MicroRNA‐204 Regulates Runx2 Protein Expression and Mesenchymal Progenitor Cell Differentiation

Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we...

Full description

Saved in:
Bibliographic Details
Published inStem cells (Dayton, Ohio) Vol. 28; no. 2; pp. 357 - 364
Main Authors Huang, Jian, Zhao, Lan, Xing, Lianping, Chen, Di
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR‐204 and its homolog miR‐211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR‐204 or transfection of miR‐204 oligo decreased Runx2 protein levels and miR‐204 inhibition significantly elevated Runx2 protein levels, suggesting that miR‐204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR‐204 binding sites upregulated the Runx2 3′‐UTR reporter activity, suggesting that miR‐204/211 bind to Runx2 3′‐UTR. Perturbation of miR‐204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR‐204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR‐204 was inhibited. Together, our data demonstrated that miR‐204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs. STEM CELLS 2010;28:357–364
AbstractList Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR-204 and its homolog miR-211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR-204 or transfection of miR-204 oligo decreased Runx2 protein levels and miR-204 inhibition significantly elevated Runx2 protein levels, suggesting that miR-204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR-204 binding sites upregulated the Runx2 3′-UTR reporter activity, suggesting that miR-204/211 bind to Runx2 3′-UTR. Perturbation of miR-204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR-204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR-204 was inhibited. Together, our data demonstrated that miR-204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs.
Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR-204 and its homolog miR-211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR-204 or transfection of miR-204 oligo decreased Runx2 protein levels and miR-204 inhibition significantly elevated Runx2 protein levels, suggesting that miR-204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR-204 binding sites upregulated the Runx2 3'-UTR reporter activity, suggesting that miR-204/211 bind to Runx2 3'-UTR. Perturbation of miR-204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR-204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR-204 was inhibited. Together, our data demonstrated that miR-204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs.Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR-204 and its homolog miR-211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR-204 or transfection of miR-204 oligo decreased Runx2 protein levels and miR-204 inhibition significantly elevated Runx2 protein levels, suggesting that miR-204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR-204 binding sites upregulated the Runx2 3'-UTR reporter activity, suggesting that miR-204/211 bind to Runx2 3'-UTR. Perturbation of miR-204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR-204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR-204 was inhibited. Together, our data demonstrated that miR-204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs.
Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if micro-RNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR-204 and its homolog miR-211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR-204 or transfection of miR-204 oligo decreased Runx2 protein levels and miR-204 inhibition significantly elevated Runx2 protein levels, suggesting that miR-204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR-204 binding sites upregulated the Runx2 3′-UTR reporter activity, suggesting that miR-204/211 bind to Runx2 3′-UTR. Perturbation of miR-204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR-204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR-204 was inhibited. Together, our data demonstrated that miR-204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs.
Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR‐204 and its homolog miR‐211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR‐204 or transfection of miR‐204 oligo decreased Runx2 protein levels and miR‐204 inhibition significantly elevated Runx2 protein levels, suggesting that miR‐204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR‐204 binding sites upregulated the Runx2 3′‐UTR reporter activity, suggesting that miR‐204/211 bind to Runx2 3′‐UTR. Perturbation of miR‐204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR‐204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR‐204 was inhibited. Together, our data demonstrated that miR‐204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs. STEM CELLS 2010;28:357–364
Author Huang, Jian
Zhao, Lan
Xing, Lianping
Chen, Di
AuthorAffiliation b Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA
a Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA
AuthorAffiliation_xml – name: b Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA
– name: a Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA
Author_xml – sequence: 1
  givenname: Jian
  surname: Huang
  fullname: Huang, Jian
– sequence: 2
  givenname: Lan
  surname: Zhao
  fullname: Zhao, Lan
– sequence: 3
  givenname: Lianping
  surname: Xing
  fullname: Xing, Lianping
– sequence: 4
  givenname: Di
  surname: Chen
  fullname: Chen, Di
  email: di_chen@urmc.rochester.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20039258$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1u1DAQha2qqH9U6hOg3MFNFju2E_sGqVqWH6kLaGmvLceZbI0Se7ET6N7xCDwjT4LDtqit4GpGmm_Osc8co33nHSB0RvCMYFy8jAP0s0KIPXREOJM5k0Tspx6XZc6xlIfoOMYvGBPGhThAhwXGVBZcHCG9tCb41YfzXz9-FphlK1iPnR4gZqvR3RTZp-AHsC5b3GwCxGi9y7RrsiVEcOZ62-tuQtbg7OBDNoeuy17btoUAbrB6SPxT9KTVXYTT23qCrt4sLufv8ouPb9_Pzy9ywyoucllXzDCooBacc6gJFbSWIMuGCmbq1OKqEUBL3RpoAfO24kAlZawqGtJgeoJe7XQ3Y91DY9IDgu7UJtheh63y2qqHE2ev1dp_U4WgVYkngee3AsF_HSEOqrfRpB9pB36MqqKUEyFLlshn963-etzFmoDZDkjZxhigVcYOf9JIzrZTBKvpbmq6W_KfFl48WrjT_Aea79DvtoPtfzn1-XKxnPjfzsOqZw
CitedBy_id crossref_primary_10_1155_2016_8169614
crossref_primary_10_1161_CIRCRESAHA_113_300937
crossref_primary_10_1007_s11010_013_1888_z
crossref_primary_10_3892_ijmm_2014_2051
crossref_primary_10_1038_s41419_019_1693_z
crossref_primary_10_1007_s13577_022_00764_8
crossref_primary_10_1016_j_ejmg_2017_10_015
crossref_primary_10_3109_10408363_2014_937522
crossref_primary_10_1016_j_bbrc_2010_11_079
crossref_primary_10_1016_j_febslet_2015_09_032
crossref_primary_10_1002_jcb_24668
crossref_primary_10_4161_adip_22019
crossref_primary_10_1007_s11010_020_03900_w
crossref_primary_10_1016_j_bone_2021_115968
crossref_primary_10_3390_cells8121581
crossref_primary_10_1002_jcp_30131
crossref_primary_10_1186_1479_5876_12_168
crossref_primary_10_1210_en_2012_2236
crossref_primary_10_1038_srep36988
crossref_primary_10_1016_j_mce_2017_04_009
crossref_primary_10_5483_BMBRep_2015_48_6_206
crossref_primary_10_3390_ijms23042130
crossref_primary_10_1371_journal_pone_0107269
crossref_primary_10_1186_1471_2164_13_S8_S14
crossref_primary_10_1016_j_msec_2020_111801
crossref_primary_10_1016_j_abb_2014_05_003
crossref_primary_10_3390_ijms21010349
crossref_primary_10_1186_s41232_022_00228_4
crossref_primary_10_1038_s41598_017_13622_7
crossref_primary_10_1016_j_bone_2020_115470
crossref_primary_10_1091_mbc_e11_04_0356
crossref_primary_10_1016_j_diff_2023_08_002
crossref_primary_10_4068_cmj_2014_50_3_86
crossref_primary_10_1016_j_mad_2012_03_014
crossref_primary_10_3389_fcell_2023_1323678
crossref_primary_10_1016_j_ajpath_2024_07_022
crossref_primary_10_1038_cddis_2014_4
crossref_primary_10_1530_EJE_11_0646
crossref_primary_10_1089_scd_2013_0209
crossref_primary_10_1038_boneres_2016_22
crossref_primary_10_1002_jbmr_2060
crossref_primary_10_1016_j_coph_2014_05_001
crossref_primary_10_1016_j_omtn_2022_03_024
crossref_primary_10_3390_ijms24108631
crossref_primary_10_1007_s12020_013_9986_y
crossref_primary_10_1186_s12885_018_4217_9
crossref_primary_10_1016_j_biocel_2017_01_018
crossref_primary_10_1016_j_actbio_2018_06_017
crossref_primary_10_1002_jbmr_2297
crossref_primary_10_1042_CS20160094
crossref_primary_10_1016_j_febslet_2015_09_024
crossref_primary_10_3390_ani12040505
crossref_primary_10_1016_j_bone_2010_05_035
crossref_primary_10_3389_fendo_2022_808223
crossref_primary_10_1155_2013_451248
crossref_primary_10_1515_cclm_2013_0770
crossref_primary_10_1007_s00109_021_02164_1
crossref_primary_10_1111_odi_12073
crossref_primary_10_1371_journal_pone_0075578
crossref_primary_10_1155_2019_9327386
crossref_primary_10_1007_s00394_018_1663_8
crossref_primary_10_1186_s13071_015_1203_9
crossref_primary_10_1517_14728222_2010_512916
crossref_primary_10_1186_s12967_024_05006_z
crossref_primary_10_1016_j_biomaterials_2011_12_021
crossref_primary_10_1515_cmble_2015_0034
crossref_primary_10_1002_1873_3468_12112
crossref_primary_10_1002_kjm2_12217
crossref_primary_10_1038_nm_3026
crossref_primary_10_1016_j_febslet_2013_12_002
crossref_primary_10_3390_ijms24129978
crossref_primary_10_3803_EnM_2014_29_2_122
crossref_primary_10_1016_j_vesic_2024_100042
crossref_primary_10_3390_ma11040546
crossref_primary_10_1111_cid_12553
crossref_primary_10_1073_pnas_1018493108
crossref_primary_10_2217_epi_2018_0084
crossref_primary_10_1089_ten_tea_2017_0460
crossref_primary_10_7717_peerj_1976
crossref_primary_10_1007_s40610_019_0115_4
crossref_primary_10_1038_bjc_2016_392
crossref_primary_10_1007_s12020_019_01952_7
crossref_primary_10_1016_j_lfs_2020_118680
crossref_primary_10_2174_1389203720666181031143129
crossref_primary_10_1155_2013_571418
crossref_primary_10_1073_pnas_1007698107
crossref_primary_10_1007_s11033_014_3830_1
crossref_primary_10_1038_s41467_024_47633_6
crossref_primary_10_3390_ijms17091446
crossref_primary_10_1016_j_msec_2019_110065
crossref_primary_10_1089_scd_2010_0072
crossref_primary_10_3390_biology12040498
crossref_primary_10_1038_srep18118
crossref_primary_10_1371_journal_pone_0174138
crossref_primary_10_1016_j_biochi_2015_02_012
crossref_primary_10_1155_2016_1652417
crossref_primary_10_1002_jbm_a_37578
crossref_primary_10_1002_term_3176
crossref_primary_10_1007_s00204_017_1979_9
crossref_primary_10_3892_mmr_2017_7400
crossref_primary_10_1016_j_colsurfb_2022_112446
crossref_primary_10_2337_db17_1434
crossref_primary_10_3390_ijms18061236
crossref_primary_10_1007_s00018_014_1700_6
crossref_primary_10_1038_cddis_2013_356
crossref_primary_10_4041_kjod_2019_49_5_299
crossref_primary_10_1371_journal_pone_0182678
crossref_primary_10_1111_jcmm_14544
crossref_primary_10_1016_j_bbagen_2013_02_015
crossref_primary_10_1096_fj_202001131R
crossref_primary_10_1016_j_bbagrm_2016_05_003
crossref_primary_10_1002_jcb_24144
crossref_primary_10_1002_jcp_27928
crossref_primary_10_1016_j_bbrc_2013_02_036
crossref_primary_10_1016_j_jcis_2020_07_057
crossref_primary_10_3389_fcell_2021_787118
crossref_primary_10_1007_s00774_011_0311_7
crossref_primary_10_1172_JCI77716
crossref_primary_10_1002_jbmr_1597
crossref_primary_10_1002_jcp_22475
crossref_primary_10_1038_s41598_019_43518_7
crossref_primary_10_1536_ihj_18_086
crossref_primary_10_1051_rmr_170004
crossref_primary_10_1016_j_gene_2018_11_028
crossref_primary_10_1007_s40610_017_0058_6
crossref_primary_10_1371_journal_pone_0034872
crossref_primary_10_1002_stem_1623
crossref_primary_10_3390_jcm13051405
crossref_primary_10_3390_ijms21249455
crossref_primary_10_1002_stem_703
crossref_primary_10_1261_rna_2414110
crossref_primary_10_1089_scd_2016_0133
crossref_primary_10_1093_gbe_evu151
crossref_primary_10_1097_SHK_0000000000001002
crossref_primary_10_3390_ijms21010076
crossref_primary_10_1586_eem_12_63
crossref_primary_10_1002_stem_1615
crossref_primary_10_1016_j_jtcvs_2013_05_011
crossref_primary_10_1093_abbs_gmu082
crossref_primary_10_1371_journal_pone_0034641
crossref_primary_10_3892_ijmm_2015_2160
crossref_primary_10_1016_j_biocel_2016_08_014
crossref_primary_10_1007_s10787_022_01097_6
crossref_primary_10_3389_fcell_2021_619842
crossref_primary_10_1530_EJE_17_0772
crossref_primary_10_1038_ijo_2015_43
crossref_primary_10_1038_cddis_2013_130
crossref_primary_10_1186_1471_2350_15_45
crossref_primary_10_3389_fbioe_2019_00068
crossref_primary_10_4161_psb_6_3_14340
crossref_primary_10_1038_s41413_018_0010_2
crossref_primary_10_1186_s13287_020_1579_0
crossref_primary_10_1038_nrrheum_2015_162
crossref_primary_10_1042_CBI20110680
crossref_primary_10_1002_dvdy_708
crossref_primary_10_1007_s00223_018_0410_8
crossref_primary_10_1089_scd_2013_0600
crossref_primary_10_1186_s13148_017_0406_7
crossref_primary_10_3390_cells8121523
crossref_primary_10_3892_etm_2019_7570
crossref_primary_10_1016_j_actbio_2020_03_042
crossref_primary_10_1016_j_biopha_2018_01_103
crossref_primary_10_1038_s41467_019_10753_5
crossref_primary_10_1002_stem_728
crossref_primary_10_1016_j_biopha_2016_08_025
crossref_primary_10_1016_j_ijbiomac_2023_127801
crossref_primary_10_1161_HYPERTENSIONAHA_121_14536
crossref_primary_10_1038_cddis_2013_363
crossref_primary_10_1016_j_mce_2017_11_005
crossref_primary_10_1165_rcmb_2014_0166TR
crossref_primary_10_3390_ijms17081329
crossref_primary_10_1002_jcp_24402
crossref_primary_10_1002_jbmr_3662
crossref_primary_10_1530_JME_17_0183
crossref_primary_10_1007_s11626_017_0225_3
crossref_primary_10_1186_s13018_020_01685_8
crossref_primary_10_1080_09168451_2014_1003128
crossref_primary_10_1016_j_bbamcr_2011_01_022
crossref_primary_10_1128_MCB_00121_15
crossref_primary_10_1166_sam_2023_4458
crossref_primary_10_1007_s00441_016_2462_2
crossref_primary_10_3892_mmr_2020_11110
crossref_primary_10_3892_mmr_2012_1207
crossref_primary_10_1016_j_gene_2015_03_072
crossref_primary_10_1038_nrendo_2011_234
crossref_primary_10_3892_etm_2015_2477
crossref_primary_10_1073_pnas_1016758108
crossref_primary_10_1093_cvr_cvs258
crossref_primary_10_1002_jcp_22557
crossref_primary_10_1007_s00198_017_4241_7
crossref_primary_10_1007_s11914_017_0379_7
crossref_primary_10_1097_FJC_0000000000000244
crossref_primary_10_1038_cdd_2010_167
crossref_primary_10_1166_jbt_2021_2678
crossref_primary_10_3390_ijms21030980
crossref_primary_10_1002_jbmr_2352
crossref_primary_10_1016_j_tice_2021_101540
crossref_primary_10_1002_ptr_6034
crossref_primary_10_3390_ijms25105291
crossref_primary_10_1186_s13287_023_03275_x
crossref_primary_10_1016_j_biochi_2014_02_005
crossref_primary_10_1111_jbg_12841
crossref_primary_10_3390_ijms222413454
crossref_primary_10_1016_j_gene_2017_04_013
crossref_primary_10_1016_j_pbiomolbio_2016_01_005
crossref_primary_10_1080_10643389_2021_1915052
crossref_primary_10_1089_ten_tea_2014_0679
crossref_primary_10_1016_j_exphem_2011_01_011
crossref_primary_10_3892_mmr_2018_8416
crossref_primary_10_1016_j_biopha_2015_07_016
crossref_primary_10_1111_j_1582_4934_2010_01175_x
crossref_primary_10_1021_acs_jafc_1c01147
crossref_primary_10_1002_jcp_24834
crossref_primary_10_3390_ijms16048227
crossref_primary_10_17795_rijm14849
crossref_primary_10_1002_jcp_31120
crossref_primary_10_1016_j_psj_2025_105068
crossref_primary_10_1093_nar_gkt666
crossref_primary_10_3109_03008207_2014_910198
crossref_primary_10_1302_2046_3758_116_BJR_2021_0596_R1
crossref_primary_10_1016_j_msec_2018_08_023
crossref_primary_10_1002_jcb_25026
crossref_primary_10_1016_j_cub_2010_08_052
crossref_primary_10_1038_cddis_2014_485
crossref_primary_10_1007_s11010_017_3015_z
crossref_primary_10_1007_s11033_020_05885_7
crossref_primary_10_3390_genes14010094
crossref_primary_10_1002_term_3215
crossref_primary_10_1016_j_gene_2018_05_043
crossref_primary_10_1038_srep25287
crossref_primary_10_1042_BSR20171615
crossref_primary_10_1002_jcp_27410
crossref_primary_10_1007_s12015_011_9296_9
crossref_primary_10_14336_AD_2023_1115
crossref_primary_10_1002_cbin_10802
crossref_primary_10_1042_BSR20182502
crossref_primary_10_1038_s41598_020_60346_2
crossref_primary_10_3390_biology2030861
crossref_primary_10_1039_c3ra00007a
crossref_primary_10_3892_mmr_2015_4259
crossref_primary_10_1186_s13287_018_0980_4
crossref_primary_10_1007_s11626_022_00718_2
crossref_primary_10_1074_jbc_M112_340398
crossref_primary_10_12677_HJCB_2016_61002
crossref_primary_10_1038_srep38491
crossref_primary_10_3892_or_2013_2687
crossref_primary_10_3892_mmr_2013_1540
crossref_primary_10_1016_j_drudis_2017_04_007
crossref_primary_10_1371_journal_pone_0071637
crossref_primary_10_3389_fendo_2021_797680
crossref_primary_10_1016_j_bone_2012_05_013
crossref_primary_10_1016_j_mcp_2018_10_002
crossref_primary_10_1039_C7BM00384F
crossref_primary_10_1139_bcb_2012_0053
crossref_primary_10_1111_jre_12794
crossref_primary_10_1016_j_joen_2013_09_035
crossref_primary_10_1016_j_yjmcc_2012_08_024
crossref_primary_10_1016_j_omtn_2019_06_023
crossref_primary_10_1016_j_yexcr_2017_01_018
crossref_primary_10_1002_wnan_1327
crossref_primary_10_23868_201903005
crossref_primary_10_1111_jcmm_13039
crossref_primary_10_1016_j_joca_2012_08_024
crossref_primary_10_1038_cddis_2013_65
crossref_primary_10_1007_s11033_022_08084_8
crossref_primary_10_1016_j_bbrc_2024_150570
crossref_primary_10_1038_ijo_2012_59
crossref_primary_10_29235_1029_8940_2020_65_1_106_118
crossref_primary_10_1096_fj_202000006RR
crossref_primary_10_1177_2058738420966092
crossref_primary_10_1002_jcb_28689
crossref_primary_10_1186_s12263_017_0577_z
crossref_primary_10_1016_j_joen_2012_06_016
crossref_primary_10_1039_D1QM00367D
crossref_primary_10_1007_s11684_013_0252_8
crossref_primary_10_1371_journal_pone_0058104
crossref_primary_10_18632_oncotarget_22748
crossref_primary_10_1016_j_lfs_2019_116676
crossref_primary_10_1016_j_cocis_2018_01_015
crossref_primary_10_5812_rijm_14849
crossref_primary_10_1074_jbc_M111_292722
crossref_primary_10_1155_2014_840906
crossref_primary_10_1038_srep07828
crossref_primary_10_1242_dev_070151
crossref_primary_10_1002_jcb_27121
crossref_primary_10_1007_s11914_014_0240_1
crossref_primary_10_1186_s12864_019_6094_2
crossref_primary_10_1161_JAHA_116_005364
crossref_primary_10_3892_mmr_2015_3298
crossref_primary_10_1016_j_scr_2015_01_008
crossref_primary_10_3390_cancers13071554
crossref_primary_10_1002_jcb_29306
crossref_primary_10_1155_2019_6782653
crossref_primary_10_3389_fsurg_2021_786564
crossref_primary_10_1080_10799893_2016_1212375
crossref_primary_10_1186_s40634_017_0077_5
crossref_primary_10_1002_stem_3040
crossref_primary_10_1007_s00774_017_0886_8
crossref_primary_10_3892_ijmm_2018_3811
crossref_primary_10_1016_j_msec_2019_109748
crossref_primary_10_1016_j_bone_2016_04_007
crossref_primary_10_1074_jbc_M112_414862
crossref_primary_10_1016_j_bmcl_2020_127137
crossref_primary_10_1038_s41388_019_0862_y
crossref_primary_10_1186_s11658_016_0013_1
crossref_primary_10_1016_j_engreg_2022_06_002
crossref_primary_10_1002_JPER_21_0064
crossref_primary_10_1038_s41598_025_85174_0
crossref_primary_10_3892_mmr_2014_2024
crossref_primary_10_1089_scd_2012_0014
crossref_primary_10_1155_2020_8866048
crossref_primary_10_1007_s11914_017_0391_y
crossref_primary_10_1016_j_ijbiomac_2015_04_008
crossref_primary_10_1007_s00432_023_05166_3
crossref_primary_10_1016_j_ijcard_2022_08_029
crossref_primary_10_3389_fendo_2021_703167
crossref_primary_10_1002_jcp_26523
crossref_primary_10_1093_cvr_cvv030
crossref_primary_10_12688_f1000research_6548_1
crossref_primary_10_1002_jbmr_4834
crossref_primary_10_1016_j_biomaterials_2013_05_042
crossref_primary_10_1016_j_addr_2014_05_010
crossref_primary_10_1080_21623945_2018_1423911
crossref_primary_10_1128_MCB_00745_15
crossref_primary_10_1007_s00774_019_01080_2
crossref_primary_10_1002_oby_21467
crossref_primary_10_1371_journal_pone_0059238
crossref_primary_10_1038_s41413_022_00226_9
crossref_primary_10_1111_nyas_13206
crossref_primary_10_14336_AD_2018_0214
crossref_primary_10_1016_j_yjmcc_2012_10_005
crossref_primary_10_1002_jbmr_1798
crossref_primary_10_1155_2018_3717391
crossref_primary_10_1177_0003319720984592
crossref_primary_10_1042_BSR20181108
crossref_primary_10_1681_ASN_2014050520
crossref_primary_10_1038_s41467_018_04464_6
crossref_primary_10_1517_14728222_2011_561317
crossref_primary_10_18632_oncoscience_421
crossref_primary_10_1089_scd_2014_0331
crossref_primary_10_1007_s00774_013_0537_7
crossref_primary_10_1074_jbc_M110_116137
crossref_primary_10_1002_jcp_27833
crossref_primary_10_1186_gb_2011_12_7_r64
crossref_primary_10_1902_jop_2017_170078
crossref_primary_10_3390_genes11020196
crossref_primary_10_1016_j_bbalip_2016_02_010
crossref_primary_10_1038_s41419_024_06508_w
crossref_primary_10_3892_mmr_2017_7386
crossref_primary_10_31083_j_fbs1403017
crossref_primary_10_3892_ijmm_2018_3452
crossref_primary_10_1111_cpr_12413
crossref_primary_10_1007_s00223_017_0296_x
crossref_primary_10_1038_cddis_2016_325
crossref_primary_10_1186_s13578_016_0073_y
crossref_primary_10_1186_s13287_020_01966_3
crossref_primary_10_1016_j_colsurfb_2015_01_048
crossref_primary_10_1089_scd_2011_0721
crossref_primary_10_7717_peerj_14300
crossref_primary_10_1016_j_toxlet_2017_11_033
crossref_primary_10_1007_s12041_012_0168_0
crossref_primary_10_1093_ckj_sfac219
crossref_primary_10_1016_j_bone_2024_117123
crossref_primary_10_1038_srep46136
crossref_primary_10_1038_s41598_021_98470_2
crossref_primary_10_1186_1476_4598_12_155
crossref_primary_10_1016_j_biomaterials_2014_02_055
crossref_primary_10_1002_dvdy_240
crossref_primary_10_1038_cdd_2015_99
crossref_primary_10_1007_s11684_011_0168_0
crossref_primary_10_4252_wjsc_v5_i4_136
crossref_primary_10_1007_s00441_013_1750_3
crossref_primary_10_1016_j_bioadv_2022_213176
crossref_primary_10_1016_j_biopha_2020_110593
crossref_primary_10_1016_j_cancergen_2010_12_012
crossref_primary_10_1002_jbm_a_35819
crossref_primary_10_1016_j_jds_2019_11_004
crossref_primary_10_3390_v12111207
crossref_primary_10_1002_jcb_24831
crossref_primary_10_1089_scd_2012_0686
crossref_primary_10_1002_mc_22263
crossref_primary_10_1016_j_bone_2019_02_013
crossref_primary_10_1016_j_ygeno_2018_05_001
crossref_primary_10_1016_j_cellsig_2014_07_017
crossref_primary_10_3892_or_2014_3517
crossref_primary_10_3390_ijms19020360
crossref_primary_10_1038_ijos_2015_22
crossref_primary_10_1016_j_beem_2016_11_009
crossref_primary_10_1021_nn504767g
crossref_primary_10_1007_s11010_013_1580_3
crossref_primary_10_1016_j_jconrel_2014_12_034
crossref_primary_10_1371_journal_pone_0037361
crossref_primary_10_1111_febs_12037
crossref_primary_10_1007_s00535_012_0562_7
crossref_primary_10_3390_ijms22052362
crossref_primary_10_1007_s11914_013_0143_6
crossref_primary_10_3390_epigenomes1020012
crossref_primary_10_12659_MSM_896742
crossref_primary_10_1517_14712598_2015_960838
crossref_primary_10_1016_j_diff_2020_01_001
crossref_primary_10_1155_2015_274852
crossref_primary_10_1371_journal_pone_0073473
crossref_primary_10_1186_s40580_024_00430_9
crossref_primary_10_1038_mt_2015_101
crossref_primary_10_1038_bjc_2012_356
crossref_primary_10_1089_chi_2017_0180
crossref_primary_10_1002_jbmr_1944
crossref_primary_10_1371_journal_pone_0048278
crossref_primary_10_1016_j_tmaid_2022_102534
crossref_primary_10_1155_2021_1530445
crossref_primary_10_1007_s00223_015_9954_z
crossref_primary_10_14336_AD_2019_0724
crossref_primary_10_1016_j_ymthe_2024_06_016
crossref_primary_10_1002_jcp_27686
crossref_primary_10_1002_stem_1146
crossref_primary_10_1111_jre_13070
crossref_primary_10_1002_jbmr_1938
crossref_primary_10_1111_cpr_12688
crossref_primary_10_1016_j_jot_2019_11_008
crossref_primary_10_3390_ijms21124283
crossref_primary_10_1039_C9TB00613C
crossref_primary_10_3892_ijmm_2018_3526
crossref_primary_10_1186_1471_2164_14_265
crossref_primary_10_1007_s00223_022_01034_3
crossref_primary_10_1093_neuonc_nos124
crossref_primary_10_1007_s11033_012_1591_2
crossref_primary_10_1016_j_ijbiomac_2022_01_176
crossref_primary_10_1016_j_biomaterials_2011_11_061
crossref_primary_10_1080_09205063_2017_1341675
crossref_primary_10_2147_CIA_S289479
crossref_primary_10_1002_jcp_25371
crossref_primary_10_1016_j_biopha_2017_06_007
crossref_primary_10_1016_j_bone_2015_05_026
crossref_primary_10_3390_cells11223687
crossref_primary_10_1016_j_cellsig_2014_05_006
crossref_primary_10_1002_jbmr_1604
crossref_primary_10_1007_s13770_017_0097_3
crossref_primary_10_1016_j_biomaterials_2011_03_030
crossref_primary_10_1016_j_omtn_2019_09_030
crossref_primary_10_1007_s13577_024_01149_9
crossref_primary_10_1038_s41598_022_17579_0
crossref_primary_10_1016_j_omtn_2017_11_009
crossref_primary_10_2119_molmed_2011_00463
crossref_primary_10_1016_j_jconrel_2015_08_011
crossref_primary_10_1038_cdd_2015_168
crossref_primary_10_3390_cells12212559
crossref_primary_10_1089_scd_2012_0434
crossref_primary_10_3892_mmr_2017_8341
crossref_primary_10_1002_jcb_23418
crossref_primary_10_1530_JME_13_0294
crossref_primary_10_7717_peerj_4959
crossref_primary_10_5966_sctm_2015_0154
crossref_primary_10_3389_fendo_2023_1210627
crossref_primary_10_1002_ddr_21260
crossref_primary_10_1089_ten_tec_2010_0200
crossref_primary_10_1007_s00441_011_1167_9
crossref_primary_10_1016_j_gene_2012_01_045
crossref_primary_10_1002_jcb_24617
crossref_primary_10_3389_fbioe_2023_1189225
crossref_primary_10_1371_journal_pone_0072266
Cites_doi 10.1634/stemcells.21-6-681
10.1074/jbc.M603439200
10.1016/S1534-5807(03)00227-2
10.1016/S0092-8674(00)80258-5
10.1073/pnas.0408742102
10.1126/science.1110955
10.1677/joe.0.1650579
10.1016/j.cell.2009.01.002
10.1097/00003086-197110000-00021
10.1359/jbmr.070721
10.1172/JCI200419900
10.1038/sj.gt.3301206
10.1073/pnas.90.14.6859
10.1038/nrm2621
10.1073/pnas.0804438105
10.1242/jcs.00866
10.1038/nrm2066
10.1136/jcp.55.9.693
10.1038/nmeth1079
10.1126/science.276.5309.71
10.1038/ng1536
10.1038/nrg2290
10.1038/ng1725
10.1073/pnas.88.23.10431
10.1074/jbc.M708055200
10.1016/S0301-472X(03)00260-1
10.1371/journal.pbio.0020363
10.1101/gad.1174704
10.1101/gad.14.11.1293
10.1634/stemcells.2007-0625
10.1097/BOR.0b013e3283025e9c
10.1073/pnas.0602831103
10.1093/nar/gni178
10.1016/S1534-5807(04)00058-9
ContentType Journal Article
Copyright Copyright © 2010 AlphaMed Press
Copyright_xml – notice: Copyright © 2010 AlphaMed Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/stem.288
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1549-4918
EndPage 364
ExternalDocumentID PMC2837600
20039258
10_1002_stem_288
STEM288
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: New York State Department of Health and the Empire State Stem Cell Board
  funderid: N08G‐070
– fundername: National Institute of Health
  funderid: R01 AR051189; R01 AR054465; K02 AR052411
– fundername: NIAMS NIH HHS
  grantid: R01 AR054465
– fundername: NIAMS NIH HHS
  grantid: R01 AR051189
– fundername: NIAMS NIH HHS
  grantid: K02 AR052411
– fundername: NIAMS NIH HHS
  grantid: R01 AR055915
– fundername: NIAMS NIH HHS
  grantid: R01 AR048697
GroupedDBID ---
.GJ
05W
0R~
123
18M
1OB
1OC
24P
2WC
31~
3WU
4.4
53G
5RE
5WD
8-0
8-1
A00
AABZA
AACZT
AAESR
AAIHA
AAONW
AAPGJ
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAZKR
ABCUV
ABDFA
ABEJV
ABHFT
ABLJU
ABMNT
ABNHQ
ABPTD
ABXVV
ACFRR
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACUFI
ACUTJ
ACXQS
ACZBC
ADBBV
ADGKP
ADIPN
ADKYN
ADQBN
ADVEK
ADXAS
ADZMN
AENEX
AEUQT
AFBPY
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGMDO
AHMBA
AHMMS
AIURR
AJAOE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYDB
APJGH
ATGXG
AVNTJ
AZBYB
AZVAB
BAWUL
BCRHZ
BEYMZ
BMXJE
BRXPI
CS3
DCZOG
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
FD6
G-S
GODZA
GX1
H13
HHY
HZ~
IH2
KOP
KSI
KSN
LATKE
LEEKS
LH4
LITHE
LMP
LOXES
LUTES
LW6
LYRES
MY~
N9A
NNB
NOMLY
NU-
O66
O9-
OBOKY
OCZFY
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
P4E
PALCI
PQQKQ
RAO
RIWAO
RJQFR
ROL
ROX
RWI
SUPJJ
SV3
TEORI
TMA
TR2
WBKPD
WOHZO
WOQ
WYB
WYJ
XV2
ZGI
ZXP
ZZTAW
~S-
AAYXX
ABGNP
ABJNI
ABVGC
ABXZS
AGORE
AJNCP
ALXQX
CITATION
AAMMB
ACVCV
ADMTO
AEFGJ
AFFQV
AGXDD
AHGBF
AIDQK
AIDYY
AJBYB
AJDVS
CGR
CUY
CVF
ECM
EIF
NPM
OBFPC
7X8
5PM
WIN
ID FETCH-LOGICAL-c4758-9b74c4e7eb8555eb1383b9e96d384cbb9e07d8e36afcefe05f75e3934472d1d03
ISSN 1066-5099
1549-4918
IngestDate Thu Aug 21 14:11:19 EDT 2025
Fri Jul 11 04:37:08 EDT 2025
Mon Jul 21 06:01:22 EDT 2025
Thu Apr 24 22:53:54 EDT 2025
Tue Jul 01 00:23:25 EDT 2025
Wed Jan 22 16:32:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4758-9b74c4e7eb8555eb1383b9e96d384cbb9e07d8e36afcefe05f75e3934472d1d03
Notes First published online in S
Author contributions: J.H.: Conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing; L.Z.: Provision of study material, collection and/or assembly of data; L.X.: Provision of study material, discussion of results; D.C.: Conception and design, data analysis and interpretation, financial support, manuscript writing, final approval of manuscript.
Disclosure of potential conflicts of interest is found at the end of this article.
C
Tel: 585‐273‐5631; Fax: 585‐275‐1121
EXPRESS
TEM
ELLS
February 12, 2010.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/stmcls/article-pdf/28/2/357/41950140/stmcls_28_2_357.pdf
PMID 20039258
PQID 733518964
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2837600
proquest_miscellaneous_733518964
pubmed_primary_20039258
crossref_citationtrail_10_1002_stem_288
crossref_primary_10_1002_stem_288
wiley_primary_10_1002_stem_288_STEM288
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2010
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: February 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: England
PublicationTitle Stem cells (Dayton, Ohio)
PublicationTitleAlternate Stem Cells
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References 2006; 38
1997; 276
2002; 55
1997; 89
2000; 7
2006; 7
2008; 9
2004; 6
2008; 105
1993; 90
2004; 2
2003; 31
2009; 136
2008; 283
2009; 10
2004; 113
2004; 18
2000; 14
2005; 102
1991; 88
2008; 26
2003; 5
2005; 309
2007; 4
2000; 165
2008; 20
2006; 281
2005; 37
1971; 80
2007; 22
2004; 117
2005; 33
2003; 21
2006; 103
Gangaraju (2022011217395969000_bib15) 2009; 10
Takazawa (2022011217395969000_bib21) 2000; 165
Ebert (2022011217395969000_bib25) 2007; 4
Hong (2022011217395969000_bib14) 2005; 309
Zhang (2022011217395969000_bib17) 2008; 283
Verma (2022011217395969000_bib5) 2002; 55
John (2022011217395969000_bib24) 2004; 2
Shen (2022011217395969000_bib32) 2006; 281
Yoshida (2022011217395969000_bib8) 2004; 18
Miyoshi (2022011217395969000_bib20) 1991; 88
Bartel (2022011217395969000_bib34) 2009; 136
Chen (2022011217395969000_bib19) 2005; 33
Enomoto (2022011217395969000_bib12) 2004; 117
Komori (2022011217395969000_bib7) 1997; 89
Rosen (2022011217395969000_bib9) 2000; 14
Lakshmipathy (2022011217395969000_bib26) 2008; 26
Rosen (2022011217395969000_bib11) 2006; 7
Meunier (2022011217395969000_bib4) 1971; 80
Bialek (2022011217395969000_bib31) 2004; 6
Bennett (2022011217395969000_bib10) 2005; 102
Morita (2022011217395969000_bib16) 2000; 7
Tuli (2022011217395969000_bib2) 2003; 21
Chen (2022011217395969000_bib28) 2006; 38
Filipowicz (2022011217395969000_bib33) 2008; 9
Duque (2022011217395969000_bib3) 2008; 20
Prockop (2022011217395969000_bib1) 1997; 276
Li (2022011217395969000_bib30) 2008; 105
Krek (2022011217395969000_bib23) 2005; 37
Houbaviy (2022011217395969000_bib27) 2003; 5
Qiu (2022011217395969000_bib6) 2007; 22
Akune (2022011217395969000_bib13) 2004; 113
Ogawa (2022011217395969000_bib22) 1993; 90
Kitamura (2022011217395969000_bib18) 2003; 31
Rao (2022011217395969000_bib29) 2006; 103
References_xml – volume: 37
  start-page: 495
  year: 2005
  end-page: 500
  article-title: Combinatorial microRNA target predictions
  publication-title: Nat Genet
– volume: 105
  start-page: 13906
  year: 2008
  end-page: 13911
  article-title: A microRNA signature for a BMP2‐induced osteoblast lineage commitment program
  publication-title: Proc Natl Acad Sci U S A
– volume: 5
  start-page: 351
  year: 2003
  end-page: 358
  article-title: Embryonic stem cell‐specific MicroRNAs
  publication-title: Dev Cell
– volume: 90
  start-page: 6859
  year: 1993
  end-page: 6863
  article-title: PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene
  publication-title: Proc Natl Acad Sci U S A
– volume: 102
  start-page: 3324
  year: 2005
  end-page: 3329
  article-title: Regulation of osteoblastogenesis and bone mass by Wnt10b
  publication-title: Proc Natl Acad Sci U S A
– volume: 103
  start-page: 8721
  year: 2006
  end-page: 8726
  article-title: Myogenic factors that regulate expression of muscle‐specific microRNAs
  publication-title: Proc Natl Acad Sci U S A
– volume: 9
  start-page: 102
  year: 2008
  end-page: 114
  article-title: Mechanisms of post‐transcriptional regulation by microRNAs: Are the answers in sight?
  publication-title: Nat Rev Genet
– volume: 80
  start-page: 147
  year: 1971
  end-page: 154
  article-title: Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A Quantitative Study Of 84 Iliac Bone Biopsies
  publication-title: Clin Orthop Relat Res
– volume: 33
  start-page: e179
  year: 2005
  article-title: Real‐time quantification of microRNAs by stem‐loop RT‐PCR
  publication-title: Nucleic Acids Res
– volume: 6
  start-page: 423
  year: 2004
  end-page: 435
  article-title: A twist code determines the onset of osteoblast differentiation
  publication-title: Dev Cell
– volume: 4
  start-page: 721
  year: 2007
  end-page: 726
  article-title: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells
  publication-title: Nat Methods
– volume: 89
  start-page: 755
  year: 1997
  end-page: 764
  article-title: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts
  publication-title: Cell
– volume: 283
  start-page: 13491
  year: 2008
  end-page: 13499
  article-title: VEGF‐C, a lymphatic growth factor, is a RANKL target gene in osteoclasts that enhances osteoclastic bone resorption through an autocrine mechanism
  publication-title: J Biol Chem
– volume: 281
  start-page: 16347
  year: 2006
  end-page: 16353
  article-title: Cyclin D1‐cdk4 induce runx2 ubiquitination and degradation
  publication-title: J Biol Chem
– volume: 113
  start-page: 846
  year: 2004
  end-page: 855
  article-title: PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors
  publication-title: J Clin Invest
– volume: 21
  start-page: 681
  year: 2003
  end-page: 693
  article-title: Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone
  publication-title: Stem Cells
– volume: 7
  start-page: 885
  year: 2006
  end-page: 896
  article-title: Adipocyte differentiation from the inside out
  publication-title: Nat Rev Mol Cell Biol
– volume: 2
  start-page: e363
  year: 2004
  article-title: Human MicroRNA targets
  publication-title: Plos Biol
– volume: 38
  start-page: 228
  year: 2006
  end-page: 233
  article-title: The role of microRNA‐1 and microRNA‐133 in skeletal muscle proliferation and differentiation
  publication-title: Nat Genet
– volume: 10
  start-page: 116
  year: 2009
  end-page: 125
  article-title: MicroRNAs: Key regulators of stem cells
  publication-title: Nat Rev Mol Cell Biol
– volume: 165
  start-page: 579
  year: 2000
  end-page: 586
  article-title: An osteogenesis‐related transcription factor, core‐binding factor A1, is constitutively expressed in the chondrocytic cell line TC6, and its expression is upregulated by bone morphogenetic protein‐2
  publication-title: J Endocrinol
– volume: 14
  start-page: 1293
  year: 2000
  end-page: 1307
  article-title: Transcriptional regulation of adipogenesis
  publication-title: Genes Dev
– volume: 55
  start-page: 693
  year: 2002
  end-page: 698
  article-title: Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis
  publication-title: J Clin Pathol
– volume: 31
  start-page: 1007
  year: 2003
  end-page: 1014
  article-title: Retrovirus‐mediated gene transfer and expression cloning: Powerful tools in functional genomics
  publication-title: Exp Hematol
– volume: 88
  start-page: 10431
  year: 1991
  end-page: 10434
  article-title: t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1
  publication-title: Proc Natl Acad Sci U S A
– volume: 22
  start-page: 1720
  year: 2007
  end-page: 1731
  article-title: Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells
  publication-title: J Bone Miner Res
– volume: 7
  start-page: 1063
  year: 2000
  end-page: 1066
  article-title: Plat‐E: An efficient and stable system for transient packaging of retroviruses
  publication-title: Gene Ther
– volume: 26
  start-page: 356
  year: 2008
  end-page: 363
  article-title: Concise review: MicroRNA expression in multipotent mesenchymal stromal cells
  publication-title: Stem Cells
– volume: 276
  start-page: 71
  year: 1997
  end-page: 74
  article-title: Marrow stromal cells as stem cells for nonhematopoietic tissues
  publication-title: Science
– volume: 20
  start-page: 429
  year: 2008
  end-page: 434
  article-title: Bone and fat connection in aging bone
  publication-title: Curr Opin Rheumatol
– volume: 18
  start-page: 952
  year: 2004
  end-page: 963
  article-title: Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog
  publication-title: Genes Dev
– volume: 309
  start-page: 1074
  year: 2005
  end-page: 1078
  article-title: TAZ, a transcriptional modulator of mesenchymal stem cell differentiation
  publication-title: Science
– volume: 117
  start-page: 417
  year: 2004
  end-page: 425
  article-title: Runx2 deficiency in chondrocytes causes adipogenic changes in vitro
  publication-title: J Cell Sci
– volume: 136
  start-page: 215
  year: 2009
  end-page: 233
  article-title: MicroRNAs: Target recognition and regulatory functions
  publication-title: Cell
– volume: 21
  start-page: 681
  year: 2003
  ident: 2022011217395969000_bib2
  article-title: Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone
  publication-title: Stem Cells
  doi: 10.1634/stemcells.21-6-681
– volume: 281
  start-page: 16347
  year: 2006
  ident: 2022011217395969000_bib32
  article-title: Cyclin D1-cdk4 induce runx2 ubiquitination and degradation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M603439200
– volume: 5
  start-page: 351
  year: 2003
  ident: 2022011217395969000_bib27
  article-title: Embryonic stem cell-specific MicroRNAs
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(03)00227-2
– volume: 89
  start-page: 755
  year: 1997
  ident: 2022011217395969000_bib7
  article-title: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80258-5
– volume: 102
  start-page: 3324
  year: 2005
  ident: 2022011217395969000_bib10
  article-title: Regulation of osteoblastogenesis and bone mass by Wnt10b
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0408742102
– volume: 309
  start-page: 1074
  year: 2005
  ident: 2022011217395969000_bib14
  article-title: TAZ, a transcriptional modulator of mesenchymal stem cell differentiation
  publication-title: Science
  doi: 10.1126/science.1110955
– volume: 165
  start-page: 579
  year: 2000
  ident: 2022011217395969000_bib21
  article-title: An osteogenesis-related transcription factor, core-binding factor A1, is constitutively expressed in the chondrocytic cell line TC6, and its expression is upregulated by bone morphogenetic protein-2
  publication-title: J Endocrinol
  doi: 10.1677/joe.0.1650579
– volume: 136
  start-page: 215
  year: 2009
  ident: 2022011217395969000_bib34
  article-title: MicroRNAs: Target recognition and regulatory functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 80
  start-page: 147
  year: 1971
  ident: 2022011217395969000_bib4
  article-title: Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A Quantitative Study Of 84 Iliac Bone Biopsies
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-197110000-00021
– volume: 22
  start-page: 1720
  year: 2007
  ident: 2022011217395969000_bib6
  article-title: Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.070721
– volume: 113
  start-page: 846
  year: 2004
  ident: 2022011217395969000_bib13
  article-title: PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors
  publication-title: J Clin Invest
  doi: 10.1172/JCI200419900
– volume: 7
  start-page: 1063
  year: 2000
  ident: 2022011217395969000_bib16
  article-title: Plat-E: An efficient and stable system for transient packaging of retroviruses
  publication-title: Gene Ther
  doi: 10.1038/sj.gt.3301206
– volume: 90
  start-page: 6859
  year: 1993
  ident: 2022011217395969000_bib22
  article-title: PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.90.14.6859
– volume: 10
  start-page: 116
  year: 2009
  ident: 2022011217395969000_bib15
  article-title: MicroRNAs: Key regulators of stem cells
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2621
– volume: 105
  start-page: 13906
  year: 2008
  ident: 2022011217395969000_bib30
  article-title: A microRNA signature for a BMP2-induced osteoblast lineage commitment program
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0804438105
– volume: 117
  start-page: 417
  year: 2004
  ident: 2022011217395969000_bib12
  article-title: Runx2 deficiency in chondrocytes causes adipogenic changes in vitro
  publication-title: J Cell Sci
  doi: 10.1242/jcs.00866
– volume: 7
  start-page: 885
  year: 2006
  ident: 2022011217395969000_bib11
  article-title: Adipocyte differentiation from the inside out
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2066
– volume: 55
  start-page: 693
  year: 2002
  ident: 2022011217395969000_bib5
  article-title: Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis
  publication-title: J Clin Pathol
  doi: 10.1136/jcp.55.9.693
– volume: 4
  start-page: 721
  year: 2007
  ident: 2022011217395969000_bib25
  article-title: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells
  publication-title: Nat Methods
  doi: 10.1038/nmeth1079
– volume: 276
  start-page: 71
  year: 1997
  ident: 2022011217395969000_bib1
  article-title: Marrow stromal cells as stem cells for nonhematopoietic tissues
  publication-title: Science
  doi: 10.1126/science.276.5309.71
– volume: 37
  start-page: 495
  year: 2005
  ident: 2022011217395969000_bib23
  article-title: Combinatorial microRNA target predictions
  publication-title: Nat Genet
  doi: 10.1038/ng1536
– volume: 9
  start-page: 102
  year: 2008
  ident: 2022011217395969000_bib33
  article-title: Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight?
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2290
– volume: 38
  start-page: 228
  year: 2006
  ident: 2022011217395969000_bib28
  article-title: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
  publication-title: Nat Genet
  doi: 10.1038/ng1725
– volume: 88
  start-page: 10431
  year: 1991
  ident: 2022011217395969000_bib20
  article-title: t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.88.23.10431
– volume: 283
  start-page: 13491
  year: 2008
  ident: 2022011217395969000_bib17
  article-title: VEGF-C, a lymphatic growth factor, is a RANKL target gene in osteoclasts that enhances osteoclastic bone resorption through an autocrine mechanism
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M708055200
– volume: 31
  start-page: 1007
  year: 2003
  ident: 2022011217395969000_bib18
  article-title: Retrovirus-mediated gene transfer and expression cloning: Powerful tools in functional genomics
  publication-title: Exp Hematol
  doi: 10.1016/S0301-472X(03)00260-1
– volume: 2
  start-page: e363
  year: 2004
  ident: 2022011217395969000_bib24
  article-title: Human MicroRNA targets
  publication-title: Plos Biol
  doi: 10.1371/journal.pbio.0020363
– volume: 18
  start-page: 952
  year: 2004
  ident: 2022011217395969000_bib8
  article-title: Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog
  publication-title: Genes Dev
  doi: 10.1101/gad.1174704
– volume: 14
  start-page: 1293
  year: 2000
  ident: 2022011217395969000_bib9
  article-title: Transcriptional regulation of adipogenesis
  publication-title: Genes Dev
  doi: 10.1101/gad.14.11.1293
– volume: 26
  start-page: 356
  year: 2008
  ident: 2022011217395969000_bib26
  article-title: Concise review: MicroRNA expression in multipotent mesenchymal stromal cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0625
– volume: 20
  start-page: 429
  year: 2008
  ident: 2022011217395969000_bib3
  article-title: Bone and fat connection in aging bone
  publication-title: Curr Opin Rheumatol
  doi: 10.1097/BOR.0b013e3283025e9c
– volume: 103
  start-page: 8721
  year: 2006
  ident: 2022011217395969000_bib29
  article-title: Myogenic factors that regulate expression of muscle-specific microRNAs
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0602831103
– volume: 33
  start-page: e179
  year: 2005
  ident: 2022011217395969000_bib19
  article-title: Real-time quantification of microRNAs by stem-loop RT-PCR
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gni178
– volume: 6
  start-page: 423
  year: 2004
  ident: 2022011217395969000_bib31
  article-title: A twist code determines the onset of osteoblast differentiation
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(04)00058-9
SSID ssj0014588
Score 2.5189302
Snippet Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 357
SubjectTerms Adipocyte
Animals
Blotting, Western
Cell Differentiation - genetics
Cell Differentiation - physiology
Cell Line
Core Binding Factor Alpha 1 Subunit - genetics
Core Binding Factor Alpha 1 Subunit - metabolism
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Mice
MicroRNAs - genetics
MicroRNAs - physiology
miR‐204
Osteoblast
Reverse Transcriptase Polymerase Chain Reaction
Runx2
Title MicroRNA‐204 Regulates Runx2 Protein Expression and Mesenchymal Progenitor Cell Differentiation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.288
https://www.ncbi.nlm.nih.gov/pubmed/20039258
https://www.proquest.com/docview/733518964
https://pubmed.ncbi.nlm.nih.gov/PMC2837600
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9swEBbtlkJfSu9NL1Qo7UPwNpZ8yI9LmyXdJlnYdSD0RVi2TAKNvWQdaPrrOzp8pEnp8eIERRGy5tNII818g9BblyXUlQFzvFQIxxNR6IBlC4arjFwBC6KgOn3bZBqMZt753J-3WVF1dEklTtIfB-NK_keqUAZyVVGy_yDZplEogO8gX3iChOH5VzKeKG-6y-kpdNfrr01WeXnTv9wU30lfMzAsNYe_8XU1bscrFW6ULrYrFYK1LqFtmNPrvjrAb7KlVB152Y3rVSVXupI-pf2UbK3b_cViWXZOE0Ybe_583oHd10VSmhjspmhuU6mModp1vXpqLwOrBpfd4wh1k964dlgN6qm0dVapygNlVu0S1oEX6ehQahir93S74YpV9NYnhLF2_arv7KcX_Gw2HvN4OI9vozsE7AZtY3_-0lwrqbBcTaBr-1OzEQ_Ih7rd3f3JntGx7zvbtWn0piR-gO5bawKfGmg8RLdk8QjdNflFt48R7wIENwDBGiDYAgS3AMEAENwBCG4BgpXs8S8AeYJmZ8P448ixGTWc1APD0IlE6KWeDKVgvu_DMk0ZFZGMgowyNVkjOQgzJmmQ5KnM5cDPQ1_SSLFCkszNBvQpOirKQh4jHMogCfI0Uzs-aFHArHbDVN2rEyYJyXvofT2OPLV08yrryTduiLIJVyPOYcR76E1T89pQrByog2tRcNB_6pWTQpabGx5S6rssCrweemYk0zSi_C4j4sOfwx2ZNRUUtfruL8VyoSnWFScUmAI99E5L97f94lfxcAKfz__cvxfoXjtfXqKjar2Rr2BDW4nXGqQ_AfqzpU4
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-204+regulates+Runx2+protein+expression+and+mesenchymal+progenitor+cell+differentiation&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Huang%2C+Jian&rft.au=Zhao%2C+Lan&rft.au=Xing%2C+Lianping&rft.au=Chen%2C+Di&rft.date=2010-02-01&rft.issn=1549-4918&rft.eissn=1549-4918&rft.volume=28&rft.issue=2&rft.spage=357&rft_id=info:doi/10.1002%2Fstem.288&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon