Contrasting strategies used by lichen microalgae to cope with desiccation-rehydration stress revealed by metabolite profiling and cell wall analysis

Summary Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen‐forming microalgae, Trebouxia sp. TR9 (TR9), isol...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 18; no. 5; pp. 1546 - 1560
Main Authors Centeno, Danilo C., Hell, Aline F., Braga, Marcia R., del Campo, Eva M., Casano, Leonardo M.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.05.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen‐forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation‐rehydration cycles), and Coccomyxa solorina‐saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%–30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation–rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose‐family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation–rehydration stress in correspondence with the water regime of their respective habitats.
AbstractList Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats.Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats.
Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen‐forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation‐rehydration cycles), and Coccomyxa solorina‐saccatae ( Csol ), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%–30% RH and then rehydrated. Under these conditions, RWC and ψ w decreased faster and simultaneously during dehydration in Cso l, whereas TR9 maintained its ψ w until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation–rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose‐family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol , indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation–rehydration stress in correspondence with the water regime of their respective habitats.
Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats.
Summary Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats.
Summary Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen‐forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation‐rehydration cycles), and Coccomyxa solorina‐saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%–30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation–rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose‐family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation–rehydration stress in correspondence with the water regime of their respective habitats.
Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and psi sub(w) decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its psi sub(w) until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats.
Author del Campo, Eva M.
Centeno, Danilo C.
Hell, Aline F.
Braga, Marcia R.
Casano, Leonardo M.
Author_xml – sequence: 1
  givenname: Danilo C.
  surname: Centeno
  fullname: Centeno, Danilo C.
  organization: Centre of Natural Sciences and Humanities, Federal University of ABC, 09606-070, São Bernardo do Campo, SP, Brazil
– sequence: 2
  givenname: Aline F.
  surname: Hell
  fullname: Hell, Aline F.
  organization: Department of Plant Physiology and Biochemistry, Institute of Botany, SP, 04301-912, São Paulo, Brazil
– sequence: 3
  givenname: Marcia R.
  surname: Braga
  fullname: Braga, Marcia R.
  organization: Department of Plant Physiology and Biochemistry, Institute of Botany, SP, 04301-912, São Paulo, Brazil
– sequence: 4
  givenname: Eva M.
  surname: del Campo
  fullname: del Campo, Eva M.
  organization: Department of Life Sciences, University of Alcalá, Alcalá de Henares (Madrid), 28805-, Spain
– sequence: 5
  givenname: Leonardo M.
  surname: Casano
  fullname: Casano, Leonardo M.
  email: leonardo.casano@uah.es
  organization: Department of Life Sciences, University of Alcalá, Alcalá de Henares (Madrid), 28805-, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26914009$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB-wZocssWET6lfieIlGpS0qsOBRdpbt3My4eJLB9jCd_8EPxpnXohIqXtjX1neOLd9zWhz1Qw9F8ZLgtySPc8JrWlJJ85ZRLp8UJ4eTo0NN6HFxGuMdxkQwgZ8Vx7SWhGMsT4o_k6FPQcfk-imKuUowdRDRMkKLzBp5Z2fQo7mzYdB-qgGlAdlhAWjl0gy1EJ21OrmhLwPM1m3Y1KMTxIgC_Abtt05zSNoM3iVAizB0zo836r5FFrxHK50n3Wu_ji4-L5522kd4sVvPim_vL75Orsqbz5fXk3c3peWikiUzNeddg6uGti0YbDoqLa50U5vWgIEGKGZGcKGZNYQwK5imXWOENkywumJnxZutb37QryXEpOYujs_RPQzLqEhDK05o3eDHUSE5l4Kz_3AVTSUYkYJk9PUD9G5YhvwLG4pXkgkqM_VqRy3NHFq1CG6uw1rtu5iBagvkJsUYoFPWpU0jckOdVwSrMS1qzIMas6E2acm68we6vfW_FbubVs7D-jFcXXy83uvKrc7FBPcHnQ4_VZ0zWanbT5fqw4-G3n7_kjfsL5kN4CI
CitedBy_id crossref_primary_10_1038_s41598_019_44700_7
crossref_primary_10_1093_pcp_pcae143
crossref_primary_10_1007_s00248_021_01685_z
crossref_primary_10_1142_S0218339021400052
crossref_primary_10_3389_fmicb_2021_623839
crossref_primary_10_1016_j_flora_2021_151953
crossref_primary_10_1639_0007_2745_119_4_446
crossref_primary_10_1007_s00248_023_02213_x
crossref_primary_10_1111_jpy_12928
crossref_primary_10_1007_s11157_021_09595_9
crossref_primary_10_1111_mec_14764
crossref_primary_10_1007_s00248_021_01701_2
crossref_primary_10_1016_j_algal_2021_102462
crossref_primary_10_1016_j_algal_2024_103744
crossref_primary_10_1007_s00425_017_2814_5
crossref_primary_10_1016_j_algal_2020_102062
crossref_primary_10_1016_j_algal_2017_04_008
crossref_primary_10_1093_pcp_pcz103
crossref_primary_10_1016_j_envexpbot_2021_104397
crossref_primary_10_1186_s12870_021_02975_x
crossref_primary_10_3390_microorganisms10050946
crossref_primary_10_1007_s40415_018_0442_3
crossref_primary_10_1093_plphys_kiad384
crossref_primary_10_1111_1462_2920_15043
crossref_primary_10_3390_plants10040807
crossref_primary_10_1016_j_algal_2021_102332
crossref_primary_10_1093_femsle_fnaa023
crossref_primary_10_3389_fpls_2017_00865
crossref_primary_10_1093_aob_mcz149
crossref_primary_10_1093_gbe_evab047
crossref_primary_10_1016_j_plaphy_2018_06_004
crossref_primary_10_1007_s13225_017_0386_0
crossref_primary_10_1007_s00248_020_01604_8
crossref_primary_10_1007_s13199_024_00982_8
crossref_primary_10_1007_s13199_024_00985_5
crossref_primary_10_1128_AEM_01619_17
crossref_primary_10_3389_fpls_2019_01356
crossref_primary_10_3390_microorganisms10122444
crossref_primary_10_1016_j_envexpbot_2024_106007
crossref_primary_10_1016_j_flora_2020_151604
crossref_primary_10_1093_aob_mcz181
Cites_doi 10.1017/S0024282986000075
10.1016/j.neuint.2005.10.010
10.1093/glycob/cwr144
10.1006/lich.1999.0215
10.1111/j.1365-2818.2008.02036.x
10.1111/j.1529-8817.2011.00979.x
10.1016/j.jplph.2007.09.006
10.3389/fpls.2012.00082
10.1007/s11120-015-0196-8
10.1080/11263504.2011.601771
10.1007/BF00422045
10.1016/S1360-1385(01)02052-0
10.1104/pp.108.122465
10.1093/jxb/erm056
10.1104/pp.121.1.45
10.1111/nph.13515
10.1007/s00018-012-1155-6
10.1111/j.1399-3054.2010.01417.x
10.1016/j.femsle.2005.01.040
10.1016/j.plaphy.2013.07.005
10.1071/FP12321
10.1016/j.etap.2015.02.006
10.1093/aob/mcl246
10.1016/j.ijbiomac.2008.02.002
10.3389/fpls.2014.00096
10.1104/pp.113.232942
10.1111/tpj.12008
10.1017/CBO9780511790478.009
10.1007/s00248-011-9924-6
10.1093/mp/sss155
10.3389/fpls.2013.00482
10.1139/b81-322
10.1111/j.1574-6976.2009.00183.x
10.31939/vieraea.2013.41.23
10.1111/pce.12065
10.3390/plants4010112
10.1007/s00425-009-1019-y
10.1111/j.1462-2920.2010.02386.x
10.1111/j.1399-3054.2006.00777.x
10.1111/j.1399-3054.2008.01134.x
10.1007/s00425-012-1785-9
10.1016/j.plantsci.2015.04.003
10.1093/aob/mcq206
10.1111/j.1438-8677.2009.00249.x
10.1007/s00248-014-0524-0
10.3389/fpls.2013.00327
10.1021/ac60111a017
10.1016/j.tplants.2008.11.007
10.1016/j.jplph.2012.07.005
10.1111/j.1365-313X.2008.03673.x
10.1590/S1677-04202006000400005
10.1016/0003-2697(76)90527-3
10.1016/0003-2697(91)90372-Z
10.1016/0003-2697(69)90383-2
10.1016/j.fbr.2009.10.001
10.1111/j.1438-8677.2010.00436.x
10.1104/pp.106.086694
10.1242/jeb.02179
10.1023/A:1007151625527
10.1093/jexbot/52.358.961
10.3390/ijms14047405
10.1016/j.phytochem.2010.04.004
10.1016/0003-2697(90)90302-P
10.1016/j.carres.2005.03.022
10.1016/j.ijbiomac.2007.02.006
10.1111/j.1574-6941.2008.00568.x
10.1111/pce.12042
10.1007/s00709-009-0060-9
10.1007/BF01281320
10.1104/pp.51.5.914
10.1017/S0960258599000033
10.1016/S0031-9422(00)83826-1
ContentType Journal Article
Copyright 2016 Society for Applied Microbiology and John Wiley & Sons Ltd
2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd
– notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
DOI 10.1111/1462-2920.13249
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Algology Mycology and Protozoology Abstracts (Microbiology C)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 1560
ExternalDocumentID 4036436421
26914009
10_1111_1462_2920_13249
EMI13249
ark_67375_WNG_JX82WVS5_W
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4759-3b644f80582ddeb0bf29c05a86bdbebe8e203b747a3cb113c73a2f8b7ab373653
IEDL.DBID DR2
ISSN 1462-2912
1462-2920
IngestDate Fri Jul 11 18:25:04 EDT 2025
Fri Jul 11 01:43:19 EDT 2025
Thu Jul 10 18:13:39 EDT 2025
Sun Jul 13 04:33:07 EDT 2025
Wed Feb 19 02:43:15 EST 2025
Thu Apr 24 23:05:41 EDT 2025
Tue Jul 01 04:00:36 EDT 2025
Wed Jan 22 16:24:49 EST 2025
Wed Oct 30 09:51:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4759-3b644f80582ddeb0bf29c05a86bdbebe8e203b747a3cb113c73a2f8b7ab373653
Notes istex:5B8FA8A475AD127AC59ABCD031DABB1320405635
ArticleID:EMI13249
ark:/67375/WNG-JX82WVS5-W
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26914009
PQID 1784593729
PQPubID 1066360
PageCount 15
ParticipantIDs proquest_miscellaneous_1825412680
proquest_miscellaneous_1794497435
proquest_miscellaneous_1785731971
proquest_journals_1784593729
pubmed_primary_26914009
crossref_citationtrail_10_1111_1462_2920_13249
crossref_primary_10_1111_1462_2920_13249
wiley_primary_10_1111_1462_2920_13249_EMI13249
istex_primary_ark_67375_WNG_JX82WVS5_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05
May 2016
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Moore, J.P., Nguema-Ona, E.E., Vicré-Gibouin, M., Sørensen, I., Willats, W.G., Driouich, A., and Farrant, J.M. (2013) Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta 237: 739-754.
Maksimova, I.V., Bratkovskaia, L.B., and Plekhanov S.E. (2004) Extracellular carbohydrates and polysaccharides of the algae Chlorella pyrenoidosa Chick S-39. Biol Bull 312: 217-224.
Farrant, J.M., Lehner, A., Cooper, K., and Wiswedel, S. (2009) Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant J 57: 65-79.
Gribaa, A., Dardelle, F., Lehner, A., Rihouey, C., Burel, C., Ferchini, A., et al. (2013) Effect of water deficit on cell wall of the date palm (Phoenix dactylifera "deglet nour", Arecales) fruit development. Plant Cell Environ 36: 1056-1070.
Jay, G.D., Culp, D.J., and Jahnke, M.R. (1990) Silver staining of extensively glycosylated proteins on sodium dodecyl sulfate-polyacrylamide gels: enhancement by carbohydrate-binding dyes. Anal Biochem 184: 324-330.
Karsten, U., and Holzinger, A. (2012) Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol 63: 51-63.
Whittaker, A., Bochicchio, A., Vazzana, C., Lindsey, G., and Farrant J. (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 56: 961-969.
Fos, S., Deltoro, V.I., Calatayud, A., and Barreno E. (1999) Changes in water economy in relation to anatomical and morphological characteristics during thallus development in Parmelia acetabulum. Lichenologist 31: 375-387.
Moore, J.P., Vicré-Gibouin M, Farrant, J.M., and Driouich, A. (2008) Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant 134: 237-245.
Alpert, P. (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209: 1575-1584.
Grube, M., and Berg, G. (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23: 72-85.
Hoekstra, F.A., Golovina, E.A., and Buitink, J. (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6: 431-438.
Feige, G.B., and Kremer, B.P. (1980) Unusual carbohydrate pattern in Trentepohlia species. Phytochem 19: 1844-1845.
Cordeiro, L.M., Carbonero, E.R., Sassaki, G.L., Reis, R.A., Stocker-Worgotter, E., Gorin, P.A., and Iacomini, M. (2005) A fungus-type beta-galactofuranan in the cultivated Trebouxia photobiont of the lichen Ramalina gracilis. FEMS Microbiol Lett 244: 193-198.
Gaff, D.F., and Oliver, M. (2013) The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct Plant Biol 40: 315-328.
del Hoyo, A., Álvarez, R., del Campo, E.M., Gasulla, F., Barreno, E., and L.M. Casano (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann Bot 107: 109-118.
Peters, S., Mundree, S.G., Thomson, J.A., Farrant, J.M., and Keller, F. (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58: 1947-1956.
Gustavs, L., Görs, M., and Karsten, U. (2011) Polyols as chemotaxonomic markers to differentiate between aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). J Phycol 47: 533-537.
Gechev, T.S., Benina, M., Obata, T., Tohge, T., Sujeeth, N., Minkov, I., et al. (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol Life Sci 70: 689-709.
Cordeiro, L.M., Sassaki, G.L., and Iacomini, M. (2007) First report on polysaccharides of Asterochloris and their potential role in the lichen symbiosis. Int J Biol Macromol 41:193-197.
Gasulla, F., de Nova, P.G., Esteban-Carrasco, A., Zapata, J.M., Barreno, E., and Guéra, A. (2009) Dehydration rate and time of desiccation affect recovery of the lichen alga Trebouxia erici: alternative and classical protective mechanisms. Planta 231: 195-208.
Nishizawa, A., Yabuta, Y., and Shigeoka, S. (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147: 1251-1263.
Filisetti-Cozzi, T.M., and Carpita, N.C. (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197: 157-162.
Leucci, M.R., Lenucci, M.S., Piro, G., and Dalessandro, G. (2008) Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. J Plant Physiol 165: 1168-1180.
Honegger, R., Peter, M., and Seherrer, S. (1996) Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma 190: 221-232.
Domozych, D.S., Ciancia, M., Fangel, J.U., Mikkelsen, M.D., Ulvskov, P., and Willats, W.G. (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3: 82.
Tefsen, B., Ram, A.F., van Die, I., and Routier, F.H. (2012) Galactofuranose in eukaryotes: aspects of biosynthesis and functional impact. Glycobiol 22: 456-469.
Zacharius, R.M., Zell, T.E., Morrison, J.H., and Woodlock, J.J. (1969) Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem 30: 148-152.
Molins, A., García-Breijo F.J., Reig-Armiñana, J., del Campo, E.M., Casano, L.M., and Barreno, E. (2013) Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen Parmotrema pseudotinctorum. VIERAEA 41: 349-370.
Shen, B., Hohmann, S., Jensen, R.G., and Bohnert, H. (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121: 45-52.
Yobi, A., Wone, B.W.M., Xu, W., Alexander, D.C., Guo, L., Ryals, J.A., et al. (2013) Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol Plant 6: 369-385.
Casano, L.M., del Campo, E.M., Garcia-Breijo, F.J., Reig-Arminana, J., Gasulla, F., del Hoyo, A., et al. (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13: 806-818.
Krog, H., and Swinscow, T.D.V. (1986) Solorina simensis and S. saccata. Lichenologist 18: 57-62.
Moore, J.P., Le, N.T., Brandt, W.F., Driouich, A., and Farrant, J.M. (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plants Sci 14: 110-116.
Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., and Tamagnini, P. (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33: 917-941.
DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356.
Yobi, A., Bernard, W.M., Wone, B.W.M., Xu, W., Alexander, D.C., Guo, L., et al. (2012) Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. Plant J 72: 983-999.
Lüttge, U., and Büdel, B. (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chrorophyta) on tree bark. Plant Biol 123: 437-444.
Casano, L.M., Braga, M.R., Álvarez, R., del Campo, E.M., and Barreno, E. (2015) Differences in the cell walls and extracellular polymers of the two Trebouxia microalgae coexisting in the lichen Ramalina farinacea are consistent with their distinct capacity to immobilize Pb. Plant Sci 236: 195-204.
Suguiyama, V.F., Silva, E.A., Meirelles, S.T., Centeno, D.C., and Braga, M.R. (2014) Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time-dependent responses during desiccation and recovering. Front Plant Sci 5: 96.
Cordeiro, L.M., de Oliveira, S.M., Buchi, D.F., and Iacomini, M. (2008) Galactofuranose-rich heteropolysaccharide from Trebouxia sp., photobiont of the lichen Ramalina gracilis and its effect on macrophage activation. Int J Biol Macromol 42: 436-440.
Zhang, J., Liu, H., Zhao, Q.-H., Du, Y.-X., Chang, Q.-X., and Lu, Q.-L. (2011) Effects of ATP production on silicon uptake by roots of rice seedlings. Plant Biosyst 145: 866-872.
Álvarez, R., del Hoyo, A., Garcia-Breijo, F., Reig-Arminana, J., del Campo, E.M., Guéra, A., et al. (2012) Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea. J Plant Physiol 169: 1797-1806.
Kosugi, M., Shizuma, R., Moriyama, Y., Koike, H., Fukunaga, Y., Takeuchi, A., et al. (2014) Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi. Plant Physiol 166: 337-348.
Álvarez, R., del Hoyo, A., Díaz-Rodríguez, C., Coello, A.J., del Campo, E.M., Barreno, E., et al. (2015) Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae. Microb Ecol 69: 698-709.
Jensen, M., Chakir, S., and Feige, G.B. (1999) Osmotic and atmospheric dehydration effects in lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica 37: 393-404.
Guéra, A., Gasulla, F., and Barreno, E. (2015) Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. Photosynth Res (DOI 10.1007/s11120-015-0196-8, Epub ahead of print).
Carvalho, C.P., Hayashi, A.H., Bra
1991; 197
2015; 39
1973; 51
2013; 4
1969; 30
1996; 190
2009; 231
1999; 121
2013; 71
2013; 70
2011; 13
2008; 147
2012; 169
2013; 6
1990; 184
2012; 72
2009; 14
2009; 57
2014; 5
2013; 14
2006; 209
2005; 340
1976; 72
2013; 237
2008; 66
1962; 42
2014; 166
2001; 56
2008; 231
2012; 22
2012; 63
2010; 71
2009; 23
2007; 129
2015; 4
2013; 40
2010; 123
2013; 41
2008
2010; 243
2006; 18
1986; 18
2015; 208
2008; 165
2007; 99
2007; 58
1999; 9
2009; 33
2015; 69
2012; 3
2013; 36
2011; 107
1980; 19
2004; 312
2015; 236
2001; 6
2005; 244
1999; 37
2006; 48
2006; 142
1981; 59
1999; 31
2015
1956; 28
2007; 41
2008; 42
2011; 47
2008; 134
2011; 145
2011; 142
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Molins A. (e_1_2_6_57_1) 2013; 41
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Maksimova I.V. (e_1_2_6_55_1) 2004; 312
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
Fos S. (e_1_2_6_28_1) 1999; 31
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Whittaker, A., Bochicchio, A., Vazzana, C., Lindsey, G., and Farrant J. (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 56: 961-969.
– reference: Kosugi, M., Shizuma, R., Moriyama, Y., Koike, H., Fukunaga, Y., Takeuchi, A., et al. (2014) Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi. Plant Physiol 166: 337-348.
– reference: Dinakar, C., and Bartels, D. (2013) Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome, and metabolome analysis. Front Plant Sci 4: 482.
– reference: Zhang, J., Liu, H., Zhao, Q.-H., Du, Y.-X., Chang, Q.-X., and Lu, Q.-L. (2011) Effects of ATP production on silicon uptake by roots of rice seedlings. Plant Biosyst 145: 866-872.
– reference: Cordeiro, L.M., Carbonero, E.R., Sassaki, G.L., Reis, R.A., Stocker-Worgotter, E., Gorin, P.A., and Iacomini, M. (2005) A fungus-type beta-galactofuranan in the cultivated Trebouxia photobiont of the lichen Ramalina gracilis. FEMS Microbiol Lett 244: 193-198.
– reference: Fait, A., Angelovici, R., Less, H., Ohad, I., Urbanczyk-Wochniak, E., Fernie, A.R., and Galili, G. (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142: 839-854.
– reference: Bold, H.C., and Parker, B.C. (1962) Some supplementary attributes in the classification of Chlorococcum species. Arch Microbiol 42: 267-288.
– reference: Casano, L.M., del Campo, E.M., Garcia-Breijo, F.J., Reig-Arminana, J., Gasulla, F., del Hoyo, A., et al. (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13: 806-818.
– reference: Lu, Z., Nie, G., Beltonc, P.S., Tang, H., and Zhao, B. (2006) Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 48: 263-274.
– reference: Casano, L.M., Braga, M.R., Álvarez, R., del Campo, E.M., and Barreno, E. (2015) Differences in the cell walls and extracellular polymers of the two Trebouxia microalgae coexisting in the lichen Ramalina farinacea are consistent with their distinct capacity to immobilize Pb. Plant Sci 236: 195-204.
– reference: Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., and Tamagnini, P. (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33: 917-941.
– reference: Proctor, M.C.F., Ligrone, R., and Duckett, J.G. (2007) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-strucutural changes during desiccation and recovery. Ann Bot 99: 75-93.
– reference: Filisetti-Cozzi, T.M., and Carpita, N.C. (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197: 157-162.
– reference: Moore, J.P., Vicré-Gibouin M, Farrant, J.M., and Driouich, A. (2008) Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant 134: 237-245.
– reference: Carvalho, C.P., Hayashi, A.H., Braga, M.R., and Nievola, C.C. (2013) Biochemical and anatomical responses related to the in vitro survival of the tropical bromeliad Nidularium minutum to low temperatures. Plant Physiol Biochem 71: 144-154.
– reference: Moore, J.P., Nguema-Ona, E.E., Vicré-Gibouin, M., Sørensen, I., Willats, W.G., Driouich, A., and Farrant, J.M. (2013) Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta 237: 739-754.
– reference: Cordeiro, L.M., Sassaki, G.L., and Iacomini, M. (2007) First report on polysaccharides of Asterochloris and their potential role in the lichen symbiosis. Int J Biol Macromol 41:193-197.
– reference: Guéra, A., Gasulla, F., and Barreno, E. (2015) Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. Photosynth Res (DOI 10.1007/s11120-015-0196-8, Epub ahead of print).
– reference: Feige, G.B., and Kremer, B.P. (1980) Unusual carbohydrate pattern in Trentepohlia species. Phytochem 19: 1844-1845.
– reference: Cordeiro, L.M., de Oliveira, S.M., Buchi, D.F., and Iacomini, M. (2008) Galactofuranose-rich heteropolysaccharide from Trebouxia sp., photobiont of the lichen Ramalina gracilis and its effect on macrophage activation. Int J Biol Macromol 42: 436-440.
– reference: Hoekstra, F.A., Golovina, E.A., and Buitink, J. (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6: 431-438.
– reference: Gasulla, F., Jain, R., Barreno, E., Guéra, A., Balbuena, T.S., Thelen, J.J., and Oliver, M.J. (2013) The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. Plant Cell Environ 36: 1363-1378.
– reference: Karsten, U., and Holzinger, A. (2012) Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol 63: 51-63.
– reference: Grube, M., and Berg, G. (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23: 72-85.
– reference: Maksimova, I.V., Bratkovskaia, L.B., and Plekhanov S.E. (2004) Extracellular carbohydrates and polysaccharides of the algae Chlorella pyrenoidosa Chick S-39. Biol Bull 312: 217-224.
– reference: del Hoyo, A., Álvarez, R., del Campo, E.M., Gasulla, F., Barreno, E., and L.M. Casano (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann Bot 107: 109-118.
– reference: Zacharius, R.M., Zell, T.E., Morrison, J.H., and Woodlock, J.J. (1969) Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem 30: 148-152.
– reference: Gechev, T.S., Benina, M., Obata, T., Tohge, T., Sujeeth, N., Minkov, I., et al. (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol Life Sci 70: 689-709.
– reference: Peters, S., Mundree, S.G., Thomson, J.A., Farrant, J.M., and Keller, F. (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58: 1947-1956.
– reference: Cordeiro, L.M., Sassaki, G.L., Gorin, P.A., and Iacomini, M. (2010) O-Methylated mannogalactan from the microalga Coccomyxa mucigena, symbiotic partner of the lichenized fungus Peltigera aphthosa. Phytochemistry 71: 1162-1167.
– reference: Le Gall, H., Philippe, F., Domon, J.-M., Gillet, F., Pelloux, J., and Rayon, C. (2015) Cell wall metabolism in response to abiotic stress. Plants 4: 112-166.
– reference: Honegger, R., Peter, M., and Seherrer, S. (1996) Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma 190: 221-232.
– reference: Gaff, D.F., and Oliver, M. (2013) The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct Plant Biol 40: 315-328.
– reference: Heber, U., Soni, V., and Strasser, R J. (2011) Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. Physiol Plant 142: 65-78.
– reference: Lüttge, U., and Büdel, B. (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chrorophyta) on tree bark. Plant Biol 123: 437-444.
– reference: Krog, H., and Swinscow, T.D.V. (1986) Solorina simensis and S. saccata. Lichenologist 18: 57-62.
– reference: Gribaa, A., Dardelle, F., Lehner, A., Rihouey, C., Burel, C., Ferchini, A., et al. (2013) Effect of water deficit on cell wall of the date palm (Phoenix dactylifera "deglet nour", Arecales) fruit development. Plant Cell Environ 36: 1056-1070.
– reference: Jardim-Messeder, D., Caverzan, A., Rauber, R., Ferreira, E.S., Margis-Pinheiro, M., and Galina, A. (2015) Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytol 208: 776-789.
– reference: Tefsen, B., Ram, A.F., van Die, I., and Routier, F.H. (2012) Galactofuranose in eukaryotes: aspects of biosynthesis and functional impact. Glycobiol 22: 456-469.
– reference: Shen, B., Hohmann, S., Jensen, R.G., and Bohnert, H. (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121: 45-52.
– reference: Yobi, A., Bernard, W.M., Wone, B.W.M., Xu, W., Alexander, D.C., Guo, L., et al. (2012) Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. Plant J 72: 983-999.
– reference: Pammenter, N.W., and Berjak, P. (1999) A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci Res 9: 13-37.
– reference: Álvarez, R., del Hoyo, A., Díaz-Rodríguez, C., Coello, A.J., del Campo, E.M., Barreno, E., et al. (2015) Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae. Microb Ecol 69: 698-709.
– reference: Zagorchev, L., Seal, C.E., Kranner, I., and Odjakova, M. (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14: 7405-7432.
– reference: Carbonero, E.R., Cordeiro, L.M.C., Mellinger, C.G., Sassaki, G.L., Stocker-Wörgötter, E., Gorin, P.A.J., and Iacomini M. (2005) Galactomannans with novel structures from the lichen Roccella decipiens Darb. Carbohydr Res 340: 1699-1705.
– reference: Álvarez, R., del Hoyo, A., Garcia-Breijo, F., Reig-Arminana, J., del Campo, E.M., Guéra, A., et al. (2012) Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea. J Plant Physiol 169: 1797-1806.
– reference: Yobi, A., Wone, B.W.M., Xu, W., Alexander, D.C., Guo, L., Ryals, J.A., et al. (2013) Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol Plant 6: 369-385.
– reference: Fos, S., Deltoro, V.I., Calatayud, A., and Barreno E. (1999) Changes in water economy in relation to anatomical and morphological characteristics during thallus development in Parmelia acetabulum. Lichenologist 31: 375-387.
– reference: Navrot, N., Rouhier, N., Gelhaye, E., and Jacquot, J.-P. (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129: 185-195.
– reference: Nishizawa, A., Yabuta, Y., and Shigeoka, S. (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147: 1251-1263.
– reference: Honegger, R., and Brunner, U. (1981) Sporopollenin in the cell walls of Coccomyxa and Myrmecia phycobionts of various lichens: an ultrastructural and chemical investigation. Can J Bot 59: 2713-2734.
– reference: Domozych, D.S., Ciancia, M., Fangel, J.U., Mikkelsen, M.D., Ulvskov, P., and Willats, W.G. (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3: 82.
– reference: Moore, J.P., Le, N.T., Brandt, W.F., Driouich, A., and Farrant, J.M. (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plants Sci 14: 110-116.
– reference: Holzinger, A., and Karsten, U. (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms. Front Plant Sci 4: 327.
– reference: Gustavs, L., Eggert, A., Michalik, D., and Karsten, U. (2010) Physiological and biochemical responses of aeroterrestrial green algae (Trebouxiophyceae) to osmotic and matric stress. Protoplasma 243: 3-14.
– reference: Kang, N., Lee, J.-H., Lee, W.W., Ko, J.-Y., Kima, E.-A., Kimb, J.-S., et al. (2015) Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ Toxicol Pharmacol 39: 764-772.
– reference: Jensen, M., Chakir, S., and Feige, G.B. (1999) Osmotic and atmospheric dehydration effects in lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica 37: 393-404.
– reference: Djilianov, D., Ivanov, S., Moyankova, D., Miteva, L., Kirova, E., Alexieva, V., et al. (2011) Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii. Plant Biol 13: 767-776.
– reference: DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356.
– reference: Borges, I.F., Barbedo, C.J., Richter, A., and Figueiredo-Ribeiro R.C.L. (2006) Variations in sugars and cyclitols during development and maturation of seeds of brazilwood (Caesalpinia echinata Lam., Leguminosae). Braz J Plant Physiol 18: 475-482.
– reference: Gasulla, F., de Nova, P.G., Esteban-Carrasco, A., Zapata, J.M., Barreno, E., and Guéra, A. (2009) Dehydration rate and time of desiccation affect recovery of the lichen alga Trebouxia erici: alternative and classical protective mechanisms. Planta 231: 195-208.
– reference: Suguiyama, V.F., Silva, E.A., Meirelles, S.T., Centeno, D.C., and Braga, M.R. (2014) Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time-dependent responses during desiccation and recovering. Front Plant Sci 5: 96.
– reference: Molins, A., García-Breijo F.J., Reig-Armiñana, J., del Campo, E.M., Casano, L.M., and Barreno, E. (2013) Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen Parmotrema pseudotinctorum. VIERAEA 41: 349-370.
– reference: Michel, B.E., and Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiol 51: 914-920.
– reference: Knowles, E.J., and Castenholz, R.W. (2008) Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microb Ecol 66: 261-270.
– reference: Alpert, P. (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209: 1575-1584.
– reference: Farrant, J.M., Lehner, A., Cooper, K., and Wiswedel, S. (2009) Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant J 57: 65-79.
– reference: Eder, M., and Lütz-Meindl, U. (2008) Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM. J Microsc 231: 201-214.
– reference: Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
– reference: Gustavs, L., Görs, M., and Karsten, U. (2011) Polyols as chemotaxonomic markers to differentiate between aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). J Phycol 47: 533-537.
– reference: Leucci, M.R., Lenucci, M.S., Piro, G., and Dalessandro, G. (2008) Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. J Plant Physiol 165: 1168-1180.
– reference: Jay, G.D., Culp, D.J., and Jahnke, M.R. (1990) Silver staining of extensively glycosylated proteins on sodium dodecyl sulfate-polyacrylamide gels: enhancement by carbohydrate-binding dyes. Anal Biochem 184: 324-330.
– volume: 197
  start-page: 157
  year: 1991
  end-page: 162
  article-title: Measurement of uronic acids without interference from neutral sugars
  publication-title: Anal Biochem
– volume: 18
  start-page: 475
  year: 2006
  end-page: 482
  article-title: Variations in sugars and cyclitols during development and maturation of seeds of brazilwood (Caesalpinia echinata Lam., Leguminosae)
  publication-title: Braz J Plant Physiol
– volume: 47
  start-page: 533
  year: 2011
  end-page: 537
  article-title: Polyols as chemotaxonomic markers to differentiate between aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta)
  publication-title: J Phycol
– volume: 18
  start-page: 57
  year: 1986
  end-page: 62
  article-title: and
  publication-title: Lichenologist
– volume: 39
  start-page: 764
  year: 2015
  end-page: 772
  article-title: Gallic acid isolated from sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect
  publication-title: Environ Toxicol Pharmacol
– volume: 19
  start-page: 1844
  year: 1980
  end-page: 1845
  article-title: Unusual carbohydrate pattern in species
  publication-title: Phytochem
– volume: 70
  start-page: 689
  year: 2013
  end-page: 709
  article-title: Molecular mechanisms of desiccation tolerance in the resurrection glacial relic
  publication-title: Cell Mol Life Sci
– volume: 6
  start-page: 369
  year: 2013
  end-page: 385
  article-title: Metabolomic profiling in at various hydration states provides new insights into the mechanistic basis of desiccation tolerance
  publication-title: Mol Plant
– volume: 14
  start-page: 7405
  year: 2013
  end-page: 7432
  article-title: A central role for thiols in plant tolerance to abiotic stress
  publication-title: Int J Mol Sci
– volume: 42
  start-page: 267
  year: 1962
  end-page: 288
  article-title: Some supplementary attributes in the classification of species
  publication-title: Arch Microbiol
– volume: 244
  start-page: 193
  year: 2005
  end-page: 198
  article-title: A fungus‐type beta‐galactofuranan in the cultivated photobiont of the lichen
  publication-title: FEMS Microbiol Lett
– volume: 3
  start-page: 82
  year: 2012
  article-title: The cell walls of green algae: a journey through evolution and diversity
  publication-title: Front Plant Sci
– volume: 107
  start-page: 109
  year: 2011
  end-page: 118
  article-title: Oxidative stress induces distinct physiological responses in the two phycobionts of the lichen
  publication-title: Ann Bot
– volume: 142
  start-page: 65
  year: 2011
  end-page: 78
  article-title: Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens
  publication-title: Physiol Plant
– volume: 42
  start-page: 436
  year: 2008
  end-page: 440
  article-title: Galactofuranose‐rich heteropolysaccharide from sp., photobiont of the lichen and its effect on macrophage activation
  publication-title: Int J Biol Macromol
– volume: 243
  start-page: 3
  year: 2010
  end-page: 14
  article-title: Physiological and biochemical responses of aeroterrestrial green algae (Trebouxiophyceae) to osmotic and matric stress
  publication-title: Protoplasma
– volume: 190
  start-page: 221
  year: 1996
  end-page: 232
  article-title: Drought‐induced structural alterations at the mycobiont‐photobiont interface in a range of foliose macrolichens
  publication-title: Protoplasma
– volume: 14
  start-page: 110
  year: 2009
  end-page: 116
  article-title: Towards a systems‐based understanding of plant desiccation tolerance
  publication-title: Trends Plants Sci
– volume: 22
  start-page: 456
  year: 2012
  end-page: 469
  article-title: Galactofuranose in eukaryotes: aspects of biosynthesis and functional impact
  publication-title: Glycobiol
– volume: 312
  start-page: 217
  year: 2004
  end-page: 224
  article-title: Extracellular carbohydrates and polysaccharides of the algae Chick S‐39
  publication-title: Biol Bull
– volume: 99
  start-page: 75
  year: 2007
  end-page: 93
  article-title: Desiccation tolerance in the moss : physiological and fine‐strucutural changes during desiccation and recovery
  publication-title: Ann Bot
– start-page: 134
  year: 2008
  end-page: 151
– volume: 13
  start-page: 806
  year: 2011
  end-page: 818
  article-title: Two algae with different physiological performances are ever‐present in lichen thalli of . Coexistence versus competition?
  publication-title: Environ Microbiol
– volume: 184
  start-page: 324
  year: 1990
  end-page: 330
  article-title: Silver staining of extensively glycosylated proteins on sodium dodecyl sulfate‐polyacrylamide gels: enhancement by carbohydrate‐binding dyes
  publication-title: Anal Biochem
– volume: 123
  start-page: 437
  year: 2010
  end-page: 444
  article-title: Resurrection kinetics of photosynthesis in desiccation‐tolerant terrestrial green algae (Chrorophyta) on tree bark
  publication-title: Plant Biol
– volume: 66
  start-page: 261
  year: 2008
  end-page: 270
  article-title: Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock‐inhabiting phototrophic microorganisms
  publication-title: FEMS Microb Ecol
– volume: 121
  start-page: 45
  year: 1999
  end-page: 52
  article-title: Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast
  publication-title: Plant Physiol
– volume: 231
  start-page: 201
  year: 2008
  end-page: 214
  article-title: Pectin‐like carbohydrates in the green alga characterized by cytochemical analysis and energy filtering TEM
  publication-title: J Microsc
– volume: 236
  start-page: 195
  year: 2015
  end-page: 204
  article-title: Differences in the cell walls and extracellular polymers of the two microalgae coexisting in the lichen are consistent with their distinct capacity to immobilize Pb
  publication-title: Plant Sci
– volume: 48
  start-page: 263
  year: 2006
  end-page: 274
  article-title: Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives
  publication-title: Neurochem Int
– volume: 13
  start-page: 767
  year: 2011
  end-page: 776
  article-title: Sugar ratios, glutathione redox status and phenols in the resurrection species and the closely related non‐resurrection species
  publication-title: Plant Biol
– volume: 209
  start-page: 1575
  year: 2006
  end-page: 1584
  article-title: Constraints of tolerance: why are desiccation‐tolerant organisms so small or rare?
  publication-title: J Exp Biol
– volume: 134
  start-page: 237
  year: 2008
  end-page: 245
  article-title: Adaptations of higher plant cell walls to water loss: drought vs desiccation
  publication-title: Physiol Plant
– volume: 69
  start-page: 698
  year: 2015
  end-page: 709
  article-title: Lichen rehydration in heavy metal‐polluted environments: Pb modulates the oxidative response of both thalli and its isolated microalgae
  publication-title: Microb Ecol
– volume: 9
  start-page: 13
  year: 1999
  end-page: 37
  article-title: A review of recalcitrant seed physiology in relation to desiccation‐tolerance mechanisms
  publication-title: Seed Sci Res
– volume: 63
  start-page: 51
  year: 2012
  end-page: 63
  article-title: Light, temperature, and desiccation effects on photosynthetic activity, and drought‐induced ultrastructural changes in the green alga (Streptophyta) from a high alpine soil crust
  publication-title: Microb Ecol
– volume: 37
  start-page: 393
  year: 1999
  end-page: 404
  article-title: Osmotic and atmospheric dehydration effects in lichens , and : an study of the chlorophyll fluorescence induction
  publication-title: Photosynthetica
– volume: 208
  year: 2015
  article-title: Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses
  publication-title: New Phytol
– volume: 57
  start-page: 65
  year: 2009
  end-page: 79
  article-title: Desiccation tolerance in the vegetative tissues of the fern is seasonally regulated
  publication-title: Plant J
– volume: 36
  start-page: 1363
  year: 2013
  end-page: 1378
  article-title: The response of (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach
  publication-title: Plant Cell Environ
– volume: 169
  start-page: 1797
  year: 2012
  end-page: 1806
  article-title: Different strategies to achieve Pb‐tolerance by the two algae coexisting in the lichen
  publication-title: J Plant Physiol
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– volume: 41
  start-page: 193
  year: 2007
  end-page: 197
  article-title: First report on polysaccharides of and their potential role in the lichen symbiosis
  publication-title: Int J Biol Macromol
– volume: 41
  start-page: 349
  year: 2013
  end-page: 370
  article-title: Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen
  publication-title: VIERAEA
– year: 2015
– volume: 36
  start-page: 1056
  year: 2013
  end-page: 1070
  article-title: Effect of water deficit on cell wall of the date palm ( “deglet nour”, Arecales) fruit development
  publication-title: Plant Cell Environ
– volume: 4
  start-page: 327
  year: 2013
  article-title: Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms
  publication-title: Front Plant Sci
– volume: 340
  start-page: 1699
  year: 2005
  end-page: 1705
  article-title: Galactomannans with novel structures from the lichen Darb
  publication-title: Carbohydr Res
– volume: 31
  start-page: 375
  year: 1999
  end-page: 387
  article-title: Changes in water economy in relation to anatomical and morphological characteristics during thallus development in
  publication-title: Lichenologist
– volume: 142
  start-page: 839
  year: 2006
  end-page: 854
  article-title: Arabidopsis seed development and germination is associated with temporally distinct metabolic switches
  publication-title: Plant Physiol
– volume: 147
  start-page: 1251
  year: 2008
  end-page: 1263
  article-title: Galactinol and raffinose constitute a novel function to protect plants from oxidative damage
  publication-title: Plant Physiol
– volume: 6
  start-page: 431
  year: 2001
  end-page: 438
  article-title: Mechanisms of plant desiccation tolerance
  publication-title: Trends Plant Sci
– volume: 4
  start-page: 482
  year: 2013
  article-title: Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome, and metabolome analysis
  publication-title: Front Plant Sci
– volume: 58
  start-page: 1947
  year: 2007
  end-page: 1956
  article-title: Protection mechanisms in the resurrection plant (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit
  publication-title: J Exp Bot
– year: 2015
  article-title: Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae
  publication-title: Photosynth Res
– volume: 23
  start-page: 72
  year: 2009
  end-page: 85
  article-title: Microbial consortia of bacteria and fungi with focus on the lichen symbiosis
  publication-title: Fungal Biol Rev
– volume: 30
  start-page: 148
  year: 1969
  end-page: 152
  article-title: Glycoprotein staining following electrophoresis on acrylamide gels
  publication-title: Anal Biochem
– volume: 231
  start-page: 195
  year: 2009
  end-page: 208
  article-title: Dehydration rate and time of desiccation affect recovery of the lichen alga : alternative and classical protective mechanisms
  publication-title: Planta
– volume: 165
  start-page: 1168
  year: 2008
  end-page: 1180
  article-title: Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance
  publication-title: J Plant Physiol
– volume: 59
  start-page: 2713
  year: 1981
  end-page: 2734
  article-title: Sporopollenin in the cell walls of and phycobionts of various lichens: an ultrastructural and chemical investigation
  publication-title: Can J Bot
– volume: 72
  start-page: 983
  year: 2012
  end-page: 999
  article-title: Comparative metabolic profiling between desiccation‐sensitive and desiccation‐tolerant species of reveals insights into the resurrection trait
  publication-title: Plant J
– volume: 40
  start-page: 315
  year: 2013
  end-page: 328
  article-title: The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon
  publication-title: Funct Plant Biol
– volume: 145
  start-page: 866
  year: 2011
  end-page: 872
  article-title: Effects of ATP production on silicon uptake by roots of rice seedlings
  publication-title: Plant Biosyst
– volume: 71
  start-page: 1162
  year: 2010
  end-page: 1167
  article-title: ‐Methylated mannogalactan from the microalga , symbiotic partner of the lichenized fungus
  publication-title: Phytochemistry
– volume: 166
  start-page: 337
  year: 2014
  end-page: 348
  article-title: Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi
  publication-title: Plant Physiol
– volume: 28
  start-page: 350
  year: 1956
  end-page: 356
  article-title: Colorimetric method for determination of sugars and related substances
  publication-title: Anal Chem
– volume: 5
  start-page: 96
  year: 2014
  article-title: Leaf metabolite profile of the Brazilian resurrection plant Hook. (Velloziaceae) shows two time‐dependent responses during desiccation and recovering
  publication-title: Front Plant Sci
– volume: 4
  start-page: 112
  year: 2015
  end-page: 166
  article-title: Cell wall metabolism in response to abiotic stress
  publication-title: Plants
– volume: 33
  start-page: 917
  year: 2009
  end-page: 941
  article-title: Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly
  publication-title: FEMS Microbiol Rev
– volume: 51
  start-page: 914
  year: 1973
  end-page: 920
  article-title: The osmotic potential of polyethylene glycol 6000
  publication-title: Plant Physiol
– volume: 71
  start-page: 144
  year: 2013
  end-page: 154
  article-title: Biochemical and anatomical responses related to the in vitro survival of the tropical bromeliad to low temperatures
  publication-title: Plant Physiol Biochem
– volume: 237
  start-page: 739
  year: 2013
  end-page: 754
  article-title: Arabinose‐rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation
  publication-title: Planta
– volume: 129
  start-page: 185
  year: 2007
  end-page: 195
  article-title: Reactive oxygen species generation and antioxidant systems in plant mitochondria
  publication-title: Physiol Plant
– volume: 56
  start-page: 961
  year: 2001
  end-page: 969
  article-title: Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation‐tolerant species and
  publication-title: J Exp Bot
– ident: e_1_2_6_50_1
  doi: 10.1017/S0024282986000075
– ident: e_1_2_6_53_1
  doi: 10.1016/j.neuint.2005.10.010
– ident: e_1_2_6_69_1
  doi: 10.1093/glycob/cwr144
– volume: 31
  start-page: 375
  year: 1999
  ident: e_1_2_6_28_1
  article-title: Changes in water economy in relation to anatomical and morphological characteristics during thallus development in Parmelia acetabulum
  publication-title: Lichenologist
  doi: 10.1006/lich.1999.0215
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-2818.2008.02036.x
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1529-8817.2011.00979.x
– ident: e_1_2_6_52_1
  doi: 10.1016/j.jplph.2007.09.006
– ident: e_1_2_6_21_1
  doi: 10.3389/fpls.2012.00082
– ident: e_1_2_6_35_1
  doi: 10.1007/s11120-015-0196-8
– ident: e_1_2_6_75_1
  doi: 10.1080/11263504.2011.601771
– ident: e_1_2_6_7_1
  doi: 10.1007/BF00422045
– ident: e_1_2_6_39_1
  doi: 10.1016/S1360-1385(01)02052-0
– ident: e_1_2_6_62_1
  doi: 10.1104/pp.108.122465
– ident: e_1_2_6_65_1
  doi: 10.1093/jxb/erm056
– ident: e_1_2_6_67_1
  doi: 10.1104/pp.121.1.45
– ident: e_1_2_6_44_1
  doi: 10.1111/nph.13515
– ident: e_1_2_6_32_1
  doi: 10.1007/s00018-012-1155-6
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1399-3054.2010.01417.x
– ident: e_1_2_6_14_1
  doi: 10.1016/j.femsle.2005.01.040
– ident: e_1_2_6_10_1
  doi: 10.1016/j.plaphy.2013.07.005
– ident: e_1_2_6_29_1
  doi: 10.1071/FP12321
– ident: e_1_2_6_46_1
  doi: 10.1016/j.etap.2015.02.006
– ident: e_1_2_6_66_1
  doi: 10.1093/aob/mcl246
– ident: e_1_2_6_16_1
  doi: 10.1016/j.ijbiomac.2008.02.002
– ident: e_1_2_6_68_1
  doi: 10.3389/fpls.2014.00096
– ident: e_1_2_6_49_1
  doi: 10.1104/pp.113.232942
– ident: e_1_2_6_71_1
  doi: 10.1111/tpj.12008
– ident: e_1_2_6_6_1
  doi: 10.1017/CBO9780511790478.009
– ident: e_1_2_6_47_1
  doi: 10.1007/s00248-011-9924-6
– ident: e_1_2_6_72_1
  doi: 10.1093/mp/sss155
– ident: e_1_2_6_3_1
– ident: e_1_2_6_19_1
  doi: 10.3389/fpls.2013.00482
– ident: e_1_2_6_41_1
  doi: 10.1139/b81-322
– ident: e_1_2_6_64_1
  doi: 10.1111/j.1574-6976.2009.00183.x
– volume: 41
  start-page: 349
  year: 2013
  ident: e_1_2_6_57_1
  article-title: Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen Parmotrema pseudotinctorum
  publication-title: VIERAEA
  doi: 10.31939/vieraea.2013.41.23
– ident: e_1_2_6_31_1
  doi: 10.1111/pce.12065
– ident: e_1_2_6_51_1
  doi: 10.3390/plants4010112
– ident: e_1_2_6_30_1
  doi: 10.1007/s00425-009-1019-y
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1462-2920.2010.02386.x
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1399-3054.2006.00777.x
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1399-3054.2008.01134.x
– ident: e_1_2_6_60_1
  doi: 10.1007/s00425-012-1785-9
– ident: e_1_2_6_13_1
  doi: 10.1016/j.plantsci.2015.04.003
– ident: e_1_2_6_18_1
  doi: 10.1093/aob/mcq206
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1438-8677.2009.00249.x
– ident: e_1_2_6_5_1
  doi: 10.1007/s00248-014-0524-0
– ident: e_1_2_6_40_1
  doi: 10.3389/fpls.2013.00327
– ident: e_1_2_6_22_1
  doi: 10.1021/ac60111a017
– ident: e_1_2_6_59_1
  doi: 10.1016/j.tplants.2008.11.007
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jplph.2012.07.005
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-313X.2008.03673.x
– ident: e_1_2_6_8_1
  doi: 10.1590/S1677-04202006000400005
– ident: e_1_2_6_9_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_6_27_1
  doi: 10.1016/0003-2697(91)90372-Z
– ident: e_1_2_6_73_1
  doi: 10.1016/0003-2697(69)90383-2
– ident: e_1_2_6_34_1
  doi: 10.1016/j.fbr.2009.10.001
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1438-8677.2010.00436.x
– ident: e_1_2_6_24_1
  doi: 10.1104/pp.106.086694
– volume: 312
  start-page: 217
  year: 2004
  ident: e_1_2_6_55_1
  article-title: Extracellular carbohydrates and polysaccharides of the algae Chlorella pyrenoidosa Chick S‐39
  publication-title: Biol Bull
– ident: e_1_2_6_2_1
  doi: 10.1242/jeb.02179
– ident: e_1_2_6_45_1
  doi: 10.1023/A:1007151625527
– ident: e_1_2_6_70_1
  doi: 10.1093/jexbot/52.358.961
– ident: e_1_2_6_74_1
  doi: 10.3390/ijms14047405
– ident: e_1_2_6_17_1
  doi: 10.1016/j.phytochem.2010.04.004
– ident: e_1_2_6_43_1
  doi: 10.1016/0003-2697(90)90302-P
– ident: e_1_2_6_11_1
  doi: 10.1016/j.carres.2005.03.022
– ident: e_1_2_6_15_1
  doi: 10.1016/j.ijbiomac.2007.02.006
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1574-6941.2008.00568.x
– ident: e_1_2_6_33_1
  doi: 10.1111/pce.12042
– ident: e_1_2_6_36_1
  doi: 10.1007/s00709-009-0060-9
– ident: e_1_2_6_42_1
  doi: 10.1007/BF01281320
– ident: e_1_2_6_56_1
  doi: 10.1104/pp.51.5.914
– ident: e_1_2_6_63_1
  doi: 10.1017/S0960258599000033
– ident: e_1_2_6_26_1
  doi: 10.1016/S0031-9422(00)83826-1
SSID ssj0017370
Score 2.373934
Snippet Summary Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain...
Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The...
Summary Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1546
SubjectTerms Algae
Ascomycota - physiology
ascorbic acid
Cell Wall - physiology
cell walls
Chlorophyta - physiology
Coccomyxa
Dehydration
Desiccation
drought tolerance
Gene Expression Regulation, Plant - physiology
habitats
Lichens
Lichens - classification
Limestone
Metabolites
Microalgae
Microalgae - physiology
oligosaccharides
phenolic compounds
Phenols
physiological response
Physiological responses
polyols
Ramalina
Ramalina farinacea
Solorina
Stress, Physiological
Symbiosis
Trebouxia
Water - metabolism
Title Contrasting strategies used by lichen microalgae to cope with desiccation-rehydration stress revealed by metabolite profiling and cell wall analysis
URI https://api.istex.fr/ark:/67375/WNG-JX82WVS5-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13249
https://www.ncbi.nlm.nih.gov/pubmed/26914009
https://www.proquest.com/docview/1784593729
https://www.proquest.com/docview/1785731971
https://www.proquest.com/docview/1794497435
https://www.proquest.com/docview/1825412680
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEF-kRfDF_9polRVEfMmR3c1mk0cRaynYB7W2b2En2SC0zcklR3s-9TsU-gH9JM7sJsEWrYgvxx03e7eZzOz-ZjPzG8Zeoi87BOI6Vk2RxCmC3hikQ3e3VpgKlAZNhcIfdrPtvXTnQI_ZhFQLE_ghpgM38gy_XpODW-h-cXJ0cRlTr6UZBlQplfBRxhbBoo8TgZQwyreLG2SFHMh9KJfnyvhL-9I6qfj0d6DzMob1m9DWHQbj9EPuyeFs2cOs-n6F2fG_ru8uuz1AVP4m2NQ9dsO199nN0LRy9YBdEKHVwnaUL827fqSa4MvO1RxW_IiSS1t-TJl-VCjieD_nVPvC6cyX1w7tIpwT_jg7X7ivqzoYIQ9lK5w4pXDX8r917Ho0UiqT5qG5OP2nbWtOzxv4icUXO7CqPGR7W-8-v92Oh-4OcUUcg7EChGJNnuhc4hILCTSyqBJt8wxqQNPKnUwUYLRjVQVCqMooK5scjAVl8E6rR2ytnbdug3FpndZ1AXXumlQYZ42uEYlYIwpoCtARm433tqwG6nPqwHFUjiEQKbskZZde2RF7PQ34Flg__iz6yhvLJGcXh5QsZ3S5v_u-3DnI5f6XT_ghYpujNZXDOtGVwuSpLujRacReTF-jh5MabevmSy-jDa6URlwnU6QphoZKXyNDhwFCZnkSscfBmqdJy6zASDvBWQSb_NtVl7hI-DdP_nXAU3YLMWcWckY32Vq_WLpniOt6eO5d9yf-bEOZ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqVggu_P-kFDASIC5ZxXYcJwcOiFK2f3uAlu4ttRNHSG2z1Sarspx4ByQehFfhDXgSZuIkohUUceiBy2pXO9l1bH8z48nMN4Q8ASxbcMSlL4ok8ENwen3DLcBda6YyI6SRWCi8PYqGu-HGWI4XyLeuFsbxQ_QBN0RGo68R4BiQ_gXlgHHuY7OlAZyowqRNrNy08xM4tlUv1ldhjZ9yvvZ659XQbzsL-Bny2_nCgBtQxIGMOcDbBKbgSRZIHUcmN3BbseWBMOBpa5EZxkSmhOZFbJQ2QokIO0WA2l_CPuLI17_6tqesYko0DerawTHe0glh9tCZAZ-yhEu4qB9_5-ae9pobs7d2jXzvJsxluxwMZrUZZJ_OcEn-XzN6nVxtvXD60sHmBlmw5U1yyfXlnN8iX5Gza6orTAmnVd2xadBZZXNq5vQQ82dLeoTJjFgLY2k9oVjeQzGsTXMLW9-FQn98_jK1H-a5wxl1lTkUabPAMDe_dWRrwCFWglPXPx3_U5c5xUcq9ETDi26JY26T3QuZlDtksZyU9h6hXFsp88TksS1CpqxWMgdnSyuWmCIx0iODbjOlWcvujk1GDtPulIeLm-Lips3ieuR5f8GxIzb5s-izZnf2cnp6gPmASqZ7ozfpxjjme-_fwQePrHTbN21VYZUyFYcywafDHnncfw1KDKdRl3Yya2SkAmOg2HkySRjC6VfIc2Qw3sF4FAceuevg0w-aRwkDgwWjcCD4212noAebN8v_esEjcnm4s72Vbq2PNu-TK-BiRy5FdoUs1tOZfQBubG0eNnqDkv2LhtVPzFSiaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqViAu_P-kFDASIC5ZxXYcJwcOiGXpD6wQULq3YCeOKrXNVpusynLiHZB4D16FR-BJmImTiFZQxKEHLqtd7WTX8fibGTsz3xDyALBsIRCXviiSwA8h6PUNtwB3rZnKjJBGYqHwq3G0vh1uTuRkiXzramEcP0R_4IbIaOw1AvwwL34BOUCc-9hraQAbqjBp8yq37OIIdm3Vk40hqPgh56Pn756t-21jAT9DejtfGIgCijiQMQd0m8AUPMkCqePI5AbuKrY8EAYCbS0yw5jIlNC8iI3SRigRYaMIsPorYRQk2C1i-KZnrGJKNP3p2sEx3rIJYfLQiQEfc4QrqNOPv4tyjwfNjdcbXSLfu_lyyS57g3ltBtmnE1SS_9WEXiYX2xicPnWguUKWbHmVnHNdORfXyFdk7JrpChPCaVV3XBp0XtmcmgXdx-zZkh5gKiNWwlhaTykW91A81Ka5hYXvDkJ_fP4ys7uL3KGMurociqRZ4Jab3zqwNaAQ68Cp656O_6nLnOIDFXqk4UW3tDHXyfaZTMoNslxOS3uLUK6tlHli8tgWIVNWK5lDqKUVS0yRGOmRQbeW0qzldscWI_tpt8dD5aao3LRRrkce9xccOlqTP4s-ahZnL6dne5gNqGS6M36Rbk5ivvP-LXzwyFq3etPWEFYpU3EoE3w27JH7_ddgwnAadWmn80ZGKnAFip0mk4Qh7H2FPEUGTzsYj-LAIzcdevpB8yhh4K5gFA4Df7vrFKxg82b1Xy-4R86_Ho7SlxvjrdvkAsTXkcuPXSPL9Wxu70AMW5u7jdWg5MNZo-onLqOhGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrasting+strategies+used+by+lichen+microalgae+to+cope+with+desiccation-rehydration+stress+revealed+by+metabolite+profiling+and+cell+wall+analysis&rft.jtitle=Environmental+microbiology&rft.au=Centeno%2C+Danilo+C&rft.au=Hell%2C+Aline+F&rft.au=Braga%2C+Marcia+R&rft.au=Del+Campo%2C+Eva+M&rft.date=2016-05-01&rft.eissn=1462-2920&rft.volume=18&rft.issue=5&rft.spage=1546&rft_id=info:doi/10.1111%2F1462-2920.13249&rft_id=info%3Apmid%2F26914009&rft.externalDocID=26914009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon