MicroRNA‐204 Regulates Runx2 Protein Expression and Mesenchymal Progenitor Cell Differentiation
Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we...
Saved in:
Published in | Stem cells (Dayton, Ohio) Vol. 28; no. 2; pp. 357 - 364 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.02.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR‐204 and its homolog miR‐211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR‐204 or transfection of miR‐204 oligo decreased Runx2 protein levels and miR‐204 inhibition significantly elevated Runx2 protein levels, suggesting that miR‐204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR‐204 binding sites upregulated the Runx2 3′‐UTR reporter activity, suggesting that miR‐204/211 bind to Runx2 3′‐UTR. Perturbation of miR‐204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR‐204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR‐204 was inhibited. Together, our data demonstrated that miR‐204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs. STEM CELLS 2010;28:357–364 |
---|---|
AbstractList | Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR-204 and its homolog miR-211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR-204 or transfection of miR-204 oligo decreased Runx2 protein levels and miR-204 inhibition significantly elevated Runx2 protein levels, suggesting that miR-204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR-204 binding sites upregulated the Runx2 3′-UTR reporter activity, suggesting that miR-204/211 bind to Runx2 3′-UTR. Perturbation of miR-204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR-204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR-204 was inhibited. Together, our data demonstrated that miR-204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs. Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR-204 and its homolog miR-211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR-204 or transfection of miR-204 oligo decreased Runx2 protein levels and miR-204 inhibition significantly elevated Runx2 protein levels, suggesting that miR-204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR-204 binding sites upregulated the Runx2 3'-UTR reporter activity, suggesting that miR-204/211 bind to Runx2 3'-UTR. Perturbation of miR-204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR-204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR-204 was inhibited. Together, our data demonstrated that miR-204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs.Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR-204 and its homolog miR-211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR-204 or transfection of miR-204 oligo decreased Runx2 protein levels and miR-204 inhibition significantly elevated Runx2 protein levels, suggesting that miR-204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR-204 binding sites upregulated the Runx2 3'-UTR reporter activity, suggesting that miR-204/211 bind to Runx2 3'-UTR. Perturbation of miR-204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR-204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR-204 was inhibited. Together, our data demonstrated that miR-204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs. Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if micro-RNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR-204 and its homolog miR-211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR-204 or transfection of miR-204 oligo decreased Runx2 protein levels and miR-204 inhibition significantly elevated Runx2 protein levels, suggesting that miR-204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR-204 binding sites upregulated the Runx2 3′-UTR reporter activity, suggesting that miR-204/211 bind to Runx2 3′-UTR. Perturbation of miR-204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR-204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR-204 was inhibited. Together, our data demonstrated that miR-204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs. Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR‐204 and its homolog miR‐211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR‐204 or transfection of miR‐204 oligo decreased Runx2 protein levels and miR‐204 inhibition significantly elevated Runx2 protein levels, suggesting that miR‐204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR‐204 binding sites upregulated the Runx2 3′‐UTR reporter activity, suggesting that miR‐204/211 bind to Runx2 3′‐UTR. Perturbation of miR‐204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR‐204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR‐204 was inhibited. Together, our data demonstrated that miR‐204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs. STEM CELLS 2010;28:357–364 |
Author | Huang, Jian Zhao, Lan Xing, Lianping Chen, Di |
AuthorAffiliation | b Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA a Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA |
AuthorAffiliation_xml | – name: b Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA – name: a Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA |
Author_xml | – sequence: 1 givenname: Jian surname: Huang fullname: Huang, Jian – sequence: 2 givenname: Lan surname: Zhao fullname: Zhao, Lan – sequence: 3 givenname: Lianping surname: Xing fullname: Xing, Lianping – sequence: 4 givenname: Di surname: Chen fullname: Chen, Di email: di_chen@urmc.rochester.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20039258$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1u1DAQha2qqH9U6hOg3MFNFju2E_sGqVqWH6kLaGmvLceZbI0Se7ET6N7xCDwjT4LDtqit4GpGmm_Osc8co33nHSB0RvCMYFy8jAP0s0KIPXREOJM5k0Tspx6XZc6xlIfoOMYvGBPGhThAhwXGVBZcHCG9tCb41YfzXz9-FphlK1iPnR4gZqvR3RTZp-AHsC5b3GwCxGi9y7RrsiVEcOZ62-tuQtbg7OBDNoeuy17btoUAbrB6SPxT9KTVXYTT23qCrt4sLufv8ouPb9_Pzy9ywyoucllXzDCooBacc6gJFbSWIMuGCmbq1OKqEUBL3RpoAfO24kAlZawqGtJgeoJe7XQ3Y91DY9IDgu7UJtheh63y2qqHE2ev1dp_U4WgVYkngee3AsF_HSEOqrfRpB9pB36MqqKUEyFLlshn963-etzFmoDZDkjZxhigVcYOf9JIzrZTBKvpbmq6W_KfFl48WrjT_Aea79DvtoPtfzn1-XKxnPjfzsOqZw |
CitedBy_id | crossref_primary_10_1155_2016_8169614 crossref_primary_10_1161_CIRCRESAHA_113_300937 crossref_primary_10_1007_s11010_013_1888_z crossref_primary_10_3892_ijmm_2014_2051 crossref_primary_10_1038_s41419_019_1693_z crossref_primary_10_1007_s13577_022_00764_8 crossref_primary_10_1016_j_ejmg_2017_10_015 crossref_primary_10_3109_10408363_2014_937522 crossref_primary_10_1016_j_bbrc_2010_11_079 crossref_primary_10_1016_j_febslet_2015_09_032 crossref_primary_10_1002_jcb_24668 crossref_primary_10_4161_adip_22019 crossref_primary_10_1007_s11010_020_03900_w crossref_primary_10_1016_j_bone_2021_115968 crossref_primary_10_3390_cells8121581 crossref_primary_10_1002_jcp_30131 crossref_primary_10_1186_1479_5876_12_168 crossref_primary_10_1210_en_2012_2236 crossref_primary_10_1038_srep36988 crossref_primary_10_1016_j_mce_2017_04_009 crossref_primary_10_5483_BMBRep_2015_48_6_206 crossref_primary_10_3390_ijms23042130 crossref_primary_10_1371_journal_pone_0107269 crossref_primary_10_1186_1471_2164_13_S8_S14 crossref_primary_10_1016_j_msec_2020_111801 crossref_primary_10_1016_j_abb_2014_05_003 crossref_primary_10_3390_ijms21010349 crossref_primary_10_1186_s41232_022_00228_4 crossref_primary_10_1038_s41598_017_13622_7 crossref_primary_10_1016_j_bone_2020_115470 crossref_primary_10_1091_mbc_e11_04_0356 crossref_primary_10_1016_j_diff_2023_08_002 crossref_primary_10_4068_cmj_2014_50_3_86 crossref_primary_10_1016_j_mad_2012_03_014 crossref_primary_10_3389_fcell_2023_1323678 crossref_primary_10_1016_j_ajpath_2024_07_022 crossref_primary_10_1038_cddis_2014_4 crossref_primary_10_1530_EJE_11_0646 crossref_primary_10_1089_scd_2013_0209 crossref_primary_10_1038_boneres_2016_22 crossref_primary_10_1002_jbmr_2060 crossref_primary_10_1016_j_coph_2014_05_001 crossref_primary_10_1016_j_omtn_2022_03_024 crossref_primary_10_3390_ijms24108631 crossref_primary_10_1007_s12020_013_9986_y crossref_primary_10_1186_s12885_018_4217_9 crossref_primary_10_1016_j_biocel_2017_01_018 crossref_primary_10_1016_j_actbio_2018_06_017 crossref_primary_10_1002_jbmr_2297 crossref_primary_10_1042_CS20160094 crossref_primary_10_1016_j_febslet_2015_09_024 crossref_primary_10_3390_ani12040505 crossref_primary_10_1016_j_bone_2010_05_035 crossref_primary_10_3389_fendo_2022_808223 crossref_primary_10_1155_2013_451248 crossref_primary_10_1515_cclm_2013_0770 crossref_primary_10_1007_s00109_021_02164_1 crossref_primary_10_1111_odi_12073 crossref_primary_10_1371_journal_pone_0075578 crossref_primary_10_1155_2019_9327386 crossref_primary_10_1007_s00394_018_1663_8 crossref_primary_10_1186_s13071_015_1203_9 crossref_primary_10_1517_14728222_2010_512916 crossref_primary_10_1186_s12967_024_05006_z crossref_primary_10_1016_j_biomaterials_2011_12_021 crossref_primary_10_1515_cmble_2015_0034 crossref_primary_10_1002_1873_3468_12112 crossref_primary_10_1002_kjm2_12217 crossref_primary_10_1038_nm_3026 crossref_primary_10_1016_j_febslet_2013_12_002 crossref_primary_10_3390_ijms24129978 crossref_primary_10_3803_EnM_2014_29_2_122 crossref_primary_10_1016_j_vesic_2024_100042 crossref_primary_10_3390_ma11040546 crossref_primary_10_1111_cid_12553 crossref_primary_10_1073_pnas_1018493108 crossref_primary_10_2217_epi_2018_0084 crossref_primary_10_1089_ten_tea_2017_0460 crossref_primary_10_7717_peerj_1976 crossref_primary_10_1007_s40610_019_0115_4 crossref_primary_10_1038_bjc_2016_392 crossref_primary_10_1007_s12020_019_01952_7 crossref_primary_10_1016_j_lfs_2020_118680 crossref_primary_10_2174_1389203720666181031143129 crossref_primary_10_1155_2013_571418 crossref_primary_10_1073_pnas_1007698107 crossref_primary_10_1007_s11033_014_3830_1 crossref_primary_10_1038_s41467_024_47633_6 crossref_primary_10_3390_ijms17091446 crossref_primary_10_1016_j_msec_2019_110065 crossref_primary_10_1089_scd_2010_0072 crossref_primary_10_3390_biology12040498 crossref_primary_10_1038_srep18118 crossref_primary_10_1371_journal_pone_0174138 crossref_primary_10_1016_j_biochi_2015_02_012 crossref_primary_10_1155_2016_1652417 crossref_primary_10_1002_jbm_a_37578 crossref_primary_10_1002_term_3176 crossref_primary_10_1007_s00204_017_1979_9 crossref_primary_10_3892_mmr_2017_7400 crossref_primary_10_1016_j_colsurfb_2022_112446 crossref_primary_10_2337_db17_1434 crossref_primary_10_3390_ijms18061236 crossref_primary_10_1007_s00018_014_1700_6 crossref_primary_10_1038_cddis_2013_356 crossref_primary_10_4041_kjod_2019_49_5_299 crossref_primary_10_1371_journal_pone_0182678 crossref_primary_10_1111_jcmm_14544 crossref_primary_10_1016_j_bbagen_2013_02_015 crossref_primary_10_1096_fj_202001131R crossref_primary_10_1016_j_bbagrm_2016_05_003 crossref_primary_10_1002_jcb_24144 crossref_primary_10_1002_jcp_27928 crossref_primary_10_1016_j_bbrc_2013_02_036 crossref_primary_10_1016_j_jcis_2020_07_057 crossref_primary_10_3389_fcell_2021_787118 crossref_primary_10_1007_s00774_011_0311_7 crossref_primary_10_1172_JCI77716 crossref_primary_10_1002_jbmr_1597 crossref_primary_10_1002_jcp_22475 crossref_primary_10_1038_s41598_019_43518_7 crossref_primary_10_1536_ihj_18_086 crossref_primary_10_1051_rmr_170004 crossref_primary_10_1016_j_gene_2018_11_028 crossref_primary_10_1007_s40610_017_0058_6 crossref_primary_10_1371_journal_pone_0034872 crossref_primary_10_1002_stem_1623 crossref_primary_10_3390_jcm13051405 crossref_primary_10_3390_ijms21249455 crossref_primary_10_1002_stem_703 crossref_primary_10_1261_rna_2414110 crossref_primary_10_1089_scd_2016_0133 crossref_primary_10_1093_gbe_evu151 crossref_primary_10_1097_SHK_0000000000001002 crossref_primary_10_3390_ijms21010076 crossref_primary_10_1586_eem_12_63 crossref_primary_10_1002_stem_1615 crossref_primary_10_1016_j_jtcvs_2013_05_011 crossref_primary_10_1093_abbs_gmu082 crossref_primary_10_1371_journal_pone_0034641 crossref_primary_10_3892_ijmm_2015_2160 crossref_primary_10_1016_j_biocel_2016_08_014 crossref_primary_10_1007_s10787_022_01097_6 crossref_primary_10_3389_fcell_2021_619842 crossref_primary_10_1530_EJE_17_0772 crossref_primary_10_1038_ijo_2015_43 crossref_primary_10_1038_cddis_2013_130 crossref_primary_10_1186_1471_2350_15_45 crossref_primary_10_3389_fbioe_2019_00068 crossref_primary_10_4161_psb_6_3_14340 crossref_primary_10_1038_s41413_018_0010_2 crossref_primary_10_1186_s13287_020_1579_0 crossref_primary_10_1038_nrrheum_2015_162 crossref_primary_10_1042_CBI20110680 crossref_primary_10_1002_dvdy_708 crossref_primary_10_1007_s00223_018_0410_8 crossref_primary_10_1089_scd_2013_0600 crossref_primary_10_1186_s13148_017_0406_7 crossref_primary_10_3390_cells8121523 crossref_primary_10_3892_etm_2019_7570 crossref_primary_10_1016_j_actbio_2020_03_042 crossref_primary_10_1016_j_biopha_2018_01_103 crossref_primary_10_1038_s41467_019_10753_5 crossref_primary_10_1002_stem_728 crossref_primary_10_1016_j_biopha_2016_08_025 crossref_primary_10_1016_j_ijbiomac_2023_127801 crossref_primary_10_1161_HYPERTENSIONAHA_121_14536 crossref_primary_10_1038_cddis_2013_363 crossref_primary_10_1016_j_mce_2017_11_005 crossref_primary_10_1165_rcmb_2014_0166TR crossref_primary_10_3390_ijms17081329 crossref_primary_10_1002_jcp_24402 crossref_primary_10_1002_jbmr_3662 crossref_primary_10_1530_JME_17_0183 crossref_primary_10_1007_s11626_017_0225_3 crossref_primary_10_1186_s13018_020_01685_8 crossref_primary_10_1080_09168451_2014_1003128 crossref_primary_10_1016_j_bbamcr_2011_01_022 crossref_primary_10_1128_MCB_00121_15 crossref_primary_10_1166_sam_2023_4458 crossref_primary_10_1007_s00441_016_2462_2 crossref_primary_10_3892_mmr_2020_11110 crossref_primary_10_3892_mmr_2012_1207 crossref_primary_10_1016_j_gene_2015_03_072 crossref_primary_10_1038_nrendo_2011_234 crossref_primary_10_3892_etm_2015_2477 crossref_primary_10_1073_pnas_1016758108 crossref_primary_10_1093_cvr_cvs258 crossref_primary_10_1002_jcp_22557 crossref_primary_10_1007_s00198_017_4241_7 crossref_primary_10_1007_s11914_017_0379_7 crossref_primary_10_1097_FJC_0000000000000244 crossref_primary_10_1038_cdd_2010_167 crossref_primary_10_1166_jbt_2021_2678 crossref_primary_10_3390_ijms21030980 crossref_primary_10_1002_jbmr_2352 crossref_primary_10_1016_j_tice_2021_101540 crossref_primary_10_1002_ptr_6034 crossref_primary_10_3390_ijms25105291 crossref_primary_10_1186_s13287_023_03275_x crossref_primary_10_1016_j_biochi_2014_02_005 crossref_primary_10_1111_jbg_12841 crossref_primary_10_3390_ijms222413454 crossref_primary_10_1016_j_gene_2017_04_013 crossref_primary_10_1016_j_pbiomolbio_2016_01_005 crossref_primary_10_1080_10643389_2021_1915052 crossref_primary_10_1089_ten_tea_2014_0679 crossref_primary_10_1016_j_exphem_2011_01_011 crossref_primary_10_3892_mmr_2018_8416 crossref_primary_10_1016_j_biopha_2015_07_016 crossref_primary_10_1111_j_1582_4934_2010_01175_x crossref_primary_10_1021_acs_jafc_1c01147 crossref_primary_10_1002_jcp_24834 crossref_primary_10_3390_ijms16048227 crossref_primary_10_17795_rijm14849 crossref_primary_10_1002_jcp_31120 crossref_primary_10_1016_j_psj_2025_105068 crossref_primary_10_1093_nar_gkt666 crossref_primary_10_3109_03008207_2014_910198 crossref_primary_10_1302_2046_3758_116_BJR_2021_0596_R1 crossref_primary_10_1016_j_msec_2018_08_023 crossref_primary_10_1002_jcb_25026 crossref_primary_10_1016_j_cub_2010_08_052 crossref_primary_10_1038_cddis_2014_485 crossref_primary_10_1007_s11010_017_3015_z crossref_primary_10_1007_s11033_020_05885_7 crossref_primary_10_3390_genes14010094 crossref_primary_10_1002_term_3215 crossref_primary_10_1016_j_gene_2018_05_043 crossref_primary_10_1038_srep25287 crossref_primary_10_1042_BSR20171615 crossref_primary_10_1002_jcp_27410 crossref_primary_10_1007_s12015_011_9296_9 crossref_primary_10_14336_AD_2023_1115 crossref_primary_10_1002_cbin_10802 crossref_primary_10_1042_BSR20182502 crossref_primary_10_1038_s41598_020_60346_2 crossref_primary_10_3390_biology2030861 crossref_primary_10_1039_c3ra00007a crossref_primary_10_3892_mmr_2015_4259 crossref_primary_10_1186_s13287_018_0980_4 crossref_primary_10_1007_s11626_022_00718_2 crossref_primary_10_1074_jbc_M112_340398 crossref_primary_10_12677_HJCB_2016_61002 crossref_primary_10_1038_srep38491 crossref_primary_10_3892_or_2013_2687 crossref_primary_10_3892_mmr_2013_1540 crossref_primary_10_1016_j_drudis_2017_04_007 crossref_primary_10_1371_journal_pone_0071637 crossref_primary_10_3389_fendo_2021_797680 crossref_primary_10_1016_j_bone_2012_05_013 crossref_primary_10_1016_j_mcp_2018_10_002 crossref_primary_10_1039_C7BM00384F crossref_primary_10_1139_bcb_2012_0053 crossref_primary_10_1111_jre_12794 crossref_primary_10_1016_j_joen_2013_09_035 crossref_primary_10_1016_j_yjmcc_2012_08_024 crossref_primary_10_1016_j_omtn_2019_06_023 crossref_primary_10_1016_j_yexcr_2017_01_018 crossref_primary_10_1002_wnan_1327 crossref_primary_10_23868_201903005 crossref_primary_10_1111_jcmm_13039 crossref_primary_10_1016_j_joca_2012_08_024 crossref_primary_10_1038_cddis_2013_65 crossref_primary_10_1007_s11033_022_08084_8 crossref_primary_10_1016_j_bbrc_2024_150570 crossref_primary_10_1038_ijo_2012_59 crossref_primary_10_29235_1029_8940_2020_65_1_106_118 crossref_primary_10_1096_fj_202000006RR crossref_primary_10_1177_2058738420966092 crossref_primary_10_1002_jcb_28689 crossref_primary_10_1186_s12263_017_0577_z crossref_primary_10_1016_j_joen_2012_06_016 crossref_primary_10_1039_D1QM00367D crossref_primary_10_1007_s11684_013_0252_8 crossref_primary_10_1371_journal_pone_0058104 crossref_primary_10_18632_oncotarget_22748 crossref_primary_10_1016_j_lfs_2019_116676 crossref_primary_10_1016_j_cocis_2018_01_015 crossref_primary_10_5812_rijm_14849 crossref_primary_10_1074_jbc_M111_292722 crossref_primary_10_1155_2014_840906 crossref_primary_10_1038_srep07828 crossref_primary_10_1242_dev_070151 crossref_primary_10_1002_jcb_27121 crossref_primary_10_1007_s11914_014_0240_1 crossref_primary_10_1186_s12864_019_6094_2 crossref_primary_10_1161_JAHA_116_005364 crossref_primary_10_3892_mmr_2015_3298 crossref_primary_10_1016_j_scr_2015_01_008 crossref_primary_10_3390_cancers13071554 crossref_primary_10_1002_jcb_29306 crossref_primary_10_1155_2019_6782653 crossref_primary_10_3389_fsurg_2021_786564 crossref_primary_10_1080_10799893_2016_1212375 crossref_primary_10_1186_s40634_017_0077_5 crossref_primary_10_1002_stem_3040 crossref_primary_10_1007_s00774_017_0886_8 crossref_primary_10_3892_ijmm_2018_3811 crossref_primary_10_1016_j_msec_2019_109748 crossref_primary_10_1016_j_bone_2016_04_007 crossref_primary_10_1074_jbc_M112_414862 crossref_primary_10_1016_j_bmcl_2020_127137 crossref_primary_10_1038_s41388_019_0862_y crossref_primary_10_1186_s11658_016_0013_1 crossref_primary_10_1016_j_engreg_2022_06_002 crossref_primary_10_1002_JPER_21_0064 crossref_primary_10_1038_s41598_025_85174_0 crossref_primary_10_3892_mmr_2014_2024 crossref_primary_10_1089_scd_2012_0014 crossref_primary_10_1155_2020_8866048 crossref_primary_10_1007_s11914_017_0391_y crossref_primary_10_1016_j_ijbiomac_2015_04_008 crossref_primary_10_1007_s00432_023_05166_3 crossref_primary_10_1016_j_ijcard_2022_08_029 crossref_primary_10_3389_fendo_2021_703167 crossref_primary_10_1002_jcp_26523 crossref_primary_10_1093_cvr_cvv030 crossref_primary_10_12688_f1000research_6548_1 crossref_primary_10_1002_jbmr_4834 crossref_primary_10_1016_j_biomaterials_2013_05_042 crossref_primary_10_1016_j_addr_2014_05_010 crossref_primary_10_1080_21623945_2018_1423911 crossref_primary_10_1128_MCB_00745_15 crossref_primary_10_1007_s00774_019_01080_2 crossref_primary_10_1002_oby_21467 crossref_primary_10_1371_journal_pone_0059238 crossref_primary_10_1038_s41413_022_00226_9 crossref_primary_10_1111_nyas_13206 crossref_primary_10_14336_AD_2018_0214 crossref_primary_10_1016_j_yjmcc_2012_10_005 crossref_primary_10_1002_jbmr_1798 crossref_primary_10_1155_2018_3717391 crossref_primary_10_1177_0003319720984592 crossref_primary_10_1042_BSR20181108 crossref_primary_10_1681_ASN_2014050520 crossref_primary_10_1038_s41467_018_04464_6 crossref_primary_10_1517_14728222_2011_561317 crossref_primary_10_18632_oncoscience_421 crossref_primary_10_1089_scd_2014_0331 crossref_primary_10_1007_s00774_013_0537_7 crossref_primary_10_1074_jbc_M110_116137 crossref_primary_10_1002_jcp_27833 crossref_primary_10_1186_gb_2011_12_7_r64 crossref_primary_10_1902_jop_2017_170078 crossref_primary_10_3390_genes11020196 crossref_primary_10_1016_j_bbalip_2016_02_010 crossref_primary_10_1038_s41419_024_06508_w crossref_primary_10_3892_mmr_2017_7386 crossref_primary_10_31083_j_fbs1403017 crossref_primary_10_3892_ijmm_2018_3452 crossref_primary_10_1111_cpr_12413 crossref_primary_10_1007_s00223_017_0296_x crossref_primary_10_1038_cddis_2016_325 crossref_primary_10_1186_s13578_016_0073_y crossref_primary_10_1186_s13287_020_01966_3 crossref_primary_10_1016_j_colsurfb_2015_01_048 crossref_primary_10_1089_scd_2011_0721 crossref_primary_10_7717_peerj_14300 crossref_primary_10_1016_j_toxlet_2017_11_033 crossref_primary_10_1007_s12041_012_0168_0 crossref_primary_10_1093_ckj_sfac219 crossref_primary_10_1016_j_bone_2024_117123 crossref_primary_10_1038_srep46136 crossref_primary_10_1038_s41598_021_98470_2 crossref_primary_10_1186_1476_4598_12_155 crossref_primary_10_1016_j_biomaterials_2014_02_055 crossref_primary_10_1002_dvdy_240 crossref_primary_10_1038_cdd_2015_99 crossref_primary_10_1007_s11684_011_0168_0 crossref_primary_10_4252_wjsc_v5_i4_136 crossref_primary_10_1007_s00441_013_1750_3 crossref_primary_10_1016_j_bioadv_2022_213176 crossref_primary_10_1016_j_biopha_2020_110593 crossref_primary_10_1016_j_cancergen_2010_12_012 crossref_primary_10_1002_jbm_a_35819 crossref_primary_10_1016_j_jds_2019_11_004 crossref_primary_10_3390_v12111207 crossref_primary_10_1002_jcb_24831 crossref_primary_10_1089_scd_2012_0686 crossref_primary_10_1002_mc_22263 crossref_primary_10_1016_j_bone_2019_02_013 crossref_primary_10_1016_j_ygeno_2018_05_001 crossref_primary_10_1016_j_cellsig_2014_07_017 crossref_primary_10_3892_or_2014_3517 crossref_primary_10_3390_ijms19020360 crossref_primary_10_1038_ijos_2015_22 crossref_primary_10_1016_j_beem_2016_11_009 crossref_primary_10_1021_nn504767g crossref_primary_10_1007_s11010_013_1580_3 crossref_primary_10_1016_j_jconrel_2014_12_034 crossref_primary_10_1371_journal_pone_0037361 crossref_primary_10_1111_febs_12037 crossref_primary_10_1007_s00535_012_0562_7 crossref_primary_10_3390_ijms22052362 crossref_primary_10_1007_s11914_013_0143_6 crossref_primary_10_3390_epigenomes1020012 crossref_primary_10_12659_MSM_896742 crossref_primary_10_1517_14712598_2015_960838 crossref_primary_10_1016_j_diff_2020_01_001 crossref_primary_10_1155_2015_274852 crossref_primary_10_1371_journal_pone_0073473 crossref_primary_10_1186_s40580_024_00430_9 crossref_primary_10_1038_mt_2015_101 crossref_primary_10_1038_bjc_2012_356 crossref_primary_10_1089_chi_2017_0180 crossref_primary_10_1002_jbmr_1944 crossref_primary_10_1371_journal_pone_0048278 crossref_primary_10_1016_j_tmaid_2022_102534 crossref_primary_10_1155_2021_1530445 crossref_primary_10_1007_s00223_015_9954_z crossref_primary_10_14336_AD_2019_0724 crossref_primary_10_1016_j_ymthe_2024_06_016 crossref_primary_10_1002_jcp_27686 crossref_primary_10_1002_stem_1146 crossref_primary_10_1111_jre_13070 crossref_primary_10_1002_jbmr_1938 crossref_primary_10_1111_cpr_12688 crossref_primary_10_1016_j_jot_2019_11_008 crossref_primary_10_3390_ijms21124283 crossref_primary_10_1039_C9TB00613C crossref_primary_10_3892_ijmm_2018_3526 crossref_primary_10_1186_1471_2164_14_265 crossref_primary_10_1007_s00223_022_01034_3 crossref_primary_10_1093_neuonc_nos124 crossref_primary_10_1007_s11033_012_1591_2 crossref_primary_10_1016_j_ijbiomac_2022_01_176 crossref_primary_10_1016_j_biomaterials_2011_11_061 crossref_primary_10_1080_09205063_2017_1341675 crossref_primary_10_2147_CIA_S289479 crossref_primary_10_1002_jcp_25371 crossref_primary_10_1016_j_biopha_2017_06_007 crossref_primary_10_1016_j_bone_2015_05_026 crossref_primary_10_3390_cells11223687 crossref_primary_10_1016_j_cellsig_2014_05_006 crossref_primary_10_1002_jbmr_1604 crossref_primary_10_1007_s13770_017_0097_3 crossref_primary_10_1016_j_biomaterials_2011_03_030 crossref_primary_10_1016_j_omtn_2019_09_030 crossref_primary_10_1007_s13577_024_01149_9 crossref_primary_10_1038_s41598_022_17579_0 crossref_primary_10_1016_j_omtn_2017_11_009 crossref_primary_10_2119_molmed_2011_00463 crossref_primary_10_1016_j_jconrel_2015_08_011 crossref_primary_10_1038_cdd_2015_168 crossref_primary_10_3390_cells12212559 crossref_primary_10_1089_scd_2012_0434 crossref_primary_10_3892_mmr_2017_8341 crossref_primary_10_1002_jcb_23418 crossref_primary_10_1530_JME_13_0294 crossref_primary_10_7717_peerj_4959 crossref_primary_10_5966_sctm_2015_0154 crossref_primary_10_3389_fendo_2023_1210627 crossref_primary_10_1002_ddr_21260 crossref_primary_10_1089_ten_tec_2010_0200 crossref_primary_10_1007_s00441_011_1167_9 crossref_primary_10_1016_j_gene_2012_01_045 crossref_primary_10_1002_jcb_24617 crossref_primary_10_3389_fbioe_2023_1189225 crossref_primary_10_1371_journal_pone_0072266 |
Cites_doi | 10.1634/stemcells.21-6-681 10.1074/jbc.M603439200 10.1016/S1534-5807(03)00227-2 10.1016/S0092-8674(00)80258-5 10.1073/pnas.0408742102 10.1126/science.1110955 10.1677/joe.0.1650579 10.1016/j.cell.2009.01.002 10.1097/00003086-197110000-00021 10.1359/jbmr.070721 10.1172/JCI200419900 10.1038/sj.gt.3301206 10.1073/pnas.90.14.6859 10.1038/nrm2621 10.1073/pnas.0804438105 10.1242/jcs.00866 10.1038/nrm2066 10.1136/jcp.55.9.693 10.1038/nmeth1079 10.1126/science.276.5309.71 10.1038/ng1536 10.1038/nrg2290 10.1038/ng1725 10.1073/pnas.88.23.10431 10.1074/jbc.M708055200 10.1016/S0301-472X(03)00260-1 10.1371/journal.pbio.0020363 10.1101/gad.1174704 10.1101/gad.14.11.1293 10.1634/stemcells.2007-0625 10.1097/BOR.0b013e3283025e9c 10.1073/pnas.0602831103 10.1093/nar/gni178 10.1016/S1534-5807(04)00058-9 |
ContentType | Journal Article |
Copyright | Copyright © 2010 AlphaMed Press |
Copyright_xml | – notice: Copyright © 2010 AlphaMed Press |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/stem.288 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1549-4918 |
EndPage | 364 |
ExternalDocumentID | PMC2837600 20039258 10_1002_stem_288 STEM288 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: New York State Department of Health and the Empire State Stem Cell Board funderid: N08G‐070 – fundername: National Institute of Health funderid: R01 AR051189; R01 AR054465; K02 AR052411 – fundername: NIAMS NIH HHS grantid: R01 AR054465 – fundername: NIAMS NIH HHS grantid: R01 AR051189 – fundername: NIAMS NIH HHS grantid: K02 AR052411 – fundername: NIAMS NIH HHS grantid: R01 AR055915 – fundername: NIAMS NIH HHS grantid: R01 AR048697 |
GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 1OC 24P 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 A00 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AAUAY AAVAP AAWDT AAZKR ABCUV ABDFA ABEJV ABHFT ABLJU ABMNT ABNHQ ABPTD ABXVV ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADQBN ADVEK ADXAS ADZMN AENEX AEUQT AFBPY AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AHMBA AHMMS AIURR AJAOE AJEEA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMB EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY NU- O66 O9- OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P4E PALCI PQQKQ RAO RIWAO RJQFR ROL ROX RWI SUPJJ SV3 TEORI TMA TR2 WBKPD WOHZO WOQ WYB WYJ XV2 ZGI ZXP ZZTAW ~S- AAYXX ABGNP ABJNI ABVGC ABXZS AGORE AJNCP ALXQX CITATION AAMMB ACVCV ADMTO AEFGJ AFFQV AGXDD AHGBF AIDQK AIDYY AJBYB AJDVS CGR CUY CVF ECM EIF NPM OBFPC 7X8 5PM WIN |
ID | FETCH-LOGICAL-c4758-9b74c4e7eb8555eb1383b9e96d384cbb9e07d8e36afcefe05f75e3934472d1d03 |
ISSN | 1066-5099 1549-4918 |
IngestDate | Thu Aug 21 14:11:19 EDT 2025 Fri Jul 11 04:37:08 EDT 2025 Mon Jul 21 06:01:22 EDT 2025 Thu Apr 24 22:53:54 EDT 2025 Tue Jul 01 00:23:25 EDT 2025 Wed Jan 22 16:32:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4758-9b74c4e7eb8555eb1383b9e96d384cbb9e07d8e36afcefe05f75e3934472d1d03 |
Notes | First published online in S Author contributions: J.H.: Conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing; L.Z.: Provision of study material, collection and/or assembly of data; L.X.: Provision of study material, discussion of results; D.C.: Conception and design, data analysis and interpretation, financial support, manuscript writing, final approval of manuscript. Disclosure of potential conflicts of interest is found at the end of this article. C Tel: 585‐273‐5631; Fax: 585‐275‐1121 EXPRESS TEM ELLS February 12, 2010. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/stmcls/article-pdf/28/2/357/41950140/stmcls_28_2_357.pdf |
PMID | 20039258 |
PQID | 733518964 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2837600 proquest_miscellaneous_733518964 pubmed_primary_20039258 crossref_citationtrail_10_1002_stem_288 crossref_primary_10_1002_stem_288 wiley_primary_10_1002_stem_288_STEM288 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2010 |
PublicationDateYYYYMMDD | 2010-02-01 |
PublicationDate_xml | – month: 02 year: 2010 text: February 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: England |
PublicationTitle | Stem cells (Dayton, Ohio) |
PublicationTitleAlternate | Stem Cells |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | 2006; 38 1997; 276 2002; 55 1997; 89 2000; 7 2006; 7 2008; 9 2004; 6 2008; 105 1993; 90 2004; 2 2003; 31 2009; 136 2008; 283 2009; 10 2004; 113 2004; 18 2000; 14 2005; 102 1991; 88 2008; 26 2003; 5 2005; 309 2007; 4 2000; 165 2008; 20 2006; 281 2005; 37 1971; 80 2007; 22 2004; 117 2005; 33 2003; 21 2006; 103 Gangaraju (2022011217395969000_bib15) 2009; 10 Takazawa (2022011217395969000_bib21) 2000; 165 Ebert (2022011217395969000_bib25) 2007; 4 Hong (2022011217395969000_bib14) 2005; 309 Zhang (2022011217395969000_bib17) 2008; 283 Verma (2022011217395969000_bib5) 2002; 55 John (2022011217395969000_bib24) 2004; 2 Shen (2022011217395969000_bib32) 2006; 281 Yoshida (2022011217395969000_bib8) 2004; 18 Miyoshi (2022011217395969000_bib20) 1991; 88 Bartel (2022011217395969000_bib34) 2009; 136 Chen (2022011217395969000_bib19) 2005; 33 Enomoto (2022011217395969000_bib12) 2004; 117 Komori (2022011217395969000_bib7) 1997; 89 Rosen (2022011217395969000_bib9) 2000; 14 Lakshmipathy (2022011217395969000_bib26) 2008; 26 Rosen (2022011217395969000_bib11) 2006; 7 Meunier (2022011217395969000_bib4) 1971; 80 Bialek (2022011217395969000_bib31) 2004; 6 Bennett (2022011217395969000_bib10) 2005; 102 Morita (2022011217395969000_bib16) 2000; 7 Tuli (2022011217395969000_bib2) 2003; 21 Chen (2022011217395969000_bib28) 2006; 38 Filipowicz (2022011217395969000_bib33) 2008; 9 Duque (2022011217395969000_bib3) 2008; 20 Prockop (2022011217395969000_bib1) 1997; 276 Li (2022011217395969000_bib30) 2008; 105 Krek (2022011217395969000_bib23) 2005; 37 Houbaviy (2022011217395969000_bib27) 2003; 5 Qiu (2022011217395969000_bib6) 2007; 22 Akune (2022011217395969000_bib13) 2004; 113 Ogawa (2022011217395969000_bib22) 1993; 90 Kitamura (2022011217395969000_bib18) 2003; 31 Rao (2022011217395969000_bib29) 2006; 103 |
References_xml | – volume: 37 start-page: 495 year: 2005 end-page: 500 article-title: Combinatorial microRNA target predictions publication-title: Nat Genet – volume: 105 start-page: 13906 year: 2008 end-page: 13911 article-title: A microRNA signature for a BMP2‐induced osteoblast lineage commitment program publication-title: Proc Natl Acad Sci U S A – volume: 5 start-page: 351 year: 2003 end-page: 358 article-title: Embryonic stem cell‐specific MicroRNAs publication-title: Dev Cell – volume: 90 start-page: 6859 year: 1993 end-page: 6863 article-title: PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene publication-title: Proc Natl Acad Sci U S A – volume: 102 start-page: 3324 year: 2005 end-page: 3329 article-title: Regulation of osteoblastogenesis and bone mass by Wnt10b publication-title: Proc Natl Acad Sci U S A – volume: 103 start-page: 8721 year: 2006 end-page: 8726 article-title: Myogenic factors that regulate expression of muscle‐specific microRNAs publication-title: Proc Natl Acad Sci U S A – volume: 9 start-page: 102 year: 2008 end-page: 114 article-title: Mechanisms of post‐transcriptional regulation by microRNAs: Are the answers in sight? publication-title: Nat Rev Genet – volume: 80 start-page: 147 year: 1971 end-page: 154 article-title: Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A Quantitative Study Of 84 Iliac Bone Biopsies publication-title: Clin Orthop Relat Res – volume: 33 start-page: e179 year: 2005 article-title: Real‐time quantification of microRNAs by stem‐loop RT‐PCR publication-title: Nucleic Acids Res – volume: 6 start-page: 423 year: 2004 end-page: 435 article-title: A twist code determines the onset of osteoblast differentiation publication-title: Dev Cell – volume: 4 start-page: 721 year: 2007 end-page: 726 article-title: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells publication-title: Nat Methods – volume: 89 start-page: 755 year: 1997 end-page: 764 article-title: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts publication-title: Cell – volume: 283 start-page: 13491 year: 2008 end-page: 13499 article-title: VEGF‐C, a lymphatic growth factor, is a RANKL target gene in osteoclasts that enhances osteoclastic bone resorption through an autocrine mechanism publication-title: J Biol Chem – volume: 281 start-page: 16347 year: 2006 end-page: 16353 article-title: Cyclin D1‐cdk4 induce runx2 ubiquitination and degradation publication-title: J Biol Chem – volume: 113 start-page: 846 year: 2004 end-page: 855 article-title: PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors publication-title: J Clin Invest – volume: 21 start-page: 681 year: 2003 end-page: 693 article-title: Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone publication-title: Stem Cells – volume: 7 start-page: 885 year: 2006 end-page: 896 article-title: Adipocyte differentiation from the inside out publication-title: Nat Rev Mol Cell Biol – volume: 2 start-page: e363 year: 2004 article-title: Human MicroRNA targets publication-title: Plos Biol – volume: 38 start-page: 228 year: 2006 end-page: 233 article-title: The role of microRNA‐1 and microRNA‐133 in skeletal muscle proliferation and differentiation publication-title: Nat Genet – volume: 10 start-page: 116 year: 2009 end-page: 125 article-title: MicroRNAs: Key regulators of stem cells publication-title: Nat Rev Mol Cell Biol – volume: 165 start-page: 579 year: 2000 end-page: 586 article-title: An osteogenesis‐related transcription factor, core‐binding factor A1, is constitutively expressed in the chondrocytic cell line TC6, and its expression is upregulated by bone morphogenetic protein‐2 publication-title: J Endocrinol – volume: 14 start-page: 1293 year: 2000 end-page: 1307 article-title: Transcriptional regulation of adipogenesis publication-title: Genes Dev – volume: 55 start-page: 693 year: 2002 end-page: 698 article-title: Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis publication-title: J Clin Pathol – volume: 31 start-page: 1007 year: 2003 end-page: 1014 article-title: Retrovirus‐mediated gene transfer and expression cloning: Powerful tools in functional genomics publication-title: Exp Hematol – volume: 88 start-page: 10431 year: 1991 end-page: 10434 article-title: t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1 publication-title: Proc Natl Acad Sci U S A – volume: 22 start-page: 1720 year: 2007 end-page: 1731 article-title: Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells publication-title: J Bone Miner Res – volume: 7 start-page: 1063 year: 2000 end-page: 1066 article-title: Plat‐E: An efficient and stable system for transient packaging of retroviruses publication-title: Gene Ther – volume: 26 start-page: 356 year: 2008 end-page: 363 article-title: Concise review: MicroRNA expression in multipotent mesenchymal stromal cells publication-title: Stem Cells – volume: 276 start-page: 71 year: 1997 end-page: 74 article-title: Marrow stromal cells as stem cells for nonhematopoietic tissues publication-title: Science – volume: 20 start-page: 429 year: 2008 end-page: 434 article-title: Bone and fat connection in aging bone publication-title: Curr Opin Rheumatol – volume: 18 start-page: 952 year: 2004 end-page: 963 article-title: Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog publication-title: Genes Dev – volume: 309 start-page: 1074 year: 2005 end-page: 1078 article-title: TAZ, a transcriptional modulator of mesenchymal stem cell differentiation publication-title: Science – volume: 117 start-page: 417 year: 2004 end-page: 425 article-title: Runx2 deficiency in chondrocytes causes adipogenic changes in vitro publication-title: J Cell Sci – volume: 136 start-page: 215 year: 2009 end-page: 233 article-title: MicroRNAs: Target recognition and regulatory functions publication-title: Cell – volume: 21 start-page: 681 year: 2003 ident: 2022011217395969000_bib2 article-title: Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone publication-title: Stem Cells doi: 10.1634/stemcells.21-6-681 – volume: 281 start-page: 16347 year: 2006 ident: 2022011217395969000_bib32 article-title: Cyclin D1-cdk4 induce runx2 ubiquitination and degradation publication-title: J Biol Chem doi: 10.1074/jbc.M603439200 – volume: 5 start-page: 351 year: 2003 ident: 2022011217395969000_bib27 article-title: Embryonic stem cell-specific MicroRNAs publication-title: Dev Cell doi: 10.1016/S1534-5807(03)00227-2 – volume: 89 start-page: 755 year: 1997 ident: 2022011217395969000_bib7 article-title: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts publication-title: Cell doi: 10.1016/S0092-8674(00)80258-5 – volume: 102 start-page: 3324 year: 2005 ident: 2022011217395969000_bib10 article-title: Regulation of osteoblastogenesis and bone mass by Wnt10b publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0408742102 – volume: 309 start-page: 1074 year: 2005 ident: 2022011217395969000_bib14 article-title: TAZ, a transcriptional modulator of mesenchymal stem cell differentiation publication-title: Science doi: 10.1126/science.1110955 – volume: 165 start-page: 579 year: 2000 ident: 2022011217395969000_bib21 article-title: An osteogenesis-related transcription factor, core-binding factor A1, is constitutively expressed in the chondrocytic cell line TC6, and its expression is upregulated by bone morphogenetic protein-2 publication-title: J Endocrinol doi: 10.1677/joe.0.1650579 – volume: 136 start-page: 215 year: 2009 ident: 2022011217395969000_bib34 article-title: MicroRNAs: Target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 80 start-page: 147 year: 1971 ident: 2022011217395969000_bib4 article-title: Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A Quantitative Study Of 84 Iliac Bone Biopsies publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-197110000-00021 – volume: 22 start-page: 1720 year: 2007 ident: 2022011217395969000_bib6 article-title: Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells publication-title: J Bone Miner Res doi: 10.1359/jbmr.070721 – volume: 113 start-page: 846 year: 2004 ident: 2022011217395969000_bib13 article-title: PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors publication-title: J Clin Invest doi: 10.1172/JCI200419900 – volume: 7 start-page: 1063 year: 2000 ident: 2022011217395969000_bib16 article-title: Plat-E: An efficient and stable system for transient packaging of retroviruses publication-title: Gene Ther doi: 10.1038/sj.gt.3301206 – volume: 90 start-page: 6859 year: 1993 ident: 2022011217395969000_bib22 article-title: PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.90.14.6859 – volume: 10 start-page: 116 year: 2009 ident: 2022011217395969000_bib15 article-title: MicroRNAs: Key regulators of stem cells publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2621 – volume: 105 start-page: 13906 year: 2008 ident: 2022011217395969000_bib30 article-title: A microRNA signature for a BMP2-induced osteoblast lineage commitment program publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804438105 – volume: 117 start-page: 417 year: 2004 ident: 2022011217395969000_bib12 article-title: Runx2 deficiency in chondrocytes causes adipogenic changes in vitro publication-title: J Cell Sci doi: 10.1242/jcs.00866 – volume: 7 start-page: 885 year: 2006 ident: 2022011217395969000_bib11 article-title: Adipocyte differentiation from the inside out publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2066 – volume: 55 start-page: 693 year: 2002 ident: 2022011217395969000_bib5 article-title: Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis publication-title: J Clin Pathol doi: 10.1136/jcp.55.9.693 – volume: 4 start-page: 721 year: 2007 ident: 2022011217395969000_bib25 article-title: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells publication-title: Nat Methods doi: 10.1038/nmeth1079 – volume: 276 start-page: 71 year: 1997 ident: 2022011217395969000_bib1 article-title: Marrow stromal cells as stem cells for nonhematopoietic tissues publication-title: Science doi: 10.1126/science.276.5309.71 – volume: 37 start-page: 495 year: 2005 ident: 2022011217395969000_bib23 article-title: Combinatorial microRNA target predictions publication-title: Nat Genet doi: 10.1038/ng1536 – volume: 9 start-page: 102 year: 2008 ident: 2022011217395969000_bib33 article-title: Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? publication-title: Nat Rev Genet doi: 10.1038/nrg2290 – volume: 38 start-page: 228 year: 2006 ident: 2022011217395969000_bib28 article-title: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation publication-title: Nat Genet doi: 10.1038/ng1725 – volume: 88 start-page: 10431 year: 1991 ident: 2022011217395969000_bib20 article-title: t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.88.23.10431 – volume: 283 start-page: 13491 year: 2008 ident: 2022011217395969000_bib17 article-title: VEGF-C, a lymphatic growth factor, is a RANKL target gene in osteoclasts that enhances osteoclastic bone resorption through an autocrine mechanism publication-title: J Biol Chem doi: 10.1074/jbc.M708055200 – volume: 31 start-page: 1007 year: 2003 ident: 2022011217395969000_bib18 article-title: Retrovirus-mediated gene transfer and expression cloning: Powerful tools in functional genomics publication-title: Exp Hematol doi: 10.1016/S0301-472X(03)00260-1 – volume: 2 start-page: e363 year: 2004 ident: 2022011217395969000_bib24 article-title: Human MicroRNA targets publication-title: Plos Biol doi: 10.1371/journal.pbio.0020363 – volume: 18 start-page: 952 year: 2004 ident: 2022011217395969000_bib8 article-title: Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog publication-title: Genes Dev doi: 10.1101/gad.1174704 – volume: 14 start-page: 1293 year: 2000 ident: 2022011217395969000_bib9 article-title: Transcriptional regulation of adipogenesis publication-title: Genes Dev doi: 10.1101/gad.14.11.1293 – volume: 26 start-page: 356 year: 2008 ident: 2022011217395969000_bib26 article-title: Concise review: MicroRNA expression in multipotent mesenchymal stromal cells publication-title: Stem Cells doi: 10.1634/stemcells.2007-0625 – volume: 20 start-page: 429 year: 2008 ident: 2022011217395969000_bib3 article-title: Bone and fat connection in aging bone publication-title: Curr Opin Rheumatol doi: 10.1097/BOR.0b013e3283025e9c – volume: 103 start-page: 8721 year: 2006 ident: 2022011217395969000_bib29 article-title: Myogenic factors that regulate expression of muscle-specific microRNAs publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0602831103 – volume: 33 start-page: e179 year: 2005 ident: 2022011217395969000_bib19 article-title: Real-time quantification of microRNAs by stem-loop RT-PCR publication-title: Nucleic Acids Res doi: 10.1093/nar/gni178 – volume: 6 start-page: 423 year: 2004 ident: 2022011217395969000_bib31 article-title: A twist code determines the onset of osteoblast differentiation publication-title: Dev Cell doi: 10.1016/S1534-5807(04)00058-9 |
SSID | ssj0014588 |
Score | 2.5189302 |
Snippet | Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 357 |
SubjectTerms | Adipocyte Animals Blotting, Western Cell Differentiation - genetics Cell Differentiation - physiology Cell Line Core Binding Factor Alpha 1 Subunit - genetics Core Binding Factor Alpha 1 Subunit - metabolism Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Mice MicroRNAs - genetics MicroRNAs - physiology miR‐204 Osteoblast Reverse Transcriptase Polymerase Chain Reaction Runx2 |
Title | MicroRNA‐204 Regulates Runx2 Protein Expression and Mesenchymal Progenitor Cell Differentiation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.288 https://www.ncbi.nlm.nih.gov/pubmed/20039258 https://www.proquest.com/docview/733518964 https://pubmed.ncbi.nlm.nih.gov/PMC2837600 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9swEBbtlkJfSu9NL1Qo7UPwNpZ8yI9LmyXdJlnYdSD0RVi2TAKNvWQdaPrrOzp8pEnp8eIERRGy5tNII818g9BblyXUlQFzvFQIxxNR6IBlC4arjFwBC6KgOn3bZBqMZt753J-3WVF1dEklTtIfB-NK_keqUAZyVVGy_yDZplEogO8gX3iChOH5VzKeKG-6y-kpdNfrr01WeXnTv9wU30lfMzAsNYe_8XU1bscrFW6ULrYrFYK1LqFtmNPrvjrAb7KlVB152Y3rVSVXupI-pf2UbK3b_cViWXZOE0Ybe_583oHd10VSmhjspmhuU6mModp1vXpqLwOrBpfd4wh1k964dlgN6qm0dVapygNlVu0S1oEX6ehQahir93S74YpV9NYnhLF2_arv7KcX_Gw2HvN4OI9vozsE7AZtY3_-0lwrqbBcTaBr-1OzEQ_Ih7rd3f3JntGx7zvbtWn0piR-gO5bawKfGmg8RLdk8QjdNflFt48R7wIENwDBGiDYAgS3AMEAENwBCG4BgpXs8S8AeYJmZ8P448ixGTWc1APD0IlE6KWeDKVgvu_DMk0ZFZGMgowyNVkjOQgzJmmQ5KnM5cDPQ1_SSLFCkszNBvQpOirKQh4jHMogCfI0Uzs-aFHArHbDVN2rEyYJyXvofT2OPLV08yrryTduiLIJVyPOYcR76E1T89pQrByog2tRcNB_6pWTQpabGx5S6rssCrweemYk0zSi_C4j4sOfwx2ZNRUUtfruL8VyoSnWFScUmAI99E5L97f94lfxcAKfz__cvxfoXjtfXqKjar2Rr2BDW4nXGqQ_AfqzpU4 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-204+regulates+Runx2+protein+expression+and+mesenchymal+progenitor+cell+differentiation&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Huang%2C+Jian&rft.au=Zhao%2C+Lan&rft.au=Xing%2C+Lianping&rft.au=Chen%2C+Di&rft.date=2010-02-01&rft.issn=1549-4918&rft.eissn=1549-4918&rft.volume=28&rft.issue=2&rft.spage=357&rft_id=info:doi/10.1002%2Fstem.288&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |