The delivery assessment for small targets on Halcyon radiotherapy system – Measured and calculated dose comparison

Background With the ever‐increasing requirements of accuracy and personalization of radiotherapy treatments, stereotactic radiotherapy (SRT) with volumetric modulated arc therapy (VMAT) on O‐ring Halcyon radiotherapy system could potentially provide a fast, safe, and feasible treatment option. Purpo...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied clinical medical physics Vol. 25; no. 6; pp. e14407 - n/a
Main Authors Lankinen, Linda, Kulmala, Antti, Lehtomäki, Jouko, Harju, Ari
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.06.2024
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background With the ever‐increasing requirements of accuracy and personalization of radiotherapy treatments, stereotactic radiotherapy (SRT) with volumetric modulated arc therapy (VMAT) on O‐ring Halcyon radiotherapy system could potentially provide a fast, safe, and feasible treatment option. Purpose The purpose of this study was to assess the delivery of Halcyon VMAT plans for small targets. Methods Well‐defined VMAT‐SRT plans were created on Halcyon radiotherapy system with the stacked and staggered dual‐layer MLC design for the film measurement set‐up and the target sizes and shapes designed to emulate the targets of the stereotactic treatments. The planar dose distributions were acquired with film measurements and compared to a current clinical reference dose calculation with AcurosXB (v18.0, Varian Medical Systems) and to Monte Carlo simulations. With the collapsed arc versions of the VMAT‐SRT plans, the uncertainty in dose delivery due to the multileaf collimator (MLC) without the gantry rotation could be separated and analyzed. Results The target size was mainly limited by the resolution originated from the design of the MLC leaves. The results of the collapsed arc versions of the plans show good consistency among measured, calculated, and simulated dose distributions. With the full VMAT plans, the agreement between calculated and simulated dose distributions was consistent with the collapsed arc versions. The measured dose distribution agreed with the calculated and simulated dose distributions within the target regions, but considerable local differences were observed in the margins of the target. The largest differences located in the steep gradient regions presumably originating from the deviation of the isocenter. Conclusions The potential of the Halcyon radiotherapy system for VMAT‐SRT delivery was evaluated and the study revealed valuable insights on the machine characteristics with the delivery.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1526-9914
1526-9914
DOI:10.1002/acm2.14407