. – reference: Carvalho, C.P., Hayashi, A.H., Braga, M.R., and Nievola, C.C. (2013) Biochemical and anatomical responses related to the in vitro survival of the tropical bromeliad Nidularium minutum to low temperatures. Plant Physiol Biochem 71: 144-154. – reference: Moore, J.P., Nguema-Ona, E.E., Vicré-Gibouin, M., Sørensen, I., Willats, W.G., Driouich, A., and Farrant, J.M. (2013) Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta 237: 739-754. – reference: Cordeiro, L.M., Sassaki, G.L., and Iacomini, M. (2007) First report on polysaccharides of Asterochloris and their potential role in the lichen symbiosis. Int J Biol Macromol 41:193-197. – reference: Guéra, A., Gasulla, F., and Barreno, E. (2015) Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. Photosynth Res (DOI 10.1007/s11120-015-0196-8, Epub ahead of print). – reference: Feige, G.B., and Kremer, B.P. (1980) Unusual carbohydrate pattern in Trentepohlia species. Phytochem 19: 1844-1845. – reference: Cordeiro, L.M., de Oliveira, S.M., Buchi, D.F., and Iacomini, M. (2008) Galactofuranose-rich heteropolysaccharide from Trebouxia sp., photobiont of the lichen Ramalina gracilis and its effect on macrophage activation. Int J Biol Macromol 42: 436-440. – reference: Hoekstra, F.A., Golovina, E.A., and Buitink, J. (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6: 431-438. – reference: Gasulla, F., Jain, R., Barreno, E., Guéra, A., Balbuena, T.S., Thelen, J.J., and Oliver, M.J. (2013) The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. Plant Cell Environ 36: 1363-1378. – reference: Karsten, U., and Holzinger, A. (2012) Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol 63: 51-63. – reference: Grube, M., and Berg, G. (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23: 72-85. – reference: Maksimova, I.V., Bratkovskaia, L.B., and Plekhanov S.E. (2004) Extracellular carbohydrates and polysaccharides of the algae Chlorella pyrenoidosa Chick S-39. Biol Bull 312: 217-224. – reference: del Hoyo, A., Álvarez, R., del Campo, E.M., Gasulla, F., Barreno, E., and L.M. Casano (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann Bot 107: 109-118. – reference: Zacharius, R.M., Zell, T.E., Morrison, J.H., and Woodlock, J.J. (1969) Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem 30: 148-152. – reference: Gechev, T.S., Benina, M., Obata, T., Tohge, T., Sujeeth, N., Minkov, I., et al. (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol Life Sci 70: 689-709. – reference: Peters, S., Mundree, S.G., Thomson, J.A., Farrant, J.M., and Keller, F. (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58: 1947-1956. – reference: Cordeiro, L.M., Sassaki, G.L., Gorin, P.A., and Iacomini, M. (2010) O-Methylated mannogalactan from the microalga Coccomyxa mucigena, symbiotic partner of the lichenized fungus Peltigera aphthosa. Phytochemistry 71: 1162-1167. – reference: Le Gall, H., Philippe, F., Domon, J.-M., Gillet, F., Pelloux, J., and Rayon, C. (2015) Cell wall metabolism in response to abiotic stress. Plants 4: 112-166. – reference: Honegger, R., Peter, M., and Seherrer, S. (1996) Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma 190: 221-232. – reference: Gaff, D.F., and Oliver, M. (2013) The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct Plant Biol 40: 315-328. – reference: Heber, U., Soni, V., and Strasser, R J. (2011) Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. Physiol Plant 142: 65-78. – reference: Lüttge, U., and Büdel, B. (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chrorophyta) on tree bark. Plant Biol 123: 437-444. – reference: Krog, H., and Swinscow, T.D.V. (1986) Solorina simensis and S. saccata. Lichenologist 18: 57-62. – reference: Gribaa, A., Dardelle, F., Lehner, A., Rihouey, C., Burel, C., Ferchini, A., et al. (2013) Effect of water deficit on cell wall of the date palm (Phoenix dactylifera "deglet nour", Arecales) fruit development. Plant Cell Environ 36: 1056-1070. – reference: Jardim-Messeder, D., Caverzan, A., Rauber, R., Ferreira, E.S., Margis-Pinheiro, M., and Galina, A. (2015) Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytol 208: 776-789. – reference: Tefsen, B., Ram, A.F., van Die, I., and Routier, F.H. (2012) Galactofuranose in eukaryotes: aspects of biosynthesis and functional impact. Glycobiol 22: 456-469. – reference: Shen, B., Hohmann, S., Jensen, R.G., and Bohnert, H. (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121: 45-52. – reference: Yobi, A., Bernard, W.M., Wone, B.W.M., Xu, W., Alexander, D.C., Guo, L., et al. (2012) Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. Plant J 72: 983-999. – reference: Pammenter, N.W., and Berjak, P. (1999) A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci Res 9: 13-37. – reference: Álvarez, R., del Hoyo, A., Díaz-Rodríguez, C., Coello, A.J., del Campo, E.M., Barreno, E., et al. (2015) Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae. Microb Ecol 69: 698-709. – reference: Zagorchev, L., Seal, C.E., Kranner, I., and Odjakova, M. (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14: 7405-7432. – reference: Carbonero, E.R., Cordeiro, L.M.C., Mellinger, C.G., Sassaki, G.L., Stocker-Wörgötter, E., Gorin, P.A.J., and Iacomini M. (2005) Galactomannans with novel structures from the lichen Roccella decipiens Darb. Carbohydr Res 340: 1699-1705. – reference: Álvarez, R., del Hoyo, A., Garcia-Breijo, F., Reig-Arminana, J., del Campo, E.M., Guéra, A., et al. (2012) Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea. J Plant Physiol 169: 1797-1806. – reference: Yobi, A., Wone, B.W.M., Xu, W., Alexander, D.C., Guo, L., Ryals, J.A., et al. (2013) Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol Plant 6: 369-385. – reference: Fos, S., Deltoro, V.I., Calatayud, A., and Barreno E. (1999) Changes in water economy in relation to anatomical and morphological characteristics during thallus development in Parmelia acetabulum. Lichenologist 31: 375-387. – reference: Navrot, N., Rouhier, N., Gelhaye, E., and Jacquot, J.-P. (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129: 185-195. – reference: Nishizawa, A., Yabuta, Y., and Shigeoka, S. (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147: 1251-1263. – reference: Honegger, R., and Brunner, U. (1981) Sporopollenin in the cell walls of Coccomyxa and Myrmecia phycobionts of various lichens: an ultrastructural and chemical investigation. Can J Bot 59: 2713-2734. – reference: Domozych, D.S., Ciancia, M., Fangel, J.U., Mikkelsen, M.D., Ulvskov, P., and Willats, W.G. (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3: 82. – reference: Moore, J.P., Le, N.T., Brandt, W.F., Driouich, A., and Farrant, J.M. (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plants Sci 14: 110-116. – reference: Holzinger, A., and Karsten, U. (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms. Front Plant Sci 4: 327. – reference: Gustavs, L., Eggert, A., Michalik, D., and Karsten, U. (2010) Physiological and biochemical responses of aeroterrestrial green algae (Trebouxiophyceae) to osmotic and matric stress. Protoplasma 243: 3-14. – reference: Kang, N., Lee, J.-H., Lee, W.W., Ko, J.-Y., Kima, E.-A., Kimb, J.-S., et al. (2015) Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ Toxicol Pharmacol 39: 764-772. – reference: Jensen, M., Chakir, S., and Feige, G.B. (1999) Osmotic and atmospheric dehydration effects in lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica 37: 393-404. – reference: Djilianov, D., Ivanov, S., Moyankova, D., Miteva, L., Kirova, E., Alexieva, V., et al. (2011) Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii. Plant Biol 13: 767-776. – reference: DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. – reference: Borges, I.F., Barbedo, C.J., Richter, A., and Figueiredo-Ribeiro R.C.L. (2006) Variations in sugars and cyclitols during development and maturation of seeds of brazilwood (Caesalpinia echinata Lam., Leguminosae). Braz J Plant Physiol 18: 475-482. – reference: Gasulla, F., de Nova, P.G., Esteban-Carrasco, A., Zapata, J.M., Barreno, E., and Guéra, A. (2009) Dehydration rate and time of desiccation affect recovery of the lichen alga Trebouxia erici: alternative and classical protective mechanisms. Planta 231: 195-208. – reference: Suguiyama, V.F., Silva, E.A., Meirelles, S.T., Centeno, D.C., and Braga, M.R. (2014) Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time-dependent responses during desiccation and recovering. Front Plant Sci 5: 96. – reference: Molins, A., García-Breijo F.J., Reig-Armiñana, J., del Campo, E.M., Casano, L.M., and Barreno, E. (2013) Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen Parmotrema pseudotinctorum. VIERAEA 41: 349-370. – reference: Michel, B.E., and Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiol 51: 914-920. – reference: Knowles, E.J., and Castenholz, R.W. (2008) Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microb Ecol 66: 261-270. – reference: Alpert, P. (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209: 1575-1584. – reference: Farrant, J.M., Lehner, A., Cooper, K., and Wiswedel, S. (2009) Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant J 57: 65-79. – reference: Eder, M., and Lütz-Meindl, U. (2008) Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM. J Microsc 231: 201-214. – reference: Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. – reference: Gustavs, L., Görs, M., and Karsten, U. (2011) Polyols as chemotaxonomic markers to differentiate between aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). J Phycol 47: 533-537. – reference: Leucci, M.R., Lenucci, M.S., Piro, G., and Dalessandro, G. (2008) Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. J Plant Physiol 165: 1168-1180. – reference: Jay, G.D., Culp, D.J., and Jahnke, M.R. (1990) Silver staining of extensively glycosylated proteins on sodium dodecyl sulfate-polyacrylamide gels: enhancement by carbohydrate-binding dyes. Anal Biochem 184: 324-330. – volume: 197 start-page: 157 year: 1991 end-page: 162 article-title: Measurement of uronic acids without interference from neutral sugars publication-title: Anal Biochem – volume: 18 start-page: 475 year: 2006 end-page: 482 article-title: Variations in sugars and cyclitols during development and maturation of seeds of brazilwood (Caesalpinia echinata Lam., Leguminosae) publication-title: Braz J Plant Physiol – volume: 47 start-page: 533 year: 2011 end-page: 537 article-title: Polyols as chemotaxonomic markers to differentiate between aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta) publication-title: J Phycol – volume: 18 start-page: 57 year: 1986 end-page: 62 article-title: and publication-title: Lichenologist – volume: 39 start-page: 764 year: 2015 end-page: 772 article-title: Gallic acid isolated from sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect publication-title: Environ Toxicol Pharmacol – volume: 19 start-page: 1844 year: 1980 end-page: 1845 article-title: Unusual carbohydrate pattern in species publication-title: Phytochem – volume: 70 start-page: 689 year: 2013 end-page: 709 article-title: Molecular mechanisms of desiccation tolerance in the resurrection glacial relic publication-title: Cell Mol Life Sci – volume: 6 start-page: 369 year: 2013 end-page: 385 article-title: Metabolomic profiling in at various hydration states provides new insights into the mechanistic basis of desiccation tolerance publication-title: Mol Plant – volume: 14 start-page: 7405 year: 2013 end-page: 7432 article-title: A central role for thiols in plant tolerance to abiotic stress publication-title: Int J Mol Sci – volume: 42 start-page: 267 year: 1962 end-page: 288 article-title: Some supplementary attributes in the classification of species publication-title: Arch Microbiol – volume: 244 start-page: 193 year: 2005 end-page: 198 article-title: A fungus‐type beta‐galactofuranan in the cultivated photobiont of the lichen publication-title: FEMS Microbiol Lett – volume: 3 start-page: 82 year: 2012 article-title: The cell walls of green algae: a journey through evolution and diversity publication-title: Front Plant Sci – volume: 107 start-page: 109 year: 2011 end-page: 118 article-title: Oxidative stress induces distinct physiological responses in the two phycobionts of the lichen publication-title: Ann Bot – volume: 142 start-page: 65 year: 2011 end-page: 78 article-title: Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens publication-title: Physiol Plant – volume: 42 start-page: 436 year: 2008 end-page: 440 article-title: Galactofuranose‐rich heteropolysaccharide from sp., photobiont of the lichen and its effect on macrophage activation publication-title: Int J Biol Macromol – volume: 243 start-page: 3 year: 2010 end-page: 14 article-title: Physiological and biochemical responses of aeroterrestrial green algae (Trebouxiophyceae) to osmotic and matric stress publication-title: Protoplasma – volume: 190 start-page: 221 year: 1996 end-page: 232 article-title: Drought‐induced structural alterations at the mycobiont‐photobiont interface in a range of foliose macrolichens publication-title: Protoplasma – volume: 14 start-page: 110 year: 2009 end-page: 116 article-title: Towards a systems‐based understanding of plant desiccation tolerance publication-title: Trends Plants Sci – volume: 22 start-page: 456 year: 2012 end-page: 469 article-title: Galactofuranose in eukaryotes: aspects of biosynthesis and functional impact publication-title: Glycobiol – volume: 312 start-page: 217 year: 2004 end-page: 224 article-title: Extracellular carbohydrates and polysaccharides of the algae Chick S‐39 publication-title: Biol Bull – volume: 99 start-page: 75 year: 2007 end-page: 93 article-title: Desiccation tolerance in the moss : physiological and fine‐strucutural changes during desiccation and recovery publication-title: Ann Bot – start-page: 134 year: 2008 end-page: 151 – volume: 13 start-page: 806 year: 2011 end-page: 818 article-title: Two algae with different physiological performances are ever‐present in lichen thalli of . Coexistence versus competition? publication-title: Environ Microbiol – volume: 184 start-page: 324 year: 1990 end-page: 330 article-title: Silver staining of extensively glycosylated proteins on sodium dodecyl sulfate‐polyacrylamide gels: enhancement by carbohydrate‐binding dyes publication-title: Anal Biochem – volume: 123 start-page: 437 year: 2010 end-page: 444 article-title: Resurrection kinetics of photosynthesis in desiccation‐tolerant terrestrial green algae (Chrorophyta) on tree bark publication-title: Plant Biol – volume: 66 start-page: 261 year: 2008 end-page: 270 article-title: Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock‐inhabiting phototrophic microorganisms publication-title: FEMS Microb Ecol – volume: 121 start-page: 45 year: 1999 end-page: 52 article-title: Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast publication-title: Plant Physiol – volume: 231 start-page: 201 year: 2008 end-page: 214 article-title: Pectin‐like carbohydrates in the green alga characterized by cytochemical analysis and energy filtering TEM publication-title: J Microsc – volume: 236 start-page: 195 year: 2015 end-page: 204 article-title: Differences in the cell walls and extracellular polymers of the two microalgae coexisting in the lichen are consistent with their distinct capacity to immobilize Pb publication-title: Plant Sci – volume: 48 start-page: 263 year: 2006 end-page: 274 article-title: Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives publication-title: Neurochem Int – volume: 13 start-page: 767 year: 2011 end-page: 776 article-title: Sugar ratios, glutathione redox status and phenols in the resurrection species and the closely related non‐resurrection species publication-title: Plant Biol – volume: 209 start-page: 1575 year: 2006 end-page: 1584 article-title: Constraints of tolerance: why are desiccation‐tolerant organisms so small or rare? publication-title: J Exp Biol – volume: 134 start-page: 237 year: 2008 end-page: 245 article-title: Adaptations of higher plant cell walls to water loss: drought vs desiccation publication-title: Physiol Plant – volume: 69 start-page: 698 year: 2015 end-page: 709 article-title: Lichen rehydration in heavy metal‐polluted environments: Pb modulates the oxidative response of both thalli and its isolated microalgae publication-title: Microb Ecol – volume: 9 start-page: 13 year: 1999 end-page: 37 article-title: A review of recalcitrant seed physiology in relation to desiccation‐tolerance mechanisms publication-title: Seed Sci Res – volume: 63 start-page: 51 year: 2012 end-page: 63 article-title: Light, temperature, and desiccation effects on photosynthetic activity, and drought‐induced ultrastructural changes in the green alga (Streptophyta) from a high alpine soil crust publication-title: Microb Ecol – volume: 37 start-page: 393 year: 1999 end-page: 404 article-title: Osmotic and atmospheric dehydration effects in lichens , and : an study of the chlorophyll fluorescence induction publication-title: Photosynthetica – volume: 208 year: 2015 article-title: Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses publication-title: New Phytol – volume: 57 start-page: 65 year: 2009 end-page: 79 article-title: Desiccation tolerance in the vegetative tissues of the fern is seasonally regulated publication-title: Plant J – volume: 36 start-page: 1363 year: 2013 end-page: 1378 article-title: The response of (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach publication-title: Plant Cell Environ – volume: 169 start-page: 1797 year: 2012 end-page: 1806 article-title: Different strategies to achieve Pb‐tolerance by the two algae coexisting in the lichen publication-title: J Plant Physiol – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal Biochem – volume: 41 start-page: 193 year: 2007 end-page: 197 article-title: First report on polysaccharides of and their potential role in the lichen symbiosis publication-title: Int J Biol Macromol – volume: 41 start-page: 349 year: 2013 end-page: 370 article-title: Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen publication-title: VIERAEA – year: 2015 – volume: 36 start-page: 1056 year: 2013 end-page: 1070 article-title: Effect of water deficit on cell wall of the date palm ( “deglet nour”, Arecales) fruit development publication-title: Plant Cell Environ – volume: 4 start-page: 327 year: 2013 article-title: Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms publication-title: Front Plant Sci – volume: 340 start-page: 1699 year: 2005 end-page: 1705 article-title: Galactomannans with novel structures from the lichen Darb publication-title: Carbohydr Res – volume: 31 start-page: 375 year: 1999 end-page: 387 article-title: Changes in water economy in relation to anatomical and morphological characteristics during thallus development in publication-title: Lichenologist – volume: 142 start-page: 839 year: 2006 end-page: 854 article-title: Arabidopsis seed development and germination is associated with temporally distinct metabolic switches publication-title: Plant Physiol – volume: 147 start-page: 1251 year: 2008 end-page: 1263 article-title: Galactinol and raffinose constitute a novel function to protect plants from oxidative damage publication-title: Plant Physiol – volume: 6 start-page: 431 year: 2001 end-page: 438 article-title: Mechanisms of plant desiccation tolerance publication-title: Trends Plant Sci – volume: 4 start-page: 482 year: 2013 article-title: Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome, and metabolome analysis publication-title: Front Plant Sci – volume: 58 start-page: 1947 year: 2007 end-page: 1956 article-title: Protection mechanisms in the resurrection plant (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit publication-title: J Exp Bot – year: 2015 article-title: Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae publication-title: Photosynth Res – volume: 23 start-page: 72 year: 2009 end-page: 85 article-title: Microbial consortia of bacteria and fungi with focus on the lichen symbiosis publication-title: Fungal Biol Rev – volume: 30 start-page: 148 year: 1969 end-page: 152 article-title: Glycoprotein staining following electrophoresis on acrylamide gels publication-title: Anal Biochem – volume: 231 start-page: 195 year: 2009 end-page: 208 article-title: Dehydration rate and time of desiccation affect recovery of the lichen alga : alternative and classical protective mechanisms publication-title: Planta – volume: 165 start-page: 1168 year: 2008 end-page: 1180 article-title: Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance publication-title: J Plant Physiol – volume: 59 start-page: 2713 year: 1981 end-page: 2734 article-title: Sporopollenin in the cell walls of and phycobionts of various lichens: an ultrastructural and chemical investigation publication-title: Can J Bot – volume: 72 start-page: 983 year: 2012 end-page: 999 article-title: Comparative metabolic profiling between desiccation‐sensitive and desiccation‐tolerant species of reveals insights into the resurrection trait publication-title: Plant J – volume: 40 start-page: 315 year: 2013 end-page: 328 article-title: The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon publication-title: Funct Plant Biol – volume: 145 start-page: 866 year: 2011 end-page: 872 article-title: Effects of ATP production on silicon uptake by roots of rice seedlings publication-title: Plant Biosyst – volume: 71 start-page: 1162 year: 2010 end-page: 1167 article-title: ‐Methylated mannogalactan from the microalga , symbiotic partner of the lichenized fungus publication-title: Phytochemistry – volume: 166 start-page: 337 year: 2014 end-page: 348 article-title: Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi publication-title: Plant Physiol – volume: 28 start-page: 350 year: 1956 end-page: 356 article-title: Colorimetric method for determination of sugars and related substances publication-title: Anal Chem – volume: 5 start-page: 96 year: 2014 article-title: Leaf metabolite profile of the Brazilian resurrection plant Hook. (Velloziaceae) shows two time‐dependent responses during desiccation and recovering publication-title: Front Plant Sci – volume: 4 start-page: 112 year: 2015 end-page: 166 article-title: Cell wall metabolism in response to abiotic stress publication-title: Plants – volume: 33 start-page: 917 year: 2009 end-page: 941 article-title: Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly publication-title: FEMS Microbiol Rev – volume: 51 start-page: 914 year: 1973 end-page: 920 article-title: The osmotic potential of polyethylene glycol 6000 publication-title: Plant Physiol – volume: 71 start-page: 144 year: 2013 end-page: 154 article-title: Biochemical and anatomical responses related to the in vitro survival of the tropical bromeliad to low temperatures publication-title: Plant Physiol Biochem – volume: 237 start-page: 739 year: 2013 end-page: 754 article-title: Arabinose‐rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation publication-title: Planta – volume: 129 start-page: 185 year: 2007 end-page: 195 article-title: Reactive oxygen species generation and antioxidant systems in plant mitochondria publication-title: Physiol Plant – volume: 56 start-page: 961 year: 2001 end-page: 969 article-title: Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation‐tolerant species and publication-title: J Exp Bot – ident: e_1_2_6_50_1 doi: 10.1017/S0024282986000075 – ident: e_1_2_6_53_1 doi: 10.1016/j.neuint.2005.10.010 – ident: e_1_2_6_69_1 doi: 10.1093/glycob/cwr144 – volume: 31 start-page: 375 year: 1999 ident: e_1_2_6_28_1 article-title: Changes in water economy in relation to anatomical and morphological characteristics during thallus development in Parmelia acetabulum publication-title: Lichenologist doi: 10.1006/lich.1999.0215 – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-2818.2008.02036.x – ident: e_1_2_6_37_1 doi: 10.1111/j.1529-8817.2011.00979.x – ident: e_1_2_6_52_1 doi: 10.1016/j.jplph.2007.09.006 – ident: e_1_2_6_21_1 doi: 10.3389/fpls.2012.00082 – ident: e_1_2_6_35_1 doi: 10.1007/s11120-015-0196-8 – ident: e_1_2_6_75_1 doi: 10.1080/11263504.2011.601771 – ident: e_1_2_6_7_1 doi: 10.1007/BF00422045 – ident: e_1_2_6_39_1 doi: 10.1016/S1360-1385(01)02052-0 – ident: e_1_2_6_62_1 doi: 10.1104/pp.108.122465 – ident: e_1_2_6_65_1 doi: 10.1093/jxb/erm056 – ident: e_1_2_6_67_1 doi: 10.1104/pp.121.1.45 – ident: e_1_2_6_44_1 doi: 10.1111/nph.13515 – ident: e_1_2_6_32_1 doi: 10.1007/s00018-012-1155-6 – ident: e_1_2_6_38_1 doi: 10.1111/j.1399-3054.2010.01417.x – ident: e_1_2_6_14_1 doi: 10.1016/j.femsle.2005.01.040 – ident: e_1_2_6_10_1 doi: 10.1016/j.plaphy.2013.07.005 – ident: e_1_2_6_29_1 doi: 10.1071/FP12321 – ident: e_1_2_6_46_1 doi: 10.1016/j.etap.2015.02.006 – ident: e_1_2_6_66_1 doi: 10.1093/aob/mcl246 – ident: e_1_2_6_16_1 doi: 10.1016/j.ijbiomac.2008.02.002 – ident: e_1_2_6_68_1 doi: 10.3389/fpls.2014.00096 – ident: e_1_2_6_49_1 doi: 10.1104/pp.113.232942 – ident: e_1_2_6_71_1 doi: 10.1111/tpj.12008 – ident: e_1_2_6_6_1 doi: 10.1017/CBO9780511790478.009 – ident: e_1_2_6_47_1 doi: 10.1007/s00248-011-9924-6 – ident: e_1_2_6_72_1 doi: 10.1093/mp/sss155 – ident: e_1_2_6_3_1 – ident: e_1_2_6_19_1 doi: 10.3389/fpls.2013.00482 – ident: e_1_2_6_41_1 doi: 10.1139/b81-322 – ident: e_1_2_6_64_1 doi: 10.1111/j.1574-6976.2009.00183.x – volume: 41 start-page: 349 year: 2013 ident: e_1_2_6_57_1 article-title: Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen Parmotrema pseudotinctorum publication-title: VIERAEA doi: 10.31939/vieraea.2013.41.23 – ident: e_1_2_6_31_1 doi: 10.1111/pce.12065 – ident: e_1_2_6_51_1 doi: 10.3390/plants4010112 – ident: e_1_2_6_30_1 doi: 10.1007/s00425-009-1019-y – ident: e_1_2_6_12_1 doi: 10.1111/j.1462-2920.2010.02386.x – ident: e_1_2_6_61_1 doi: 10.1111/j.1399-3054.2006.00777.x – ident: e_1_2_6_58_1 doi: 10.1111/j.1399-3054.2008.01134.x – ident: e_1_2_6_60_1 doi: 10.1007/s00425-012-1785-9 – ident: e_1_2_6_13_1 doi: 10.1016/j.plantsci.2015.04.003 – ident: e_1_2_6_18_1 doi: 10.1093/aob/mcq206 – ident: e_1_2_6_54_1 doi: 10.1111/j.1438-8677.2009.00249.x – ident: e_1_2_6_5_1 doi: 10.1007/s00248-014-0524-0 – ident: e_1_2_6_40_1 doi: 10.3389/fpls.2013.00327 – ident: e_1_2_6_22_1 doi: 10.1021/ac60111a017 – ident: e_1_2_6_59_1 doi: 10.1016/j.tplants.2008.11.007 – ident: e_1_2_6_4_1 doi: 10.1016/j.jplph.2012.07.005 – ident: e_1_2_6_25_1 doi: 10.1111/j.1365-313X.2008.03673.x – ident: e_1_2_6_8_1 doi: 10.1590/S1677-04202006000400005 – ident: e_1_2_6_9_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_6_27_1 doi: 10.1016/0003-2697(91)90372-Z – ident: e_1_2_6_73_1 doi: 10.1016/0003-2697(69)90383-2 – ident: e_1_2_6_34_1 doi: 10.1016/j.fbr.2009.10.001 – ident: e_1_2_6_20_1 doi: 10.1111/j.1438-8677.2010.00436.x – ident: e_1_2_6_24_1 doi: 10.1104/pp.106.086694 – volume: 312 start-page: 217 year: 2004 ident: e_1_2_6_55_1 article-title: Extracellular carbohydrates and polysaccharides of the algae Chlorella pyrenoidosa Chick S‐39 publication-title: Biol Bull – ident: e_1_2_6_2_1 doi: 10.1242/jeb.02179 – ident: e_1_2_6_45_1 doi: 10.1023/A:1007151625527 – ident: e_1_2_6_70_1 doi: 10.1093/jexbot/52.358.961 – ident: e_1_2_6_74_1 doi: 10.3390/ijms14047405 – ident: e_1_2_6_17_1 doi: 10.1016/j.phytochem.2010.04.004 – ident: e_1_2_6_43_1 doi: 10.1016/0003-2697(90)90302-P – ident: e_1_2_6_11_1 doi: 10.1016/j.carres.2005.03.022 – ident: e_1_2_6_15_1 doi: 10.1016/j.ijbiomac.2007.02.006 – ident: e_1_2_6_48_1 doi: 10.1111/j.1574-6941.2008.00568.x – ident: e_1_2_6_33_1 doi: 10.1111/pce.12042 – ident: e_1_2_6_36_1 doi: 10.1007/s00709-009-0060-9 – ident: e_1_2_6_42_1 doi: 10.1007/BF01281320 – ident: e_1_2_6_56_1 doi: 10.1104/pp.51.5.914 – ident: e_1_2_6_63_1 doi: 10.1017/S0960258599000033 – ident: e_1_2_6_26_1 doi: 10.1016/S0031-9422(00)83826-1 |
SSID | ssj0017370 |
Score | 2.373934 |
Snippet | Summary
Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain... Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The... Summary Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1546 |
SubjectTerms | Algae Ascomycota - physiology ascorbic acid Cell Wall - physiology cell walls Chlorophyta - physiology Coccomyxa Dehydration Desiccation drought tolerance Gene Expression Regulation, Plant - physiology habitats Lichens Lichens - classification Limestone Metabolites Microalgae Microalgae - physiology oligosaccharides phenolic compounds Phenols physiological response Physiological responses polyols Ramalina Ramalina farinacea Solorina Stress, Physiological Symbiosis Trebouxia Water - metabolism |
Title | Contrasting strategies used by lichen microalgae to cope with desiccation-rehydration stress revealed by metabolite profiling and cell wall analysis |
URI | https://api.istex.fr/ark:/67375/WNG-JX82WVS5-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13249 https://www.ncbi.nlm.nih.gov/pubmed/26914009 https://www.proquest.com/docview/1784593729 https://www.proquest.com/docview/1785731971 https://www.proquest.com/docview/1794497435 https://www.proquest.com/docview/1825412680 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEF-kRfDF_9polRVEfMmR3c1mk0cRaynYB7W2b2En2SC0zcklR3s-9TsU-gH9JM7sJsEWrYgvxx03e7eZzOz-ZjPzG8Zeoi87BOI6Vk2RxCmC3hikQ3e3VpgKlAZNhcIfdrPtvXTnQI_ZhFQLE_ghpgM38gy_XpODW-h-cXJ0cRlTr6UZBlQplfBRxhbBoo8TgZQwyreLG2SFHMh9KJfnyvhL-9I6qfj0d6DzMob1m9DWHQbj9EPuyeFs2cOs-n6F2fG_ru8uuz1AVP4m2NQ9dsO199nN0LRy9YBdEKHVwnaUL827fqSa4MvO1RxW_IiSS1t-TJl-VCjieD_nVPvC6cyX1w7tIpwT_jg7X7ivqzoYIQ9lK5w4pXDX8r917Ho0UiqT5qG5OP2nbWtOzxv4icUXO7CqPGR7W-8-v92Oh-4OcUUcg7EChGJNnuhc4hILCTSyqBJt8wxqQNPKnUwUYLRjVQVCqMooK5scjAVl8E6rR2ytnbdug3FpndZ1AXXumlQYZ42uEYlYIwpoCtARm433tqwG6nPqwHFUjiEQKbskZZde2RF7PQ34Flg__iz6yhvLJGcXh5QsZ3S5v_u-3DnI5f6XT_ghYpujNZXDOtGVwuSpLujRacReTF-jh5MabevmSy-jDa6URlwnU6QphoZKXyNDhwFCZnkSscfBmqdJy6zASDvBWQSb_NtVl7hI-DdP_nXAU3YLMWcWckY32Vq_WLpniOt6eO5d9yf-bEOZ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqVggu_P-kFDASIC5ZxXYcJwcOiFK2f3uAlu4ttRNHSG2z1Sarspx4ByQehFfhDXgSZuIkohUUceiBy2pXO9l1bH8z48nMN4Q8ASxbcMSlL4ok8ENwen3DLcBda6YyI6SRWCi8PYqGu-HGWI4XyLeuFsbxQ_QBN0RGo68R4BiQ_gXlgHHuY7OlAZyowqRNrNy08xM4tlUv1ldhjZ9yvvZ659XQbzsL-Bny2_nCgBtQxIGMOcDbBKbgSRZIHUcmN3BbseWBMOBpa5EZxkSmhOZFbJQ2QokIO0WA2l_CPuLI17_6tqesYko0DerawTHe0glh9tCZAZ-yhEu4qB9_5-ae9pobs7d2jXzvJsxluxwMZrUZZJ_OcEn-XzN6nVxtvXD60sHmBlmw5U1yyfXlnN8iX5Gza6orTAmnVd2xadBZZXNq5vQQ82dLeoTJjFgLY2k9oVjeQzGsTXMLW9-FQn98_jK1H-a5wxl1lTkUabPAMDe_dWRrwCFWglPXPx3_U5c5xUcq9ETDi26JY26T3QuZlDtksZyU9h6hXFsp88TksS1CpqxWMgdnSyuWmCIx0iODbjOlWcvujk1GDtPulIeLm-Lips3ieuR5f8GxIzb5s-izZnf2cnp6gPmASqZ7ozfpxjjme-_fwQePrHTbN21VYZUyFYcywafDHnncfw1KDKdRl3Yya2SkAmOg2HkySRjC6VfIc2Qw3sF4FAceuevg0w-aRwkDgwWjcCD4212noAebN8v_esEjcnm4s72Vbq2PNu-TK-BiRy5FdoUs1tOZfQBubG0eNnqDkv2LhtVPzFSiaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqViAu_P-kFDASIC5ZxXYcJwcOiGXpD6wQULq3YCeOKrXNVpusynLiHZB4D16FR-BJmImTiFZQxKEHLqtd7WTX8fibGTsz3xDyALBsIRCXviiSwA8h6PUNtwB3rZnKjJBGYqHwq3G0vh1uTuRkiXzramEcP0R_4IbIaOw1AvwwL34BOUCc-9hraQAbqjBp8yq37OIIdm3Vk40hqPgh56Pn756t-21jAT9DejtfGIgCijiQMQd0m8AUPMkCqePI5AbuKrY8EAYCbS0yw5jIlNC8iI3SRigRYaMIsPorYRQk2C1i-KZnrGJKNP3p2sEx3rIJYfLQiQEfc4QrqNOPv4tyjwfNjdcbXSLfu_lyyS57g3ltBtmnE1SS_9WEXiYX2xicPnWguUKWbHmVnHNdORfXyFdk7JrpChPCaVV3XBp0XtmcmgXdx-zZkh5gKiNWwlhaTykW91A81Ka5hYXvDkJ_fP4ys7uL3KGMurociqRZ4Jab3zqwNaAQ68Cp656O_6nLnOIDFXqk4UW3tDHXyfaZTMoNslxOS3uLUK6tlHli8tgWIVNWK5lDqKUVS0yRGOmRQbeW0qzldscWI_tpt8dD5aao3LRRrkce9xccOlqTP4s-ahZnL6dne5gNqGS6M36Rbk5ivvP-LXzwyFq3etPWEFYpU3EoE3w27JH7_ddgwnAadWmn80ZGKnAFip0mk4Qh7H2FPEUGTzsYj-LAIzcdevpB8yhh4K5gFA4Df7vrFKxg82b1Xy-4R86_Ho7SlxvjrdvkAsTXkcuPXSPL9Wxu70AMW5u7jdWg5MNZo-onLqOhGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrasting+strategies+used+by+lichen+microalgae+to+cope+with+desiccation-rehydration+stress+revealed+by+metabolite+profiling+and+cell+wall+analysis&rft.jtitle=Environmental+microbiology&rft.au=Centeno%2C+Danilo+C&rft.au=Hell%2C+Aline+F&rft.au=Braga%2C+Marcia+R&rft.au=Del+Campo%2C+Eva+M&rft.date=2016-05-01&rft.eissn=1462-2920&rft.volume=18&rft.issue=5&rft.spage=1546&rft_id=info:doi/10.1111%2F1462-2920.13249&rft_id=info%3Apmid%2F26914009&rft.externalDocID=26914009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |